JPS63146355A - Nonaqueous electrolytic secondary cell - Google Patents

Nonaqueous electrolytic secondary cell

Info

Publication number
JPS63146355A
JPS63146355A JP61291822A JP29182286A JPS63146355A JP S63146355 A JPS63146355 A JP S63146355A JP 61291822 A JP61291822 A JP 61291822A JP 29182286 A JP29182286 A JP 29182286A JP S63146355 A JPS63146355 A JP S63146355A
Authority
JP
Japan
Prior art keywords
negative electrode
charge
grain size
metal material
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61291822A
Other languages
Japanese (ja)
Other versions
JPH0746606B2 (en
Inventor
Toru Matsui
徹 松井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
▲吉▼徳 豊口
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Yukio Nishikawa
幸男 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61291822A priority Critical patent/JPH0746606B2/en
Publication of JPS63146355A publication Critical patent/JPS63146355A/en
Publication of JPH0746606B2 publication Critical patent/JPH0746606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve a charge and discharge life and to upgrade reliability by specifying an average crystal grain size of a metallic material used on a negative electrode. CONSTITUTION:An average crystal grain size of a metallic material used on a negative electrode is made to be 1 mum<3> or more. A negative electrode obtained in this way is hard to be fined and powdered even if alkali metal ions are absorbed and released by charge and discharge. Therefore, when this metallic material is used for a negative electrode, a nonaqueous electrolytic secondary cell excellent in a charge and discharge life and high in reliability can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解質二次電池の改良に関する。[Detailed description of the invention] Industrial applications The present invention relates to improvements in non-aqueous electrolyte secondary batteries.

従来の技術 現在まで、Iai 、 Na等のアルカリ金属を負極活
物質として用い、r−ブチロラクトン、テトラヒドロフ
ラン、プロピレンカーボネート、ジメトキシエタン等の
溶媒中に、溶質として、Lie104゜LiBF4. 
LiC/等を溶解した、いわゆる非水電解質を用いる二
次電池の開発が進められてきた。
Prior Art Until now, alkali metals such as Iai, Na, etc. have been used as negative electrode active materials, and Lie104°LiBF4.
Development of a secondary battery using a so-called non-aqueous electrolyte in which LiC/etc. is dissolved has been progressing.

しかし、この種の二次電池はまだ実用化されていない。However, this type of secondary battery has not yet been put into practical use.

その理由は、充放電回数の寿命が短く、また、充放電に
際しての充放電効率が低いためであり、この性能劣化の
原因は、主に正極及び負極活物質の充放電における化学
的又は物理的可逆性の低下である。
The reason for this is that the life of the number of charge/discharge cycles is short and the efficiency of charge/discharge during charging/discharging is low. This is a decrease in reversibility.

負極のこのような欠点を克服するため、従来よシ次式の
ごとく、充電時にLi+等のアルカリ金属イオンを吸厳
し、放電時に放出する材料Mを負極に用いることが提案
されている。
In order to overcome these drawbacks of the negative electrode, it has been proposed to use a material M in the negative electrode, which strictly absorbs alkali metal ions such as Li+ during charging and releases them during discharge, as shown in the following formula.

この負極材料として、ム!や、可融合金(成分Bi、 
Cd、 In、 Pb、 Sn、 Zn等)が知られて
いる(特開昭80−49586号公報)。
As this negative electrode material, Mu! or fusible metal (component Bi,
Cd, In, Pb, Sn, Zn, etc.) are known (Japanese Unexamined Patent Publication No. 80-49586).

発明が解決しようとする問題点 しかし、このような金属材料を負極材料に用いても、大
幅な充放電寿命の向上が見られず、また、同じ金属材料
を用いても充放電寿命が異なるという問題点があった。
Problems to be Solved by the Invention However, even if such metal materials are used as negative electrode materials, there is no significant improvement in charge/discharge life, and even if the same metal material is used, charge/discharge life differs. There was a problem.

やれは下記の理由による。This is done for the following reasons.

(1)式の性質を有する金属材料を負極材料に用いた場
合、金属材料は充電時にL1+等のアルlカリ金属イオ
ンを吸蔵し金属間化合物を形成する。この金属間化合物
の結晶構造は、元の金属材料の結晶構造と大きく異なる
ため、充電時における金属材料の膨張が著しい。逆に、
放電時にはアルカリ金属イオンがこの金属材料より放出
されるため、金属材料は元の結晶構造へ戻り収縮する。
When a metal material having the properties of formula (1) is used as a negative electrode material, the metal material absorbs alkali metal ions such as L1+ and forms an intermetallic compound during charging. Since the crystal structure of this intermetallic compound is significantly different from the crystal structure of the original metal material, the metal material expands significantly during charging. vice versa,
During discharge, alkali metal ions are released from the metal material, so the metal material returns to its original crystal structure and contracts.

したがって、金属材料は充放電にともない、膨張、収縮
をくり返すことになる。
Therefore, the metal material repeatedly expands and contracts as it is charged and discharged.

また、一般に、(1)式の性質を有する金属材料では、
充電時にLi+等のアルカリ金属イオンを吸蔵した場合
、硬く、また、もろくなる。
In addition, generally, in a metal material having the property of formula (1),
If it absorbs alkali metal ions such as Li+ during charging, it becomes hard and brittle.

以上のような性質を金属材料は有しているため、充放電
にともない、金属材料は表面よシ微細化し、はなはなだ
しい場合には、金属材料の一部もしくは全部が粉末化し
脱落する。このため充放電寿命が低下することになる。
Because metal materials have the above-mentioned properties, as they are charged and discharged, the surface of the metal material becomes finer, and in extreme cases, part or all of the metal material turns into powder and falls off. As a result, the charge/discharge life is reduced.

この金属材料の充放電による表面の微細化及び粉末化は
金属材料の結晶粒度が小さいほど著しい。
The smaller the crystal grain size of the metal material, the more remarkable the surface refinement and powderization due to charging and discharging of the metal material.

また、同じ金属材料を用いても充放電寿命が異なる原因
は、同稲金属材料間の結晶粒度の差、及び、同−金属材
料内での結晶粒度の不均一分布である。上記のように、
金属材料の充放電寿命は金属材料の結晶粒度と関係があ
り、金属材料間での結晶粒度の差、及び、同−金属材料
内での結晶粒度の不均一分布が、充放電寿命のばらつき
に帰因する。
Further, even when the same metal material is used, the difference in charge/discharge life is caused by differences in crystal grain size between the same metal materials and non-uniform distribution of crystal grain size within the same metal material. As described above,
The charge-discharge life of metal materials is related to the crystal grain size of the metal material, and differences in crystal grain size between metal materials and uneven distribution of crystal grain size within the same metal material cause variations in charge-discharge life. Attribute.

本発明はこのような従来の欠点を除去し、充放電をくシ
返しても、微細化、粉末化の小さい金属材料を作製する
ことによシ、充放電寿命のすぐれた信頼性の高い非水電
解質二次電池を提供することを目的とする。
The present invention eliminates these conventional drawbacks and creates a highly reliable non-metallic material with an excellent charging/discharging life by producing a metal material that is less likely to become fine or powdered even after repeated charging and discharging cycles. The purpose is to provide a water electrolyte secondary battery.

問題点を解決するための手段 本発明の非水電解質二次電池は、上記負極の金属材料の
平均結晶粒度を1μゴ以上としたことを特徴とする。
Means for Solving the Problems The nonaqueous electrolyte secondary battery of the present invention is characterized in that the metal material of the negative electrode has an average crystal grain size of 1 μg or more.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

金属材料を用いて充電、すなわち、アルカリ金属イオン
を吸蔵させる場合、アルカリ金属イオンはまず粒界拡散
を行なった後、金属結晶粒内へ拡散7し、金属間化合物
を形成する。したがって、結晶粒度の小さい結晶粒はど
、粒界に囲まれる割合、すなわち、結晶粒の外周の長さ
と結晶粒度との比が高くなるため、優先的にアルカリ金
属イオンは結晶粒内へ容易に拡散する。
When a metal material is used to charge, that is, to occlude alkali metal ions, the alkali metal ions first undergo grain boundary diffusion and then diffuse 7 into metal crystal grains to form an intermetallic compound. Therefore, since grains with small grain sizes are surrounded by grain boundaries, that is, the ratio of the outer circumference of the grain to the grain size, the alkali metal ions preferentially enter the grain easily. Spread.

一方、結晶粒度が大きい結晶粒の場合には、粒界に囲ま
れる割合が小さいため、アルカリ金属イオンは結晶粒内
深くまで拡散することができず、結晶粒の表面近くにと
どまっている。したがって、結晶粒度の大きい結晶粒は
どアルカリ金属イオンを多く容易に取り込むことができ
ず、結晶粒の膨張の割合が小さい。また、放電時にアル
カリ金属イオンを放出する場合には、粒度の小さい結晶
粒と比較すると収縮の割合は小さい。この結果、結晶粒
度の大きい結晶粒を有する金属材料は充放電で膨張、収
縮をくり返しても、結晶構造の破壊の度合が小さいので
安定である。
On the other hand, in the case of a crystal grain having a large crystal grain size, since the ratio of being surrounded by grain boundaries is small, alkali metal ions cannot diffuse deep into the crystal grain and remain near the surface of the crystal grain. Therefore, crystal grains with a large crystal grain size cannot easily take in many alkali metal ions, and the rate of expansion of the crystal grains is small. Further, when alkali metal ions are released during discharge, the rate of shrinkage is small compared to crystal grains having a small particle size. As a result, a metal material having crystal grains with a large crystal grain size is stable even if it is repeatedly expanded and contracted by charging and discharging because the degree of destruction of the crystal structure is small.

上記の作用は、負極金属材料の平均結晶粒度が1μR以
上で得られる。平均結晶粒度がこれより小さいと、アル
カリ金属イオンが結晶粒深くまで拡散するため、充放電
時における金属材料の微細化、粉末化が起きる。
The above effect can be obtained when the average crystal grain size of the negative electrode metal material is 1 μR or more. If the average crystal grain size is smaller than this, alkali metal ions will diffuse deep into the crystal grains, causing the metal material to become fine and powdered during charging and discharging.

以下本発明の実施例を示す。Examples of the present invention will be shown below.

実施例1 負極に用いる金属材料として、pb70重量%。Example 1 PB is 70% by weight as a metal material used for the negative electrode.

C(130重量%の可融合金を用いた。結゛晶粒度の調
整は、この合金の作製時の冷却速度の調整、及び、圧延
後の熱処理により行ない、平均結晶粒度はバインの切裁
法により調べた。また、充放電試験はすべて扁平型電池
で行なった。
C (130% by weight fusible alloy was used. The crystal grain size was adjusted by adjusting the cooling rate during production of this alloy and by heat treatment after rolling. The average crystal grain size was determined by cutting the binder. All charging and discharging tests were conducted using flat batteries.

第3図は、本実施例に用いた扁平型電池の断面図である
FIG. 3 is a cross-sectional view of the flat battery used in this example.

扁平型電池の作成は次のように行なった。厚さ160μ
mの鉛・カドミウム合金を直径17mのディスクに打ち
抜き、負極集電体1をスポット溶接した封口板2に1t
の圧力で圧着した。次に、この鉛・カドミウム合金上に
金属リチウム箔を2011g圧着し、鉛・カドミウム合
金内にリチウムを吸蔵させ、鉛・カドミウム・リチウム
合金3を形成させ負極とした。
The flat battery was produced as follows. Thickness 160μ
A 17 m diameter lead/cadmium alloy is punched out into a disc with a diameter of 17 m, and a 1 t.
It was crimped with the same pressure. Next, 2011 g of metal lithium foil was pressure-bonded onto this lead-cadmium alloy, lithium was occluded in the lead-cadmium alloy, and a lead-cadmium-lithium alloy 3 was formed to form a negative electrode.

正極には、V2O5,カーボンブラック、四弗化エチレ
ン樹脂を混合したものを用い、正極集電体4をスボクト
溶接した電池ケース6内へ直径17.5m+に成型した
For the positive electrode, a mixture of V2O5, carbon black, and tetrafluoroethylene resin was used, and the positive electrode current collector 4 was molded into a battery case 6 with a diameter of 17.5 m+ by welding.

セパレータ6には、ポリプロピレン不織布を用い、電解
液には、プロピレンカーボネートとジメトキシエタンを
等体積で混合したものに、LiClO4を1M/l  
の割合で溶解したものを用いた。
A polypropylene non-woven fabric is used for the separator 6, and the electrolyte is a mixture of equal volumes of propylene carbonate and dimethoxyethane, and 1M/l of LiClO4.
A solution dissolved at the following ratio was used.

このように作成した扁平型電池を用いて、2mムの定電
流、充電上限電圧3.5V、放電容量!+11Ahの条
件で充放電試験を行なった。
Using the flat battery created in this way, a constant current of 2mm, an upper limit charge voltage of 3.5V, and a discharge capacity! A charge/discharge test was conducted under the condition of +11 Ah.

第1図は、負極に用いた金属材料の鉛・カドミウム合金
の平均結晶粒度に対して、充放電寿命(放電終止電圧が
1.oVに達するまでの充放電回数)をプロットしたも
のである。これより、平均結晶粒度が1μゴ以上であれ
ば充放電寿命は良好であることがわかる。
FIG. 1 is a plot of the charge/discharge life (the number of charge/discharge cycles until the end-of-discharge voltage reaches 1.oV) versus the average grain size of the lead/cadmium alloy used as the metal material for the negative electrode. From this, it can be seen that if the average crystal grain size is 1 μg or more, the charge/discharge life is good.

実施例2 実施例1と同様の電池を作成し、2mムの定電施、充電
上限電圧3.5 V 、放電下限電圧2.0Vの条件で
充放電を行なった。第2図は、本発明の実施例である、
平均結晶粒度が10μ扉である金属材料を負極に用いた
電池ムと、比較例として平均結晶粒度が0.5μゴの金
属材料を負極に用いた電池Bの各サイクルでの放電容量
をプロットした図である。これより、比較例の電池Bは
充放電をくり返した場合、放電容量が安定していないの
に対し、本発明の電池ムは、充放電をくり返しても放電
容量が安定しており、信頼性にすぐれることがわかる。
Example 2 A battery similar to Example 1 was prepared, and charged and discharged under the conditions of a constant current of 2 mm, an upper limit charge voltage of 3.5 V, and a lower limit discharge voltage of 2.0 V. FIG. 2 is an embodiment of the present invention.
The discharge capacity at each cycle was plotted for Battery B using a metal material with an average crystal grain size of 10μ as the negative electrode and as a comparative example, Battery B using a metal material with an average grain size of 0.5μ as the negative electrode. It is a diagram. From this, the battery B of the comparative example has an unstable discharge capacity even after repeated charging and discharging, whereas the battery B of the present invention has a stable discharge capacity even after repeated charging and discharging, and is highly reliable. You can see that it is excellent.

なお、本発明では、鉛70重量%、カドミウム30重量
%の可融合金を用いたが、以上の効果は他の組成の可融
合金やム1等の金属等でも同様に得られる。これは、負
極金属材料へのL1+等のアルカリ金属の拡散係数がほ
ぼ等しいことによると考えられる。
In the present invention, a fusible alloy containing 70% by weight of lead and 30% by weight of cadmium is used, but the above effects can be similarly obtained with fusible alloys of other compositions and metals such as Mu1. This is considered to be because the diffusion coefficients of alkali metals such as L1+ into the negative electrode metal material are approximately equal.

発明の効果 以上の様に本発明は、負極に用いる金属材料の平均結晶
粒度を1μゴ以上にしているため、充放電によってアル
カリ金属イオンを吸蔵・放出させても微細化、粉末化し
にくい負極が得られる。したがって、本発明の金属材料
を負極に用いれば、充放電寿命のすぐれた、信頼性の高
い非水電解質二次電池を得ることができる。
As described above, in the present invention, the average crystal grain size of the metal material used for the negative electrode is 1μ or more, so that the negative electrode is difficult to become fine and powder even when alkali metal ions are occluded and released by charging and discharging. can get. Therefore, if the metal material of the present invention is used for the negative electrode, a highly reliable nonaqueous electrolyte secondary battery with an excellent charge/discharge life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の扁平を電池における負極の金
属材料の平均結晶粒度に対する充放電寿命をプロットし
た図、第2図は本発明の実施例の扁平型電池ムと比較例
Bの各充放電サイクルに対する放電容量をプロットした
図、第3図は本発明で用いた扁平型電池の断面図である
。 1・・・・・・負極集電体、2・・・・・・封口板、3
・・・・・・鉛・カドミウム・リチウム合金、4・・・
・・・正極集電体、6・・・・・・電池ケース、6・・
・・・・セパレータ。
Figure 1 is a diagram plotting the charge/discharge life of a battery according to an embodiment of the present invention against the average crystal grain size of the metal material of the negative electrode in the battery, and Figure 2 is a diagram of a flat battery according to an embodiment of the present invention and a battery of comparative example B. FIG. 3, which is a diagram plotting the discharge capacity for each charge/discharge cycle, is a cross-sectional view of the flat battery used in the present invention. 1... Negative electrode current collector, 2... Sealing plate, 3
...Lead-cadmium-lithium alloy, 4...
...Positive electrode current collector, 6...Battery case, 6...
...Separator.

Claims (1)

【特許請求の範囲】[Claims] 正極と、アルカリ金属イオン導伝性の非水電解質と、充
電時にアルカリ金属イオンを吸蔵し、放電時にアルカリ
金属イオンを放出する金属材料を用いた負極を構成要素
とする電池であって、前記金属材料の平均結晶粒度が1
μm^3以上であることを特徴とした非水電解質二次電
池。
A battery comprising a positive electrode, a nonaqueous electrolyte conductive to alkali metal ions, and a negative electrode using a metal material that occludes alkali metal ions during charging and releases alkali metal ions during discharge, the battery comprising: The average grain size of the material is 1
A non-aqueous electrolyte secondary battery characterized by having a particle diameter of μm^3 or more.
JP61291822A 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery Expired - Fee Related JPH0746606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61291822A JPH0746606B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61291822A JPH0746606B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS63146355A true JPS63146355A (en) 1988-06-18
JPH0746606B2 JPH0746606B2 (en) 1995-05-17

Family

ID=17773861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61291822A Expired - Fee Related JPH0746606B2 (en) 1986-12-08 1986-12-08 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0746606B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2009004250A (en) * 2007-06-22 2009-01-08 Panasonic Corp Negative electrode active material and all solid polymer battery
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2009004250A (en) * 2007-06-22 2009-01-08 Panasonic Corp Negative electrode active material and all solid polymer battery
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery

Also Published As

Publication number Publication date
JPH0746606B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
US5077149A (en) Nickel/hydrogen storage battery and method of manufacturing the same
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH10144298A (en) Lithium secondary battery
JPH10308207A (en) Non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPS63146355A (en) Nonaqueous electrolytic secondary cell
JPS60131776A (en) Nonaqueous electrolyte secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JPH04259764A (en) Lithium secondary battery
JP2794889B2 (en) Non-aqueous electrolyte secondary battery
JP2701586B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
JP3268938B2 (en) Nickel-hydrogen storage battery
JP3143109B2 (en) Cylindrical sealed nickel storage battery
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JPH0441471B2 (en)
JPH0582128A (en) Lithium secondary battery
JPH04294060A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2001196053A (en) Nonaqueous electrolyte secondary battery
JPS6089069A (en) Nonaqueous electrolyte battery
JPS63143743A (en) Nonaqueous electrolyte secondary battery
JPH01241756A (en) Nonaqueous secondary cell
JP3019356B2 (en) Non-aqueous electrolyte secondary battery
JPH03280363A (en) Lithium battery
JPH0265056A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees