JP3135613B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3135613B2
JP3135613B2 JP03171393A JP17139391A JP3135613B2 JP 3135613 B2 JP3135613 B2 JP 3135613B2 JP 03171393 A JP03171393 A JP 03171393A JP 17139391 A JP17139391 A JP 17139391A JP 3135613 B2 JP3135613 B2 JP 3135613B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
secondary battery
lithium secondary
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03171393A
Other languages
Japanese (ja)
Other versions
JPH0521065A (en
Inventor
則雄 高見
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03171393A priority Critical patent/JP3135613B2/en
Publication of JPH0521065A publication Critical patent/JPH0521065A/en
Application granted granted Critical
Publication of JP3135613B2 publication Critical patent/JP3135613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に関
し、特に負極を改良したリチウム二次電池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウムを用い
た非水電解液電池は高エネルギ―密度電池として注目さ
れており、正極活物質に二酸化マンガン(MnO2 )、
フッ化炭素[(CFn )]、塩化チオニル(SOC
2 )等を用いた一次電池は既に電卓、時計の電源やメ
モリのバックアップ電池として多用されている。更に、
近年、VTR、通信機器等の各種の電子機器の小形、軽
量化に伴い、それらの電源として高エネルギ―密度の二
次電池の要求が高まり、リチウムを負極活物質とするリ
チウム二次電池の研究が活発に行われている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ) has been used as a positive electrode active material.
Fluorocarbon [(CF n )], thionyl chloride (SOC
Primary batteries using l 2 ) and the like are already frequently used as backup batteries for power supplies of calculators and watches and memories. Furthermore,
In recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, the demand for secondary batteries with high energy density has increased as a power source for them, and research on lithium secondary batteries using lithium as a negative electrode active material has been conducted. Is being actively conducted.

【0003】リチウム二次電池は、負極にリチウムを用
い、リチウムイオン伝導性電解質として炭酸プロピレン
(PC)、1,2-ジメトキシエタン(DME)、γ−ブチ
ロラクトン(γ−BL)、テトラヒドロフラン(TH
F)などの非水溶媒中にLiClO4 、LiBF4 、L
iAsF6 、LiPF6 等のリチウム塩を溶解した非水
電解液やリチウムイオン伝導性固体電解質から構成さ
れ、正極活物質としては主にTiS2 、MoS2 、V2
5 、V6 13等のリチウムとの間でトポケミカル反応
する化合物が研究されている。
A lithium secondary battery uses lithium as a negative electrode and propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofuran (TH) as a lithium ion conductive electrolyte.
F) LiClO 4 , LiBF 4 , L
It is composed of a non-aqueous electrolyte solution in which a lithium salt such as iAsF 6 or LiPF 6 is dissolved, or a lithium ion conductive solid electrolyte. As a positive electrode active material, mainly TiS 2 , MoS 2 , V 2
O 5, compounds of topochemical reaction with the lithium, such as V 6 O 13 have been studied.

【0004】しかしながら、上述した二次電池は現在、
未だ実用化されていない。この主な理由は、充放電効率
が低く、しかも充放電回数(サイクル)寿命が短いため
である。この原因は、負極リチウムと非水電解液との反
応によるリチウムの劣化によるところが大きいと考えら
れている。即ち、放電時にリチウムイオンとして非水電
解液中に溶解したリチウムは充電時に析出する際に溶媒
と反応し、その表面が一部不活性化される。このため、
充放電を繰返していくと、デンドライト状(樹枝状)の
リチウムが発生したり、小球状に析出したりリチウムが
集電体より脱離するなどの現象が生じる。
However, the above-mentioned secondary battery is currently
It has not been put to practical use yet. The main reason for this is that the charge / discharge efficiency is low and the number of charge / discharge (cycle) life is short. It is considered that this is largely due to the deterioration of lithium due to the reaction between the negative electrode lithium and the non-aqueous electrolyte. That is, lithium dissolved in the non-aqueous electrolyte as lithium ions at the time of discharging reacts with the solvent at the time of deposition at the time of charging, and its surface is partially inactivated. For this reason,
When charge and discharge are repeated, phenomena such as generation of dendritic (dendritic) lithium, precipitation in small spheres, and elimination of lithium from the current collector occur.

【0005】このようなことから、リチウム二次電池に
組込まれる負極としてリチウムを吸蔵・放出する炭素質
物やカルコゲン化合物が検討されている。前記炭素質物
としては、例えばコークス、樹脂焼成体、炭素繊維、熱
分解気相炭素体等を用いることによって、リチウムと非
水電解液との反応やデンドライト析出による負極劣化を
改善することが提案されている。しかしながら、かかる
負極はリチウムイオンの吸蔵・放出量が小さいため、負
極比容量(mAh/cm3 )が小さく、しかもリチウム
イオンの吸蔵量を大きくする(充電容量を大きくする)
と、例えば炭素質物の構造が劣化したり非水電解液中の
溶媒を分解する。更に、充電電流密度を高くすると、リ
チウムイオンの吸蔵量が低下し、リチウム金属が析出す
る問題がある。これは、リチウムイオンを吸蔵する電位
が0V(VS、Li/Li+ )以下になるためである。
その結果、前記負極を組み込んだリチウム二次電池はサ
イクル寿命を向上させることが困難となる問題があっ
た。
[0005] For these reasons, carbonaceous materials and chalcogen compounds that occlude and release lithium have been studied as negative electrodes incorporated in lithium secondary batteries. As the carbonaceous material, for example, by using coke, resin fired body, carbon fiber, pyrolysis gas phase carbon body, and the like, it is proposed to improve the negative electrode degradation due to the reaction between lithium and the non-aqueous electrolyte and the dendrite deposition. ing. However, since such an anode has a small amount of absorbing and releasing lithium ions, the anode has a specific capacity (mAh / cm 3). ) Is small, and the amount of absorbed lithium ions is increased (increase the charging capacity)
Then, for example, the structure of the carbonaceous material is deteriorated or the solvent in the non-aqueous electrolyte is decomposed. Furthermore, when the charging current density is increased, the amount of occluded lithium ions decreases, and there is a problem that lithium metal is deposited. This is because the potential for absorbing lithium ions is 0 V (VS, Li / Li + )
As a result, the lithium secondary battery incorporating the negative electrode has a problem that it is difficult to improve the cycle life.

【0006】一方、リチウムイオンが挿入・脱離される
カルコゲン化合物の中で、起電力の低いWO2 、MoO
2 、FeOCl、NbSe3 等を負極として用いること
が提案され、特にWO2 /LiCoO2 の負極を備えた
電池は平均電圧が3.2VとなることがJ.Elect
rochem.Soc.,134、638(1987)
において発表されている。
On the other hand, among the chalcogen compounds into which lithium ions are inserted and desorbed, WO 2 and MoO 2 having low electromotive force are used.
2, FeOCl, been proposed to use NbSe 3, etc. as the negative electrode, especially a battery comprising a negative electrode of WO 2 / LiCoO 2 that the average voltage becomes 3.2 V J. Elect
rochem. Soc. , 134, 638 (1987).
It has been announced at.

【0007】しかしながら、前記カルコゲン化合物から
なる負極はリチウムイオンの挿入時(充電時)に電解液
の分解が起き易い、充放電効率が低い、導電性が低い等
の問題がある。このため、前記負極を組み込んだリチウ
ム二次電池は容量および寿命の点で十分満足するもので
はなかった。なお、前記カルコゲン化合物からなる負極
の導電性を改善するためにグラファイト、アセチレンブ
ラックなどのカーボンを導電剤として配合することが試
みられているが、前記カルコゲン化合物は前記カーボン
上で電解液を還元分解するという問題があった。
However, the negative electrode composed of the chalcogen compound has problems such that the electrolyte is easily decomposed when lithium ions are inserted (during charging), the charge / discharge efficiency is low, and the conductivity is low. For this reason, lithium secondary batteries incorporating the negative electrode have not been satisfactory in terms of capacity and life. In order to improve the conductivity of the negative electrode composed of the chalcogen compound, it has been attempted to mix carbon such as graphite and acetylene black as a conductive agent.However, the chalcogen compound reductively decomposes the electrolytic solution on the carbon. There was a problem of doing.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、高容量でサイ
クル寿命の優れたリチウム二次電池を提供しようとする
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a lithium secondary battery having a high capacity and an excellent cycle life.

【0009】[0009]

【課題を解決するための手段】本発明に係わるリチウム
二次電池は、容器内に正極、負極およびリチウムイオン
伝導性電解質を収納したリチウム二次電池において、
SUMMARY OF THE INVENTION A lithium secondary battery according to the present invention is a lithium secondary battery containing a positive electrode, a negative electrode, and a lithium ion conductive electrolyte in a container.

【0010】前記負極は(a)リチウムイオンを挿入・
脱離する反応が平均電位2V(VS、Li/Li+ )以
下であるカルコゲン化合物または同性質を有するリチウ
ムイオン含有カルコゲン化合物と(b)リチウムイオン
を吸蔵・放出することが可能な炭素質物との混合物から
なることを特徴とするものである。
The negative electrode (a) has lithium ions inserted therein.
The reaction to be eliminated has an average potential of 2 V (VS, Li / Li + ) A mixture of a chalcogen compound or a lithium ion-containing chalcogen compound having the same properties as described below, and (b) a carbonaceous substance capable of inserting and extracting lithium ions.

【0011】前記正極は、種々の酸化物、例えば二酸化
マンガン、リチウムマンガン複合酸化物、リチウム含有
ニッケル酸化物、リチウム含有コバルト酸化物、リチウ
ム含有ニッケルコバルト酸化物、リチウムを含む非晶質
五酸化バナジウムや、二硫化チタン、二硫化モリブデン
などの2V(VS、Li/Li+ )以上の起電力を有す
るカルコゲン化合物等を挙げることができる。中でも、
起電力の高いリチウムコバルト酸化物(LiCoO2
を用いることが好ましい。
The positive electrode is made of various oxides, for example, manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel-cobalt oxide, and amorphous vanadium pentoxide containing lithium. And 2V (VS, Li / Li +) of titanium disulfide, molybdenum disulfide, etc. And chalcogen compounds having the above electromotive force. Among them,
Lithium cobalt oxide (LiCoO 2 ) with high electromotive force
It is preferable to use

【0012】前記負極を構成する(a)成分である前記
カルコゲン化合物またはリチウム含有カルコゲン化合物
としてはリチウムイオンを平均電位2V(VS、Li/
Li+ )以下で挿入・脱離反応を起こすWO2 、MoS
2 、VSe2 、VS2 、LiVSe2 、LiTiS2
Fe2 3 等を挙げることができる。中でもWO2 は電
池電圧をより高めることができるために有用である。
As the chalcogen compound or the lithium-containing chalcogen compound which is the component (a) constituting the negative electrode, a lithium ion has an average potential of 2 V (VS, Li /
Li + ) WO 2 and MoS which cause insertion / desorption reactions below
2 , VSe 2 , VS 2 , LiVSe 2 , LiTiS 2 ,
Fe 2 O 3 and the like can be mentioned. Among them, WO 2 is useful because the battery voltage can be further increased.

【0013】前記負極を構成する(b)成分である前記
炭素質物は、黒鉛構造と乱層構造からなり、前記黒鉛構
造を規定するX線回折により得られる(002)面の面
間隔(d002 )が0.340nm以上、C軸方向の結晶
子の大きさ(Lc )が20nm以下であることが望まし
い。このようなd002 及びLc の値が、前記範囲を逸脱
すると前記炭素質物を(b)成分として含む負極の0.
5V(VS、Li/Li+ )以上の電位におけるリチウ
ムイオン吸蔵・放出量の減少、黒鉛構造の劣化、非水電
解液中の溶媒の還元分解によるガス発生等を招き、二次
電池の容量減少とサイクル寿命の低下を生じる恐れがあ
る。より好ましい前記d002 及びLc は、それぞれ0.
345〜0.370nm、1〜10nmの範囲である。
The carbonaceous material as the component (b) constituting the negative electrode has a graphite structure and a turbostratic structure, and has a (002) plane spacing (d 002 ) obtained by X-ray diffraction defining the graphite structure. ) Is desirably 0.340 nm or more, and the crystallite size (Lc) in the C-axis direction is desirably 20 nm or less. If the values of d 002 and Lc deviate from the above ranges, the negative electrode containing the carbonaceous material as the component (b) may have a.
5V (VS, Li / Li + ) At the above potential, decrease of lithium ion occlusion / release amount, deterioration of graphite structure, gas generation due to reductive decomposition of solvent in non-aqueous electrolyte, etc., may cause reduction of secondary battery capacity and cycle life. There is. More preferably, d 002 and Lc are each 0.1.
The range is from 345 to 0.370 nm and from 1 to 10 nm.

【0014】前記炭素質物を構成する黒鉛構造と乱層構
造の比率の尺度としては、アルゴンレーザ(波長;51
4.5nm)を光源として測定された炭素質物のラマン
スペクトルがある。測定されるラマンスペクトルは、1
360cm-1付近に現れる乱層構造に由来するピークと、
1580cm-1付近に現れる黒鉛構造に由来するピークと
が存在し、そのピーク強度比(例えば乱層構造に由来す
るラマン強度をR1 、黒鉛構造に由来するラマン強度を
2 とした場合の強度比R1 /R2 )又は面積比を用い
ることが有効である。前記負極を構成する(b)成分に
適する炭素質物における黒鉛構造と乱層構造の比率は、
前記R1 /R2 が0.8より大きくなるように設定する
ことが望ましい。かかる強度比を0.8以下にすると、
負極の0.5V(VS、Li/Li+ )以上の電位にお
けるリチウムイオン吸蔵・放出量の減少を伴う。より好
ましい強度比(R1 /R2 )は、1.0〜1.7の範囲
である。
As a measure of the ratio between the graphite structure and the turbostratic structure constituting the carbonaceous material, an argon laser (wavelength: 51
(4.5 nm) as a light source. The measured Raman spectrum is 1
A peak derived from a turbostratic structure appearing near 360 cm −1 ,
There is a peak derived from the graphite structure appearing around 1580 cm -1 , and the peak intensity ratio (for example, the intensity when the Raman intensity derived from the turbostratic structure is R 1 and the Raman intensity derived from the graphite structure is R 2) It is effective to use the ratio (R 1 / R 2 ) or the area ratio. The ratio of the graphite structure to the turbostratic structure in the carbonaceous material suitable for the component (b) constituting the negative electrode is as follows:
It is desirable to set R 1 / R 2 to be larger than 0.8. When the intensity ratio is 0.8 or less,
0.5 V (VS, Li / Li + At the above potential, the amount of lithium ion occlusion / release is reduced. More preferably the intensity ratio (R 1 / R 2) is in the range of 1.0 to 1.7.

【0015】前記炭素質物中の未黒鉛化による残留水素
の比率は、水素/炭素の原子比(H/C)で規定され
る。前記負極材として適する炭素質物は、前記H/Cが
0.15以下であることが望ましい。かかるH/Cが
0.15を越えると、負極のリチウムイオン吸蔵・放出
量を増大させることが困難となるばかりか、充放電効率
も低下する恐れがある。より好ましいH/Cは、0.0
4以下である。前記炭素質物としては、上述した性質を
有するものであれば、コークス、ピッチ系炭素繊維、球
状炭素質物、熱分解気相炭素体などを用いることができ
る。
The ratio of residual hydrogen due to ungraphitization in the carbonaceous material is defined by the atomic ratio of hydrogen / carbon (H / C). The H / C of the carbonaceous material suitable as the negative electrode material is desirably 0.15 or less. If the H / C exceeds 0.15, it is not only difficult to increase the amount of lithium ions absorbed and released by the negative electrode, but also the charge / discharge efficiency may be reduced. More preferred H / C is 0.0
4 or less. As the carbonaceous material, coke, pitch-based carbon fiber, spherical carbonaceous material, pyrolytic gas-phase carbonaceous material, or the like can be used as long as it has the above-mentioned properties.

【0016】前記負極を構成する(a)前記カルコゲン
化合物またはリチウムイオン含有カルコゲン化合物と
(b)前記炭素質物の混合比(b/a)は、前記負極の
導電率、比容量(mAh/cm3 )の関係から設定する
ことが望ましく、具体的には重量比率にて0.04〜
0.5の範囲とすることが好ましい。これは、前記混合
比を0.04未満にすると負極の抵抗増大と利用率の低
下により容量の低下を招く恐れがあり、一方前記混合比
が0.5を越えると負極充填密度の低下により比容量が
低下する恐れがあるからである。より好ましい前記混合
比(b/a)は、0.07〜0.35の範囲である。
The mixing ratio (b / a) of (a) the chalcogen compound or the lithium ion-containing chalcogen compound constituting the negative electrode and (b) the carbonaceous material is determined by the conductivity and specific capacity (mAh / cm 3 ) of the negative electrode. ) Is desirably set based on the relationship of
It is preferable to set the range to 0.5. This is because if the mixing ratio is less than 0.04, the capacity may decrease due to an increase in the resistance of the negative electrode and a decrease in the utilization factor. This is because the capacity may be reduced. The more preferable mixing ratio (b / a) is in the range of 0.07 to 0.35.

【0017】前記リチウムイオン伝導性電解質として
は、例えばエチレンカーボネート、プロピレンカーボネ
ート、ブチレンカーボネート、γ−ブチロラクトン、ス
ルホラン、アセトニトリル、1,2-ジメトキシエタン、1,
3-ジメトキシプロパン、ジメチルエーテル、テトラヒド
ロフラン、2-メチルテトラヒドロフランから選ばれる少
なくと1種以上からなる非水溶媒に過塩素酸リチウム
(LiClO4 )、六フッ化リン酸リチウム(LiPF
6 )、ホウフッ化リチウム(LiBF4 )、六フッ化砒
素リチウム(LiAsF6 )、トリフルオロメタンスル
ホン酸リチウム(LiCF3 SO3 )などのリチウム塩
(電解質)を溶解した非水電解液を挙げることができ
る。前記電解質の非水溶媒に対する溶解量は、0.5〜 1.
5モル/lとすることが望ましい。また、リチウムイオ
ン伝導性の固体電解質を用いることができる。例えば、
高分子化合物にリチウム塩を複合した高分子固体電解質
を挙げることができる。
Examples of the lithium ion conductive electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxyethane,
Lithium perchlorate (LiClO 4 ) and lithium hexafluorophosphate (LiPF) are used in at least one non-aqueous solvent selected from 3-dimethoxypropane, dimethyl ether, tetrahydrofuran and 2-methyltetrahydrofuran.
6 ), non-aqueous electrolytes in which lithium salts (electrolytes) such as lithium borofluoride (LiBF 4 ), lithium arsenic hexafluoride (LiAsF 6 ), and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ) are dissolved. it can. The amount of the electrolyte dissolved in the nonaqueous solvent is 0.5 to 1.
It is desirably 5 mol / l. In addition, a lithium ion conductive solid electrolyte can be used. For example,
A polymer solid electrolyte in which a polymer compound is compounded with a lithium salt can be given.

【0018】[0018]

【作用】本発明によれば、(a)リチウムイオンを挿入
・脱離する反応が平均電位2V(VS、Li/Li+
以下であるカルコゲン化合物または同性質を有するリチ
ウムイオン含有カルコゲン化合物と(b)リチウムイオ
ンを吸蔵・放出することが可能な炭素質物との混合物か
ら負極を構成することによって、前記(a)成分のみか
らなる負極に比べて負極の導電性と、充放電容量および
サイクル寿命を増大できる。これは、前記(b)成分で
あるリチウムイオンを吸蔵・放出することが可能な炭素
質物が前記負極と共に容器に収納されるリチウムムイオ
ン伝導性非水電解質の分解を起こさずに負極活物質およ
び導電材として作用するためである。特に、前記炭素質
物として黒鉛構造と乱層構造からなり、黒鉛構造におけ
る(002)面の面間隔(d002 )が0.340nm以
上、C軸方向の結晶子の大きさ(Lc )が20nm以下
であり、アルゴンレーザラマンスペクトルにおける15
80cm-1のピーク強度に対する1360cm-1のピー
ク強度比が0.8より大きいものを用いると、リチウム
イオンを吸蔵する容量が0.5V(VS、Li/L
+ )以上の電位域で増大するため負極容量の増大に寄
与できる。
According to the present invention, (a) the reaction for inserting and removing lithium ions is performed at an average potential of 2 V (VS, Li / Li + )
By forming the negative electrode from a mixture of the following chalcogen compound or a lithium ion-containing chalcogen compound having the same properties and (b) a carbonaceous substance capable of occluding and releasing lithium ions, the negative electrode is composed of only the component (a). The conductivity, charge / discharge capacity, and cycle life of the negative electrode can be increased as compared with the negative electrode. This is because the carbonaceous material capable of occluding and releasing the lithium ion as the component (b) does not cause decomposition of the lithium ion conductive non-aqueous electrolyte housed in the container together with the negative electrode, and the negative electrode active material and the conductive material do not decompose. This is because it acts as a material. In particular, the carbonaceous material has a graphite structure and a turbostratic structure, and the plane spacing (d 002 ) of the (002) plane in the graphite structure is 0.340 nm or more, and the crystallite size (Lc) in the C-axis direction is 20 nm or less. And 15 in the argon laser Raman spectrum.
When the peak intensity ratio of 1360 cm -1 to the peak intensity of 80 cm -1 is used greater than 0.8, the capacity of occluding lithium ions 0.5V (VS, Li / L
i + ) Since it increases in the above potential range, it can contribute to an increase in the negative electrode capacity.

【0019】さらに、前記負極を構成する(a)前記カ
ルコゲン化合物またはリチウムイオン含有カルコゲン化
合物と(b)前記炭素質物の混合比(b/a)を重量比
率にて0.04〜0.5の範囲とすると、負極の比容量
(mAh/cm3 )と導電率を最適値に設定でき、充放
電容量を増大できる。
Further, the mixing ratio (b / a) of (a) the chalcogen compound or the lithium ion-containing chalcogen compound constituting the negative electrode and (b) the carbonaceous material is 0.04 to 0.5 by weight. Within this range, the specific capacity of the negative electrode (mAh / cm 3 ) And the conductivity can be set to optimal values, and the charge / discharge capacity can be increased.

【0020】[0020]

【実施例】以下、本発明を円筒形リチウム二次電池に適
用した例を図1を参照して詳細に説明する。 実施例1
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a cylindrical lithium secondary battery will be described in detail with reference to FIG. Example 1

【0021】図中の1は、底部に絶縁体2が配置された
有底円筒状のステンレス容器である。この容器1内に
は、電極群3が収納されている。この電極群3は、正極
4、セパレ―タ5及び負極6をこの順序で積層した帯状
物を該負極6が外側に位置するように渦巻き状に巻回し
た構造になっている。
Reference numeral 1 in the drawing denotes a bottomed cylindrical stainless steel container having an insulator 2 disposed at the bottom. In this container 1, an electrode group 3 is housed. The electrode group 3 has a structure in which a band formed by laminating a positive electrode 4, a separator 5 and a negative electrode 6 in this order is spirally wound so that the negative electrode 6 is located outside.

【0022】前記正極4は、リチウムコバルト酸化物
(Lix CoO2 )粉末80重量%をアセチレンブラッ
ク15重量%およびポリテトラフルオロエチレン粉末5
重量%と共に混合し、シート化し、エキスパンドメタル
集電体に圧着した形状になっている。前記セパレ―タ5
は、ポリプロピレン性多孔質フィルムから形成されてい
る。
The positive electrode 4 is composed of 80% by weight of lithium cobalt oxide (Li x CoO 2 ) powder, 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder.
It is mixed with a weight%, formed into a sheet, and pressed into contact with an expanded metal current collector. The separator 5
Is formed from a polypropylene porous film.

【0023】前記負極6は、ピッチから熱処理、分離さ
れたメソフェーズ小球体を炭素化して得られた平均粒径
が10μmの球状炭素質物粒子[(b)成分]17重量
%とWO2 [(a)成分]80重量%とエチレンプロピ
レン共重合体3重量%とを混合し、これを集電体として
のニッケル箔に60mg/cm2 の量で塗布したもので
ある。なお、前記炭素質物粒子はX線回折による各種の
パラメータがd002 =0.3508nm、Lc=2.5
0nmで、アルゴンレーザを光源として測定された13
60cm-1のラマン強度R1 と1580cm-1のラマン強度
2 の比(R1/R2 )が1.1である。また、前記炭
素質物粒子は水素/炭素の原子比が0.003である。
前記WO2 と炭素質物の重量比(a/b)は、0.21
25である。
The negative electrode 6 has 17% by weight of spherical carbonaceous material particles (component (b)) having an average particle diameter of 10 μm obtained by carbonizing the mesophase spheres heat-treated and separated from the pitch, and WO 2 [(a ) Ingredient] 80% by weight and 3% by weight of ethylene propylene copolymer were mixed, and this was applied to a nickel foil as a current collector at 60 mg / cm 2. It was applied in the amount of The carbonaceous material particles had various parameters obtained by X-ray diffraction, d 002 = 0.3508 nm and Lc = 2.5.
0 nm, measured using an argon laser as a light source.
60cm ratio of the Raman intensity R 2 of the Raman intensity R 1 and 1580 cm -1 of -1 (R 1 / R 2) is 1.1. The carbonaceous material particles have an atomic ratio of hydrogen / carbon of 0.003.
The weight ratio (a / b) of WO 2 to carbonaceous material is 0.21
25.

【0024】前記容器1内には、六フッ化リン酸リチウ
ム(LiPF6 )をエチレンカーボネートとプロピレン
カーボネートと1,2−ジメトキシエタンの混合溶媒
(混合体積比率25:25:50)に1.0モル/l溶
解した組成の電解液が収容されている。前記電極群3上
には、中央部が開口された絶縁紙7が載置されている。
更に、前記容器 1の上部開口部には、絶縁封口板8が該
容器1へのかしめ加工等により液密に設けられており、
かつ該絶縁封口板8の中央には正極端子9が嵌合されて
いる。この正極端子9は、前記電極群3の正極4に正極
リ―ド10を介して接続されている。なお、電極群3の
負極6は図示しない負極リ―ドを介して負極端子である
前記容器1に接続されている。 実施例2
In the vessel 1, lithium hexafluorophosphate (LiPF 6 ) is added to a mixed solvent of ethylene carbonate, propylene carbonate and 1,2-dimethoxyethane (mixing volume ratio 25:25:50) in a volume of 1.0%. An electrolytic solution having a composition of mol / l dissolved therein is contained. On the electrode group 3, an insulating paper 7 having a central opening is placed.
Further, an insulating sealing plate 8 is provided at the upper opening of the container 1 in a liquid-tight manner by caulking the container 1 or the like.
A positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8. The positive terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. In addition, the negative electrode 6 of the electrode group 3 is connected to the container 1 as a negative electrode terminal via a negative lead (not shown). Example 2

【0025】負極を構成する(b)成分である球状炭素
質物粒子としてX線回折による各種のパラメータとして
のd002 =0.3452nm、Lc =2.50nm、前
記R1 /R2 が1.0のものを用いた以外、実施例1と
同構成のリチウム二次電池を組み立てた。 実施例3
The spherical carbonaceous material particles as the component (b) constituting the negative electrode have various parameters determined by X-ray diffraction: d 002 = 0.3452 nm, Lc = 2.50 nm, and R 1 / R 2 is 1.0. A lithium secondary battery having the same configuration as in Example 1 was assembled, except that the above-described lithium secondary battery was used. Example 3

【0026】負極を構成する(b)成分である球状炭素
質物粒子としてX線回折による各種のパラメータとして
のd002 =0.3410nm、Lc =5.00nm、前
記R1 /R2 が0.75、水素/炭素の原子比が0.0
01である平均粒径が20μmのものを用いた以外、実
施例1と同構成のリチウム二次電池を組み立てた。 実施例4
The spherical carbonaceous material particles as the component (b) constituting the negative electrode have various parameters determined by X-ray diffraction: d 002 = 0.3410 nm, Lc = 5.00 nm, and R 1 / R 2 is 0.75. , The atomic ratio of hydrogen / carbon is 0.0
A lithium secondary battery having the same configuration as that of Example 1 was assembled, except that an average particle diameter of 01 and 20 μm was used. Example 4

【0027】ピッチから熱処理、分離されたメソフェー
ズ小球体を炭素化して得られた平均粒径が10μmの球
状炭素質物粒子[(b)成分]27重量%とWO
2 [(a)成分]70重量%とエチレンプロピレン共重
合体3重量%とを混合し、これを集電体としてのニッケ
ル箔に40mg/cm2 の量で塗布した負極を用いた以
外、実施例1と同構成のリチウム二次電池を組み立て
た。 実施例5
27% by weight of spherical carbonaceous material particles (component (b)) having an average particle diameter of 10 μm obtained by carbonizing the mesophase small spheres heat-treated and separated from the pitch, and WO
2 [Component (a)] A mixture of 70% by weight of ethylene propylene copolymer and 3% by weight of ethylene propylene copolymer was added to a nickel foil as a current collector at 40 mg / cm 2. A lithium secondary battery having the same configuration as that of Example 1 was assembled except that the negative electrode coated in the amount described above was used. Example 5

【0028】ピッチから熱処理、分離されたメソフェー
ズ小球体を炭素化して得られた平均粒径が10μmの球
状炭素質物粒子[(b)成分]7重量%とWO
2 [(a)成分]90重量%とエチレンプロピレン共重
合体3重量%とを混合し、これを集電体としてのニッケ
ル箔に70mg/cm2 の量で塗布した負極を用いた以
外、実施例1と同構成のリチウム二次電池を組み立て
た。 比較例1
7% by weight of spherical carbonaceous material particles (component (b)) having an average particle size of 10 μm obtained by carbonizing the mesophase small spheres heat-treated and separated from the pitch and WO
2 [Component (a)] A mixture of 90% by weight and 3% by weight of an ethylene propylene copolymer was added to a nickel foil as a current collector at 70 mg / cm 2. A lithium secondary battery having the same configuration as that of Example 1 was assembled except that the negative electrode coated in the amount described above was used. Comparative Example 1

【0029】WO2 97重量%とエチレンプロピレン共
重合体3重量%とを混合し、これを集電体としてのニッ
ケル箔に85mg/cm2 の量で塗布した負極を用いた
以外、実施例1と同構成のリチウム二次電池を組み立て
た。 比較例2
WOTwo97% by weight of ethylene propylene
3% by weight of a polymer were mixed, and this was used as a current collector.
85mg / cm for keel foilTwo Using the negative electrode coated in the amount of
Other than that, assemble the lithium secondary battery having the same configuration as in Example 1.
Was. Comparative Example 2

【0030】メソフェーズ小球体を炭素化した球状炭素
質物粒子98重量%とエチレンプロピレン共重合体2重
量%とを混合し、これを集電体としてのニッケル箔に1
0mg/cm2 の量で塗布した負極を用いた以外、実施
例1と同構成のリチウム二次電池を組み立てた。 比較例3
A mixture of 98% by weight of spherical carbonaceous material particles obtained by carbonizing mesophase small spheres and 2% by weight of an ethylene-propylene copolymer was added to a nickel foil as a current collector.
0 mg / cm 2 A lithium secondary battery having the same configuration as that of Example 1 was assembled except that the negative electrode coated in the amount described above was used. Comparative Example 3

【0031】グラファイト17重量%とWO2 80重量
%とエチレンプロピレン共重合体3重量%とを混合し、
これを集電体としてのニッケル箔に60mg/cm2
量で塗布した負極を用いた以外、実施例1と同構成のリ
チウム二次電池を組み立てた。なお、前記グラファイト
はX線回折による各種パラメータはd002 =0.338
nm、Lc =50nm、前記R1 /R2 が0.1であ
る。
Mixing 17% by weight of graphite, 80% by weight of WO 2 and 3% by weight of ethylene propylene copolymer,
This was applied to a nickel foil as a current collector at 60 mg / cm 2. A lithium secondary battery having the same configuration as that of Example 1 was assembled except that the negative electrode coated in the amount described above was used. For the graphite, various parameters obtained by X-ray diffraction were as follows: d 002 = 0.338
nm, Lc = 50nm, the R 1 / R 2 is 0.1.

【0032】しかして、本実施例1〜5及び比較例1〜
3のリチウム二次電池について充電電流50mAで3.
4Vまで充電し、50mAの電流で2.0Vまで放電す
る充放電(ただし、比較例2の電池では充電電流50m
Aで4.2Vまで充電し、50mAの電流で3.0Vま
で放電する充放電)を繰り返し行い、各電池の放電容量
とサイクル寿命をそれぞれ測定した。その結果を図2に
示す。
Thus, Examples 1 to 5 and Comparative Examples 1 to
2. For the lithium secondary battery of No. 3, at a charging current of 50 mA.
Charge and discharge by charging to 4 V and discharging to 2.0 V at a current of 50 mA (however, the battery of Comparative Example 2 has a charging current of 50 m
A to 4.2 V and discharge to 3.0 V at a current of 50 mA) were repeated, and the discharge capacity and cycle life of each battery were measured. The result is shown in FIG.

【0033】図2から明らかなように本実施例1〜5の
リチウム二次電池では、比較例1〜3の電池に比べて容
量が増大し、かつサイクル寿命が格段に向上することが
わかる。
As is apparent from FIG. 2, the lithium secondary batteries of Examples 1 to 5 have an increased capacity and a remarkably improved cycle life as compared with the batteries of Comparative Examples 1 to 3.

【0034】[0034]

【発明の効果】以上詳述した如く、本発明によれば高容
量でサイクル寿命の優れたリチウム二次電池を提供でき
る。
As described above, according to the present invention, a lithium secondary battery having a high capacity and an excellent cycle life can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における円筒形リチウム二次
電池を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical lithium secondary battery in Embodiment 1 of the present invention.

【図2】実施例1〜5及び比較例1〜3のリチウム二次
電池における充放電サイクルと放電容量との関係を示す
特性図。
FIG. 2 is a characteristic diagram showing a relationship between a charge / discharge cycle and a discharge capacity in the lithium secondary batteries of Examples 1 to 5 and Comparative Examples 1 to 3.

【符号の説明】[Explanation of symbols]

1…ステンレス容器、3…電極群、4…正極、5…セパ
レ―タ、6…負極、8…封口板、9…正極端子。
DESCRIPTION OF SYMBOLS 1 ... Stainless steel container, 3 ... Electrode group, 4 ... Positive electrode, 5 ... Separator, 6 ... Negative electrode, 8 ... Sealing plate, 9 ... Positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−37968(JP,A) 特開 昭63−124372(JP,A) 仏国特許出願公開2677175(FR,A 1) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/58 H01M 10/40 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-37968 (JP, A) JP-A-63-124372 (JP, A) French Patent Application Publication 2677175 (FR, A1) (58) Search Fields (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/58 H01M 10/40

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器内に正極、負極およびリチウムイオ
ン伝導性電解質を収納したリチウム二次電池において、 前記負極は(a)リチウムイオンを挿入・脱離する反応
が平均電位2V(VS、Li/Li+ )以下であるカル
コゲン化合物または同性質を有するリチウムイオン含有
カルコゲン化合物と(b)リチウムイオンを吸蔵・放出
することが可能な炭素質物との混合物からなることを特
徴とするリチウム二次電池。
1. A lithium secondary battery containing a positive electrode, a negative electrode and a lithium ion conductive electrolyte in a container, wherein the negative electrode has (a) a reaction for inserting and removing lithium ions in which an average potential is 2 V (VS, Li / Li + A) a lithium secondary battery comprising a mixture of the following chalcogen compound or a lithium ion-containing chalcogen compound having the same properties and (b) a carbonaceous substance capable of inserting and extracting lithium ions.
【請求項2】 前記炭素質物は、黒鉛構造と乱層構造か
らなり、黒鉛構造における(002)面の面間隔(d
002 )が0.340nm以上、C軸方向の結晶子の大き
さ(Lc )が20nm以下であり、アルゴンレーザラマ
ンスペクトルにおける1580cm-1のピーク強度に対
する1360cm-1のピーク強度比が0.8より大きい
ことを特徴とする請求項1記載のリチウム二次電池。
2. The carbonaceous material has a graphite structure and a turbostratic structure, and the (002) plane spacing (d) in the graphite structure.
002) is more than 0.340 nm, and the size of the C-axis direction of the crystallite (Lc) is 20nm or less, is greater than 0.8 the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon laser Raman spectra The lithium secondary battery according to claim 1, wherein:
JP03171393A 1991-07-11 1991-07-11 Lithium secondary battery Expired - Lifetime JP3135613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03171393A JP3135613B2 (en) 1991-07-11 1991-07-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03171393A JP3135613B2 (en) 1991-07-11 1991-07-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0521065A JPH0521065A (en) 1993-01-29
JP3135613B2 true JP3135613B2 (en) 2001-02-19

Family

ID=15922332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03171393A Expired - Lifetime JP3135613B2 (en) 1991-07-11 1991-07-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3135613B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3653105B2 (en) * 1993-02-25 2005-05-25 呉羽化学工業株式会社 Carbonaceous material for secondary battery electrode
DE69404901T2 (en) * 1993-05-14 1998-03-12 Sharp Kk Lithium secondary battery
JP3200289B2 (en) * 1994-07-29 2001-08-20 シャープ株式会社 Lithium secondary battery
JP3222022B2 (en) 1994-10-27 2001-10-22 シャープ株式会社 Method for producing lithium secondary battery and negative electrode active material
JP4841814B2 (en) * 2004-07-14 2011-12-21 株式会社Kri Non-aqueous secondary battery

Also Published As

Publication number Publication date
JPH0521065A (en) 1993-01-29

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US5130211A (en) Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes
US5244757A (en) Lithium secondary battery
US5272022A (en) Non-aqueous electrolyte secondary battery
JP3028582B2 (en) Non-aqueous electrolyte secondary battery
KR101626570B1 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JPH07201316A (en) Nonaqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JPH1097870A (en) Lithium secondary battery
JP3512846B2 (en) Non-aqueous electrolyte battery
JP3135613B2 (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3696159B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2637305B2 (en) Lithium secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JP3522783B2 (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JP2928620B2 (en) Non-aqueous electrolyte secondary battery
JP3029715B2 (en) Non-aqueous electrolyte secondary battery
JPH11250910A (en) Lithium secondary battery
JPH09171839A (en) Secondary battery having nonaqueous solvent electrolyte

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11