JPS60131776A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPS60131776A
JPS60131776A JP58239193A JP23919383A JPS60131776A JP S60131776 A JPS60131776 A JP S60131776A JP 58239193 A JP58239193 A JP 58239193A JP 23919383 A JP23919383 A JP 23919383A JP S60131776 A JPS60131776 A JP S60131776A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
secondary battery
alloy
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58239193A
Other languages
Japanese (ja)
Other versions
JPH088115B2 (en
Inventor
Junichi Yamaura
純一 山浦
Toru Matsui
徹 松井
Shiro Nankai
史朗 南海
Yoshinori Toyoguchi
豊口 吉徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58239193A priority Critical patent/JPH088115B2/en
Publication of JPS60131776A publication Critical patent/JPS60131776A/en
Publication of JPH088115B2 publication Critical patent/JPH088115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase energy density of a negative electrode for a secondary battery and improve charge-discharge performance by finely crushing negative electrode material comprising a metal which can absorb and release alkali metal ion, and kneading it with polytetrafluoroethylene resin. CONSTITUTION:An appropriate amount of polytetrafluoroethylene resin is added to fine powder of a metal such as Al or Sn which can absorb and release alkali metal ion according to charge-discharge of a battery, and they are kneaded and rolled with a roller to form a negative electrode. Since the material which can make a absorb and release reaction is dispersed in the polytetrafluoroethylene fibers, formation of fine powder caused by repeating of charge-discharge and hardening of negative electrode caused by absorption of alkali metal can be prevented. By using this negative electrode, reliability of a non-aqueous electrolyte secondary battery is increased.

Description

【発明の詳細な説明】 産業上の利用分せい 本発明9非水電解質2次電池に関するものである。[Detailed description of the invention] industrial use The present invention 9 relates to a non-aqueous electrolyte secondary battery.

従来例の構成とそ9問題点 、 現今ま1で、す1チウ台1等のアルカリ金属を負極
と、す、る非小電解質2次電線どして、は、たとえば、
2硫化チタン(TiS2)をはじめ各種の眉間化合物な
どを正極活物質として用い、電解質としては1、炭酸プ
ロピレフ(、以下PCと略す)などの有機溶媒に過塩素
酸リチウム(Lick4)などを溶解した有機、電解質
を用いる電池の、開発が活発にすすめら、れてきへ。し
73−シ、この種の2次電池は現在まだ実用化されてい
ない。その主な理由は、充放電回数(サイクル)の寿命
が短く、特にデンドライトの発生などによる負極側の充
放電に際しての・充放電効率が低いためである。
The configuration of the conventional example and its 9 problems.Currently, a non-small electrolyte secondary wire using an alkali metal such as a metal as a negative electrode is, for example,
Various compounds such as titanium disulfide (TiS2) were used as the positive electrode active material, and the electrolyte was 1, and lithium perchlorate (Lick4) was dissolved in an organic solvent such as propylev carbonate (hereinafter abbreviated as PC). Batteries using organic electrolytes are being actively developed. However, this type of secondary battery has not yet been put into practical use. The main reason for this is that the life of the number of charging and discharging cycles (cycles) is short, and the charging and discharging efficiency is low especially when charging and discharging the negative electrode side due to the formation of dendrites.

このような負極の欠点を改良、するための方法は従来か
ら各種試みられている。一般的には、負極集電体の材料
を替えて析出1するLiとの密着性を良くしたり、ある
いは、電解質中にデンドライト発生防止の添加剤を加え
たりする方法が報告されている。しかし、これらの方法
で上記の問題を完全に解決しうるほどの効果は得られて
いない。
Various methods have been tried in the past to improve these drawbacks of negative electrodes. Generally, methods have been reported in which the material of the negative electrode current collector is changed to improve its adhesion to the precipitated Li, or an additive to prevent the generation of dendrites is added to the electrolyte. However, these methods have not been effective enough to completely solve the above problems.

さらに最近は、負極としてリチウムとの合金を用いるこ
とが提案されている。この例としてはりチウム−アルミ
ニウム合金が良く知られている。
Furthermore, recently, it has been proposed to use an alloy with lithium as a negative electrode. A well-known example of this is lithium-aluminum alloy.

この場合は、一応均一の合金を形成しうるが、充放電を
くり返すとその均一性が消失し、特にリチウムの含有量
が多くなると電極が微粒化し崩壊するなどの欠点があっ
た。ま冬銀とアルカリ金属との固溶体を用いることも提
轡されている(特開昭56−7386号公報)。午の場
合は、アルミニウムとの合金のような崩壊はないとされ
ているが、十分に速く合金化するリチウムの量は少なく
、金属状のリチウムが合金化しないままに析出する場合
があり、これを防ぐため多孔体の使用などを推奨してい
る。したがって大電流の充電効率は悪く、またリチウム
量の多い合金は、充放電による微細化が徐々に加速され
、サイクル寿命が急激に減少する。その他には、リチウ
ム−水銀合金を用いる変@(特開昭57−98978号
公報)、リチウム−鉛合金を用いる業明(特開昭57−
141869号公報)がある。しかし、リチウム−水銀
合金の場合は、放電により、負極は液状の水銀となるの
で、極板としての取扱いに問題がでてくる。また、リチ
ウム−鉛合金の場合は、電極の充放電による微細粉化は
銀固溶体以上であり、このため合金中の鉛量を80wt
%位にすることが望しいとされているが、これでは高エ
ネルギー密度電池を実現できない。
In this case, it is possible to form a homogeneous alloy, but the uniformity disappears when charging and discharging are repeated, and when the lithium content increases in particular, the electrode becomes atomized and collapses. It has also been proposed to use a solid solution of silver and an alkali metal (Japanese Unexamined Patent Publication No. 7386/1986). In the case of porcelain, it is said that there is no disintegration like in alloys with aluminum, but the amount of lithium that alloys quickly enough is small, and metallic lithium may precipitate without being alloyed. To prevent this, the use of porous materials is recommended. Therefore, charging efficiency at large currents is poor, and in alloys with a large amount of lithium, refinement due to charging and discharging is gradually accelerated, resulting in a rapid decrease in cycle life. In addition, there is a modification @ using a lithium-mercury alloy (Japanese Unexamined Patent Publication No. 57-98978), and a modification using a lithium-lead alloy (Japanese Unexamined Patent Publication No. 57-98978).
141869). However, in the case of a lithium-mercury alloy, the negative electrode becomes liquid mercury due to discharge, which poses problems in handling as an electrode plate. In addition, in the case of lithium-lead alloy, the fineness due to charging and discharging of the electrode is higher than that of silver solid solution, so the amount of lead in the alloy is reduced to 80 wt.
It is said that it is desirable to reduce the energy density to about 10%, but this makes it impossible to realize a high energy density battery.

以上のようにすぐれた負極としては、アルカリ金属の吸
蔵量が大きく、しかも放出や吸蔵速度の大なる負極材料
でかつ充放電のくり返しに対しても電極形状の安定した
ものの開発が望れていた。
As described above, it has been desired to develop an excellent negative electrode that has a large amount of alkali metal occlusion, a negative electrode material that has a high desorption and occlusion rate, and that has a stable electrode shape even after repeated charging and discharging. .

また、Sn、Bi、Cd、Pb等からなる合金材料が負
極材料として提案された。これらの材料の特徴は、エネ
ルギー密度が高く、かつ充放電の繰り返しに対する微細
粉化が起こらないところにある。
Furthermore, alloy materials made of Sn, Bi, Cd, Pb, etc. have been proposed as negative electrode materials. The characteristics of these materials are that they have high energy density and do not become pulverized by repeated charging and discharging.

しかし、これらの合金材料は微細粉化こそ起らないが、
リチウムを吸蔵した状態では、非常に硬く加工性が悪い
ため、電池構成後にリチウムを吸蔵させるしか方法がな
いという欠点がある。
However, although these alloy materials do not undergo fine powdering,
In the state where lithium is occluded, it is extremely hard and has poor workability, so it has the disadvantage that the only way to do so is to occlude lithium after constructing the battery.

発明の目的 本発明は、非水電解質2次電池用の負極に関するもので
、高エネルギー密度で充放電特性および信頼性にすぐれ
た充放電可゛能な電池の負極を提供することを目的とす
る。 □ 発明の構成 本発明は、アルカリ金属を電気化学的に吸蔵したり放出
したりする能力を有する金属量たは合金を負極材料とし
て用いる場合の負極に関するものである。すなわち、ア
ルカリ金属を吸蔵したり放出したりする能力を有する金
属または合金をmmする負極に機械′的強度を付加する
為、負極材料を微粉化し、四フフ化エチレン樹脂ととも
に練合し、圧延して負極とするもの゛である。
Purpose of the Invention The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery, and an object of the present invention is to provide a negative electrode for a battery that can be charged and discharged with high energy density, excellent charging and discharging characteristics, and reliability. . □ Structure of the Invention The present invention relates to a negative electrode in which a metal or an alloy having the ability to electrochemically absorb or release an alkali metal is used as a negative electrode material. That is, in order to add mechanical strength to a negative electrode made of a metal or alloy that has the ability to absorb and release alkali metals, the negative electrode material is pulverized, kneaded with tetrafluoroethylene resin, and rolled. This is the negative electrode.

充放電に伴う微粉化及び、アルカリ釜属吸蔵後の負極自
身の硬化を防ごうとするものである。
This is intended to prevent pulverization during charging and discharging and hardening of the negative electrode itself after absorbing alkaline metal.

本発明に関する実施例として、Liと合金をつくりやず
いAl、 Snを用いて、下記の如き検討を行なった。
As an example related to the present invention, the following study was conducted using Al and Sn which are alloyed with Li.

AlならびにSnは市販の粉末を用い、四フッ化エチレ
ン樹脂は、市販のポリファインパウダーを用いた。
Commercially available powders were used for Al and Sn, and commercially available polyfine powder was used for the tetrafluoroethylene resin.

まず、AlとSnの粉末それぞれにAlに対し。First, for Al and Sn powders respectively.

て′は10wt%、Snに対しては5 wt %と、な
る四フッ化エチレン樹脂を加え練合した。このようにし
て練合すると、柔いゴム粘土状の塊となシ、これをロー
2−で圧延することによって、フィルして5 wt%と
じたのは、それ以下ではフィルム状にした時に強度がで
ないことと、それ以上ではフィルム自体の電導性が−し
く低下するためである。次に第1図に示”すように、試
作した約0.2 m厚のフィルム状の負極材1をN1エ
キバンドメタル2に圧着し、10X10−に切断しNi
 リボンのり−ド3をつけて試験極とした。また、比較
のたメニ、A/とSn についてそれぞれ金属のみの極
板を第1図に示す試験極と同じ寸法で粉末をプレスする
ことにより試作した。
Tetrafluoroethylene resin was added and kneaded in an amount of 10 wt % for Sn and 5 wt % for Sn. When kneaded in this way, it becomes a soft rubber clay-like mass, and by rolling this with a roller 2-roller, it is filled and bound to 5 wt%. This is because the conductivity of the film itself decreases significantly if the temperature is higher than that. Next, as shown in Fig. 1, a prototype film-shaped negative electrode material 1 with a thickness of about 0.2 m was crimped onto the N1 expansion band metal 2, cut into 10x10- pieces, and made of Ni.
A test electrode was attached with ribbon glue 3. In addition, for comparison, metal-only electrode plates for Meni, A/Sn and Sn were each trial-produced by pressing powder to the same dimensions as the test electrodes shown in FIG. 1.

以上のような試験極に対して、充放電を施すだめに第2
図のようなガラスフィルタ4で仕切られたH型の試験用
セル6に試験極6とリチウム極7を入れ1Mの過塩素量
リチウム(L iCl O4’ )を溶解した炭酸プロ
ピレン電解質8中で1mAの定電流充放電を行なった。
In order to charge and discharge the test electrodes as described above, the second
A test electrode 6 and a lithium electrode 7 were placed in an H-shaped test cell 6 partitioned by a glass filter 4 as shown in the figure, and 1 mA was applied in a propylene carbonate electrolyte 8 in which 1M lithium perchlorine (LiClO4') was dissolved. Constant current charging and discharging was performed.

その結果、試験極のいずれもLiイオンの吸蔵とともに
変色しはじめ、少しずつ膨張していった。
As a result, all of the test electrodes began to change color as Li ions were absorbed and gradually expanded.

そして、特にA4及びSnの金属単体のみで構成されて
いる試験極は、ある吸蔵量を越えると極板自身が崩れ、
いわゆる微粉化を起こした。
In particular, for test electrodes made only of single metals such as A4 and Sn, when a certain amount of occlusion is exceeded, the electrode plate itself collapses.
So-called pulverization occurred.

ンの吸蔵にともなう試験極の電位(金属Liの電位を基
準)変化を示した図で、Al金属極では、80 mAh
 、 Sn金属極では100 mAh の吸蔵量を越え
たあたシから、電位が不安定となりはじめ、ちょうどこ
のころから極板も崩れはじめてい状の負極とした試験極
は、電位が安定で極板の膨張は生じるものの極板自身の
崩壊は起こらなかった。ただ樹脂の分と分極のため電気
容量が若干低くなった。特にAI粉は四フッ化エチレン
声脂がSn粉より多く要ることなどから、その吸蔵しう
るLi量はSnの極板に比べて小さかった。
This is a diagram showing the change in the potential of the test electrode (based on the potential of metal Li) due to the occlusion of aluminum.
With the Sn metal electrode, the potential began to become unstable after the storage capacity exceeded 100 mAh, and around this time the electrode plate also began to collapse. Although expansion occurred, the plate itself did not collapse. However, the electrical capacity was slightly lower due to the resin and polarization. In particular, since AI powder requires more tetrafluoroethylene vocal fat than Sn powder, the amount of Li that it can store was smaller than that of Sn electrode plates.

の場合もまったく崩れることはなく、例えば、チウムイ
オンを上記の吸蔵条件(1mA定電流)で吸蔵させ、電
位がI丘ぼ0になるまで電流を流しても、第4図の(a
)に示すように膨張するだけでくずれることはないが、
金属単体極の場合、AIにおいてもSnにおいても、第
4図(b)のように崩れて脱落していった。
For example, even when lithium ions are occluded under the above-mentioned occluded conditions (1 mA constant current) and a current is passed until the potential reaches 0, the result (a in Fig. 4) remains unchanged.
), it only expands and does not collapse, but
In the case of single metal electrodes, both AI and Sn collapsed and fell off as shown in FIG. 4(b).

以上は、試験極に対してLiイオンの最初の吸蔵のみを
試みただけであるが、ここで実際の充放電を想定して、
第2図に示す試験セルを用い、試験極の電位をLi基準
極に対して0vから1.ovの範囲で1 mAの充放電
を行なった。ただし、金属極に関しては吸蔵試験の時に
0vまで充電(吸蔵)させると極板が崩れることがわか
っているので、電位が不安定になる前に充電を止めるよ
うにした。
The above is just an attempt at the initial occlusion of Li ions on the test electrode, but assuming actual charging and discharging,
Using the test cell shown in FIG. 2, the potential of the test electrode was varied from 0v to 1.0v with respect to the Li reference electrode. Charging and discharging were performed at 1 mA in the range of ov. However, regarding the metal electrode, it was known that charging (occlusion) to 0V during the occlusion test would cause the electrode plate to collapse, so charging was stopped before the potential became unstable.

しかし、実際に充放電を試みると、金属極はどんどん崩
れて容量が減っていき、結局AI極では、4〜7サイク
ル目1でにはすべて脱落し、Sn極でも10〜16サイ
クル目までにはすべて脱落してしまった。そして、この
極板脱落によって生じた破片は、一部セル底部に溜って
いるものと微粉となって電解質中を漂っているものがあ
った。こ。
However, when charging and discharging are actually attempted, the metal electrodes gradually collapse and the capacity decreases.In the case of AI electrodes, they all fall off in the 4th to 7th cycles, and in the case of Sn electrodes, they fall off by the 10th to 16th cycles. have all fallen off. Some of the debris generated by this electrode plate falling off remained at the bottom of the cell, while others were floating in the electrolyte as fine powder. child.

のように脱落によって生じた物質は、Li−Al1もし
くはLi−Sn合金という活性な物質であり、これが漂
って正極と接触するといわゆる電池の内部短絡を起こし
てしまう。従って、金属単体極を使て試作した本発明の
試験極は、上記の充放電を100サイクルまで行なった
が、極板が崩れることはまったくなく、電気容量は若干
小さいが、第6図に示すように初期から100サイクル
目までの充放電特性は非常に安定していた。またこの試
験におい−C1対極のLi極は著しいデンドライトの発
生をする淀め、H型セルのLi極側は定期的(6ザイク
ル毎)に極板と電解液を入れ替えた。
The substance generated by the falling off is an active substance called Li-Al1 or Li-Sn alloy, and if this drifts and comes into contact with the positive electrode, it will cause what is called an internal short circuit of the battery. Therefore, even though the test electrode of the present invention, which was prototyped using a single metal electrode, was subjected to the above charge/discharge cycles up to 100 cycles, the electrode plate did not collapse at all, and although the capacitance was slightly small, as shown in Figure 6. As shown, the charge/discharge characteristics from the initial stage to the 100th cycle were very stable. In addition, in this test, the Li electrode of the -C1 counter electrode was stagnant, causing significant dendrite formation, and the electrode plate and electrolyte on the Li electrode side of the H type cell were replaced periodically (every 6 cycles).

次に、金属単体ではなく、合金極について本発明を適用
した実施例を以下に示す。
Next, an example in which the present invention is applied to an alloy electrode instead of a simple metal will be shown below.

最近報告されているすぐれた負極材料となりつる合金極
のうちSn 85% 、Cd 15%のSn −Cd合
金について検討を行なってみた。この合金を用いて、例
えば第1図に示すような試験極を試作し、SnやAlの
金属単体極で試みたようなLiとはまったくない。これ
が今までにないこの種の合金のすぐれた点である。しか
し、この種の合金極には、Liイオンの吸蔵に伴ない、
本来合金自身が持っていた可とり性を失ない、極板が硬
くかつもろくカつでしまうという性質がある。例えば合
金板にLiイオンを吸蔵させた後、ノ・ンマーでたたく
とLiを吸蔵させなければヒビさえ入らなかったものが
、粉々に粉砕されてしまうのである。
Among the alloy electrodes that have recently been reported as excellent negative electrode materials, a Sn--Cd alloy containing 85% Sn and 15% Cd was investigated. Using this alloy, for example, a test electrode as shown in FIG. 1 was prototyped, and it was completely free of Li, unlike the electrodes made of Sn or Al as single metals. This is the superiority of this type of alloy, which has never existed before. However, in this type of alloy electrode, as Li ions are absorbed,
The alloy itself does not lose its inherent malleability, and the electrode plate becomes hard and brittle. For example, if you occlude Li ions in an alloy plate and then hit it with a spray gun, the plate that would not have even cracked if Li was not occluded will be shattered into pieces.

このような電極が硬くなるという性質は、通常電池を使
用する場合、その性能にあまシ影響のないことではある
が、例えば、電池が外部から衝撃を受ける場合もあシ、
安全もしくはきびしい信頼性という立場からはやはり望
しくない。そこでSnン型電池を試作した。また本検討
は、信頼性の検討ということで正極には1次電池用のフ
ッ化黒鉛を用いた。第6図に示すように、検討用ボタン
型電池は、フッ化黒鉛の正極13と本発明の試験極14
とポリプロピレン製のセパレータ16とからなり、ガス
ケット16を介して、封目板17と電池ケース18によ
って、1 M L 1 Cl O4を溶解した炭酸プロ
ピレン電解質19とともに封口され完成電池とした。ま
た、該試験極はこのままでは活物質となるLiを含まな
いので、第7図のように電池を封口する前に試験極2o
をあらかじめ封口板21に圧着したまi Liイオンを
含む電解質22中で金属リチウム23と接触させてLi
イオンを吸蔵させた。
This hardening of the electrode does not affect the performance of the battery when it is normally used, but it may also cause the battery to become hard, for example, if the battery is subjected to an external impact.
This is still undesirable from the standpoint of safety or critical reliability. Therefore, we prototyped a Sn-type battery. In addition, this study used fluorinated graphite for primary batteries as the positive electrode because it was a study of reliability. As shown in FIG. 6, the button-type battery for consideration consists of a positive electrode 13 made of fluorinated graphite and a test electrode 14 of the present invention.
and a polypropylene separator 16, and sealed with a gasket 16, a sealing plate 17, and a battery case 18 together with a propylene carbonate electrolyte 19 in which 1 M L 1 Cl O 4 was dissolved to obtain a completed battery. In addition, since the test electrode does not contain Li, which becomes an active material, as shown in FIG.
is pressed onto the sealing plate 21 in advance, and brought into contact with metallic lithium 23 in an electrolyte 22 containing Li ions.
It absorbed ions.

このようにして試作したボタン型電池を2mA池の放電
特性曲線26は、若干分極が大きく、かつ放電容it 
(1,5V終止)も小さかった。しかし、合金のみのす
べての電池の放電特性が必らずしも第8図の曲線2.4
のようにならず、約3olの割合で、第8図の破線で示
したいくつかの曲線26に代表されるような異常な特性
を示した。そこで異常な放電を示した不良電池を分解し
てみると合金極が割れており、細く砕けた破片は、正極
側にも運ばれていた。この不良の原因は調査の結果、対
日時のかしめ工程で加えられる圧力が、試験極を壊して
しまうためであることが判明した。そこで、さらに電池
を試作した後合金極のみで構成した電池にある落下衝撃
試験(1?11の高さから、鉄板」ニに落す)を施しだ
ところ、封口だけで発生した不良率は30係であったが
、落下試験を加えると不良率が76チまで上ってしまっ
た。以上のように、合金のみの極板は特性上はすぐれて
いるかは、試作したすべての電池が第8図の放電曲線2
4に等しい特性を示し、さらに落下試験奪施しても不良
は発生しなかった。以上のように極板強度という観点か
らは、本発明の負極のような可とう性をもつ極板が望し
いといえる。
The discharge characteristic curve 26 of the 2 mA cell of the button type battery prototyped in this way shows that the polarization is slightly large and the discharge capacity is
(1.5V termination) was also small. However, the discharge characteristics of all alloy-only batteries are not necessarily equal to curve 2.4 in Figure 8.
However, at a ratio of about 3 ol, it exhibited abnormal characteristics as represented by several curves 26 indicated by broken lines in FIG. When they disassembled the defective battery that exhibited abnormal discharge, they found that the alloy electrode had cracked, and the fine pieces had been carried to the positive electrode. An investigation revealed that the cause of this failure was that the pressure applied during the crimping process broke the test electrode. Therefore, after making a prototype battery, we conducted a drop impact test (dropping it onto a steel plate from a height of 1 to 11 mm) using only alloy electrodes, and found that the failure rate due to sealing alone was 30%. However, when a drop test was added, the defective rate rose to 76 inches. As mentioned above, whether the electrode plate made only of alloy is superior in terms of characteristics or not, all of the prototype batteries showed discharge curve 2 in Figure 8.
4, and no defects occurred even when a drop test was conducted. As described above, from the viewpoint of plate strength, a flexible plate like the negative electrode of the present invention is desirable.

まだ電池製造上の問題で、合金極はLi吸蔵とともに硬
くなるため、どうしても電池を構成した後にLi吸蔵を
しなければならないという不便さがあ一つだが、本発明
の負極はLi吸蔵後においてもちょうどゴム粘土のよう
な可とり性のある材質なので加工性に富んでおシ、上記
不便さは解決できた。
There is still a problem in battery manufacturing, as the alloy electrode becomes hard as it absorbs Li, so there is the inconvenience that Li must be absorbed after the battery is constructed. Since it is a flexible material similar to rubber clay, it is highly workable and the above-mentioned inconvenience could be solved.

なお、従来より亜鉛負極を用いたアルカリ蓄電池におい
て、粉末化亜鉛を樹脂で結着して極板とすることが知ら
れている。この場合の目的は、亜鉛の表面積を大にして
、高率充放電を可能にしたり、真の面積が見かけ面積に
比べ著しく大きいことを利用してデンドライトの発生を
少なくすることであった。しかし深い充放電を行うと、
負極亜鉛のほとんどが溶解してしまうため、負極には樹
脂ばかりが残り充電−には亜鉛の析出が均一でなくデン
ドライトの発生は顕著であった。しかし本発明では、リ
チウムの吸蔵、放出を利用しているため、深い充放電を
行っても負極中に吸蔵されたリチウムの量が変るのみで
、負極材料であるAlやSn 、 Sn −Cd合金の
量が変化するわけでなく負極面では常に均一に充放電が
進行し、かつデンドライトの発生はない。したがって亜
鉛極の考え方は、本発明の電極には適用できない。
It is known that in alkaline storage batteries using a zinc negative electrode, powdered zinc is bound with a resin to form an electrode plate. The purpose in this case was to increase the surface area of zinc to enable high rate charging and discharging, and to reduce the occurrence of dendrites by taking advantage of the fact that the true area is significantly larger than the apparent area. However, when deeply charged and discharged,
Since most of the negative electrode zinc was dissolved, only the resin remained on the negative electrode, and during charging, the zinc was not deposited uniformly and the formation of dendrites was noticeable. However, in the present invention, since lithium intercalation and desorption are utilized, even if deep charging and discharging are performed, only the amount of lithium intercalated in the negative electrode changes. The amount does not change, and charging and discharging always proceed uniformly on the negative electrode surface, and dendrites do not occur. Therefore, the concept of zinc electrodes cannot be applied to the electrodes of the present invention.

発明の効果 以上のように本発明は高エネルギー密度で特に信頼性に
すぐれた電池を提供できるばかシでなく、製造において
も加工性が著しく向上する。
Effects of the Invention As described above, the present invention is not only capable of providing a battery with high energy density and particularly excellent reliability, but also significantly improves workability in manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における試験極の外観図、第
2図は同H型試験用セルの構成図、第3図は試験極の充
電(吸蔵)時の電位変化特性図、第4図はLi吸蔵後の
試験極の状態を示す図、第5図は本発明の一実施例にお
ける負極の充放電曲線、第6図は本発明の一実施例のコ
イン型電池の断面図、第7図は同コイン型電池の負極へ
のLi吸蔵の様子を示した図、第8図は同コイン型電池
の放電曲線である。 1・・・・・・負極材、2・・・・・・Niエキスバン
ドメタル、3・・・・・・Ni リボンリード、4・・
・・・・ガラスフィルタ、6・・・・・・試鹸用セル、
6・・・・・・試験極、7・・・・・・リチウム極、8
・・・・・・炭酸プロピレン電解質、9・・・・・・A
116・・・・・・セパレータ、16・・・・・・ガス
ケット、17゜21・・・・・・封口板、18・・・・
・・電池ケース、19.22・・・・・・電解質、23
・・・・・・金属リチウム。
Fig. 1 is an external view of a test electrode according to an embodiment of the present invention, Fig. 2 is a configuration diagram of the same H-type test cell, Fig. 3 is a potential change characteristic diagram during charging (occlusion) of the test electrode, FIG. 4 is a diagram showing the state of the test electrode after Li occlusion, FIG. 5 is a charge-discharge curve of the negative electrode in an embodiment of the present invention, and FIG. 6 is a cross-sectional view of a coin-type battery in an embodiment of the present invention. FIG. 7 is a diagram showing how Li is absorbed into the negative electrode of the same coin-type battery, and FIG. 8 is a discharge curve of the same coin-type battery. 1...Negative electrode material, 2...Ni extract band metal, 3...Ni ribbon lead, 4...
...Glass filter, 6...Sample cell,
6... Test electrode, 7... Lithium electrode, 8
・・・・・・Propylene carbonate electrolyte, 9・・・・・・A
116...Separator, 16...Gasket, 17°21...Sealing plate, 18...
...Battery case, 19.22... Electrolyte, 23
...Metallic lithium.

Claims (4)

【特許請求の範囲】[Claims] (1)正極と、アルカリ金轡イオン奪含む電解質と、充
放電にともなってアルカリ土類金属イオンを吸蔵したり
放出したりする金属または合金を負極材料とする負極を
構成要素とし、前!己負極畔、微粉化した前記負極材料
と四フッ化エチレ、ン轡脂を含むことを特徴とする非水
電解質2次電池。
(1) The components are a positive electrode, an electrolyte containing alkali metal ion deprivation, and a negative electrode whose negative electrode material is a metal or alloy that absorbs or releases alkaline earth metal ions during charging and discharging. A non-aqueous electrolyte secondary battery comprising a self-negative electrode, the above-mentioned pulverized negative electrode material, ethylene tetrafluoride, and a carbonate resin.
(2)負警材料は、Sn、Al、Mq、Pb、Inの少
なくとも一種の金属であることを特徴とする特許請求の
範囲第1項記載の非、水電解質2次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative material is at least one metal selected from Sn, Al, Mq, Pb, and In.
(3)負極材料は、Sn、Bi、Pb、Cd1.In、
Sb。 Zn、Agの中から選ばれた少なくとも2つ以上の金属
元素からなる合金であることを特徴とする特許請求の範
囲第1項記、載、の非水電解質2次電池。
(3) Negative electrode materials include Sn, Bi, Pb, Cd1. In,
Sb. The non-aqueous electrolyte secondary battery according to claim 1, characterized in that it is an alloy consisting of at least two or more metal elements selected from Zn and Ag.
(4)アルカリ金属はリチウムであることを特徴とする
特許請求の範囲第1項、第2項または第3項記載の非水
電解質2次電池。
(4) The nonaqueous electrolyte secondary battery according to claim 1, 2, or 3, wherein the alkali metal is lithium.
JP58239193A 1983-12-19 1983-12-19 Non-aqueous electrolyte secondary battery Expired - Lifetime JPH088115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239193A JPH088115B2 (en) 1983-12-19 1983-12-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239193A JPH088115B2 (en) 1983-12-19 1983-12-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPS60131776A true JPS60131776A (en) 1985-07-13
JPH088115B2 JPH088115B2 (en) 1996-01-29

Family

ID=17041099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239193A Expired - Lifetime JPH088115B2 (en) 1983-12-19 1983-12-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH088115B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226563A (en) * 1986-03-27 1987-10-05 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JPS63264865A (en) * 1987-04-22 1988-11-01 Shin Kobe Electric Mach Co Ltd Manufacture of negative electrode for secondary battery
JPS63266765A (en) * 1987-04-23 1988-11-02 Shin Kobe Electric Mach Co Ltd Nonaqueous secondary battery
JPS63266764A (en) * 1987-04-23 1988-11-02 Shin Kobe Electric Mach Co Ltd Negative electrode for secondary battery
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226563A (en) * 1986-03-27 1987-10-05 Fuji Elelctrochem Co Ltd Nonaqueous electrolyte secondary battery
JPS63264865A (en) * 1987-04-22 1988-11-01 Shin Kobe Electric Mach Co Ltd Manufacture of negative electrode for secondary battery
JPS63266765A (en) * 1987-04-23 1988-11-02 Shin Kobe Electric Mach Co Ltd Nonaqueous secondary battery
JPS63266764A (en) * 1987-04-23 1988-11-02 Shin Kobe Electric Mach Co Ltd Negative electrode for secondary battery
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2013065478A (en) * 2011-09-19 2013-04-11 Toyota Motor Corp Method for manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JPH088115B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPS59186274A (en) Manufacture of nonaqueous electrolyte secondary battery
JPS62290072A (en) Organic electrolyte secondary battery
JPS60131776A (en) Nonaqueous electrolyte secondary battery
JP2847885B2 (en) Lithium secondary battery
JPS62272473A (en) Nonaqueous solvent secondary battery
JP3152307B2 (en) Lithium secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JPS62113366A (en) Nonaqueous electrolytic secondary battery
JP2794889B2 (en) Non-aqueous electrolyte secondary battery
JPH0746606B2 (en) Non-aqueous electrolyte secondary battery
JP2751625B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US4683182A (en) Rechargeable electrochemical apparatus
JPH04289658A (en) Nonaqueous electrolyte secondary battery
JPS63226881A (en) Nonaqueous electrolyte cell
JP3019402B2 (en) Non-aqueous electrolyte secondary battery
JPH0441471B2 (en)
JP3082341B2 (en) Hydrogen storage electrode
JPH0773050B2 (en) Organic electrolyte secondary battery
JPH0652886A (en) Nonaqueous electrolyte secondary battery
JPS6191864A (en) Nonaqueous electrolyte secondary battery
JPS63143743A (en) Nonaqueous electrolyte secondary battery
JPH07220720A (en) Nonaqueous electrolyte secondary battery
JPH04167359A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term