JPH04167359A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary batteryInfo
- Publication number
- JPH04167359A JPH04167359A JP2293380A JP29338090A JPH04167359A JP H04167359 A JPH04167359 A JP H04167359A JP 2293380 A JP2293380 A JP 2293380A JP 29338090 A JP29338090 A JP 29338090A JP H04167359 A JPH04167359 A JP H04167359A
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- carbonaceous material
- negative electrode
- electrolyte secondary
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 28
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 60
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 41
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 26
- 150000001786 chalcogen compounds Chemical class 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000007599 discharging Methods 0.000 description 13
- 239000011888 foil Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- -1 aluminum are used Chemical class 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- UUAMLBIYJDPGFU-UHFFFAOYSA-N 1,3-dimethoxypropane Chemical compound COCCCOC UUAMLBIYJDPGFU-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910018225 Li PF6 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- MHWZQNGIEIYAQJ-UHFFFAOYSA-N molybdenum diselenide Chemical compound [Se]=[Mo]=[Se] MHWZQNGIEIYAQJ-UHFFFAOYSA-N 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- CFJRPNFOLVDFMJ-UHFFFAOYSA-N titanium disulfide Chemical compound S=[Ti]=S CFJRPNFOLVDFMJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、非水電解液二次電池に関し、特に非水電解液
を改良した非水電解液二次電池に係わるものである。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a non-aqueous electrolyte secondary battery with an improved non-aqueous electrolyte. It is.
(従来の技術)
近年、負極活物質としてリチウム、ナトリウム、アルミ
ニウム等の軽金属を用いた非水電解液電池は高エネルギ
ー密度電池として注目されており、正極活物質に二酸化
マンガン(MnO2)、フッ化炭素[(CF)イコ、塩
化チオニル(So(12)等を用いた一次電池は既に電
卓、時計の電源やメモリのバックアップ電池として多用
されている。更に、近年、VTR1通信機器等の各種の
電子機器の小形、軽量化に伴い、それらの電源として高
エネルギー密度の二次電池の要求が高まり、軽金属を負
極活物質とする非水電解液二次電池の研究が活発に行わ
れている。(Prior art) In recent years, non-aqueous electrolyte batteries that use light metals such as lithium, sodium, and aluminum as negative electrode active materials have attracted attention as high-energy density batteries. Primary batteries using carbon [(CF) ico, thionyl chloride (So(12), etc.) are already widely used as power sources for calculators and watches, and as backup batteries for memory. As devices become smaller and lighter, the demand for high-energy-density secondary batteries as their power source increases, and research is actively being conducted on non-aqueous electrolyte secondary batteries that use light metals as negative electrode active materials.
非水電解液二次電池は、負極にリチウム、ナトリウム、
アルミニウム等の軽金属を用い、電解液として炭酸プロ
ピレン(P C) 、1.2−ジメトキシエタン(DM
E) 、γ−ブチロラクトン(γ−BL)、テトラヒド
ロフラン(THF)などの非水溶媒中にLiCIIo4
、LiBF4、L iA s F 6 、L I P
F b等の電解質を溶解したものから構成され、正極活
物質としては主にT i S2 、MO82、V20s
、Vb 013等ノリチウムとの間てトポケミカル反
応する化合物か研究されている。Non-aqueous electrolyte secondary batteries contain lithium, sodium,
Light metals such as aluminum are used, and propylene carbonate (PC) and 1,2-dimethoxyethane (DM) are used as electrolytes.
E) γ-butyrolactone (γ-BL), LiCIIo4 in a non-aqueous solvent such as tetrahydrofuran (THF)
, LiBF4, L iA s F 6 , L I P
It is composed of a dissolved electrolyte such as Fb, and the positive electrode active materials are mainly T i S2, MO82, V20s.
, Vb 013, and other compounds that undergo topochemical reactions with nolithium are being studied.
しかしながら、上述した二次電池は現在、未だ実用化さ
れていない。この主な理由は、充放電効率が低く、しか
も充放電回数(サイクル)寿命が短いためである。この
原因は、負極リチウムと電解液との反応によるリチウム
の劣化によるところが大きいと考えられている。即ち、
放電時にリチウムイオンとして電解液中に溶解したリチ
ウムは充電時に析出する際に溶媒と反応し、その表面が
一部不活性化される。このため、充放電を繰返していく
と、デンドライト状(樹枝状)のリチウムが発生したり
、小球状に析出したりリチウムが集電体より脱離するな
どの現象が生じる。However, the above-mentioned secondary battery has not yet been put into practical use. The main reason for this is that the charging/discharging efficiency is low and the number of charging/discharging cycles (cycles) life is short. This is thought to be largely due to deterioration of lithium due to the reaction between the negative electrode lithium and the electrolyte. That is,
Lithium, which is dissolved in the electrolytic solution as lithium ions during discharging, reacts with the solvent when precipitated during charging, and its surface is partially inactivated. Therefore, when charging and discharging are repeated, phenomena such as generation of dendrite-like (dendritic) lithium, precipitation in small spheres, and lithium detachment from the current collector occur.
このようなことから、非水電解液二次電池に組込まれる
負極としてリチウムを吸蔵・放出する炭素質物を用いる
ことによって、リチウムと非水電解液との反応やデンド
ライト析出による負極劣化を改善することが提案されて
いる。しかしながら、かかる電池ではリチウムの吸蔵・
放出量を十分に高められないことや、充放電サイクル初
期において充放電効率が80%以下と低く、リチウムか
完全に充放電反応に利用されず、電池容量の減少を招く
問題があった。For this reason, by using a carbonaceous material that absorbs and releases lithium as a negative electrode incorporated in a non-aqueous electrolyte secondary battery, it is possible to improve the negative electrode deterioration caused by the reaction between lithium and the non-aqueous electrolyte and dendrite precipitation. is proposed. However, in such batteries, lithium occlusion and
There were problems in that the amount released could not be sufficiently increased, and the charging and discharging efficiency was low at 80% or less at the beginning of the charging and discharging cycle, and lithium was not completely utilized for the charging and discharging reaction, leading to a decrease in battery capacity.
(発明が解決しようとする課題)
本発明は、上記従来の問題点を解決するためになされた
もので、充電サイクル初期から高容量で、サイクル寿命
の長い非水電解液二次電池を提供しようとするものであ
る。(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a non-aqueous electrolyte secondary battery that has a high capacity from the beginning of the charging cycle and has a long cycle life. That is.
[発明の構成コ
(課題を解決するための手段)
本発明は、容器内にリチウムを吸蔵・放出する炭素質物
を有する負極及びリチウムを含有するカルコゲン化合物
からなる正極を収納すると共に非水電解液を収容した非
水電解液二次電池において、
前記炭素質物のリチウム吸蔵量の20〜150%のリチ
ウム金属を前記炭素質物に電気的に接触させて前記容器
内に収納したことを特徴とする非水電解液二次電池であ
る。[Structure of the Invention (Means for Solving the Problems) The present invention provides a container that houses a negative electrode having a carbonaceous material that occludes and desorbs lithium and a positive electrode made of a chalcogen compound containing lithium, and a non-aqueous electrolyte. A non-aqueous electrolyte secondary battery containing 20 to 150% of the lithium storage capacity of the carbonaceous substance is electrically contacted with the carbonaceous substance and housed in the container. It is a water electrolyte secondary battery.
前記負極としては、集電体に前記炭素質物を形成したも
のが用いられる。前記炭素質物としては、例えば黒鉛、
擬黒鉛構造を有する炭素繊維、活性炭、コークス、樹脂
焼成体等を挙げることができる。これら単票質物は、黒
鉛構造と非晶質構造からなる。As the negative electrode, one in which the carbonaceous material is formed on a current collector is used. Examples of the carbonaceous material include graphite,
Examples include carbon fibers having a pseudographite structure, activated carbon, coke, and fired resin bodies. These single particles consist of a graphite structure and an amorphous structure.
前記負極とリチウム金属とを電気的に接触させる状態と
しては、例えば該負極の集電体や前記炭素質物にリチウ
ムを着設する形態、負極端子を兼ねる容器内面に前記リ
チウム金属を着設する形態を挙げることができる。特に
、負極の集電体にリチウム金属を着設する形態が望まし
い。Examples of the state in which the negative electrode and lithium metal are brought into electrical contact include a state in which lithium is attached to the current collector of the negative electrode or the carbonaceous material, and a state in which the lithium metal is attached to the inner surface of a container that also serves as a negative electrode terminal. can be mentioned. In particular, a configuration in which lithium metal is attached to the current collector of the negative electrode is desirable.
前記リチウム金属の量を限定したのは、次のような理由
によるものである。前記リチウム金属の量を前記炭素質
物のリチウム吸蔵量の20%未満にすると充放電サイク
ル初期におけるリチウムの吸蔵放出の低効率化に伴うリ
チウムの損失分を補うことができなくなる。一方、前記
リチウム金属の量が前記炭素質物のリチウム吸蔵量の1
50%を越えると容器内に占めるリチウム金属の量が多
くなり、相対的に負極の炭素質物の充填量が少なくなる
ため、電池容量の低下とサイクル寿命の低下を招く。The reason for limiting the amount of lithium metal is as follows. If the amount of lithium metal is less than 20% of the lithium storage capacity of the carbonaceous material, it will not be possible to compensate for the loss of lithium due to the lower efficiency of lithium storage and release at the beginning of the charge/discharge cycle. On the other hand, the amount of the lithium metal is 1 of the lithium storage capacity of the carbonaceous material.
If it exceeds 50%, the amount of lithium metal in the container increases, and the amount of carbonaceous material filled in the negative electrode becomes relatively small, resulting in a decrease in battery capacity and cycle life.
前記正極を構成するカルコゲン化合物としては、例えば
リチウムマンガン複合酸化物、リチウムコバルト酸化物
、リチウムを含む非晶質五酸化バナジウム、二硫化チタ
ン、二硫化モリブデン、セレン化モリブデン等を挙げる
ことができる。Examples of the chalcogen compound constituting the positive electrode include lithium manganese composite oxide, lithium cobalt oxide, amorphous vanadium pentoxide containing lithium, titanium disulfide, molybdenum disulfide, and molybdenum selenide.
前記非水電解液としては、例えばエチレンカーボネート
、プロピレンカーボネート、ブチレンカーボネート、γ
−ブチロラクトン、アセトニトリル、1.2−ジメトキ
シエタン、2−メチルテトラヒドロフラン、1.3−ジ
メトキシプロパンから選ばれる少なくと1種以上からな
る非水溶媒にL i PF6、LiBF4、LiC#
04 、LiAsF6などの電解質を溶解したもの等を
挙げることができる。Examples of the non-aqueous electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, γ
- Li PF6, LiBF4, LiC# in a non-aqueous solvent consisting of at least one or more selected from butyrolactone, acetonitrile, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, and 1,3-dimethoxypropane.
Examples include those in which electrolytes such as 04 and LiAsF6 are dissolved.
(作用)
本発明によれば、リチウムを吸蔵・放出する炭素質物を
有する負極及びリチウムを含有するカルコゲン化合物か
らなる正極を用い、前記炭素質物のリチウム吸蔵量の2
0〜150%のリチウム金属を前記炭素質物に電気的に
接触させて容器内に収納することによって、充放電サイ
クル初期から安定して高容量化を図ることができ、サイ
クル寿命の長い非水電解液二次電池を得ることができる
。(Function) According to the present invention, by using a negative electrode having a carbonaceous material that occludes and desorbs lithium and a positive electrode consisting of a chalcogen compound containing lithium,
By placing 0 to 150% lithium metal in electrical contact with the carbonaceous material and storing it in the container, it is possible to stably increase the capacity from the beginning of the charge/discharge cycle, and it is possible to achieve non-aqueous electrolysis with a long cycle life. A liquid secondary battery can be obtained.
即ち、前記負極の炭素質物にリチウムを最初に吸蔵(充
電)させた後、放電操作を行うと、非水電解液の溶媒の
分解反応などの副反応や吸蔵されたリチウムが完全に放
出せずに残留するために、吸蔵・放出の効率(充放電効
率)は80%程度以下となる。その結果、充放電反応の
利用できるリチウム量が減少して容量が低下する。但し
、充放電サイクルの繰り返しにより、負極の充放電効率
は100%近くまで高まる。That is, if lithium is first occluded (charged) in the carbonaceous material of the negative electrode and then a discharge operation is performed, side reactions such as decomposition reactions of the solvent of the non-aqueous electrolyte and occluded lithium are not completely released. Therefore, the storage and release efficiency (charging and discharging efficiency) is about 80% or less. As a result, the amount of lithium available for charging and discharging reactions decreases, resulting in a decrease in capacity. However, by repeating charge and discharge cycles, the charge and discharge efficiency of the negative electrode increases to nearly 100%.
このようなことから、炭素質物のリチウム吸蔵量の20
〜150%のリチウム金属を前記炭素質物に電気的に接
触させて容器内に収納することによって、充放電サイク
ル初期に損失するリチウム量を補給できるため、充電サ
イクル初期から安定して高容量化を図ることができ、サ
イクル寿命も向上できる。しかも、前記容器内に収納す
るリチウム金属量の上限値を炭素質物のリチウム吸蔵量
の150%とすることによって、負極の炭素質物の容器
内への充填量の低下を抑制できるため、リチウム金属を
容器内に収納することに伴なう電池容量の低下を回避で
きる。For this reason, 20% of the lithium storage capacity of carbonaceous materials
By electrically contacting ~150% of lithium metal with the carbonaceous material and storing it in the container, the amount of lithium lost at the beginning of the charging/discharging cycle can be replenished, thereby stably increasing the capacity from the beginning of the charging cycle. The cycle life can also be improved. Moreover, by setting the upper limit of the amount of lithium metal stored in the container to 150% of the lithium absorption amount of the carbonaceous material, it is possible to suppress a decrease in the amount of the negative electrode filled into the container of the carbonaceous material. It is possible to avoid a decrease in battery capacity due to storage in a container.
(実施例)
以下、本発明を円筒形非水電解液二次電池に適用した例
について第1図を参照して詳細に説明する。(Example) Hereinafter, an example in which the present invention is applied to a cylindrical non-aqueous electrolyte secondary battery will be described in detail with reference to FIG.
実施例1
図中の1は、底部に絶縁体2が配置された有底円筒状の
ステンレス容器である。この容器l内には、電極群3が
収納されている。この電極群3は、正極4、セパレータ
5及び負極6をこの順序で積層した帯状物を該負極6
が外側に位置するように渦巻き状に巻回した構造になっ
ている。Example 1 Reference numeral 1 in the figure is a cylindrical stainless steel container with an insulator 2 disposed at the bottom. An electrode group 3 is housed in this container l. This electrode group 3 consists of a strip formed by laminating a positive electrode 4, a separator 5, and a negative electrode 6 in this order.
It has a spirally wound structure so that the outer part is located on the outside.
前記正極4は、リチウムコバルト酸化物(Li、CoO
□)粉末80重量%をアセチレンブラック15重量%及
びポリテトラフルオロエチレン粉末5重量%と共に混合
し、シート化し、エキスバンドメタル集電体に圧着した
形状になっている。The positive electrode 4 is made of lithium cobalt oxide (Li, CoO
□) 80% by weight of the powder was mixed with 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder, formed into a sheet, and pressed onto an expanded metal current collector.
前記セパレータ 5は、ポリプロピレン性多孔質フィル
ムから形成されている。前記負極6は、フェノール樹脂
粉末を窒素ガス中において1700℃で2時間焼成して
得られた炭素質物粉末98重量%をエチレンプロピレン
共重合体2重量%に混合し、これを集電体としてのステ
ンレス箔に10■g/Cra2の量で塗布した帯状の電
極である。この負極は、リチウム吸蔵容量が400m
A hである。また、前記負極のステンレス箔の未塗布
部分には240m A h(該負極のリチウム吸蔵容量
の60%に相当)のリチウム金属箔が着設されている。The separator 5 is made of a polypropylene porous film. The negative electrode 6 is made by mixing 98% by weight of carbonaceous material powder obtained by baking phenolic resin powder at 1700° C. for 2 hours in nitrogen gas with 2% by weight of ethylene propylene copolymer, and using this as a current collector. It is a band-shaped electrode coated on stainless steel foil in an amount of 10 g/Cra2. This negative electrode has a lithium storage capacity of 400 m
Ah. Furthermore, a lithium metal foil of 240 mAh (corresponding to 60% of the lithium storage capacity of the negative electrode) was attached to the uncoated portion of the stainless steel foil of the negative electrode.
前記容器1内には、六フッ化リン酸リチウム(L i
P F 6)をエチレンカーボネートとプロピレンカー
ボネートと1,2−ジメトキシエタンの混合溶媒(混合
体積比率3: 3: 2)に1.0モル/g溶解し
た組成の電解液が収容されている。前記電極群3上には
、中央部が開口された絶縁紙7が載置されている。更に
、前記容器lの上部開口部には、絶縁封口板8が該容器
1へのかしめ加工等に液密に設けられており、かつ該絶
縁封口板8の中央には正極端子9が嵌合されている。こ
の正極端子9は、前記電極群3の正極4に正極リード1
oを介して接続されている。なお、電極群3の負極6は
図示しない負極リードを介して負極端子である前記容器
1に接続されている。Inside the container 1, lithium hexafluorophosphate (Li
An electrolytic solution having a composition of 1.0 mol/g of P F 6) dissolved in a mixed solvent of ethylene carbonate, propylene carbonate, and 1,2-dimethoxyethane (mixed volume ratio 3:3:2) is stored. An insulating paper 7 with an opening in the center is placed on the electrode group 3. Further, an insulating sealing plate 8 is liquid-tightly provided at the upper opening of the container 1 by caulking to the container 1, and a positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8. has been done. This positive electrode terminal 9 connects the positive electrode lead 1 to the positive electrode 4 of the electrode group 3.
connected via o. Note that the negative electrode 6 of the electrode group 3 is connected to the container 1, which is a negative electrode terminal, via a negative electrode lead (not shown).
実施例2
負極のステンレス箔の未塗布部分に80m A h(該
負極のリチウム吸蔵容量の20%に相当)のリチウム金
属箔を着設した以外、実施例1と同構成の非水電解液二
次電池を組み立てた。Example 2 A non-aqueous electrolyte 2 having the same configuration as in Example 1 was used, except that a lithium metal foil of 80 mAh (corresponding to 20% of the lithium storage capacity of the negative electrode) was attached to the uncoated part of the stainless steel foil of the negative electrode. Next, I assembled the battery.
実施例3
負極のステンレス箔の未塗布部分に600m A h(
該負極のリチウム吸蔵容量の150%に相当)のリチウ
ム金属箔を着設した以外、実施例1と同構成の非水電解
液二次電池を組み立てた。Example 3 600 mA h (
A nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled, except that a lithium metal foil (corresponding to 150% of the lithium storage capacity of the negative electrode) was attached.
比較例1
負極のステンレス箔の未塗布部分にリチウム金属箔を着
設しない以外、実施例1と同構成の非水電解液二次電池
を組み立てた。Comparative Example 1 A nonaqueous electrolyte secondary battery having the same configuration as Example 1 was assembled, except that lithium metal foil was not attached to the uncoated portion of the stainless steel foil of the negative electrode.
比較例2
負極のステンレス箔の未塗布部分に900m A h(
該負極のリチウム吸蔵容量の225%に相当)のリチウ
ム金属箔を着設した以外、実施例1と同構成の非水電解
液二次電池を組み立てた。Comparative Example 2 900 mA h (
A nonaqueous electrolyte secondary battery having the same configuration as in Example 1 was assembled, except that a lithium metal foil (corresponding to 225% of the lithium storage capacity of the negative electrode) was attached.
しかして、本実施例1〜3及び比較例1.2の非水電解
液二次電池について充電電流50m Aで4.2Vまで
充電し、50m Aの電流で放電する充放電を繰り返し
行い、各電池の放電容量とサイクル寿命を測定した。そ
の結果を第2図に示す。Therefore, the non-aqueous electrolyte secondary batteries of Examples 1 to 3 and Comparative Example 1.2 were repeatedly charged and discharged by charging to 4.2 V at a charging current of 50 mA and discharging at a current of 50 mA. The discharge capacity and cycle life of the battery were measured. The results are shown in FIG.
第2図から明らかなように本実施例1〜3の非水電解液
二次電池では、比較例1.2の電池に比べて充放電サイ
クル初期の充放電容量が増大し、かつ充放電のサイクル
進行に伴う容量減少も少ないことがわかる。特に、実施
例1の電池は充放電サイクル初期から高容量で、しかも
容量の低下もなく安定した充放電サイクル特性を示すこ
とがわかる。As is clear from FIG. 2, the non-aqueous electrolyte secondary batteries of Examples 1 to 3 have increased charge and discharge capacity at the beginning of the charge and discharge cycle compared to the battery of Comparative Example 1.2, and It can be seen that the capacity decrease as the cycle progresses is also small. In particular, it can be seen that the battery of Example 1 has a high capacity from the beginning of the charge/discharge cycle, and exhibits stable charge/discharge cycle characteristics without any decrease in capacity.
[発明の効果]
以上詳述した如く、本発明によれば充放電サイフルル初
期から高容量で充放電サイクル寿命の長い非水電解液二
次電池を提供できる。[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery that has a high capacity from the early stages of charging and discharging and has a long charging and discharging cycle life.
第1図は本発明の実施例1における円筒型非水電解液二
次電池を示す断面図、第2図は本実施例1〜3及び比較
例1.2の非水電解液二次電池の放電容量と充放電サイ
クル数との関係を示す特性図である。
■・・・ステンレス容器、3・・電極群、4・・正極、
5・・・セパレータ、6・・・負極、8・・・封口板、
9・・・正極端子。
出願人代理人 弁理士 鈴江武彦
第1図
第20FIG. 1 is a sectional view showing a cylindrical non-aqueous electrolyte secondary battery in Example 1 of the present invention, and FIG. 2 is a cross-sectional view of a non-aqueous electrolyte secondary battery in Examples 1 to 3 and Comparative Example 1. FIG. 3 is a characteristic diagram showing the relationship between discharge capacity and number of charge/discharge cycles. ■... Stainless steel container, 3... Electrode group, 4... Positive electrode,
5... Separator, 6... Negative electrode, 8... Sealing plate,
9...Positive terminal. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 20
Claims (1)
極及びリチウムを含有するカルコゲン化合物からなる正
極を収納すると共に非水電解液を収容した非水電解液二
次電池において、 前記炭素質物のリチウム吸蔵量の20〜150%のリチ
ウム金属を前記炭素質物に電気的に接触させて前記容器
内に収納したことを特徴とする非水電解液二次電池。[Scope of Claims] A non-aqueous electrolyte secondary battery in which a negative electrode having a carbonaceous material that occludes and releases lithium and a positive electrode made of a chalcogen compound containing lithium are housed in a container, and a non-aqueous electrolyte is housed, comprising: A non-aqueous electrolyte secondary battery, characterized in that 20 to 150% of the lithium storage capacity of the carbonaceous material is lithium metal that is placed in electrical contact with the carbonaceous material and housed in the container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2293380A JP2928620B2 (en) | 1990-10-30 | 1990-10-30 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2293380A JP2928620B2 (en) | 1990-10-30 | 1990-10-30 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04167359A true JPH04167359A (en) | 1992-06-15 |
JP2928620B2 JP2928620B2 (en) | 1999-08-03 |
Family
ID=17794028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2293380A Expired - Lifetime JP2928620B2 (en) | 1990-10-30 | 1990-10-30 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2928620B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067854A (en) * | 1998-08-19 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
US9361408B2 (en) | 2011-08-08 | 2016-06-07 | Kabushiki Kaisha Toshiba | Memory system including key-value store |
-
1990
- 1990-10-30 JP JP2293380A patent/JP2928620B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000067854A (en) * | 1998-08-19 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Non-aqueous electrolyte secondary battery |
US9361408B2 (en) | 2011-08-08 | 2016-06-07 | Kabushiki Kaisha Toshiba | Memory system including key-value store |
Also Published As
Publication number | Publication date |
---|---|
JP2928620B2 (en) | 1999-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5601951A (en) | Rechargeable lithium ion cell | |
JP3737729B2 (en) | Non-aqueous electrolyte battery and non-aqueous electrolyte | |
EP0762527A1 (en) | Rechargeable lithium battery having a specific electrolyte | |
JP2000067852A (en) | Lithium secondary battery | |
JPH07201316A (en) | Nonaqueous electrolyte secondary battery | |
JP3393243B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH10208777A (en) | Non-aqueous electrolyte secondary battery | |
JP3480764B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002313418A (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery | |
JP3211259B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3135613B2 (en) | Lithium secondary battery | |
JPH04167359A (en) | Nonaqueous electrolyte secondary battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JPH07201315A (en) | Nonaqueous electrolyte secondary battery | |
JP3048953B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH0945328A (en) | Lithium secondary battery | |
JPH09245798A (en) | Lithium secondary battery | |
JP7466112B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2767853B2 (en) | Cylindrical lithium secondary battery | |
JPH02215043A (en) | Nonaqueous solvent secondary battery | |
JPH11111302A (en) | Electrode for battery, and battery using the same | |
JP2001313024A (en) | Lithium secondary battery | |
JPH11312540A (en) | Nonaqueous electrolyte secondary battery | |
JPS62160671A (en) | Nonaqueous solvent secondary battery | |
JP2001202965A (en) | Nonaqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 12 |