JPS63274058A - Negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery

Info

Publication number
JPS63274058A
JPS63274058A JP62108518A JP10851887A JPS63274058A JP S63274058 A JPS63274058 A JP S63274058A JP 62108518 A JP62108518 A JP 62108518A JP 10851887 A JP10851887 A JP 10851887A JP S63274058 A JPS63274058 A JP S63274058A
Authority
JP
Japan
Prior art keywords
negative electrode
melting point
alloy
alkali metal
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62108518A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hino
日野 義久
Hiroyuki Takayanagi
博之 高柳
Michie Yoshioka
吾恵 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62108518A priority Critical patent/JPS63274058A/en
Publication of JPS63274058A publication Critical patent/JPS63274058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase charge-discharge cycle performance by covering the surface of a negative electrode made of a metal or alloy which reversibly absorbs and desorbs alkali metal ions with a specific low-melting point alloy. CONSTITUTION:The surface of a negative electrode made of a metal or alloy which reversibly absorbs and desorbs alkali metal inos is covered with a low- melting point alloy obtained by adding at least one element selected from Sn, In, Cd, and Hg to Bi and Pb. The low-melting point alloy can repeat the adsorption and desorption of alkali metal during charge and discharge, but is difficult to be converted into fine particles attendant on charge-discharge cycles. The low-melting point alloy forms a protection layer for preventing decrease in electron conductivity of the negative electrode caused by being converted into fine particles and coming off of negative electrode constituting materials. High charge-discharge efficiency is thereby retained over long term cycles.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は非水電解液二次電池用負極に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery.

〈従来の技術〉 非水電解液二次電池は、リチウムやナトリウムなどのア
ルカリ金属を負極活物質とし、また非水系の電解液を用
いた購成が採られるが、未だ実用化さ・れるには至って
いないのが現状である。これは、放電時に電解液中にイ
オンとなって溶出した負極中のアルカリ金属が充電■4
には負極表面に元通りに電析せずにデンドライト(樹枝
状結晶)となり、充放電サイクルの進行によりこのデン
ドライトが生長しセパレータを貫通して正極に達し電池
内部短絡を起こすなどすることが要因であり、このため
に長期に亘って高い充放電効率を保つことが困難で、υ
イクル寿命が短いことに起因している。
<Conventional technology> Non-aqueous electrolyte secondary batteries use an alkali metal such as lithium or sodium as the negative electrode active material and use a non-aqueous electrolyte, but these batteries have yet to be put into practical use. The current situation is that this has not been achieved. This is because the alkali metal in the negative electrode, which is ionized and eluted into the electrolyte during discharge, charges ■4.
This is because dendrites (dendritic crystals) are formed without being deposited on the negative electrode surface as before, and as the charge/discharge cycle progresses, these dendrites grow, penetrate the separator, and reach the positive electrode, causing an internal short circuit in the battery. Therefore, it is difficult to maintain high charge/discharge efficiency over a long period of time, and υ
This is due to the short cycle life.

このため、充放電サイクルにおいてアルカリ金属イオン
を可逆的に吸蔵、放出する能力を持った構成体を負極基
体として用い、充電時にはこの負極基体表面に電析した
アルカリ金属を負極基体中に拡散しつつ吸蔵ざUるよう
にし、もってデンドライトの発生並びにデンドライト生
長を抑制して電池の特性向上を図ることが提案されてい
る。
For this reason, a structure that has the ability to reversibly absorb and release alkali metal ions during charge and discharge cycles is used as the negative electrode substrate, and during charging, the alkali metal deposited on the surface of the negative electrode substrate is diffused into the negative electrode substrate. It has been proposed to improve battery characteristics by preventing occlusion and thereby suppressing dendrite generation and dendrite growth.

このような負極基体としてはアルミニウム。Aluminum is used as such a negative electrode substrate.

亜鉛、マグネシウム、スズ、鉛、鉛−スズ合金4工どの
ようなリチウムと合金化し易い金属ないし合金が広く用
いられ、例えばアルミニウムを用いてなる負極基体では
、充電時にはリチウム−アルミニウム合金が形成される
ように上記吸蔵がなされることから、上記プントライ1
〜の発生を有効に防止することができるようになる。
Zinc, magnesium, tin, lead, lead-tin alloy 4 Metals or alloys that are easily alloyed with lithium are widely used. For example, in a negative electrode substrate made of aluminum, a lithium-aluminum alloy is formed during charging. Since the above-mentioned occlusion is performed as follows, the above-mentioned Puntorai 1
It becomes possible to effectively prevent the occurrence of ~.

なかでもこのアルミニウムよりなる負JI u体はリチ
ウムの拡散が速く、且つ重最当りの電気容尼が大でおる
ことから、最も有力なものとして注目されている。
Among these, the negative JI u body made of aluminum is attracting attention as the most promising material because lithium diffuses quickly and the electric capacity at the maximum weight is large.

〈発明が解決しようと16問題点〉 しかしながら、上記のようなリチウムと合金化し易い金
属ないし合金を負極基体に用いた負極では、充放電の繰
返しにより膨張、収縮などによって微粉化し易く、この
ため負極の電子伝導性が損われたり、また微粉化した負
極構成材が脱落するなどして次第に特性が低下してしま
うという問題がある。
<16 Problems to be Solved by the Invention> However, in a negative electrode that uses a metal or alloy that easily alloys with lithium as the negative electrode substrate, it is easy to become pulverized due to expansion and contraction due to repeated charging and discharging, and for this reason, the negative electrode There is a problem that the electronic conductivity of the negative electrode is impaired, and the finely powdered negative electrode constituent material falls off, resulting in a gradual deterioration of the characteristics.

〈問題点を解決するための手段〉 この発明の非水電解液二茨電池用負極は、アルカリ金属
゛イオンを可逆的に吸蔵、放出する金属ないし合金より
なる負極基体の表面を、1BiとPbにSn、In、C
d、Hqより選ばれる少なくとも1種の金属を加えてな
る低融点合金にて被覆したことを要旨とするものである
<Means for Solving the Problems> The negative electrode for a non-aqueous electrolyte dual-thorn battery of the present invention has a surface of a negative electrode substrate made of a metal or an alloy that reversibly occludes and releases alkali metal ions, and is made of 1Bi and Pb. Sn, In, C
The gist of the present invention is to coat with a low melting point alloy made by adding at least one metal selected from d and Hq.

く作 用〉 上記の低融点合金は負極の充放電口4にはアルカリ金属
の吸蔵(合金化)、放出(非合金化)を繰返すが、アル
ミニウムなどの前記金属ないし合金に較べて充放電サイ
クルに伴う微粉化が発生しにくい。このため、この低融
点合金により上記負極基体表面を被覆することで、基体
表面の低融点合金層が基体の微粉化による負極の電子伝
導性低下や負極構成材の脱落を防止する保護層となり、
長期サイクルにわたり高い充放電効率を維持できる。尚
、負極充電ないし放電時、負極基体には低融点合金層を
介してアルカリ金属イオンが拡散ないし放出されること
は言うまでもない。
Function> The above-mentioned low melting point alloy repeatedly stores (alloyed) and releases (non-alloyed) alkali metal in the charging/discharging port 4 of the negative electrode, but the charging/discharging cycle is shorter than that of the metal or alloy such as aluminum. pulverization is less likely to occur. Therefore, by coating the surface of the negative electrode substrate with this low melting point alloy, the low melting point alloy layer on the surface of the substrate becomes a protective layer that prevents the electronic conductivity of the negative electrode from decreasing and the negative electrode constituent materials from falling off due to pulverization of the substrate.
High charge/discharge efficiency can be maintained over long cycles. It goes without saying that during negative electrode charging or discharging, alkali metal ions are diffused or released into the negative electrode substrate through the low melting point alloy layer.

〈実施例〉 第1表に示した組成で各種金属を採り、これらを夫々ル
ツボに入れ、アルゴン雰囲気下で加熱溶融しつつ混合し
て低融点合金A〜Gを作った。これら低融点合金A−G
の溶融混合物中にそれぞれ、両表面をエメリー紙で研磨
しまた片面はテフロン粘着テープを貼イ4して被覆した
0、 3mm厚のアルミニウム板を浸漬することで、ア
ルミニウム板の上記粘着テープを貼付しない面に低融点
合金A−Gからなる合金層をそれぞれ形成したアルミニ
ウム板A−Gを作製した。
<Example> Various metals having the compositions shown in Table 1 were taken, placed in a crucible, and mixed while being heated and melted in an argon atmosphere to produce low melting point alloys A to G. These low melting point alloys A-G
The above adhesive tape was applied to the aluminum plate by dipping a 0.3 mm thick aluminum plate, both surfaces of which had been polished with emery paper and one side covered with Teflon adhesive tape, into the molten mixture. Aluminum plates A to G were prepared in which alloy layers made of low melting point alloys A to G were formed on the non-contact surfaces, respectively.

尚、これら合金層の厚さは30μmとなるように調整し
た。
The thickness of these alloy layers was adjusted to 30 μm.

第1表 こうして得たアルミニウム板A−Gを夫々直径10.8
mmの円板状に打ら汰いた。そしてこれらをそれぞれ、
開口径11.0mmでステンレス製で皿状の容器の内底
面にスポット溶接したステンレスネットの上に上記合金
層を上面にして載置し、次いで加圧してステンレスネッ
ト並びに容器内底面に圧着し、本発明に係る試験極A−
Gを作った。第1図はこの試験極の構造を示し、図中1
は容器、2はステンレスネット、3は上記アルミニウム
円板からなる負極基体、4は低融点合金からなる合金層
である。
Table 1 Aluminum plates A-G thus obtained each have a diameter of 10.8 mm.
It was punched into a disk shape of mm. And each of these
Place the alloy layer on top of a stainless steel net with an opening diameter of 11.0 mm spot-welded to the inner bottom surface of a dish-shaped container made of stainless steel, and then pressurize the stainless steel net and the inner bottom surface of the container, Test electrode A- according to the present invention
I made G. Figure 1 shows the structure of this test electrode.
2 is a container, 2 is a stainless steel net, 3 is a negative electrode substrate made of the above-mentioned aluminum disk, and 4 is an alloy layer made of a low melting point alloy.

次いで、これらの試験極A−Gを人容足のりチウム−ア
ルミニウム合金を対極6とし更に金属リチウムを照合電
極7として、第2図に示したようなハーフセルA〜Gを
組立てた。尚、電解液8としては、プロピレンカーボネ
ートと4メチル−1,3ジオキソランとを体積比1:1
で混ぜた溶媒にL!PF6を1 mol/J2.溶解シ
タものを使用した。また、上記のリチウム−アルミニウ
ム合金は複連する充放電サイクル中に劣化した場合には
適宜取替えた。
Next, these test electrodes A to G were used to assemble half cells A to G as shown in FIG. 2 by using a lithium-aluminum alloy as a counter electrode 6 and metal lithium as a reference electrode 7. The electrolytic solution 8 is made of propylene carbonate and 4-methyl-1,3 dioxolane in a volume ratio of 1:1.
Add L to the solvent mixed with ! PF6 at 1 mol/J2. I used the dissolved one. In addition, the above lithium-aluminum alloy was replaced as appropriate when it deteriorated during multiple charge/discharge cycles.

一方、上記の如き低融点合金からなる合金層を形成しな
いアルミニウム板を用いて作った負極基体を使用した他
は試験極Δ〜Gと同様にして比較用の試験極Hを作り、
この試験極Hを用いてハーフセルΔ〜Gと同様な構造の
ハーフセルHを作製した。
On the other hand, test electrodes H for comparison were made in the same manner as test electrodes Δ~G, except that a negative electrode substrate made of an aluminum plate without forming an alloy layer made of a low melting point alloy as described above was used.
Using this test electrode H, a half cell H having a structure similar to half cells Δ to G was manufactured.

そして、最初1mAの定電流で25時間(25mAH)
試験極A−Hを充電してこれら試験極にリチウムを電着
してアルミニウムーリチウム合金化した。次いで、ハー
フセルA〜1−1について、1mAの電流で10時間放
電した俊に電流1m八で10時間放電するという充放電
サイクルを繰返した。第2・表に、放電時における電位
(VSLi/L+  )が1.0■に達したサイクルを
、試験極A−Hの夫々について、それぞれ3個測定し、
その結果を示した。
Then, for 25 hours (25mAH) at a constant current of 1mA at first.
Test electrodes A to H were charged and lithium was electrodeposited onto these test electrodes to form an aluminum-lithium alloy. Next, for the half cells A to 1-1, a charge/discharge cycle was repeated in which the cells were discharged at a current of 1 mA for 10 hours, and then discharged at a current of 1 mA for 10 hours. Table 2 shows three cycles in which the potential during discharge (VSLi/L+) reached 1.0■ for each of test electrodes A to H.
The results were shown.

第2表 第2表に示したように、従来品ト1に較べ本発明品A−
Gはいずれもサイクル数が向上しており、特に試験極△
〜Cのような組成とするのが電極の保形効果が高く好ま
しい。
Table 2 As shown in Table 2, the invention product A-
For G, the number of cycles has improved, especially for the test electrode △
It is preferable to have a composition such as -C because the shape retention effect of the electrode is high.

尚、以上はアルカリ金属としてリチウムを、またこのア
ルカリ金属イオンを可逆的に吸蔵。
In the above, lithium is used as the alkali metal, and this alkali metal ion is reversibly occluded.

放出する負極基体としてアルミニウムよりなるものを用
いた例であるが、亜鉛、マグネシウム。
This is an example in which a material made of aluminum is used as the emitting negative electrode substrate, but zinc and magnesium are used.

スズ、鉛、鉛−スズ合金などよ7りなる負極基体にナト
リウムやカリウムなどのアルカリ金属のイオンを可逆的
に吸蔵、放出させる負極にも同様に適用でき、同様の効
果を上げられる。
The present invention can be similarly applied to negative electrodes in which ions of alkali metals such as sodium and potassium are reversibly occluded and released from a negative electrode substrate made of tin, lead, lead-tin alloy, etc., and similar effects can be achieved.

〈発明の効果〉 以上のように、この発明の非水電解液二次電池用負極は
、充放電(ノイクルに伴う負極基体の微粉化や電子伝導
性低下が抑制できて充放電り”イクル特性の向上を図れ
るという効果を奏する。
<Effects of the Invention> As described above, the negative electrode for nonaqueous electrolyte secondary batteries of the present invention can suppress the pulverization of the negative electrode substrate and the decrease in electronic conductivity associated with charging and discharging (noicles), and has excellent cycle characteristics during charging and discharging. This has the effect of improving the

このため、この発明を例えばアルミニウムよりなる負極
基体にリチウムを可逆的に吸蔵、放出させる構成の負極
に適用すれば、@扇当りの電気客足が大であること、並
びにリチウムの拡散速度が大きいといったこの負極基体
の特長を損うことなく、そのリイクル寿命を向上させる
ことができ、その工業上の利用価値は大きい。
Therefore, if this invention is applied to a negative electrode having a structure in which lithium is reversibly inserted into and released from a negative electrode base made of aluminum, for example, the electric customer per fan will be large and the diffusion rate of lithium will be high. The recycle life of this negative electrode substrate can be improved without impairing its features, and its industrial utility value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る試験極の断面図、第2図
はこの試験極を用いて作製したハーフセルの説明図であ
る。 1・・・容器、3・・・負極基体、4・・・低融点合金
層。
FIG. 1 is a sectional view of a test electrode according to an example of the present invention, and FIG. 2 is an explanatory diagram of a half cell manufactured using this test electrode. DESCRIPTION OF SYMBOLS 1... Container, 3... Negative electrode substrate, 4... Low melting point alloy layer.

Claims (1)

【特許請求の範囲】 1、アルカリ金属イオンを可逆的に吸蔵、放出する金属
ないし合金よりなる負極基体の表面を、BiとPbにS
n、In、Cd、Hgより選ばれる少なくとも1種の金
属を加えてなる低融点合金にて被覆したことを特徴とす
る非水電解液二次電池用負極。 2、前記アルカリ金属がリチウムであることを特徴とす
る特許請求の範囲第1項記載の非水電解液二次電池用負
極。 3、前記負極基体がアルミニウムよりなることを特徴と
する特許請求の範囲第1項記載の非水電解液二次電池用
負極。
[Claims] 1. The surface of the negative electrode substrate made of a metal or alloy that reversibly occludes and releases alkali metal ions is coated with Bi and Pb.
1. A negative electrode for a non-aqueous electrolyte secondary battery, characterized in that the negative electrode is coated with a low melting point alloy formed by adding at least one metal selected from n, In, Cd, and Hg. 2. The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the alkali metal is lithium. 3. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode base is made of aluminum.
JP62108518A 1987-05-01 1987-05-01 Negative electrode for nonaqueous electrolyte secondary battery Pending JPS63274058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62108518A JPS63274058A (en) 1987-05-01 1987-05-01 Negative electrode for nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62108518A JPS63274058A (en) 1987-05-01 1987-05-01 Negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPS63274058A true JPS63274058A (en) 1988-11-11

Family

ID=14486825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62108518A Pending JPS63274058A (en) 1987-05-01 1987-05-01 Negative electrode for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPS63274058A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024070A1 (en) * 1998-10-22 2000-04-27 Matsushita Electric Industrial Co., Ltd. Secondary cell having non-aqueous electrolyte
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2001102052A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Secondary cell of non-aqueous electrolyte
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
EP1100134A4 (en) * 1999-03-31 2005-03-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and its negative plate
JP2005129254A (en) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) Negative electrode for lithium secondary battery
EP1302994A4 (en) * 2000-07-19 2006-01-25 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary cell
JP2012142297A (en) * 1995-06-28 2012-07-26 Ube Ind Ltd Nonaqueous secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142297A (en) * 1995-06-28 2012-07-26 Ube Ind Ltd Nonaqueous secondary battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2000024070A1 (en) * 1998-10-22 2000-04-27 Matsushita Electric Industrial Co., Ltd. Secondary cell having non-aqueous electrolyte
US6506520B1 (en) 1998-12-02 2003-01-14 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
US6605386B1 (en) 1998-12-02 2003-08-12 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
WO2000033400A1 (en) * 1998-12-02 2000-06-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
EP1100134A4 (en) * 1999-03-31 2005-03-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell and its negative plate
JP2001102052A (en) * 1999-10-01 2001-04-13 Matsushita Electric Ind Co Ltd Secondary cell of non-aqueous electrolyte
JP4635283B2 (en) * 1999-10-01 2011-02-23 パナソニック株式会社 Nonaqueous electrolyte secondary battery
EP1302994A4 (en) * 2000-07-19 2006-01-25 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary cell
JP2005129254A (en) * 2003-10-21 2005-05-19 Daiwa Fine Chemicals Co Ltd (Laboratory) Negative electrode for lithium secondary battery

Similar Documents

Publication Publication Date Title
US9876225B2 (en) Anode active material and battery
JPS63274058A (en) Negative electrode for nonaqueous electrolyte secondary battery
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JP3152307B2 (en) Lithium secondary battery
JPS6086760A (en) Nonaqueous electrolyte secondary battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0441471B2 (en)
JPH08321302A (en) Hydrogen storage electrode
JPS62145650A (en) Nonaqueous electrolyte secondary cell
JPH0412587B2 (en)
JP2003317719A (en) Nonaqueous electrolyte secondary battery
JPS6231950A (en) Electrode for lithium secondary battery
JPS62226562A (en) Nonaqueous electrolyte secondary battery
JPH06124706A (en) Sealed nickel-zinc storage battery
JPH0364987B2 (en)
JP3082341B2 (en) Hydrogen storage electrode
JPS59186276A (en) Nonaqueous electrolyte secondary battery
JPS59167961A (en) Alkali zinc battery
JPS59163757A (en) Nonaqueous electrolyte secondary battery
JPH0773050B2 (en) Organic electrolyte secondary battery
JPS60167265A (en) Nonaqueous electrolyte secondary battery
JPH0265056A (en) Nonaqueous secondary battery
JPH087884A (en) Negative electrode for nonaqueous electrolytic secondary battery
JPS59163761A (en) Nonaqueous electrolyte secondary battery
JPH01241756A (en) Nonaqueous secondary cell