JPH01241756A - Nonaqueous secondary cell - Google Patents

Nonaqueous secondary cell

Info

Publication number
JPH01241756A
JPH01241756A JP63067405A JP6740588A JPH01241756A JP H01241756 A JPH01241756 A JP H01241756A JP 63067405 A JP63067405 A JP 63067405A JP 6740588 A JP6740588 A JP 6740588A JP H01241756 A JPH01241756 A JP H01241756A
Authority
JP
Japan
Prior art keywords
alloy
electrode
negative electrode
lithium
secondary cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63067405A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sugimoto
博幸 杉本
Shigeoki Nishimura
西村 成興
Mamoru Mizumoto
水本 守
Noboru Ebato
江波戸 昇
Hiroshi Hida
飛田 紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP63067405A priority Critical patent/JPH01241756A/en
Publication of JPH01241756A publication Critical patent/JPH01241756A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To reduce the disintegration speed of a electrode when the charge and the discharge are repeated, and to extend the service life, by making the negative electrode of a secondary cell with an alloy of lithium, lead, and an alkaline earth metal, and specifying the atomic ratio of the alloy components. CONSTITUTION:A secondary cell is composed of a positive electrode 3, a negative electrode 1 which consists of a negative electrode substance to absorb and release lithium inversely, and a nonaqueous electrolyte including a lithium salt, and the negative electrode 1 of the secondary cell is composed of an alloy of lithium, lead, and an alkaline earth metal, making the atomic ratio of the alloy 1-8:0.01-0.05. That is, by adding an alkaline earth metal to a Li-Pb alloy, the strength of the alloy, under the condition to remove the lithium from the alloy by the discharge, is improved, and the disintegration of the electrode is suppressed accordingly. Consequently, a secondary cell with little deterioration of activeness owing to the disintegration of the electrode, and with a long service life, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は非水電解液を用いた二次電池に係り、特にリチ
ウム合金を負極活物質に用いた高エネルギー密度の二次
電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a secondary battery using a nonaqueous electrolyte, and particularly to a high energy density secondary battery using a lithium alloy as a negative electrode active material.

〔従来の技術〕[Conventional technology]

従来より、Liを負極活物質とし、有機電解液を用いる
高エネルギー密度二次電池の開発が進められている。こ
のような電池では一般に、負極活物質には金属Li、正
極活物質には各種層間化合物や導電性高分子など、そし
て電解液にはLi塩を安定な有機溶媒に溶かした溶液が
用いられている。
BACKGROUND ART Conventionally, high energy density secondary batteries using Li as a negative electrode active material and an organic electrolyte have been developed. In general, such batteries use metal Li as the negative electrode active material, various intercalation compounds or conductive polymers as the positive electrode active material, and a solution of Li salt dissolved in a stable organic solvent as the electrolyte. There is.

しかし、負極としてLiを単体の金属のまま用いた場合
、充放電時のLi析出、溶解反応の電流効率が悪いこと
や、充放電を繰り返すと電極のLiがデンドライト状に
成長し電池の短絡を引き起こし易い事が知られている。
However, when Li is used as a single metal as a negative electrode, the current efficiency of Li precipitation and dissolution reaction during charging and discharging is poor, and when charging and discharging are repeated, Li in the electrode grows into a dendrite shape, which can cause short circuits in the battery. It is known to be easily triggered.

そこでこれを避けるための方法が種々検討されており、
その一つとして、Liを単体で用いる代りにLiを他の
金属、たとえばAQなどとの合金として用いることが有
効なことが知られている(特公昭49−12044号公
報)。
Therefore, various methods are being considered to avoid this.
As one of the methods, it is known that instead of using Li alone, it is effective to use Li as an alloy with other metals such as AQ (Japanese Patent Publication No. 12044/1982).

この合金電極では、充電時にLiが析出するに際して、
金属Liとして析出するのではなく、直接母材の金属と
の合金として析出する。そのために、Li単体として析
出するよりも電気化学的に安定となり、電流効率が向上
する。また、同時にデンドライト状の析出も抑制される
In this alloy electrode, when Li is deposited during charging,
It does not precipitate as metal Li, but directly as an alloy with the base metal. Therefore, it is electrochemically more stable than when Li is deposited as a single substance, and the current efficiency is improved. At the same time, dendrite-like precipitation is also suppressed.

このように電極として使用し得る合金元素としては、L
iとMg、AQ、Si、Ga、Ge。
As an alloying element that can be used as an electrode in this way, L
i and Mg, AQ, Si, Ga, Ge.

In、Ag、Sn、Sb、Pb、Biなどとの金属が知
られている。
Metals such as In, Ag, Sn, Sb, Pb, and Bi are known.

しかしながらこれらの合金電極では、充電に際し、前記
の金属とLiとの合金化、及び、放電に際しては、脱合
金化の反応を起すが、それに伴って電極の体積が大幅に
変化する。そのため、充放電を繰り返すと電極が膨張、
崩壊を起し、電極の容量の低下、すなわち、電極の劣化
を起し易く、これがLi合金を電極として用いる場合の
大きな問題点となっていた。
However, in these alloy electrodes, during charging, alloying of the metal with Li occurs, and during discharging, a dealloying reaction occurs, which causes a significant change in the volume of the electrode. Therefore, when charging and discharging are repeated, the electrode expands.
This is a major problem when using a Li alloy as an electrode, as it tends to collapse and reduce the capacity of the electrode, that is, cause the electrode to deteriorate.

このような機構による電極の劣化はいずれの合金系でも
起り得るが、その中で、Li−Pb合金などは、比較的
充放電サイクル寿命が長いことが知られている(特開昭
57−141869号公報)、また、これにさらにMg
、Ca、Ga、In、Si。
Deterioration of electrodes due to such a mechanism can occur in any alloy system, but among them, Li-Pb alloys are known to have a relatively long charge-discharge cycle life (Japanese Patent Laid-Open No. 57-141869). (No. Publication), and in addition, Mg
, Ca, Ga, In, Si.

Ge、Snなどの金属を、pbに対して5原子%以上添
加することにより、電極中のLiの拡散が容易になり、
電極の充放電特性が一層改善されることが知られている
(特開昭61−66370号公報)。
By adding 5 atomic % or more of metals such as Ge and Sn to pb, the diffusion of Li in the electrode becomes easier,
It is known that the charging and discharging characteristics of the electrode are further improved (Japanese Patent Application Laid-Open No. 61-66370).

しかし、これらの合金系においても二次電池の負極とし
て要求される寿命に比べ、充分とは言い難かった。
However, even in these alloy systems, it was difficult to say that the lifespan was sufficient compared to the lifespan required for negative electrodes of secondary batteries.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

二次電池の電極では、数百回の充放電の繰返しに対して
安定に作動することが要求される。前記のごとき電極の
崩壊は、電極の体積変化が起る以上、成る程度は必然的
なものと考えられる。そこで、電極の長寿命化を図るた
めには、崩壊の速度を押さえる、或いは、崩壊が起って
もその部分の集電体との電気的接触を維持し、電極とし
て使用しうる状態に保つことが必要と思われる。
The electrodes of secondary batteries are required to operate stably over hundreds of charging and discharging cycles. The collapse of the electrode as described above is considered to be inevitable to some degree since the volume change of the electrode occurs. Therefore, in order to extend the life of the electrode, it is necessary to suppress the rate of disintegration, or even if disintegration occurs, maintain electrical contact with the current collector in that part so that it can be used as an electrode. It seems necessary.

本発明の目的は、電極の崩壊による活性の低下が少ない
、長寿命の二次電池を提供することにある。
An object of the present invention is to provide a long-life secondary battery with little reduction in activity due to electrode collapse.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、正極と、リチウムを可逆的に吸蔵・放出す
る負極活物質から成る負極と、リチウム塩を含む非水電
解液と、を有する二次電池において、前記負極がリチウ
ム・鉛・アルカリ土類金属との合金から成り、その合金
成分の原子比が1〜8 : 1 : 0.01〜0.0
5である非水二次電池によって解決される。
The above problem is solved by a secondary battery having a positive electrode, a negative electrode made of a negative electrode active material that reversibly intercalates and desorbs lithium, and a non-aqueous electrolyte containing a lithium salt. It consists of an alloy with similar metals, and the atomic ratio of the alloy components is 1 to 8: 1: 0.01 to 0.0.
This problem is solved by a non-aqueous secondary battery.

〔作用〕[Effect]

正極と、リチウムを可逆的に吸蔵・放出する負極物質か
ら成る負極と、リチウム塩を含む非水電解液と、を有す
る二次電池の前記負極が、リチウム・鉛・アルカリ土類
金属との合金から成り、その合金成分の原子比を1〜8
:1:0.01〜O,OS  にして電極の崩壊速度を
遅くする。
The negative electrode of a secondary battery includes a positive electrode, a negative electrode made of a negative electrode material that reversibly intercalates and desorbs lithium, and a non-aqueous electrolyte containing a lithium salt. The atomic ratio of the alloy components is 1 to 8.
:1:0.01~O,OS to slow down the rate of electrode disintegration.

〔実施例〕〔Example〕

以下、本発明による実施例について記述する。 Examples according to the present invention will be described below.

最初に実施例の内容と得られた結果についてその概要を
記述する。
First, a summary of the contents of the examples and the results obtained will be described.

先ず、Li合金電極の充放電の繰り返しにより活性の低
下する原因、および活性低下を起しにくい合金種につい
て検討を加えた0種々のLi合金電極について、充放電
を繰り返し、活性の低下したのちの電極を詳細に検討し
た。その結果いずれの合金を用いた電極も、活性低下後
の電極自体の化学的変化は小さいこと、そして、活性の
低下は、電極が崩壊して微粒子となり、電解液中に分散
する、あるいは、電極が膨潤して高抵抗となり、集電体
との電気的接触を失ってしまうことにあることが判明し
た。また、このような電極の崩壊は、電極の機械的強度
や、合金粒子間の接着性などの性質に大きく依存してい
ることが判明した。
First, we investigated the causes of a decrease in activity due to repeated charging and discharging of Li alloy electrodes, as well as the types of alloys that are less likely to cause a decrease in activity. The electrodes were studied in detail. As a result, for electrodes using any alloy, the chemical change in the electrode itself after a decrease in activity is small. It was found that the problem was caused by swelling and high resistance, resulting in loss of electrical contact with the current collector. It has also been found that such electrode collapse largely depends on properties such as the mechanical strength of the electrode and the adhesion between alloy particles.

そこで、電極の強度を向上させるという観点から、これ
らの合金電極のなかで比較的サイクル寿命の長かったL
i−Pb系の合金に対し、さらに有効な添加成分を検討
した9その結果、Liとpbとの合金に、さらにアルカ
リ土類金属を添加することにより長寿命の電極が得られ
ることが分った。
Therefore, from the perspective of improving the strength of the electrode, we decided to use L, which has a relatively long cycle life among these alloy electrodes.
We investigated more effective additive components for i-Pb alloys.9 As a result, we found that long-life electrodes can be obtained by adding alkaline earth metals to Li and Pb alloys. Ta.

この場合の添加物としては、MgやCaなどが特に有効
であり、またその時の最適組成としては、Liの含有量
が、pbに対して原子比が1〜8の範囲、さらに好まし
くは、2〜6の範囲であり、また、アルカリ土類金属の
含有量は、pbに対して、原子比で0.01〜O,OS
の範囲であった。
In this case, Mg, Ca, etc. are particularly effective as additives, and the optimum composition at that time is that the atomic ratio of Li to Pb is in the range of 1 to 8, more preferably 2. The content of alkaline earth metal is in the range of 0.01 to 0.01 to O,OS in atomic ratio to pb.
It was within the range of

Liのpbに対する割合が1よりも小さい場合には、合
金中のLiが十分有効に電極活物質として利用できず、
8よりも大きい場合には、合金化によるLiの安定化が
不充分であり、充放電によリデントライトが析出した。
When the ratio of Li to pb is smaller than 1, Li in the alloy cannot be used effectively as an electrode active material,
When it is larger than 8, stabilization of Li by alloying is insufficient, and redentite is precipitated by charging and discharging.

また、アルカリ土類金属添加物のpbに対する割合が0
.01 より小さい場合には添加効果が十分には発揮さ
れず、無添加のものとの差が認められなかった。0.0
5 より大きい場合には電極の成形性などが悪化し、電
極のサイクル寿命はかえって低下した。
In addition, the ratio of alkaline earth metal additive to pb is 0.
.. If it was smaller than 01, the effect of the addition was not sufficiently exhibited, and no difference was observed from that without the addition. 0.0
When it was larger than 5, the moldability of the electrode deteriorated, and the cycle life of the electrode decreased on the contrary.

このようにして得た電極は、二硫化チタンなどの層状化
合物や、ポリアニリンなどの導電性高分子を正極とし、
ホウフッ化リチウムのプロピレンカーボネート溶液など
を電解液とする電池に適用可能であり、このような電池
においても、良好な寿命を得ることができた。
The electrode obtained in this way uses a layered compound such as titanium disulfide or a conductive polymer such as polyaniline as the positive electrode.
It can be applied to batteries using a propylene carbonate solution of lithium borofluoride as an electrolyte, and even in such batteries, a good lifespan could be obtained.

このように電極のサイクル寿命が向上した理由としては
、Li−Pb合金にさらにアルカリ土類金属を添加する
ことにより、これらの合金より放電でリチウムが抜けた
状態での合金の強度の向上が図られ、従って電極の崩壊
が抑制されたためと考えられる。この強度向上のために
はpbに対してアルカリ土類金属を原子比0.01 以
上添加しなければ効果がなく、また、0.05以上の添
加を行うと、Li−Pb−アルカリ土類金属自体がもろ
くなってしまい、成型性が極めて悪化した。
The reason why the cycle life of the electrode has improved in this way is that by adding alkaline earth metals to the Li-Pb alloy, the strength of the alloy is improved when lithium is removed from these alloys during discharge. This is thought to be because the collapse of the electrode was suppressed. In order to improve this strength, there is no effect unless the alkaline earth metal is added in an atomic ratio of 0.01 or more to pb, and if the addition is made in an atomic ratio of 0.05 or more, Li-Pb-alkaline earth metal The material itself became brittle and its moldability was extremely poor.

そのため成型性を保ちしかも放電時の強度を向上させる
ためには、アルカリ土類金属の添加比をpbに対する原
子比で0.01〜0.05の間としなければならない。
Therefore, in order to maintain moldability and improve the strength during discharge, the addition ratio of alkaline earth metal must be between 0.01 and 0.05 in terms of atomic ratio to PB.

次に本発明による実施例及び比較例にてその性能を詳述
する。
Next, the performance will be explained in detail in Examples according to the present invention and Comparative Examples.

実施例I Li、Pb、Mgを原子比で4:1:0.03の割合で
、全量が20gとなるように計り取り、鉄製のるつぼに
入れ、Arガス雰囲気下、800℃で加熱、溶融させる
ことにより、Li−Pb−Mg合金を調整した0合金は
冷却後、乳鉢で100メツシユ以下に粉砕し、プレスを
もちいて2ton/dの圧力を加えて、直径15■、厚
さ0.4■のディスク状に成形した。
Example I Li, Pb, and Mg were weighed out in an atomic ratio of 4:1:0.03 so that the total amount was 20 g, placed in an iron crucible, and heated and melted at 800°C in an Ar gas atmosphere. After cooling, the 0 alloy prepared by adjusting the Li-Pb-Mg alloy was crushed into 100 meshes or less in a mortar, and a pressure of 2 tons/d was applied using a press to form a powder with a diameter of 15 cm and a thickness of 0.4 mm. ■ It was molded into a disk shape.

上記のディスク状合金を負極、二硫化チタンを正極とす
る第1図に示すようなコイン型の電池を組み立てた。本
電池は、上記のディスク状合金よりなる負極1.ポリプ
ロピレン製不織布よりなるセパレータ2.二硫化チタン
粉末に黒鉛及びポリテトラフルオルエチレンを加えてデ
ィスク状に成形した正極3、及び、セパレータ2に含浸
された。
A coin-shaped battery as shown in FIG. 1 was assembled using the above disk-shaped alloy as a negative electrode and titanium disulfide as a positive electrode. This battery has a negative electrode 1. made of the above disc-shaped alloy. Separator made of polypropylene nonwoven fabric2. A positive electrode 3 formed into a disk shape by adding graphite and polytetrafluoroethylene to titanium disulfide powder and a separator 2 were impregnated with the powder.

L i B F+ のプロピレン−カーボネート及び1
゜2−ジメトキシエタン溶液よりなり、これらは負極側
ケース4.ガスケット5、及び正極側ケース6により密
封されている。
L i B F+ propylene-carbonate and 1
゜2-dimethoxyethane solution, which is used in case 4 on the negative electrode side. It is sealed by a gasket 5 and a positive electrode side case 6.

上記の電池で、電流1mAで、i、s vまで充電し、
同じく電流1mAで1vまで放電する操作を繰り返した
ところ、電池の放電容量は、第2図Aのように推移し、
容量が3mAh以下に低下するまでに、500サイクル
の充放電が可能であった。
Charge the above battery to i, s v with a current of 1 mA,
When the same operation of discharging to 1V at a current of 1mA was repeated, the discharge capacity of the battery changed as shown in Figure 2A,
500 cycles of charging and discharging were possible before the capacity decreased to 3 mAh or less.

実施例2 正極3にポリアニリン、黒鉛、及びポリテトラフルオル
エチレンを混合して直径1511W+、厚さ0.4 閣
に成形したものを用い、それ以外は実施例1と同一の構
成の電池を組み立てた。この電池を電流1mAで4vま
で充電し、同じ<1mAで1.5 vまで放電する操作
を繰返したところ容量が3mAh以下に低下するまでに
600サイクルの充放電が可能であった。
Example 2 A battery having the same configuration as Example 1 was assembled except that the positive electrode 3 was made by mixing polyaniline, graphite, and polytetrafluoroethylene and molded into a diameter of 1511 W+ and a thickness of 0.4 mm. Ta. When this battery was repeatedly charged to 4 V at a current of 1 mA and discharged to 1.5 V at the same <1 mA, 600 charging/discharging cycles were possible before the capacity decreased to 3 mAh or less.

実施例3 実施例1とほぼ同様の方法でLi : Pb :Ca=
4:1:0.03 の組成を有すルLi−Pb −Ca
合金を調製し、さらにこの合金を負極とする実施例1と
同様の構成のコイン型電池を作製した。
Example 3 Li:Pb:Ca= by almost the same method as Example 1
Li-Pb-Ca with a composition of 4:1:0.03
An alloy was prepared, and a coin-type battery having the same structure as in Example 1 was fabricated using this alloy as a negative electrode.

この電池で、電流1mAで3.5 vまで充電し、同じ
く電流1mAで1vまで放電する操作を繰り返したとこ
ろ、容量が3mAh以下に低下するまでに450サイク
ルの充放電が可能であった。
When this battery was repeatedly charged to 3.5 V at a current of 1 mA and discharged to 1 V at a current of 1 mA, 450 cycles of charging and discharging were possible before the capacity decreased to 3 mAh or less.

比較例 実施例1とほぼ同様の方法で、Li : Pb==4:
1の組成を有するLi−Pb合金(比較例1)、Mgを
添加したLi : Pb :Mg=4 : 1 :0,
05(比較例2)とLi : Pb :Mg=4 : 
1 :0.2の組成を有するL i −P b −M 
g合金(比較例3)を調製し、さらにこれらの合金を負
極とする実施例1と同様の構成のコイン型電池を作製し
た。比較例2の電極の成形性は極めて悪かった。
Comparative Example In almost the same manner as in Example 1, Li:Pb==4:
Li-Pb alloy having a composition of 1 (Comparative Example 1), Mg added Li:Pb:Mg=4:1:0,
05 (Comparative Example 2) and Li:Pb:Mg=4:
Li-Pb-M with a composition of 1:0.2
g alloy (Comparative Example 3) was prepared, and a coin-shaped battery having the same structure as Example 1 using these alloys as a negative electrode was also fabricated. The moldability of the electrode of Comparative Example 2 was extremely poor.

これらの電池で、電流1mAで3,5vまで充電し、同
じく電流1mAで1vまで放電する操作を繰り返したと
ころ、電池の放電容量はそれぞれ第2図B及びC,Dの
ように推移し、容量が3 mAh以下に低下するまでの
サイクル数は、比較例1で300サイクル、比較例2で
は320サイクル、比較例3では250サイクルにすぎ
ず、Mgの添加効果に有効範囲が存在することが明確と
なった。
When these batteries were repeatedly charged to 3.5V at a current of 1mA and discharged to 1V at a current of 1mA, the discharge capacity of the batteries changed as shown in Figure 2 B, C, and D, and the capacity increased. It took only 300 cycles for Comparative Example 1, 320 cycles for Comparative Example 2, and 250 cycles for Comparative Example 3 to reduce the Mg content to 3 mAh or less, which clearly indicates that there is an effective range for the effect of Mg addition. It became.

なお、第2図で、Aの曲線は、実施例1、Bの曲線は比
較例1、Cの曲線は比較例2.Dの曲線は比較例3の場
合のそれぞれの電池の放電容量変化を示す。
In FIG. 2, the curve A is for Example 1, the curve B is for Comparative Example 1, and the curve C is for Comparative Example 2. Curve D shows the change in discharge capacity of each battery in Comparative Example 3.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二次電池の負極をリチウム・鉛・アル
カリ土類金属との合金とし、その合金成分の原子比を1
〜8:1:0.01〜0.05とすることにより充放電
を繰り返した場合の電極の崩壊速度を遅くできるので長
寿命の二次電池を得ることができるという優れた効果が
ある。
According to the present invention, the negative electrode of the secondary battery is made of an alloy of lithium, lead, and an alkaline earth metal, and the atomic ratio of the alloy components is set to 1.
By setting the ratio to 8:1:0.01 to 0.05, the disintegration rate of the electrode during repeated charging and discharging can be slowed down, resulting in an excellent effect that a long-life secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例において作成した二次電池の断
面図、第2図は本発明の実施例1及び比較例1〜3にお
いて作成した二次電池の放電容量の充放電サイクル数に
対する変化を示したグラフである。 1・・・負極、2・・・セパレータ、3・・・正極、4
・・・負極ケース、5・・・ガスケット、6・・・正極
ケース。 ・ミy−
Fig. 1 is a cross-sectional view of the secondary battery prepared in the example of the present invention, and Fig. 2 shows the discharge capacity of the secondary battery prepared in Example 1 and Comparative Examples 1 to 3 of the present invention as a function of the number of charge/discharge cycles. This is a graph showing changes. 1... Negative electrode, 2... Separator, 3... Positive electrode, 4
... Negative electrode case, 5... Gasket, 6... Positive electrode case.・Miy-

Claims (1)

【特許請求の範囲】 1、正極と、リチウムを可逆的に吸蔵・放出する負極活
物質から成る負極と、リチウム塩を含む非水電解液と、
を有する二次電池において、前記負極がリチウム・鉛・
アルカリ土類金属との合金から成り、その合金成分の原
子比が1〜8:1:0.01〜0.05であることを特
徴とする非水二次電池。 2、前記アルカリ土類金属がマグネシウム又はカルシウ
ムのいずれかであることを特徴とする特許請求の範囲第
1項記載の非水二次電池。
[Claims] 1. A positive electrode, a negative electrode comprising a negative electrode active material that reversibly intercalates and desorbs lithium, and a non-aqueous electrolyte containing a lithium salt;
In the secondary battery, the negative electrode is made of lithium, lead,
A non-aqueous secondary battery comprising an alloy with an alkaline earth metal and having an atomic ratio of alloy components of 1 to 8:1:0.01 to 0.05. 2. The non-aqueous secondary battery according to claim 1, wherein the alkaline earth metal is either magnesium or calcium.
JP63067405A 1988-03-23 1988-03-23 Nonaqueous secondary cell Pending JPH01241756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63067405A JPH01241756A (en) 1988-03-23 1988-03-23 Nonaqueous secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63067405A JPH01241756A (en) 1988-03-23 1988-03-23 Nonaqueous secondary cell

Publications (1)

Publication Number Publication Date
JPH01241756A true JPH01241756A (en) 1989-09-26

Family

ID=13343998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63067405A Pending JPH01241756A (en) 1988-03-23 1988-03-23 Nonaqueous secondary cell

Country Status (1)

Country Link
JP (1) JPH01241756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157388A (en) * 2005-12-01 2007-06-21 Nec Corp Nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157388A (en) * 2005-12-01 2007-06-21 Nec Corp Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3846661B2 (en) Lithium secondary battery
US4820599A (en) Non-aqueous electrolyte type secondary cell
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
EP0477461A2 (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JP4056183B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20120036945A (en) Thin film alloy electrodes
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2000173587A (en) Non-aqueous electrolyte secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JPS6313267A (en) Lithium secondary battery
JPH01241756A (en) Nonaqueous secondary cell
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JPS6119063A (en) Hydrogen occlusion electrode
JPH088115B2 (en) Non-aqueous electrolyte secondary battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JPH09245798A (en) Lithium secondary battery
JP4250781B2 (en) Lithium secondary battery
JPH0441471B2 (en)
JPH0711957B2 (en) Non-aqueous secondary battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery
EP0144429B1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JPH0265056A (en) Nonaqueous secondary battery
JPS63146355A (en) Nonaqueous electrolytic secondary cell