JP3212018B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3212018B2
JP3212018B2 JP09888796A JP9888796A JP3212018B2 JP 3212018 B2 JP3212018 B2 JP 3212018B2 JP 09888796 A JP09888796 A JP 09888796A JP 9888796 A JP9888796 A JP 9888796A JP 3212018 B2 JP3212018 B2 JP 3212018B2
Authority
JP
Japan
Prior art keywords
active material
electrolyte secondary
nitride
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09888796A
Other languages
Japanese (ja)
Other versions
JPH09289011A (en
Inventor
仁士 吉田
次夫 酒井
謙介 田原
明史 坂田
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP09888796A priority Critical patent/JP3212018B2/en
Publication of JPH09289011A publication Critical patent/JPH09289011A/en
Application granted granted Critical
Publication of JP3212018B2 publication Critical patent/JP3212018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンを
吸蔵放出可能な物質を活物質とする、非水電解質二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a substance capable of inserting and extracting lithium ions as an active material.

【0002】[0002]

【従来の技術】近年、ビデオカメラ、携帯型CD、携帯
電話、PDAやノートパソコンの等の携帯用電子機器の
小型化、軽量化、高性能化が進んでいる。これらの携帯
用電子機器の電源には、高容量かつ重負荷特性の優れた
安全性の高い二次電池が必要とされている。このような
目的に合致した二次電池としてシール鉛蓄電池やニッケ
ル・カドミウム蓄電池が使用されてきたが、よりエネル
ギー密度の高い電池としてニッケル水素蓄電池や非水電
解質二次電池としてリチウムイオン二次電池が実用化に
至っている。
2. Description of the Related Art In recent years, portable electronic devices such as video cameras, portable CDs, portable telephones, PDAs and notebook computers have been reduced in size, weight and performance. Power supplies for these portable electronic devices require secondary batteries with high capacity and heavy load characteristics and high safety. Sealed lead-acid batteries and nickel-cadmium batteries have been used as secondary batteries to meet such purposes, but nickel-metal hydride batteries and lithium-ion secondary batteries as non-aqueous electrolyte secondary batteries have higher energy densities. It has been put to practical use.

【0003】非水電解質二次電池は電解質として非水溶
媒にリチウム塩を溶解したものを用い、かつ負極活物質
に金属リチウムや金属リチウムとAl,Sn,Pb等の
金属との合金を用いたリチウム二次電池や負極活物質に
リチウムイオンを挿入・脱挿入できる炭素等の炭素質材
料を用いたリチウムイオン二次電池等が公知である。こ
れらの非水電解質二次電池では電解液に水を用いないた
めに水の電気分解電圧以上の高電圧の充放電が可能な電
池を設計でき、容易にエネルギー密度を上げられると言
う利点がある。
A non-aqueous electrolyte secondary battery uses a lithium salt dissolved in a non-aqueous solvent as an electrolyte, and uses metal lithium or an alloy of metal lithium and a metal such as Al, Sn, and Pb as a negative electrode active material. Lithium secondary batteries and lithium ion secondary batteries using carbonaceous materials such as carbon that can insert and remove lithium ions into and from the negative electrode active material are known. In these non-aqueous electrolyte secondary batteries, since water is not used for the electrolyte, it is possible to design a battery capable of charging and discharging at a high voltage higher than the electrolysis voltage of water, and there is an advantage that the energy density can be easily increased. .

【0004】これらの非水電解質二次電池の正極活物質
としてリチウムイオンを吸蔵放出可能な一次元鎖状構
造、二次元層状構造、三次元骨格構造、アモルファス構
造等を有する酸化物やカルコゲン化物あるいは導電性高
分子等が提案されてきた。しかし、負極活物質として、
金属リチウムを用いる場合、充放電を繰り返すことによ
って成長したデンドライト状のリチウム金属結晶がセパ
レーターを突き破り、正負極間の短絡の原因となり安全
性の面で実用化の障害になっている。また、非水電解質
二次電池で負極活物質として、金属リチウムと他の金属
との合金や窒化物等を用いる場合、金属リチウムに比較
しエネルギー密度が小さく、また、炭素材料を活物質と
して用いた場合と比較すると、サイクル特性が不十分で
あるため、現在、メモリーバックアップ用のコイン形二
次電池にのみ使用されている。このため、携帯用電子機
器の主電源として使用されている非水電解質二次電池の
負極活物質はそのほとんどが炭素質材料を用いたもので
ある。
An oxide or chalcogenide having a one-dimensional chain structure, a two-dimensional layer structure, a three-dimensional skeleton structure, an amorphous structure or the like capable of inserting and extracting lithium ions as a positive electrode active material of these nonaqueous electrolyte secondary batteries, or Conductive polymers and the like have been proposed. However, as a negative electrode active material,
In the case of using lithium metal, the dendrite-like lithium metal crystal grown by repeating charge and discharge breaks through the separator, causing a short circuit between the positive electrode and the negative electrode, which hinders practical application in terms of safety. When an alloy or nitride of lithium metal and another metal is used as a negative electrode active material in a nonaqueous electrolyte secondary battery, the energy density is smaller than that of lithium metal, and a carbon material is used as an active material. As compared with the case where the battery is used, the cycle characteristics are insufficient, so that it is currently used only for coin-type secondary batteries for memory backup. For this reason, most of the negative electrode active materials of non-aqueous electrolyte secondary batteries used as main power sources of portable electronic devices use carbonaceous materials.

【0005】しかしながら、金属リチウムの単位重量当
たりの理論エネルギー密度が3861mAh/gである
のに対して、一般的に知られる炭素質材料の同理論エネ
ルギー密度は372mAh/gである。従って、負極活
物質に炭素質材料を用いた場合、金属リチウムを用いた
場合に比較しその重量エネルギー密度は低く、さらに実
際の炭素材料は傘高いために体積エネルギー密度も低い
という課題があった。
However, while the theoretical energy density per unit weight of lithium metal is 3861 mAh / g, the theoretical energy density of a generally known carbonaceous material is 372 mAh / g. Therefore, when a carbonaceous material was used as the negative electrode active material, the weight energy density was lower than when metal lithium was used, and furthermore, there was a problem that the volume energy density was low because the actual carbon material was high. .

【0006】このような課題に答えるため、本発明者ら
はリチウムイオンを吸蔵放出可能な炭素質材料及びまた
はケイ素等の各種酸化物を負極活物質とし、正極活物質
として組成がLiaTbLcOdで示される非水電解質
二次電池を試作し、高容量かつ低内部抵抗の電池を提供
しうることを見いだし、特願平3−253921号、同
4−162958号で開示している。(TはCo、N
i、Mn、Fe、V、W、Nb、およびTiの中からえ
らばれた1種類以上の遷移金属、LはB、Si、P、M
g、Zn、及びCuの中から選ばれた1種類以上の元素
であり、a,b,cはそれぞれ0<a<=1.15、
0.8<=b+c<=1.3、1.7<=d<=2.5
である複合酸化物) 実際にこれらの活物質物質を利用する非水電解質二次電
池では、活物質と導電性を有する炭素材料(グラファイ
ト等)と結着剤等を混合し、正・負極合剤としていた。
こうして得られた、合剤をコイン形電池では圧縮成形
し、ペレット状にして電池を構成している。また、シー
ト電極を用いる円筒型や角形の電池では、得られた合剤
を適当な溶媒中に分散させたスラリーを集電体となるフ
ォイル状の金属薄膜上に塗布・乾燥後圧延し、正・負極
の電極として使用している。
In order to answer such a problem, the present inventors have used a carbonaceous material capable of inserting and extracting lithium ions and / or various oxides such as silicon as a negative electrode active material, and have a composition represented by LiaTbLcOd as a positive electrode active material. A non-aqueous electrolyte secondary battery was prototyped and found to be able to provide a battery with high capacity and low internal resistance, which is disclosed in Japanese Patent Application Nos. 3-253921 and 4-162958. (T is Co, N
one or more transition metals selected from i, Mn, Fe, V, W, Nb, and Ti, L is B, Si, P, M
g, Zn, and Cu are at least one element selected from the group consisting of a, b, and c, where 0 <a <= 1.15;
0.8 <= b + c <= 1.3, 1.7 <= d <= 2.5
In a non-aqueous electrolyte secondary battery that actually uses these active materials, the active material, a conductive carbon material (such as graphite) and a binder are mixed to form a positive / negative electrode. Was used as an agent.
The thus obtained mixture is compression-molded in a coin-type battery, and is pelletized to constitute a battery. In a cylindrical or prismatic battery using a sheet electrode, a slurry in which the obtained mixture is dispersed in an appropriate solvent is applied to a foil-shaped metal thin film serving as a current collector, dried, and then rolled. -Used as a negative electrode.

【0007】[0007]

【発明が解決しようとする課題】従来、このような構成
で作製された非水電解質二次電池の中で特にケイ素の酸
化物を負極活物質とする非水電解質二次電池は、一回目
の充電容量に比べ、一回目の放電容量が小さくなると言
う現象が生じることがある。すなわち、最初の充電によ
り活物質中に吸蔵されたリチウムイオンの全てが、次の
放電により、放出できない状態となる。2回目以降の充
放電ではこのような減少が起こらない。この一回目の充
電容量と放電容量の差(不可逆容量)が大きいと、この
不可逆容量に相当する分のリチウムを供給できるだけ正
極の容量を負極の容量よりも多く充填しなけならない、
さもなくば、体積当たりの容量が著しく小さくなると言
う課題があった。また、このように不可逆容量を電池製
作時に、補正しようとすると余分なプロセスが増えるこ
とになり、コスト増加を引き起こしてしまうと言う問題
点があった。
Conventionally, among the non-aqueous electrolyte secondary batteries manufactured with such a structure, the non-aqueous electrolyte secondary battery using a silicon oxide as a negative electrode active material is the first one. A phenomenon may occur that the first discharge capacity is smaller than the charge capacity. That is, all the lithium ions occluded in the active material by the first charge cannot be released by the next discharge. Such a decrease does not occur in the second and subsequent charging and discharging. If the difference between the first charge capacity and the discharge capacity (irreversible capacity) is large, the capacity of the positive electrode must be filled more than the capacity of the negative electrode to supply lithium equivalent to the irreversible capacity.
Otherwise, there is a problem that the capacity per volume is significantly reduced. In addition, there is a problem in that an attempt to correct the irreversible capacity at the time of manufacturing a battery increases an extra process, which causes an increase in cost.

【0008】[0008]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、リチウムイオンを吸蔵放出可能な物質
を正極または及び負極活物質とする非水電解質二次電池
において、正極合剤、負極合剤の少なくとも一方に、前
記活物質と導電性を有する炭素材料と遷移金属及びそれ
らの合金の中から選ばれたリチウムと合金反応を起こし
にくい一種類以上の金属、または、遷移金属及び周期律
表3B,4B族から選ばれた一種類以上の元素の窒化
物、または、前記金属と窒化物の両者が混合されている
構造としている。
In order to solve the above-mentioned problems, the present invention relates to a non-aqueous electrolyte secondary battery using a material capable of inserting and extracting lithium ions as a positive electrode or a negative electrode active material. At least one of the negative electrode mixture, the active material and one or more metals that are unlikely to cause an alloying reaction with lithium selected from the conductive carbon material and the transition metal and their alloys, or a transition metal and It has a structure of a nitride of one or more elements selected from Groups 3B and 4B of the periodic table, or a mixture of both the metal and the nitride.

【0009】このため、不可逆容量が減少し、容易に正
負極のバランスのとれた充放電容量の大きな非水電解質
二次電池を安価に作製する事ができる。
As a result, the irreversible capacity is reduced, and a non-aqueous electrolyte secondary battery having a large charge / discharge capacity in which the positive and negative electrodes are balanced can be easily manufactured at low cost.

【0010】[0010]

【発明の実施の形態】本発明で言う、遷移金属及び周期
律表3B,4B族元素から選ばれたリチウムと合金反応
を起こしにくい一種類以上の金属の具体的な例として
は、チタン、鉄、ニッケル、マンガン、銅などである。
これらの金属の形状は活物質及び炭素材料との混合が容
易なため粉末状であることが好ましい。本発明で用いる
金属粉の二次粒径は50μm以下が好ましく、特に15
μm以下にすると良い。一次粒径は二次粒径以下であれ
ば特に規定しない。また、容易にリチウムと合金反応を
示す金属は充放電反応を繰り返すことにより、劣化が進
むため、本発明の主旨とは反するため好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION Specific examples of one or more kinds of metals which are less likely to cause an alloy reaction with a transition metal and lithium selected from Group 3B and 4B elements of the periodic table are titanium, iron and the like. , Nickel, manganese, copper and the like.
The shape of these metals is preferably powder because it is easy to mix with the active material and the carbon material. The secondary particle size of the metal powder used in the present invention is preferably 50 μm or less, particularly preferably 15 μm or less.
It is good to make it below μm. The primary particle size is not particularly limited as long as it is equal to or smaller than the secondary particle size. Further, a metal that easily alloys with lithium easily deteriorates by repeating the charge / discharge reaction, which is not preferable because it is contrary to the gist of the present invention.

【0011】また、本発明で言う遷移金属及び周期律表
3B,4B族から選ばれた元素の窒化物の例としては、
窒化チタン、窒化シリコン、窒化ホウ素、などが良い。
これらの窒化物の形状は活物質及び炭素材料との混合が
容易なため粉末状であることが好ましい。また、本発明
で用いる窒化物の二次粒径は50μm以下が好ましく、
特に15μm以下にすると良い。一次粒径は二次粒径以
下であれば特に規定しない。
Examples of the transition metal and nitride of an element selected from Groups 3B and 4B of the periodic table in the present invention include:
Titanium nitride, silicon nitride, boron nitride, and the like are preferable.
The shape of these nitrides is preferably powder because it can be easily mixed with the active material and the carbon material. Further, the secondary particle size of the nitride used in the present invention is preferably 50 μm or less,
Particularly, the thickness is preferably 15 μm or less. The primary particle size is not particularly limited as long as it is equal to or smaller than the secondary particle size.

【0012】また、本発明で言う金属や窒化物は二種類
以上の金属や窒化物の混合物や、金属と窒化物の混合物
として用いることが出来る。また、本発明で用いる正極
活物質は非水電解質二次電池の正極活物質として知られ
ているリチウムイオンを吸蔵放出可能なものなら、限定
はされない。特に4V級のリチウム二次電池に用いられ
る金属カルコゲナイト系の正極活物質が好ましい。Li
CoO2、LiNiO2、LiMn24、あるいはこれら
と遷移金蔵、半金族、ボロンなどを複合化させたもの、
あるいはこれらの混合物等が特に好ましい。
The metals and nitrides referred to in the present invention can be used as a mixture of two or more kinds of metals and nitrides or a mixture of a metal and a nitride. The positive electrode active material used in the present invention is not limited as long as it is capable of inserting and extracting lithium ions known as a positive electrode active material of a nonaqueous electrolyte secondary battery. In particular, a metal chalcogenite-based positive electrode active material used for a 4V-class lithium secondary battery is preferable. Li
CoO 2 , LiNiO 2 , LiMn 2 O 4 , or a combination of these with transition metal, semi-metal, boron, etc.
Alternatively, a mixture thereof is particularly preferable.

【0013】また、本発明で用いる負極活物質は非水電
解質二次電池の負極活物質として知られているリチウム
イオンを吸蔵放出可能なものなら、限定はされない。好
ましくは、遷移金属及び周期律表3B,4B族元素から
選ばれた元素の酸化物などが良い。特に非晶質のケイ素
酸化物が特に好ましい。
The negative electrode active material used in the present invention is not limited as long as it can absorb and release lithium ions known as a negative electrode active material of a non-aqueous electrolyte secondary battery. Preferably, an oxide of a transition metal and an element selected from the group 3B and 4B elements of the periodic table are preferable. Particularly, amorphous silicon oxide is particularly preferable.

【0014】また、本発明で言う導電性を有する炭素材
料としては、導電性炭素材料であれば、何でも良い。特
に、電池反応において電解液と反応を起こしにくい、天
然黒鉛、人工黒鉛、カーボンブラック、アセチレンブラ
ック、ケッチェンブラック、炭素繊維等が好ましく、二
次粒径として15μm以下の炭素材料が特に好ましい。
これらの炭素材料は単独で使用しても良いし、二種類以
上の炭素材料を混合して用いても良い。
The conductive carbon material referred to in the present invention may be any conductive carbon material. In particular, natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, and the like, which hardly cause a reaction with an electrolytic solution in a battery reaction, are preferable, and a carbon material having a secondary particle size of 15 μm or less is particularly preferable.
These carbon materials may be used alone or as a mixture of two or more types.

【0015】上記のように構成された、合剤を使用し
て、コイン形や円筒型、角形の非水電解質二次電池を作
製すると、最初のサイクルでの充電容量と放電容量との
差が減少するようになる。
When a coin-shaped, cylindrical, or square non-aqueous electrolyte secondary battery is manufactured using the mixture thus constituted, the difference between the charge capacity and the discharge capacity in the first cycle is reduced. Will decrease.

【0016】[0016]

【実施例】【Example】

<実施例1>本発明の実施例の一つについて図面を参照
して説明する。図1において、負極活物質としてケイ素
の酸化物であるSiOを用い、電導性を有する炭素材料
としてグラファイトを、また、結着剤としてポリアクリ
ル酸化合物を、金属として、粒径1から15μmのチタ
ン粉を混合した合剤を用いて作製した本発明によるコイ
ン形の電池の実施例の構造を示す。
<Embodiment 1> One embodiment of the present invention will be described with reference to the drawings. In FIG. 1, SiO, which is an oxide of silicon, is used as a negative electrode active material, graphite is used as a conductive carbon material, a polyacrylic acid compound is used as a binder, and titanium having a particle size of 1 to 15 μm is used as a metal. 1 shows a structure of an embodiment of a coin-shaped battery according to the present invention manufactured using a mixture in which powder is mixed.

【0017】ニッケルメッキを行ったステンレス製の作
用極ケース(1)の内側に、作用極(2)となる直径8
mmのペレット状に成形した合剤を少量の導電性接着剤
(3)を介して密着させた。また、対極ケース(4)の
内側には、対極(5)として厚さ0.8mm、直径14
mmの円盤状金属リチウムを圧着し、前記対極ケース
(4)の周辺部には作用極ケース(1)との電気的短絡
を防ぐためポリプロピレンのガスケット(6)を配置し
た。金属リチウム対極(5)と作用極(2)の間には厚
さ40μmの多孔性のポリプロピレンフィルムのセパレ
ータ(7)を置き、電解液として1M/lのLiPF6
を溶かしたエチレンカーボネート(EC)とエチルメチ
ルカーボネート(EMC)の1:2混合液を加え、コイ
ン形の電池を組み立てた。
A working electrode (2) having a diameter of 8 is provided inside a nickel-plated stainless steel working electrode case (1).
The mixture formed into a pellet having a thickness of 2 mm was adhered to the mixture via a small amount of the conductive adhesive (3). On the inside of the counter electrode case (4), a counter electrode (5) having a thickness of 0.8 mm and a diameter of 14 mm is provided.
mm of disc-shaped metallic lithium was press-bonded, and a polypropylene gasket (6) was arranged around the counter electrode case (4) to prevent an electrical short circuit with the working electrode case (1). A separator (7) of a porous polypropylene film having a thickness of 40 μm was placed between the lithium metal counter electrode (5) and the working electrode (2), and 1 M / L of LiPF 6 was used as an electrolyte.
Was added and a 1: 2 mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was added to assemble a coin-shaped battery.

【0018】これらの、電池組立作業は全て、Arガス
雰囲気のグローブボックス内で行った。本実施例で示す
コイン形電池の作用極の作製手順は下記の通りである。
最初に、一定量の結着剤であるアクリル酸ポリマーを適
量の水を溶媒として、よく攪拌し、均一の糊状の溶液に
なるまで溶かす。この溶液に導電性を持つ炭素材料であ
るグラファイトをアクリル酸ポリマーとの重量比が8対
3となるように加え、よく混練し均一なスラリーを形成
する。その後100℃で12時間乾燥し、得られた固形
物を自動乳鉢等で粉砕する。
All of these battery assembling operations were performed in a glove box in an Ar gas atmosphere. The procedure for manufacturing the working electrode of the coin-type battery shown in this example is as follows.
First, a predetermined amount of an acrylic acid polymer as a binder is dissolved well using a suitable amount of water as a solvent until a uniform paste-like solution is obtained. Graphite, which is a conductive carbon material, is added to this solution so that the weight ratio with the acrylic acid polymer is 8: 3, and the mixture is kneaded well to form a uniform slurry. Thereafter, the solid is dried at 100 ° C. for 12 hours, and the obtained solid is crushed in an automatic mortar or the like.

【0019】次に、作用極(2)となるSiOとチタン
粉末と前記グラファイトとアクリル酸ポリマーの混合物
を重量%で21.5%、23.5%、55%となるよう
にはかり取り、自動乳鉢で混合し合剤とした。次に、こ
の合剤20mgをはかり取り、油圧プレス装置を用い
て、成形圧1tonの力を加え直径8mm厚さ0.2m
mのペレットとした。
Next, a mixture of SiO and titanium powder serving as the working electrode (2), the graphite and the acrylic acid polymer was weighed out to 21.5%, 23.5% and 55% by weight, and was The mixture was mixed in a mortar to make a mixture. Next, 20 mg of this mixture was weighed out, and using a hydraulic press device, a force of 1 ton was applied at a molding pressure of 8 mm in diameter and 0.2 m in thickness.
m pellets.

【0020】このペレットを導電性の接着剤(3)をか
いして作用極ケース(1)に取り付け、100℃8時間
の真空乾燥を行い、充分に水分除去した。図3は本発明
によるチタン粉末を用いた非水電解質二次電池の充放電
カーブを示す。
The pellet was attached to the working electrode case (1) with a conductive adhesive (3), and vacuum-dried at 100 ° C. for 8 hours to sufficiently remove water. FIG. 3 shows a charge / discharge curve of a nonaqueous electrolyte secondary battery using the titanium powder according to the present invention.

【0021】充放電は電流0.1mAの定電流充放電を
行い、電圧範囲は2.0Vから0.005Vまでであ
る。このグラフから一回目の充電容量は12.962m
Ahであり、一回目の放電容量は8.706mAhであ
る。また、不可逆容量は4.390mAhである。この
値から、充電容量分の放電容量を可逆率と定義すると6
7.1%となる。
The charging and discharging are performed at a constant current of 0.1 mA, and the voltage range is from 2.0 V to 0.005 V. From this graph, the first charge capacity is 12.962 m.
Ah, and the first discharge capacity is 8.706 mAh. The irreversible capacity is 4.390 mAh. From this value, if the discharge capacity corresponding to the charge capacity is defined as the reversibility, 6
7.1%.

【0022】比較例として、チタン粉末を用いずに、S
iOとグラファイトとアクリル酸ポリマーを重量比で4
5:40:15で混合し、他の条件は全て実施例1と同
様に作製した電池についても、充放電曲線を求めた。こ
の結果を図2で示す。図2から得られた充電容量19.
962mAh 、放電容量11.806mAh 、不可逆
容量7.886mAh、可逆率59.1%と比較して、
明らかに実施例1においては不可逆容量が減少してい
る。
As a comparative example, without using titanium powder,
4% by weight of iO, graphite and acrylic acid polymer
A charge / discharge curve was also obtained for a battery prepared in the same manner as in Example 1 except for mixing at 5:40:15 under all other conditions. The result is shown in FIG. Charge capacity obtained from FIG.
962 mAh, discharge capacity 11.806 mAh, irreversible capacity 7.886 mAh, reversibility 59.1%,
Obviously, in Example 1, the irreversible capacity is reduced.

【0023】本実施例は本発明による非水電解質二次電
池の一例を示すものであり、対極(5)・作用極(2)
の種類、電池の構造、電解質・電解液の種類や量、セパ
レータ(7)の材質や大きさなどを規定しているわけで
はない。電池作用極(2)中に活物質と導電性を有する
炭素材料と共に加えられる、金属粉末はチタンに限定さ
れるわけではなく、リチウムと合金反応を起こしにくい
鉄、ニッケル、マンガン、銅等の遷移金属あるいはそれ
らの合金から選ばれるものであれば何でも良い。
This embodiment shows an example of the nonaqueous electrolyte secondary battery according to the present invention, and includes a counter electrode (5) and a working electrode (2).
, The structure of the battery, the type and amount of the electrolyte and the electrolyte, the material and size of the separator (7), and the like are not specified. The metal powder added to the battery working electrode (2) together with the active material and the conductive carbon material is not limited to titanium, and transition of iron, nickel, manganese, copper, etc., which hardly causes an alloy reaction with lithium. Any material may be used as long as it is selected from metals or alloys thereof.

【0024】<実施例2>本実施例は作用極として実施
例1の作用極に用いたチタン粉末の代わりに窒化チタン
を用いた場合である。チタン粉末の代わりに窒化チタン
を用いた以外の条件は全て、実施例1と同様にして、同
様な電池を作製した。用いた窒化チタンの粒径は1から
15μmである。図4には本実施例のコイン形非水電解
質二次電池の充放電曲線を示す。
<Embodiment 2> This embodiment is a case where titanium nitride is used as the working electrode instead of the titanium powder used for the working electrode of the first embodiment. A similar battery was manufactured in the same manner as in Example 1 except that titanium nitride was used instead of titanium powder. The particle size of the titanium nitride used is 1 to 15 μm. FIG. 4 shows a charge / discharge curve of the coin-type non-aqueous electrolyte secondary battery of this example.

【0025】本実施例ではグラファイトとアクリル酸ポ
リマーの組成比は実施例1と同じであるが、活物質と窒
化チタンの重量%は一定重量中のモル比が同じになるよ
うに、18.7%,26.3%とした。また、充放電の
条件は実施例1と同じである。
In this embodiment, the composition ratio between graphite and acrylic acid polymer is the same as in Embodiment 1, but the weight percentage of the active material and titanium nitride is 18.7 so that the molar ratio in a constant weight is the same. % And 26.3%. The conditions for charging and discharging are the same as in the first embodiment.

【0026】図4から、一回目の充電容量は12.03
6mAhであり、一回目の放電容量は8.041mAh
である。また、不可逆容量は3.995mAhであり、
可逆率は66.8%である。また、比較として窒化チタ
ン自身が充放電反応を示す可能性があるため、本実施例
と同様に、作用極(2)に窒化チタンとグラファイト、
アクリル酸ポリマーの合剤を用いた電池も作製した。こ
の時の充放電曲線を図5に示す。
From FIG. 4, the first charge capacity is 12.03.
6 mAh, and the first discharge capacity was 8.041 mAh.
It is. The irreversible capacity is 3.995 mAh,
The reversibility is 66.8%. As a comparison, since titanium nitride itself may cause a charge / discharge reaction, titanium nitride and graphite were added to the working electrode (2) in the same manner as in this example.
A battery using an acrylic acid polymer mixture was also prepared. The charge / discharge curve at this time is shown in FIG.

【0027】この図5から充電容量1.642mAh
、放電容量1.113mAh 、不可逆容量0.529
mAhの値が得られる。この値は本実施例や従来技術の
比較例の充放電容量の値と比較し充分に小さいため、窒
化チタン自身はほとんど充放電反応に寄与していないこ
とが分かる。しかし、本実施例で示したように、活物質
と導電性を有する炭素材料と窒化チタンを混合すること
により、相乗効果が働き、従来の課題を解決することが
可能となった。
From FIG. 5, the charge capacity is 1.642 mAh.
, Discharge capacity 1.113 mAh, irreversible capacity 0.529
The value of mAh is obtained. Since this value is sufficiently smaller than the value of the charge / discharge capacity of the present example or the comparative example of the prior art, it is understood that titanium nitride itself hardly contributes to the charge / discharge reaction. However, as shown in this embodiment, by mixing the active material, the conductive carbon material, and titanium nitride, a synergistic effect works, and the conventional problem can be solved.

【0028】<実施例3>本実施例は作用極として実施
例1の作用極に用いたチタン粉末に加え、窒化チタンの
粉末と併用して用いた場合である。チタン粉末に加え、
窒化チタンの粉末を用いた以外の条件は全て、実施例1
と同様にして、同様な電池を作製した。用いた窒化チタ
ンの粒径は1から15μmである。図6には本実施例の
コイン形非水電解質二次電池の充放電曲線を示す。
<Embodiment 3> In this embodiment, the working electrode is used in combination with titanium nitride powder in addition to the titanium powder used for the working electrode of Embodiment 1. In addition to titanium powder,
All conditions except for the use of titanium nitride powder were as in Example 1.
In the same manner as in the above, a similar battery was produced. The particle size of the titanium nitride used is 1 to 15 μm. FIG. 6 shows a charge / discharge curve of the coin-type non-aqueous electrolyte secondary battery of this example.

【0029】本実施例ではグラファイトとアクリル酸ポ
リマーの組成比は実施例1と同じであるが、活物質とチ
タン粉末と窒化チタンの重量%は一定重量中のモル比が
同じになるように、それぞれ、20.0%,11.0
%、14。0%とした。また、充放電の条件は実施例1
と同じである。
In this embodiment, the composition ratio of graphite and acrylic acid polymer is the same as in Embodiment 1, but the weight percentages of the active material, titanium powder and titanium nitride are the same so that the molar ratio in a constant weight is the same. 20.0%, 11.0 respectively
% And 14.0%. The conditions for charging and discharging were as described in Example 1.
Is the same as

【0030】図6から、一回目の充電容量は12.81
5mAhであり、一回目の放電容量は8.928mAh
である。また、不可逆容量は3.887mAhであり、
可逆率は69.7%となる。この値は図2で示した同体
積のケイ素酸化物を活物質とした従来例の充電容量1
9.962mAh 、放電容量11.806mAh 、不
可逆容量7.886mAh、可逆率59.1%と比較し
て、明らかに不可逆容量が減少している。
From FIG. 6, the first charge capacity is 12.81.
5 mAh, and the first discharge capacity was 8.928 mAh.
It is. The irreversible capacity is 3.887 mAh,
The reversibility is 69.7%. This value is the charge capacity 1 of the conventional example using the same volume of silicon oxide as the active material shown in FIG.
Compared with 9.962 mAh, discharge capacity 11.806 mAh, irreversible capacity 7.886 mAh, and reversibility 59.1%, the irreversible capacity is clearly reduced.

【0031】[0031]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。すなわ
ち、本発明は、リチウムイオンを吸蔵放出可能な物質を
正極または及び負極活物質とする非水電解質二次電池に
おいて、正極合剤、負極合剤の少なくとも一方に、前記
活物質と導電性を有する炭素材料と遷移金属及びそれら
の合金の中から選ばれたリチウムと合金反応を起こしに
くい一種類以上の金属、または、遷移金属及び周期律表
3B,4B族から選ばれた一種類以上の元素の窒化物、
または、前記金属と窒化物の両者が混合されている構造
としている。
The present invention is embodied in the form described above and has the following effects. That is, the present invention provides a non-aqueous electrolyte secondary battery in which a material capable of inserting and extracting lithium ions is used as a positive electrode or a negative electrode active material, wherein at least one of a positive electrode mixture and a negative electrode mixture has conductivity with the active material. One or more metals that are unlikely to cause an alloying reaction with lithium selected from carbon materials and transition metals and alloys thereof, or one or more elements selected from transition metals and groups 3B and 4B of the periodic table Nitride,
Alternatively, the structure is such that both the metal and the nitride are mixed.

【0032】このため、1サイクル目の充放電時の容量
差が減少し、容易に正負極のバランスのとれた高容量の
非水電解質二次電池を作製する事ができる。さらに、正
負極のバランス補正のプロセスが製造工程から省略でき
るため、非水電解質二次電池の製造コストを低減でき
る。
Therefore, the capacity difference at the time of charge / discharge in the first cycle is reduced, and a high-capacity nonaqueous electrolyte secondary battery in which the positive and negative electrodes are balanced can be easily manufactured. Further, since the process of correcting the balance between the positive and negative electrodes can be omitted from the manufacturing process, the manufacturing cost of the non-aqueous electrolyte secondary battery can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるコイン形電池の構造例を示す図で
ある。
FIG. 1 is a diagram showing a structural example of a coin-type battery according to the present invention.

【図2】従来例によるコイン形電池の充放電曲電を示す
図である。
FIG. 2 is a diagram showing charge / discharge bending of a coin-type battery according to a conventional example.

【図3】本発明による金属粉としてチタンを使用したコ
イン形電池の充放電曲電を示す図である。
FIG. 3 is a diagram showing charge / discharge bending of a coin-shaped battery using titanium as a metal powder according to the present invention.

【図4】本発明による窒化物として窒化チタンを使用し
たコイン形電池の充放電曲電を示す図である。
FIG. 4 is a diagram showing charge / discharge bending of a coin battery using titanium nitride as a nitride according to the present invention.

【図5】窒化チタンを活物質としたコイン形電池の充放
電曲線を示す図である。
FIG. 5 is a diagram showing a charge / discharge curve of a coin-type battery using titanium nitride as an active material.

【図6】本発明による金属粉としてチタンと窒化物とし
て窒化チタンを使用したコイン形電池の充放電曲電を示
す図である。
FIG. 6 is a diagram showing charge / discharge bending of a coin-type battery using titanium as a metal powder and titanium nitride as a nitride according to the present invention.

【符号の説明】[Explanation of symbols]

1 作用極ケース 2 作用極 3 導電性接着剤 4 対極ケース 5 対極 6 ガスケット 7 セパレータ DESCRIPTION OF SYMBOLS 1 Working electrode case 2 Working electrode 3 Conductive adhesive 4 Counter electrode case 5 Counter electrode 6 Gasket 7 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂田 明史 千葉県千葉市美浜区中瀬1丁目8番地 セイコー電子工業株式会社内 (56)参考文献 特開 平6−302315(JP,A) 特開 平8−78018(JP,A) 特開 平4−259764(JP,A) 特開 平6−325765(JP,A) 特開 平5−54889(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/36 - 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Akifumi Sakata 1-8-1, Nakase, Mihama-ku, Chiba-shi, Chiba Seiko Electronic Industries Co., Ltd. (56) References JP-A-6-302315 (JP, A) JP-A Heisei 8-78018 (JP, A) JP-A-4-259764 (JP, A) JP-A-6-325765 (JP, A) JP-A-5-54889 (JP, A) (58) Fields investigated (Int. Cl 7, DB name) H01M 4/02 -. 4/04 H01M 4/36 - 4/62 H01M 10/36 - 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムイオンを吸蔵放出可能な物質を
正極活物質として含む正極合剤とケイ素の酸化物を負極
活物質として含む負極合剤を有する非水電解質二次電池
において、 前記負極合剤が前記負極活物質と、 導電性を有する炭素材料と、チタン、鉄、ニッケル、マンガン、銅、及びこれらを主
体とする合金の中から選ばれた少なくとも1種以上の金
属粉末または、窒化チタン、窒化シリコン、窒化ホウ素
から選ばれた少なくとも1種以上の窒化物の粉末 また
は、前記金属の粉末と前記窒化物の粉末の両者が混合さ
れている負極合剤であることを特徴とする非水電解質二
次電池。
1. A non-aqueous electrolyte secondary battery comprising: a positive electrode mixture containing a substance capable of inserting and extracting lithium ions as a positive electrode active material; and a negative electrode mixture containing silicon oxide as a negative electrode active material. Are mainly composed of the negative electrode active material, a conductive carbon material, titanium, iron, nickel, manganese, copper, and these.
At least one type of gold selected from alloys
Powder or titanium nitride, silicon nitride, boron nitride
A non-aqueous electrolyte secondary battery comprising: a negative electrode mixture in which at least one kind of nitride powder selected from the group consisting of: a metal powder and a nitride powder are mixed.
JP09888796A 1996-04-19 1996-04-19 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3212018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09888796A JP3212018B2 (en) 1996-04-19 1996-04-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09888796A JP3212018B2 (en) 1996-04-19 1996-04-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH09289011A JPH09289011A (en) 1997-11-04
JP3212018B2 true JP3212018B2 (en) 2001-09-25

Family

ID=14231658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09888796A Expired - Fee Related JP3212018B2 (en) 1996-04-19 1996-04-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3212018B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466045B2 (en) * 1997-03-27 2003-11-10 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
JPH11195420A (en) * 1997-12-26 1999-07-21 Sanyo Electric Co Ltd Lithium secondary battery
JP2002289260A (en) * 2001-03-28 2002-10-04 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
US7432015B2 (en) * 2004-02-25 2008-10-07 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same

Also Published As

Publication number Publication date
JPH09289011A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
US7682741B2 (en) Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
EP0883199B1 (en) Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
EP1150368A2 (en) Positive electrode and non-aqueous electrolyte cell
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2004063432A (en) Battery
JPH1186853A (en) Lithium secondary battery
JPH09293536A (en) Nonaqueous electrolyte secondary battery
JPH1186854A (en) Lithium secondary battery
KR100560538B1 (en) Negative active material for rechargeable ion lithium battery
US8420261B2 (en) Thin film alloy electrodes
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JPH10208741A (en) Lithium secondary battery
JPH01204361A (en) Secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JP2003282147A (en) Lithium ion secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JP3152307B2 (en) Lithium secondary battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JP4747233B2 (en) Alkaline storage battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JPH113698A (en) Lithium ion secondary battery
JP3383454B2 (en) Lithium secondary battery
JP3404929B2 (en) Non-aqueous electrolyte battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees