JPH0265056A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPH0265056A
JPH0265056A JP63216168A JP21616888A JPH0265056A JP H0265056 A JPH0265056 A JP H0265056A JP 63216168 A JP63216168 A JP 63216168A JP 21616888 A JP21616888 A JP 21616888A JP H0265056 A JPH0265056 A JP H0265056A
Authority
JP
Japan
Prior art keywords
alloy
negative electrode
battery
microns
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63216168A
Other languages
Japanese (ja)
Inventor
Michiko Igawa
井川 享子
Shigeoki Nishimura
西村 成興
Mamoru Mizumoto
水本 守
Hiroshi Hida
飛田 紘
Noboru Ebato
江波戸 昇
Masaru Nanba
勝 難波
Seiji Takeuchi
瀞士 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP63216168A priority Critical patent/JPH0265056A/en
Publication of JPH0265056A publication Critical patent/JPH0265056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To easily obtain a negative electrode with a long life by forming the negative electrode of a nonaqueous secondary battery with a mixture having a specific volume ratio of alloy grains with a specific grain size and fine grains. CONSTITUTION:A secondary battery is constituted of a positive electrode 3, a negative electrode made of an Li alloy, a separator and a nonaqueous electrolyte. Fine grains with the grain size of 10-70mum made of an Li alloy are mixed with grains with the grain size of 70-150mum made of an Li alloy at the ratio of 20-80vol.% for the grains against the fine grains, and the negative electrode 1 is formed with the mixture. The strength of the Li alloy is improved, and the negative electrode 1 can stably and continuously maintain its shape at the time of molding even if lithium is released by a discharge.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非水電解液を使用した二次電池に係り、特に
Li(リチウム)を含む合金で負極活物質を形成した高
エネルギー密度の非水系二次電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a secondary battery using a non-aqueous electrolyte, and particularly to a high-energy-density secondary battery in which a negative electrode active material is formed of an alloy containing Li (lithium). Regarding non-aqueous secondary batteries.

〔従来の技術〕[Conventional technology]

従来の非水系二次電池においては、Liを負極活物質と
し、非水電解液を用いており、このタイプの二次電池は
高密度電池として注目されている。
Conventional nonaqueous secondary batteries use Li as a negative electrode active material and a nonaqueous electrolyte, and this type of secondary battery is attracting attention as a high-density battery.

このような電池は、一般に、負極活物質として金@Li
、正極活物質として各種の眉間化合物や導電性高分子な
ど、さらに電解液としてLi塩を安定な有機溶媒に溶か
した溶液を用いる。しかし、負極として金属Liをその
まま用いた場合、充放電を繰り返すうちにLiがデンド
ライト状に析出し、電池の短絡を引き起こすことや、電
流効率が悪いことなどが挙げられる。そこで、これらを
避けるための方法が種々検討されている。その−っとし
て、金属Liを単体で用いる代わりに、Liを他の金属
、例えばA1などとの合金として用いることが有効であ
ることが知られている(特公昭49−12044号公報
参照)、Li合金電極は、充電時Liが析出する際に、
金属Liとして析出するのではなく、母材の金属との合
金として析出する。そのため、Li単体として析出する
よりも電気化学的に安定となり、デンドライト状の析出
が抑制され、電流効率が向上する。このような合金とし
ては、L 1−Mg+ L i−A I 、 L i−
8i 。
Such batteries generally use gold@Li as the negative electrode active material.
As the positive electrode active material, various compounds and conductive polymers are used, and as the electrolyte, a solution of Li salt dissolved in a stable organic solvent is used. However, if metallic Li is used as it is as a negative electrode, Li will precipitate in the form of dendrites during repeated charging and discharging, causing short circuits in the battery and poor current efficiency. Therefore, various methods to avoid these problems are being studied. For this reason, it is known that instead of using metal Li alone, it is effective to use Li as an alloy with other metals, such as A1 (see Japanese Patent Publication No. 12044/1983). When Li alloy electrode precipitates during charging,
It does not precipitate as metallic Li, but as an alloy with the base metal. Therefore, it is electrochemically more stable than when precipitated as a single Li, suppresses dendrite-like precipitation, and improves current efficiency. Such alloys include L 1-Mg+ Li-A I, Li-
8i.

Li−Ga、Li−Ge、Li−In、Li−Ag。Li-Ga, Li-Ge, Li-In, Li-Ag.

L i−S n 、 L i−3b 、 L i−B 
i 、 L i−P bなどが挙げられる。しかし、こ
れらの合金電極を用いた場合の問題点は、充放電時にお
ける電極の膨潤、収縮による崩壊、および、それに伴う
電池の容量低下であった。こうした合金電極の劣化はい
ずれの合金でも起り得るが、L i−P bなどの合金
は、比較的、充放電サイクル寿命が長いことが知られて
いる(特公昭54−141869号公報参照)。また、
これらの合金にさらに第三成分の金属、例えばM g 
r Ca * G a HI n r S x +Ge
、Snなどを少量添加することにより、電極の充放電特
性が一層改善されることも知られている(特公昭61−
66370号公報参照)。しかし、これらの合金系にお
いても、二次電池の負極として要求される寿命に対し充
分とはいえない。
L i-S n , L i-3b , L i-B
i, Li-Pb, and the like. However, the problem with using these alloy electrodes is that the electrodes collapse due to swelling and shrinkage during charging and discharging, and the battery capacity decreases as a result. Such deterioration of alloy electrodes can occur with any alloy, but alloys such as Li-Pb are known to have a relatively long charge-discharge cycle life (see Japanese Patent Publication No. 141869/1986). Also,
In addition to these alloys, a third component metal such as Mg
r Ca * G a HI n r S x +Ge
It is also known that the charging and discharging characteristics of the electrode can be further improved by adding a small amount of , Sn, etc.
(See Publication No. 66370). However, even in these alloy systems, it cannot be said that the life span required for a negative electrode of a secondary battery is sufficient.

二次電池の電極では、数百回の充放電サイクルの繰り返
しに対して安定であることが必要である。
Electrodes for secondary batteries need to be stable over hundreds of charge/discharge cycles.

前述のような負極電極の崩壊は、電極の体積変化が起こ
る以上必然的なものであるが、崩壊をある程度抑制する
必要がある。
Although the collapse of the negative electrode as described above is inevitable as the volume of the electrode changes, it is necessary to suppress the collapse to some extent.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の非水系二次電池にあっては、負極が充放電サイク
ルの繰り返しに対して安定を欠き、崩壊して短寿命であ
る問題点があった。
Conventional non-aqueous secondary batteries have a problem in that the negative electrode lacks stability against repeated charge/discharge cycles, collapses, and has a short lifespan.

本発明の目的は、Li系合金の崩壊を抑制し、負極の長
寿命化、ひいては、電池の長寿命化を図った非水系二次
電池を提供することにある。
An object of the present invention is to provide a non-aqueous secondary battery that suppresses the disintegration of the Li-based alloy and extends the life of the negative electrode and, by extension, the life of the battery.

〔課題を解決するための手段〕[Means to solve the problem]

前記の目的を達成するため、本発明に係る非水系二次電
池は、正極とLi合金の負極との組合せと、負極と正極
との間を絶縁するセパレータと、非水電解液とからなる
非水系二次電池において、Li系合金よりなる粒径が7
0〜150ミクロンの粒子に、Li系合金よりなる粒径
が10〜70ミクロンの微粒子を、微粒子に対する粒子
の体積比率が20〜80%の割合で混合し、その混合体
で負極を形成するように構成されており、負極はL i
−P b系合金で形成されるものとする。
In order to achieve the above object, the non-aqueous secondary battery according to the present invention includes a non-aqueous secondary battery consisting of a combination of a positive electrode and a Li alloy negative electrode, a separator that insulates between the negative electrode and the positive electrode, and a non-aqueous electrolyte. In an aqueous secondary battery, the particle size of Li-based alloy is 7
Fine particles of Li-based alloy with a particle size of 10 to 70 microns are mixed with particles of 0 to 150 microns at a volume ratio of 20 to 80% of the particles to the fine particles, and the mixture forms a negative electrode. The negative electrode is L i
- It shall be made of a Pb-based alloy.

〔作用〕[Effect]

本発明によれば、非水系二次電池の負極を特定の粒径分
布をもつLi系合金粉末の成形体で形成したことにより
、Li合金の強度が向上し、放電でリチウムが抜けた状
態でも、負極は安定して成形時の形状を保持し続ける。
According to the present invention, by forming the negative electrode of a non-aqueous secondary battery with a compact of Li-based alloy powder having a specific particle size distribution, the strength of the Li alloy is improved, even when lithium is removed during discharge. , the negative electrode stably maintains its shape during molding.

〔実施例〕〔Example〕

本発明の一実施例を第1図および第2図を参照しながら
説明する。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2.

第1図に示されるように、正極3とLi系合金の負極1
との組合せと、負極1と正極3との間を絶縁するセパレ
ータ2と、非水電解液とからなる非水系二次電池におい
て、Li系合金よりなる粒径が70〜150ミクロンの
粒子と、Li系合金よりなる粒径が10〜70ミクロン
の微粒子を、微粒子に対する粒子の体積比率が20〜8
0%の割合で混合し、その混合体で負極1を形成する構
成であり、負極はL i−P b系合金で形成されるも
のとする。
As shown in FIG. 1, a positive electrode 3 and a negative electrode 1 made of Li-based alloy
, a separator 2 that insulates between the negative electrode 1 and the positive electrode 3, and a non-aqueous electrolyte, in which particles having a particle size of 70 to 150 microns made of a Li-based alloy; Fine particles made of Li-based alloy with a particle size of 10 to 70 microns are used, and the volume ratio of particles to fine particles is 20 to 8.
The negative electrode 1 is formed from the mixture at a ratio of 0%, and the negative electrode is made of a Li-Pb alloy.

本発明の効果を確認するために、種々のLi合金電極に
ついて、充放電サイクルを繰り返し、活性の低下したの
ちの電極を調べたが、いずれのLi合金を用いた場合で
も、負極電極の化学的な変化は小さかった。活性の低下
は、電極が膨潤し集電体から浮き上がったために電気的
接触を失ったこと、または、電極が体積の膨潤、収縮を
繰り返すうちに崩壊して微粒子化し、電解液中に分散し
てしまったことの二つが主原因であることがわがった。
In order to confirm the effects of the present invention, charge and discharge cycles were repeated for various Li alloy electrodes, and the electrodes were examined after their activity had decreased. However, no matter which Li alloy was used, the chemical The changes were small. The decrease in activity may be due to the electrode swelling and lifting from the current collector, resulting in a loss of electrical contact, or as the electrode repeatedly expands and contracts in volume, it collapses into fine particles and is dispersed in the electrolyte. I found out that the two things that happened were the main causes.

いずれの原因に対しても、合金粒子間の強固な密着性が
必要である。しかし、粒子間に適度な空隙がなければ電
解液が内部に浸透しないために、ごく表面の活性種しか
電極として鋤かないことになり、容量低下や短寿命を引
き起こす。また、Li金属箔などを用いると、デンドラ
イトを生じて電池の短絡を起こしやすい。そこで1合金
の粒径を規定して、粒子間の密着性に優れ、かつ電極中
のLiの拡散が容易であるような最適粒径を検討した。
For any of these reasons, strong adhesion between alloy particles is required. However, if there are no adequate gaps between the particles, the electrolyte will not penetrate into the particles, so only the active species on the very surface will act as electrodes, causing a decrease in capacity and a short lifespan. Furthermore, if Li metal foil or the like is used, dendrites are likely to occur and short circuits in the battery may occur. Therefore, we defined the grain size of one alloy and investigated the optimum grain size that would provide excellent adhesion between grains and facilitate the diffusion of Li in the electrode.

その結果、粒径が70から150ミクロンの大きさの粒
子と、10から70ミクロンの大きさの微粒子との混合
体で成形され、かつ、後者(微粒子)に対する前者(粒
子)の体積比率が、20から80パーセントの範囲にあ
るものが好ましいことがわかった。粒径が150ミクロ
ンより大きい粒子を用いた場合は、成形性が悪く、強度
の点で著しく劣ることがわかった。10ミクロンより小
さい微粒子を用いた場合は、微粒子であるために成形し
難いこと、また、できた成形体は非常に脆いため 8t
on/aJ以上の成形圧が必要であることがわかった。
As a result, a mixture of particles with a particle size of 70 to 150 microns and fine particles with a size of 10 to 70 microns is formed, and the volume ratio of the former (particles) to the latter (fine particles) is as follows. A range of 20 to 80 percent has been found to be preferred. It was found that when particles having a particle size larger than 150 microns were used, the moldability was poor and the strength was significantly inferior. When using fine particles smaller than 10 microns, it is difficult to mold them because they are fine particles, and the molded product formed is very brittle.
It was found that a molding pressure of on/aJ or more is required.

また、粒径の大きいものと、小さいものとを、それぞれ
、単独に用いて成形した場合は、これらを混合して成形
した場合に比べて、成形性、強度とも劣ることがわかっ
た。
It was also found that when particles with a large particle size and those with a small particle size are molded individually, both moldability and strength are inferior to when a mixture of these particles is molded.

モして粒径の大きいものが小さいものに対して20体積
パーセントより少ない場合は、電池の寿命が著しく短い
ことがわかった。粒径の大きいものが小さいものに対し
て80体積パーセントより多い場合は、成形性、強度の
両点で著しく劣ることがわかった。
It was also found that when the amount of large particles is less than 20% by volume compared to the small particles, the life of the battery is significantly shortened. It was found that when the amount of large particles exceeds 80% by volume of the small particles, both moldability and strength are significantly inferior.

次に本実施例及び比較例について説明する。Next, the present example and comparative example will be explained.

実施例I Li、Pbを原子比で4=1の割合で秤量して鉄製るつ
ぼに入れ、Arガス雰囲気下で800℃で加熱して溶融
後、焼鈍してLi−Pb合金を調整した。その合金を乳
鉢に入れて粉砕し、粒径が70〜150ミクロンの粒子
と、10〜70ミクロンの微粒子との2種類に分け、後
者(微粒子)に対する前者(粒子)の体積比率を20パ
ーセントとして混合した。この混合物をプレスにより2
ton/ cAの圧力を加えて、厚さ0 、4 an、
外径15ntnφのディスク状に成形した。そしてこの
ディスク状合金を負極とし、ポリアニリンを正極とする
第1図に示されるようなコイン型の電池を組み立てた。
Example I Li and Pb were weighed in an atomic ratio of 4=1, placed in an iron crucible, heated at 800°C in an Ar gas atmosphere to melt, and then annealed to prepare a Li-Pb alloy. The alloy is crushed in a mortar and divided into two types: particles with a diameter of 70 to 150 microns and fine particles with a diameter of 10 to 70 microns, and the volume ratio of the former (particles) to the latter (fine particles) is set at 20%. Mixed. Press this mixture into 2
Apply pressure of ton/cA, thickness 0, 4 an,
It was molded into a disk shape with an outer diameter of 15 ntnφ. A coin-shaped battery as shown in FIG. 1 was assembled using this disc-shaped alloy as a negative electrode and polyaniline as a positive electrode.

本電池はディスク状合金製の負極1と、ポリプロピレン
製不織布のセパレータ2と、ポリアニリンをディスク状
に成形した正極3と、セパレータ2に含浸したL x 
P F bのプロピレンカーボネート、エチレンカーボ
ネートおよび1,2−ジメトキシエタン溶液と、これら
を密閉する負極側ケース4、ガスケント5および正極側
ケース6とからなるように構成されている。前記の電池
に電流1mAで4vまで充電し、同じく電流1mAで1
゜5■まで放電する操作を繰り返した結果、電池の放電
容量は、第2図に示されるAのように推移し、容量が3
 mAh以下に低下するまでに、1000サイクルの充
放電が可能であった。
This battery includes a negative electrode 1 made of a disc-shaped alloy, a separator 2 made of a nonwoven polypropylene fabric, a positive electrode 3 made of polyaniline shaped into a disc, and an L x impregnated into the separator 2.
It consists of a propylene carbonate, ethylene carbonate, and 1,2-dimethoxyethane solution of P F b, and a negative electrode case 4, a gasket 5, and a positive electrode case 6 that seal these solutions. Charge the above battery to 4V with a current of 1mA, and also charge it with a current of 1mA to 1V.
As a result of repeating the discharging operation to ゜5■, the discharge capacity of the battery changed as shown in Figure 2 A, and the capacity reached 3.
1000 cycles of charging and discharging were possible before the battery voltage decreased to mAh or less.

実施例2 実施例1と同様の方法で、70〜150ミクロンの粒径
のLi−Pb合金および、10〜70ミクロンの微粒径
のLi−Pb合金を後者に対する前者の体積比率を80
パーセントとして混合しディスク状に成形した。そして
このディスク状合金を負極とする実施例1と同様の構成
のコイン型電池を作製した。この電池に1mAで4vま
で充電し、同じく電流1mAで1.5Vまで放電する操
作を繰り返した結果、電池の放電容量は、第2図に示さ
れるBのように推移し、容量が3 mAh以下に低下す
るまでのサイクル数は、800サイクルであった。
Example 2 In the same manner as in Example 1, a Li-Pb alloy with a grain size of 70 to 150 microns and a Li-Pb alloy with a fine grain size of 10 to 70 microns were prepared at a volume ratio of 80 to the latter.
It was mixed as a percentage and formed into a disk shape. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. As a result of repeating the operation of charging this battery to 4V at 1mA and discharging it to 1.5V at the same current of 1mA, the discharge capacity of the battery changed as shown in B shown in Figure 2, and the capacity decreased to 3mAh or less. The number of cycles until the temperature decreased to 800 was 800 cycles.

実施例3 Li、AIを原子比で1:1の割合で秤量して鉄製るつ
ぼに入れ、Arガス雰囲気下で800°Cで加熱して溶
融後、焼鈍してLi−A1合金を調整した。その合金を
乳鉢に入れて粉砕し、粒径が70〜150ミクロンの粒
子と、10〜70ミクロンの微粒子との2種類に分け、
後者に対する前者の体積比率を50パーセントとして混
合し、ディスク状に成形した。そしてこのディスク状合
金を負極とする実施例1と同様の構成のコイン型電池を
作製した。この電池に1mAで4vまで充電し、同じく
電流1mAで1.5vまで放電する操作を繰り返した結
果、電池の放電容量は、第2図に示されるCのように推
移し、容量が3mAh以下に低下するまでのサイクル数
は、80oサイクルの充放電が可能であった。
Example 3 Li and AI were weighed in an atomic ratio of 1:1, placed in an iron crucible, heated at 800°C in an Ar gas atmosphere to melt, and then annealed to prepare a Li-A1 alloy. The alloy is placed in a mortar and crushed, divided into two types: particles with a particle size of 70 to 150 microns and fine particles of 10 to 70 microns,
The volume ratio of the former to the latter was 50%, and the mixture was molded into a disk shape. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. As a result of repeating the operation of charging this battery to 4V at 1mA and discharging it to 1.5V at the same current of 1mA, the discharge capacity of the battery changed as shown in Figure 2 C, and the capacity decreased to 3mAh or less. As for the number of cycles until the battery decreased, 80o cycles of charging and discharging were possible.

比較例1 実施例1と同様の方法で、200〜150ミクロンの粒
径のLi−Pb合金および、10〜70ミクロンの微粒
径のLi−Pb合金を後者に対する前者の体積比率を5
0パーセントとして混合してディスク状に成形した。そ
してこのディスク状合金を負極とする実施例1と同様の
構成のコイン型電池を作製した。この電池に1mAで4
vまで充電し、同じく電流1.+++Aで1.5Vまで
放電する操作を繰り返した結果、電池の放電容量は、第
2図に示されるDのように800サイクルで急激に低下
した。解体した結果、負極合金が集電体から浮き上がっ
ていることがわかった。
Comparative Example 1 A Li-Pb alloy with a grain size of 200 to 150 microns and a Li-Pb alloy with a fine grain size of 10 to 70 microns were prepared in the same manner as in Example 1, with the volume ratio of the former to the latter being 5.
It was mixed as 0% and formed into a disk shape. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. 4 at 1mA for this battery
Charge to v, and the same current is 1. As a result of repeating the operation of discharging to 1.5 V at +++A, the discharge capacity of the battery suddenly decreased after 800 cycles, as shown by D in FIG. 2. Upon disassembly, it was discovered that the negative electrode alloy was floating above the current collector.

比較例2 実施例1と同様の方法で、70〜150ミクロンの粒径
のL]、−Pb合金および、1〜10ミクロンの粒径の
Li−Pb合金を後行に対する前者の体積比率を50パ
ーセントとして混合してディスク状に成形した。そして
このディスク状合金を負極とする実施例1と同様の構成
のコイン型電池を作製した。この電池に1mAで4vま
で充電し、同じく電流1mAで1.5vまで放電する操
作を繰り返した結果、電池の放電容量は、第2図に示さ
れるEのように推移し、容量が3mAh以下に低下する
までのサイクル数は、200サイクルにすぎなかった。
Comparative Example 2 In the same manner as in Example 1, a -Pb alloy with a grain size of 70 to 150 microns and a Li-Pb alloy with a grain size of 1 to 10 microns were added to the rear by increasing the volume ratio of the former to 50. The mixture was mixed as a percentage and formed into a disk shape. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. As a result of repeating the operation of charging this battery to 4V at 1mA and discharging it to 1.5V at the same current of 1mA, the discharge capacity of the battery changed as shown in Fig. 2, and the capacity decreased to 3mAh or less. It took only 200 cycles to reach a decline.

解体して調べた結果、微粒子が電解液中に溶は出してい
た。
When it was dismantled and examined, it was found that fine particles had dissolved into the electrolyte.

比較例3 実施例1と同様の方法で、70〜150ミクロンの粒径
のLi−Pb合金および、10〜70ミクロンの粒径の
L i−P b合金を後者に対する前者の体積比率を9
0パーセントとして混合してディスク状に成形した。そ
してこのディスク状合金を負極とする実施例1と同様の
構成のコイン型電池を作製した。この電池で、1mAで
4Vまで充電し、同じく電流LmAで1.5vまで放電
する操作を繰り返したところ、電池の放電容量が3 m
Ah以下に低下するまでのサイクル数は、60サイクル
にすぎなかった。
Comparative Example 3 In the same manner as in Example 1, a Li-Pb alloy with a particle size of 70 to 150 microns and a Li-Pb alloy with a particle size of 10 to 70 microns were prepared at a volume ratio of 9 to the latter.
It was mixed as 0% and formed into a disk shape. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. When this battery was repeatedly charged to 4 V at 1 mA and discharged to 1.5 V at the same current LmA, the discharge capacity of the battery was 3 m.
The number of cycles until it decreased to below Ah was only 60 cycles.

比較例4 実施例1と同様の方法で、70〜150ミクロンの粒径
のL i−P b合金および、10〜70ミクロンの粒
径のL i−P b合金を後者に対する前者の体積比率
を10パーセントとして混合してディスク状に成形した
。そしてこのディスク状合金を負極とする実施例1と同
様の構成のコイン型電池を作製した。この電池で1mA
で4vまで充電し、同じく電流1mAで1.5vまで放
電する操作を繰り返した結果、電池の放電容量が3 m
Ah以下に低下するまでのサイクル数は30サイクルに
すぎなかった。
Comparative Example 4 A Li-Pb alloy with a particle size of 70 to 150 microns and a Li-Pb alloy with a particle size of 10 to 70 microns were prepared in the same manner as in Example 1, and the volume ratio of the former to the latter was determined. The mixture was mixed at 10% and formed into a disk. A coin-shaped battery having the same configuration as in Example 1 was fabricated using this disc-shaped alloy as a negative electrode. 1mA with this battery
As a result of repeating the operation of charging to 4V with a current of 1mA and discharging to 1.5V with a current of 1mA, the discharge capacity of the battery was 3m.
The number of cycles until it decreased to below Ah was only 30 cycles.

比較例5 実施例1と同様の方法で、10〜70ミクロンの粒径の
L i−P b合金および、70〜150ミクロンの粒
径のL i−P b合金を単独それぞれディスク状に成
形した。しかし、これらは成形体に反りや歪みが生じて
成形が難しく、また、割れが入って電極として使えない
ものもあった。成形圧を8ton/aJに上げて成形し
、これらの合金を負極とする実施例1と同様の構成のコ
イン型電池を作製した。これらの電池に1mAで4vま
で充電し、同じく電流1mAで1.5vまで放電する操
作を繰り返した結果、電池の放電容量が3 mAh以下
に低下するまでのサイクル数は、100サイクル、およ
び、300サイクルにすぎなかった。
Comparative Example 5 In the same manner as in Example 1, a Li-Pb alloy with a grain size of 10 to 70 microns and a Li-Pb alloy with a grain size of 70 to 150 microns were individually molded into a disk shape. . However, these molded products were difficult to mold because they were warped and distorted, and some of them were unusable as electrodes due to cracks. The molding pressure was increased to 8 ton/aJ to produce a coin-shaped battery having the same structure as Example 1 using these alloys as a negative electrode. As a result of repeating the operation of charging these batteries to 4V at 1mA and discharging them to 1.5V at the same current of 1mA, the number of cycles until the battery discharge capacity decreased to 3mAh or less was 100 cycles and 300 cycles. It was just a cycle.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非水系二次電池の負極を合金粒子の粒
径が70〜100ミクロンの粒子に対して10〜70ミ
クロンの微粒子を体積比率で20〜80%混合した混合
体で形成することによって、充放電を繰り返した場合の
寿命の長い負極を容易に得ることができ、さらに、これ
を負極に用いることにより長寿命の非水系二次電池を得
ることができる。
According to the present invention, the negative electrode of a nonaqueous secondary battery is formed of a mixture of alloy particles having a particle size of 70 to 100 microns and fine particles of 10 to 70 microns in a volume ratio of 20 to 80%. By doing so, a negative electrode with a long life when repeatedly charged and discharged can be easily obtained, and furthermore, by using this as the negative electrode, a non-aqueous secondary battery with a long life can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す断面図、第2図は本発明
の実施例1,2.3および比較例1,2を説明する放電
容量の充放電サイクル数に対する変化を示すグラフであ
る。 1・・・負極、2・・・セパレータ、 3・・・正極、4・・・負極ケース、 A・・・実施例1の電池の放電容量変化、B・・・実施
例2の電池の放電容量変化、C・・・実施例3の電池の
放電容量変化。 D・・・比較例1の電池の放電容量変化、E ・比較例
2の電池の放電容量変化。
Fig. 1 is a cross-sectional view showing an example of the present invention, and Fig. 2 is a graph showing changes in discharge capacity with respect to the number of charge/discharge cycles, explaining Examples 1, 2.3 and Comparative Examples 1, 2 of the present invention. be. DESCRIPTION OF SYMBOLS 1... Negative electrode, 2... Separator, 3... Positive electrode, 4... Negative electrode case, A... Discharge capacity change of the battery of Example 1, B... Discharge of the battery of Example 2 Capacity change, C: Change in discharge capacity of the battery of Example 3. D: Change in discharge capacity of the battery of Comparative Example 1, E. Change in discharge capacity of the battery of Comparative Example 2.

Claims (1)

【特許請求の範囲】 1、正極とLi系合金の負極との組合せと、該負極と前
記正極との間を絶縁するセパレータと、非水電解液とか
らなる非水系二次電池において、前記Li系合金よりな
る粒径が70〜150ミクロンの粒子と、前記Li系合
金よりなる粒径が10〜70ミクロンの微粒子を、該微
粒子に対する前記粒子の体積比率が20〜80パーセン
トの割合で混合し、その混合体で前記負極を形成したこ
とを特徴とする非水系二次電池。 2、負極はLi−Pb系合金で形成されたことを特徴と
する請求項1記載の非水系二次電池。
[Scope of Claims] 1. A non-aqueous secondary battery comprising a combination of a positive electrode and a negative electrode made of a Li-based alloy, a separator for insulating between the negative electrode and the positive electrode, and a non-aqueous electrolyte; Particles of a Li-based alloy with a particle size of 70 to 150 microns and fine particles of the Li-based alloy with a particle size of 10 to 70 microns are mixed at a volume ratio of 20 to 80% of the particles to the fine particles. , a nonaqueous secondary battery characterized in that the negative electrode is formed of a mixture thereof. 2. The non-aqueous secondary battery according to claim 1, wherein the negative electrode is made of a Li-Pb alloy.
JP63216168A 1988-08-30 1988-08-30 Nonaqueous secondary battery Pending JPH0265056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63216168A JPH0265056A (en) 1988-08-30 1988-08-30 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63216168A JPH0265056A (en) 1988-08-30 1988-08-30 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPH0265056A true JPH0265056A (en) 1990-03-05

Family

ID=16684353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63216168A Pending JPH0265056A (en) 1988-08-30 1988-08-30 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPH0265056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442410U (en) * 1990-08-13 1992-04-10
US6008563A (en) * 1997-10-29 1999-12-28 Mitsubishi Denki Kabushiki Kaisha Reluctance motor and compressor-driving reluctance motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442410U (en) * 1990-08-13 1992-04-10
US6008563A (en) * 1997-10-29 1999-12-28 Mitsubishi Denki Kabushiki Kaisha Reluctance motor and compressor-driving reluctance motor

Similar Documents

Publication Publication Date Title
US20210408523A1 (en) Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
JP4453111B2 (en) Negative electrode material and method for producing the same, negative electrode active material, and non-aqueous secondary battery
US4820599A (en) Non-aqueous electrolyte type secondary cell
JPH08148180A (en) Total solid lithium secondary battery
WO2002061863A1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
KR100416140B1 (en) Negative active material for lithium secondary battery and method of preparing same
JPH05234621A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR100447792B1 (en) A lithium electrode dispersed in porous 3-dimensional current collector, its fabrication method and lithium battery comprising the same
JPH04363865A (en) Nonaqueous solvent secondary battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
KR20120036945A (en) Thin film alloy electrodes
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
WO2002061864A1 (en) A lithium electrode comprising surface-treated lithium particles, its fabrication method and lithium battery comprising the same
JPH0265056A (en) Nonaqueous secondary battery
NZ197274A (en) Lead oxide composition for pasted lead-acid storage battery plates
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JPH05159780A (en) Lithium secondary battery
JPH056765A (en) Nonaqueous solvent secondary battery
JPH08115745A (en) Nonaqueous electrolyte battery
JPS62226563A (en) Nonaqueous electrolyte secondary battery
US20220102702A1 (en) Anode material and solid-state battery
CN111261843B (en) Electrode composite material particle, battery electrode and rechargeable battery
US20230106063A1 (en) Solid-state battery and method for producing solid-state battery
JPH02239572A (en) Polyaniline battery
JPH0636763A (en) Lithium alloy negative electrode for secondary battery