JPH11297311A - Negative electrode material for nonaqueous secondary battery - Google Patents

Negative electrode material for nonaqueous secondary battery

Info

Publication number
JPH11297311A
JPH11297311A JP10104398A JP10439898A JPH11297311A JP H11297311 A JPH11297311 A JP H11297311A JP 10104398 A JP10104398 A JP 10104398A JP 10439898 A JP10439898 A JP 10439898A JP H11297311 A JPH11297311 A JP H11297311A
Authority
JP
Japan
Prior art keywords
negative electrode
silicon
conductive metal
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10104398A
Other languages
Japanese (ja)
Inventor
Tetsuya Kusakabe
鉄也 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP10104398A priority Critical patent/JPH11297311A/en
Publication of JPH11297311A publication Critical patent/JPH11297311A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high-capacity and good charge/discharge characteristics and a satisfactory cycle life in the charge/discharge at a high current density by using a complex made of silicon storing and discharging lithium ions and a metal, applying conductivity to silicon as a negative electrode active material. SOLUTION: A complex made of silicon and a conductive metal applying conductivity is used as a negative electrode active material of this battery, a metal oxide containing a transition metal for the constituting element is used as a positive electrode active material, and a nonaqueous electrolyte dissolved with a lithium compound in an organic solvent is used as an electrolyte. The silicon powder to be used may be of crystalline or amorphous from, and preferably silicon power with an average grain size of about 1-10 μm is used. Copper is desirably used for the conductive metal. The complex preferably contains the conductive metal of about 3-90 wt.%, preferably containing 5-50 wt.%. the complex is preferably manufactured through electroless plating or vacuum deposition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で充放電の
サイクル特性に優れた非水系二次電池に関するものであ
り、さらに詳しくは非水系二次電池用負極材料に関す
る。
The present invention relates to a non-aqueous secondary battery having a high capacity and excellent charge / discharge cycle characteristics, and more particularly to a negative electrode material for a non-aqueous secondary battery.

【0002】[0002]

【従来の技術】高エネルギー密度の期待できる非水系二
次電池においては、負極活物質として、金属リチウム、
正極活物質としてCo,Mn,Niに代表される遷移金
属の酸化物を用いる方法が代表的である。しかし、負極
に金属リチウムを用いると、充放電中に金属リチウムが
樹枝状の形態(デンドライト)で成長するため内部でシ
ョートしたり、またデンドライトの活性が高く発火の危
険性があるなどの問題がある。そのため、金属リチウム
に代わる活物質としてリチウムイオンを挿入・放出する
ことのできる焼成炭素質材料が負極として実用化されて
いる。しかしながら、炭素材料は体積当たりの充放電容
量が低いという欠点を持っている。
2. Description of the Related Art In a non-aqueous secondary battery which can be expected to have high energy density, metallic lithium,
Typically, a method using an oxide of a transition metal typified by Co, Mn, and Ni as the positive electrode active material is used. However, when metallic lithium is used for the negative electrode, the metallic lithium grows in a dendritic form (dendrite) during charge and discharge, causing a short circuit inside, and the dendrite has high activity and there is a risk of ignition. is there. For this reason, fired carbonaceous materials capable of inserting and releasing lithium ions as active materials instead of metallic lithium have been put to practical use as negative electrodes. However, carbon materials have the disadvantage that the charge / discharge capacity per volume is low.

【0003】体積当り高い充放電容量が期待できる負極
活物質として、1)TiS2,LiTiS2(米国特許第
3983476号)などの遷移金属カルコゲン化合物、
2)ルチル構造の遷移金属酸化物、例えば、WO2(米
国特許第4198476号)、3)LixFe(F
2)O4などのスピネル化合物(特開昭58−2203
62号)、4)電気化学的に合成されたFe23のリチ
ウム化合物(米国特許第4464447号)、Fe23
のリチウム化合物(特開平3−112070号)、Nb
25(特開昭62−59412号、特開平2−8244
7号)、酸化鉄、FeO,Fe2O,Fe34,酸化コ
バルト、CoO,Co23,Co34(特開平3−29
1862号)などの遷移金属酸化物が知られている。一
方、5)リチウムと合金を形成することが知られている
Sn,Cd(Proceedings of the
Electrochemical Society,8
7−1,1987)、Al(Solid State
Ionics,20,1986)、Si,Pb,Bi,
Sb(Proceedings of the Ele
ctrochemical Society,87−
1,1987)、これらのリチウムとの化合物又は合金
(例えば特開平7−29602号)、及びこれらリチウ
ムと合金を形成可能な金属を炭素粒子に担持させたもの
(特開平8-273702号)が提案されている。
As negative electrode active materials which can be expected to have a high charge / discharge capacity per volume, 1) transition metal chalcogen compounds such as TiS 2 and LiTiS 2 (US Pat. No. 3,983,476);
2) a transition metal oxide having a rutile structure, for example, WO 2 (U.S. Pat. No. 4,198,476); 3) LixFe (F
e 2) spinels such as O 4 (JP 58-2203
No. 62), 4) Lithium compound of Fe 2 O 3 electrochemically synthesized (US Pat. No. 4,446,447), Fe 2 O 3
Lithium compound (JP-A-3-112070), Nb
2 O 5 (JP-A-62-59412, JP-A-2-8244)
No. 7), iron oxide, FeO, Fe 2 O, Fe 3 O 4, cobalt oxide, CoO, Co 2 O 3, Co 3 O 4 ( JP-A-3-29
No. 1862). On the other hand, 5) Sn, Cd (Proceedings of the) which are known to form an alloy with lithium.
Electrochemical Society, 8
7-1, 1987), Al (Solid State)
Ionics, 20, 1986), Si, Pb, Bi,
Sb (Proceedings of the Ele)
crochemical Society, 87-
1,1987), compounds or alloys thereof with lithium (for example, JP-A-7-29602), and those in which a metal capable of forming an alloy with these lithiums is supported on carbon particles (JP-A-8-273702). Proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
Sn,Cd,Al,Si,Pb,Bi,Sb及びこれら
のリチウムとの合金は、特に高電流密度(例えば、1m
A/cm2以上)において容量が低くかつ充放電時のサ
イクル寿命が短いという問題がある。
However, the above-mentioned Sn, Cd, Al, Si, Pb, Bi, Sb and their alloys with lithium have particularly high current densities (for example, 1 m
(A / cm 2 or more), there is a problem that the capacity is low and the cycle life during charge / discharge is short.

【0005】そこで本発明は、1)可逆的なリチウムイ
オンの挿入放出が可能で高容量を与える負極活物質を含
む非水系二次電池用負極材料と、2)高電流密度での充
放電においても、高容量、良好な充放電特性およびサイ
クル寿命をもつ非水系二次電池を提供することを目的と
した。
Accordingly, the present invention provides 1) a negative electrode material for a non-aqueous secondary battery containing a negative electrode active material capable of reversibly inserting and releasing lithium ions and providing a high capacity; and 2) a charge / discharge at a high current density. Another object of the present invention is to provide a non-aqueous secondary battery having high capacity, good charge / discharge characteristics and cycle life.

【0006】[0006]

【課題を解決するための手段】本発明はリチウムイオン
を挿入放出可能なケイ素とケイ素に導電性を付与する導
電性金属とからなる複合体を負極活物質として用いれ
ば、上記課題を解決できることを見い出して完成された
ものである。
According to the present invention, it is possible to solve the above-mentioned problems by using a composite comprising silicon capable of inserting and releasing lithium ions and a conductive metal imparting conductivity to silicon as a negative electrode active material. It was found and completed.

【0007】上記ケイ素と導電性金属との複合化によ
り、負極活物質の導電性が向上するとともに、リチウム
イオンの挿入放出反応が円滑に進行し、活物質利用率の
向上や電池の内部抵抗の減少等の効果がもたらされ、高
容量かつ充放電のサイクル特性に優れた非水系二次電池
を得ることができる。
[0007] The compounding of silicon and a conductive metal improves the conductivity of the negative electrode active material, facilitates the insertion and release reaction of lithium ions, improves the active material utilization rate, and improves the internal resistance of the battery. An effect such as reduction is provided, and a non-aqueous secondary battery having high capacity and excellent charge-discharge cycle characteristics can be obtained.

【0008】また、上記複合体が、ケイ素に導電性金属
を担持させたもの、又はケイ素又はその化合物を導電性
金属で被覆したものであることが望ましい。
Further, it is desirable that the above-mentioned composite is obtained by supporting a conductive metal on silicon, or by coating silicon or a compound thereof with a conductive metal.

【0009】また、上記ケイ素は、粉末状又は板状のい
ずれの形態であっても良い。
The silicon may be in the form of a powder or a plate.

【0010】また、上記複合体が、ケイ素上に、導電性
金属を水系溶媒で還元析出させて得られることが望まし
い。水系溶媒を用いることで、非水系溶媒を用いる場合
や乾式法に比べ、より低コストかつ安全に導電性金属を
複合化することができる。
It is desirable that the composite is obtained by reducing and precipitating a conductive metal on silicon with an aqueous solvent. By using an aqueous solvent, a conductive metal can be compounded more safely and at lower cost than when a non-aqueous solvent is used or when a dry method is used.

【0011】また、上記粉末状のケイ素を含む複合体に
結着剤と溶媒を添加し、混練して得られたペーストを、
集電体に塗布して負極を形成することが望ましい。
Further, a paste obtained by adding a binder and a solvent to the powdery silicon-containing composite and kneading the mixture is
It is preferable to form a negative electrode by coating the current collector.

【0012】また、上記板状のケイ素を含む複合体が、
少なくとも片面に導電性金属を有し、該片面に集電体を
圧着させて負極を形成することが望ましい。
Further, the above-mentioned composite containing silicon in the form of a plate comprises:
It is preferable that at least one side has a conductive metal, and a current collector is pressed against the one side to form a negative electrode.

【0013】また、本発明の非水系二次電池は、ケイ素
と導電性を付与する導電性金属からなる複合体を負極活
物質とし、遷移金属を構成元素として含む金属酸化物を
正極活物質とし、有機溶媒にリチウム化合物を溶解させ
た、又は高分子にリチウム化合物を固溶或いはリチウム
化合物を溶解させた有機溶媒を保持させたリチウムイオ
ン導電性の非水電解質を電解質として用いる。
Further, the non-aqueous secondary battery of the present invention is characterized in that a composite comprising silicon and a conductive metal imparting conductivity is used as a negative electrode active material, and a metal oxide containing a transition metal as a constituent element is used as a positive electrode active material. A lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or in which a lithium compound is dissolved in a polymer or an organic solvent in which a lithium compound is dissolved is held, is used as an electrolyte.

【0014】[0014]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のケイ素粉末は、結晶質又は非晶質状のいずれで
あっても良いが、平均粒径は1〜10μm程度のものが
好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The silicon powder of the present invention may be either crystalline or amorphous, but preferably has an average particle size of about 1 to 10 μm.

【0015】また、本発明の導電性金属としては、銅、
及び貴金属があげられるが、還元が容易である、導電性
が高い、安価である等の条件を満たす銅が望ましい。
Further, the conductive metal of the present invention includes copper,
And noble metals, but copper satisfying conditions such as easy reduction, high conductivity, and low cost is desirable.

【0016】また、本発明の複合体は、容量を大きく保
ち、かつ十分な導電性を得るため、導電性金属を3〜9
0重量%、さらに望ましくは5〜50重量%含むことが
望ましい。
In the composite of the present invention, in order to maintain a large capacity and obtain sufficient conductivity, a conductive metal is used in an amount of 3 to 9%.
0% by weight, more preferably 5 to 50% by weight.

【0017】本発明の複合体の作製方法としては、水系
溶媒中で、導電性金属をケイ素又はその化合物上に還元
析出させることが可能な、化学還元法、電解メッキ法及
び無電解メッキ法があげられるが、無電解メッキ法が望
ましい。また、他の好ましい方法として、真空蒸着法が
挙げられる。
The method for producing the composite of the present invention includes a chemical reduction method, an electrolytic plating method, and an electroless plating method capable of reducing and depositing a conductive metal on silicon or a compound thereof in an aqueous solvent. However, the electroless plating method is preferable. Another preferable method is a vacuum evaporation method.

【0018】上記の方法により得られた複合体からなる
負極活物質を真空乾燥し、以下の方法により、負極を作
製する。ケイ素又はその化合物が粉末の場合、真空乾燥
させた複合体に結着剤とN-メチル-2-ピロリドン等の
溶媒を加えて混練し、混練したスラリーを集電体の銅箔
に塗布し負極とする。また、ケイ素又はその化合物が板
状の場合、還元析出させた導電性金属層側に集電体の銅
箔を圧着させて負極とする。ここで、銅箔の代わりに、
銅をポリエステルフィルム、ポリエチレンフィルム及び
ポリプロピレンフィルムの片面又は両面に蒸着したメタ
ラジングフィルムを集電体として用いても良い。
The negative electrode active material comprising the composite obtained by the above method is vacuum-dried, and a negative electrode is prepared by the following method. When silicon or a compound thereof is powder, a binder and a solvent such as N-methyl-2-pyrrolidone are added to the vacuum-dried composite and kneaded, and the kneaded slurry is applied to a copper foil of a current collector to form a negative electrode. And When silicon or a compound thereof is plate-shaped, a negative electrode is obtained by pressing a copper foil as a current collector on the conductive metal layer side on which reduction deposition is performed. Here, instead of copper foil,
A metallurgical film in which copper is vapor-deposited on one or both surfaces of a polyester film, a polyethylene film and a polypropylene film may be used as the current collector.

【0019】本発明の正極活物質として用いられる正極
材料は、従来公知の何れの材料も使用でき、例えば、L
ixCoO2,LixNiO2,MnO2,LiMnO2
LixMn24,LixMn2-y4,α−V25,Ti
2等が挙げられる。
As the cathode material used as the cathode active material of the present invention, any conventionally known materials can be used.
ixCoO 2 , LixNiO 2 , MnO 2 , LiMnO 2 ,
LixMn 2 O 4, LixMn 2- y O 4, α-V 2 O 5, Ti
S 2, and the like.

【0020】本発明に使用される非水電解質は、有機溶
媒にリチウム化合物を溶解させた非水電解液、又は高分
子にリチウム化合物を固溶或いはリチウム化合物を溶解
させた有機溶媒を保持させた高分子固体電解質を用いる
ことができる。非水電解液は、有機溶媒と電解質とを適
宜組み合わせて調製されるが、これら有機溶媒や電解質
はこの種の電池に用いられるものであればいずれも使用
可能である。有機溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、ビニレンカーボネー
ト、ジメチルカーボネート、ジエチルカーボネート、メ
チルエチルカーボネート、1,2−ジメトキシエタン、
1,2−ジエトキシエタンメチルフォルメイト、ブチロ
ラクトン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、1−3ジオキソフラン、4−メチル−1,3
−ジオキソフラン、ジエチルエーテル、スルホラン、メ
チルスルホラン、アセトニトリル、プロピオニトリル、
ブチロニトリル、バレロニトリル、ベンゾニトリル、
1,2−ジクロロエタン、4−メチル−2−ペンタノ
ン、1,4−ジオキサン、アニソール、ジグライム、ジ
メチルホルムアミド、ジメチルスルホキシド等である。
これらの溶媒はその1種を単独で使用することができる
し、2種以上を併用することもできる。電解質として
は、例えばLiClO4,LiAsF6,LiPF6,L
iBF4,LiB(C654,LiCl,LiBr,L
iI,LiCH3SO3,LiCF3SO3,LiAlCl
4等が挙げられ、これらの1種を単独で使用することも
できるし、2種以上を併用することもできる。
The non-aqueous electrolyte used in the present invention is a non-aqueous electrolyte in which a lithium compound is dissolved in an organic solvent, or a polymer in which a lithium compound is dissolved or an organic solvent in which a lithium compound is dissolved is held. A polymer solid electrolyte can be used. The non-aqueous electrolyte is prepared by appropriately combining an organic solvent and an electrolyte, and any of these organic solvents and electrolytes can be used as long as they are used for this type of battery. Examples of the organic solvent include propylene carbonate, ethylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane,
1,2-diethoxyethanemethylformate, butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1-3 dioxofuran, 4-methyl-1,3
-Dioxofuran, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitrile,
Butyronitrile, valeronitrile, benzonitrile,
1,2-dichloroethane, 4-methyl-2-pentanone, 1,4-dioxane, anisole, diglyme, dimethylformamide, dimethylsulfoxide and the like.
One of these solvents can be used alone, or two or more can be used in combination. Examples of the electrolyte include LiClO 4 , LiAsF 6 , LiPF 6 , L
iBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, L
iI, LiCH 3 SO 3 , LiCF 3 SO 3 , LiAlCl
And the like. One of these can be used alone, or two or more can be used in combination.

【0021】本発明に使用される高分子固体電解質は、
上記の電解質から選ばれる電解質を以下に示す高分子に
固溶させたものを用いることができる。例えば、ポリエ
チレンオキサイドやポリプロピレンオキサイドのような
ポリエーテル鎖を有する高分子、ポリエチレンサクシネ
ート、ポリカプロラクタムのようなポリエステル鎖を有
する高分子、ポリエチレンイミンのようなポリアミン鎖
を有する高分子、ポリアルキレンスルフィドのようなポ
リスルフィド鎖を有する高分子が挙げられる。また、本
発明に使用される高分子固体電解質として、ポリフッ化
ビニリデン、フッ化ビニリデン-テトラフルオロエチレ
ン共重合体、ポリエチレンオキサイド、ポリアクリロニ
トリル、ポリプロピレンオキサイド等の高分子に上記非
水電解液を保持させ上記高分子を可塑化させたものを用
いることもできる。
The solid polymer electrolyte used in the present invention comprises:
A solution obtained by dissolving an electrolyte selected from the above electrolytes in the following polymer can be used. For example, polymers having a polyether chain such as polyethylene oxide or polypropylene oxide, polyethylene succinate, a polymer having a polyester chain such as polycaprolactam, a polymer having a polyamine chain such as polyethyleneimine, a polyalkylene sulfide Such a polymer having a polysulfide chain is exemplified. Further, as the polymer solid electrolyte used in the present invention, polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, polyethylene oxide, polyacrylonitrile, holding the non-aqueous electrolyte in a polymer such as polypropylene oxide What plasticized the said polymer can also be used.

【0022】[0022]

【実施例】以下、実施例を用いて本発明をさらに詳細に
説明するが、本発明はかかる実施例に限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0023】実施例1.水11中に、硫酸銅35g、ロ
ッシェル塩34.0g、炭酸ナトリウム3.0g、水酸化
ナトリウム7.0gを加え、撹拌して溶解させ、純度9
9.9%で平均粒径5μmのケイ素粉末10.0gを加
え、37%ホルムアルデヒド溶液13.0mlを加えて銅
を還元し、ケイ素粉末に担持させ、これをろ過後、真空
乾燥して複合体粉末13gを得た。上記複合体粉末10
gに対して結着剤としてポリフッ化ビニリデン(PVD
F)1gを加えn−メチル−2−ピロリドン(NMP)
を用いてペースト状にし、その一部を銅箔に塗布後、1
t/cm2の圧力で圧着した。乾燥後、所定の大きさと
形に打抜いたものを負極とした。この負極と、対極に金
属リチウムを組み合わせ、エチレンカーボネートとジメ
チルカーボネートの混合溶媒(体積比1:1)に1mo
l/lの濃度となるよう六フッ化リン酸リチウムを加え
た電解液を用いて試験セルを組み立て、電流密度2mA
/cm2、電圧範囲5mVから1500mVで充放電試
験を行った。結果を表1に示す。
Embodiment 1 FIG. 35 g of copper sulfate, 34.0 g of Rochelle salt, 3.0 g of sodium carbonate, and 7.0 g of sodium hydroxide were added to water 11, and the mixture was stirred to dissolve, and the purity was 9%.
10.0 g of a 9.9% silicon powder having an average particle diameter of 5 μm was added, and 13.0 ml of a 37% formaldehyde solution was added to reduce copper. The copper was supported on the silicon powder. 13 g of a powder were obtained. The above composite powder 10
g of polyvinylidene fluoride (PVD) as a binder
F) Add 1 g and add n-methyl-2-pyrrolidone (NMP)
Into a paste, and apply a part of the paste to copper foil.
Pressure bonding was performed at a pressure of t / cm 2 . After drying, the negative electrode was punched into a predetermined size and shape. This negative electrode was combined with metallic lithium as a counter electrode, and 1 mol was added to a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio 1: 1).
A test cell was assembled using an electrolytic solution to which lithium hexafluorophosphate was added so that the concentration became 1 / l, and the current density was 2 mA.
/ Cm 2 and a voltage range of 5 mV to 1500 mV. Table 1 shows the results.

【0024】比較例1.天然黒鉛粉末として関西熱化学
社製NG7(平均粒径7μm)10gに対して結着剤と
してPVDF1gを加え、NMPを加えてペースト状と
し、その一部を銅箔に塗布後、1t/cm2の圧力で圧
着した。乾燥後、一定の大きさと形に打抜いたものを負
極とした。これ以外は、すべて実施例1と同様の条件で
行った。結果を表1に示す。
Comparative Example 1 1 g of PVDF was added as a binder to 10 g of NG7 (average particle size: 7 μm) manufactured by Kansai Thermal Chemical Co., Ltd. as natural graphite powder, and NMP was added to form a paste. A part of the paste was applied to a copper foil, and then 1 t / cm 2. Pressure. After drying, the negative electrode was punched into a certain size and shape. Except for this, all were performed under the same conditions as in Example 1. Table 1 shows the results.

【0025】実施例2.正極にコバルト酸リチウム8.
8g、アセチレンブラック0.6g、ポリテトラフルオ
ロエチレン樹脂0.6gからなる混合物の一部をアルミ
箔を敷いた成形型に入れ、1t/cm2の圧力で成形
し、負極と同じ大きさ、形に打抜いたものを正極とし
た。金属リチウムの代わりにこの正極を用いた以外は、
実施例1と同様の方法で行った。結果を表1に示す。
Embodiment 2 FIG. 7. Lithium cobalt oxide for positive electrode
Part of a mixture consisting of 8 g, 0.6 g of acetylene black and 0.6 g of polytetrafluoroethylene resin was put into a mold on which aluminum foil was spread, and was molded under a pressure of 1 t / cm 2 to have the same size and shape as the negative electrode. The positive electrode was used as the positive electrode. Except for using this positive electrode instead of metallic lithium,
The procedure was performed in the same manner as in Example 1. Table 1 shows the results.

【0026】比較例2.負極に比較例1の負極を用いた
以外は、実施例2と同様の方法で行った。結果を表1に
示す。
Comparative Example 2 The same procedure as in Example 2 was carried out except that the negative electrode of Comparative Example 1 was used as the negative electrode. Table 1 shows the results.

【0027】比較例3.比較例1において、天然黒鉛粉
末に代えてケイ素粉末(純度99.9%、粒径5μm)
を用い、同様に負極を製造した。結果を表1に示す。
Comparative Example 3 In Comparative Example 1, silicon powder (purity 99.9%, particle size 5 μm) instead of natural graphite powder
And a negative electrode was produced in the same manner. Table 1 shows the results.

【0028】[0028]

【表1】 放電容量(mAh/g)充放電効率(%)5サイクル目の充放電効率(%) 実施例1 600 83 95 比較例1 280 85 95 実施例2 600 83 95 比較例2 280 85 95 比較例3 20 2 0Table 1 Discharge capacity (mAh / g) Charge / discharge efficiency (%) Charge / discharge efficiency at 5th cycle (%) Example 1 600 83 95 Comparative Example 1 280 85 95 Example 2 600 83 95 Comparative Example 2 280 85 95 Comparative Example 3 20 20

【0029】[0029]

【発明の効果】以上、述べたように、本発明では、リチ
ウムイオンを挿入放出可能なケイ素とケイ素に導電性を
付与する導電性金属とからなる複合体を負極活物質とし
て用いることにより、負極活物質の導電性が向上すると
ともに、リチウムイオンの挿入放出反応が円滑に進行
し、活物質利用率の向上や電池の内部抵抗の減少等の効
果がもたらされ、高容量かつ充放電のサイクル特性に優
れた非水系二次電池を得ることができる。
As described above, according to the present invention, a composite material comprising silicon capable of inserting and releasing lithium ions and a conductive metal imparting conductivity to silicon is used as a negative electrode active material. As the conductivity of the active material is improved, the insertion / release reaction of lithium ions proceeds smoothly, and effects such as improvement of the active material utilization rate and reduction of the internal resistance of the battery are brought about. A non-aqueous secondary battery having excellent characteristics can be obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを挿入放出可能なケイ素
粉末とケイ素に導電性を付与する導電性金属とからなる
複合体を負極活物質として含む非水系二次電池用負極材
料。
1. A negative electrode material for a non-aqueous secondary battery comprising, as a negative electrode active material, a composite comprising a silicon powder capable of inserting and releasing lithium ions and a conductive metal imparting conductivity to silicon.
【請求項2】 上記複合体が、上記ケイ素粉末に導電性
金属を担持させたもの、又は上記ケイ素粉末を導電性金
属で被覆したものである請求項1記載の非水系二次電池
用負極材料。
2. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the composite is obtained by supporting a conductive metal on the silicon powder, or by coating the silicon powder with a conductive metal. .
【請求項3】 上記複合体が、ケイ素粉末上に、導電性
金属を水系溶媒で還元析出させて得られるものである請
求項1又は2のいずれかに記載の非水系二次電池用負極
材料。
3. The negative electrode material for a non-aqueous secondary battery according to claim 1, wherein the composite is obtained by reducing and depositing a conductive metal on a silicon powder with an aqueous solvent. .
【請求項4】 ケイ素粉末とケイ素に導電性を付与する
導電性金属からなる複合体を負極活物質とし、遷移金属
を構成元素として含む金属酸化物を正極活物質とし、有
機溶媒にリチウム化合物を溶解させた、又は高分子にリ
チウム化合物を固溶或いはリチウム化合物を溶解させた
有機溶媒を保持させたリチウムイオン導電性の非水電解
質を電解質として用いる非水系二次電池。
4. A composite comprising silicon powder and a conductive metal imparting conductivity to silicon is used as a negative electrode active material, a metal oxide containing a transition metal as a constituent element is used as a positive electrode active material, and a lithium compound is used as an organic solvent. A non-aqueous secondary battery using, as an electrolyte, a lithium ion conductive non-aqueous electrolyte in which a lithium compound is dissolved, or a lithium compound is dissolved in a polymer, or an organic solvent in which a lithium compound is dissolved is held.
JP10104398A 1998-04-15 1998-04-15 Negative electrode material for nonaqueous secondary battery Pending JPH11297311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10104398A JPH11297311A (en) 1998-04-15 1998-04-15 Negative electrode material for nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10104398A JPH11297311A (en) 1998-04-15 1998-04-15 Negative electrode material for nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH11297311A true JPH11297311A (en) 1999-10-29

Family

ID=14379629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10104398A Pending JPH11297311A (en) 1998-04-15 1998-04-15 Negative electrode material for nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH11297311A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012018A (en) * 1998-06-18 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO2000063986A1 (en) * 1999-04-20 2000-10-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
JP2007080835A (en) * 1998-05-13 2007-03-29 Ube Ind Ltd Nonaqueous secondary battery
KR100728783B1 (en) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
KR100770133B1 (en) 2004-04-23 2007-10-24 주식회사 엘지화학 The copper-deposited silicon powders, their preparation method, and lithium secondary batteries containing the above materials as the anode
KR100906550B1 (en) * 2007-09-07 2009-07-07 주식회사 엘지화학 The copper-deposited silicon powders, their preparation method, and lithium secondary batteries containing the above materials as the anode
KR20120005008A (en) 2009-04-01 2012-01-13 나믹스 코포레이션 Electrode material, method for producing same, and lithium ion secondary battery
WO2012046916A1 (en) * 2010-10-04 2012-04-12 Unist Academy-Industry Research Corporation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
JP2007080835A (en) * 1998-05-13 2007-03-29 Ube Ind Ltd Nonaqueous secondary battery
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2000012018A (en) * 1998-06-18 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
WO2000063986A1 (en) * 1999-04-20 2000-10-26 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
KR100770133B1 (en) 2004-04-23 2007-10-24 주식회사 엘지화학 The copper-deposited silicon powders, their preparation method, and lithium secondary batteries containing the above materials as the anode
JP2006092808A (en) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd Battery structure
KR100728783B1 (en) 2005-11-02 2007-06-19 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
US8394531B2 (en) 2005-11-02 2013-03-12 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery including the same
KR100906550B1 (en) * 2007-09-07 2009-07-07 주식회사 엘지화학 The copper-deposited silicon powders, their preparation method, and lithium secondary batteries containing the above materials as the anode
KR20120005008A (en) 2009-04-01 2012-01-13 나믹스 코포레이션 Electrode material, method for producing same, and lithium ion secondary battery
WO2012046916A1 (en) * 2010-10-04 2012-04-12 Unist Academy-Industry Research Corporation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR101226245B1 (en) 2010-10-04 2013-02-07 국립대학법인 울산과학기술대학교 산학협력단 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Similar Documents

Publication Publication Date Title
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
TWI506838B (en) Nonaqueous electrolyte storage battery and manufacturing method thereof
JP3726958B2 (en) battery
JP4035760B2 (en) Nonaqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
JP3640227B2 (en) Non-aqueous secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP2003317705A (en) Battery
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
KR101840885B1 (en) Thin film alloy electrodes
JP2000012089A (en) Nonaqueous secondary battery
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP2003115324A (en) Nonaqueous electrolyte battery
JP4162075B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2002175836A (en) Nonaqueous electrolyte battery
JP3055892B2 (en) Lithium secondary battery
KR20070059829A (en) Novel anode active material, producing method thereof, and lithium secondary battery comprising the same
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP2002343437A (en) Nonaqueous electrolyte battery
KR100378012B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP2009140647A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees