JP4841814B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery Download PDF

Info

Publication number
JP4841814B2
JP4841814B2 JP2004207855A JP2004207855A JP4841814B2 JP 4841814 B2 JP4841814 B2 JP 4841814B2 JP 2004207855 A JP2004207855 A JP 2004207855A JP 2004207855 A JP2004207855 A JP 2004207855A JP 4841814 B2 JP4841814 B2 JP 4841814B2
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
carbonaceous material
less
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004207855A
Other languages
Japanese (ja)
Other versions
JP2006032070A (en
Inventor
久史 佐竹
肇 木下
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2004207855A priority Critical patent/JP4841814B2/en
Publication of JP2006032070A publication Critical patent/JP2006032070A/en
Application granted granted Critical
Publication of JP4841814B2 publication Critical patent/JP4841814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、高容量と高出力とを兼ね備えた負極を具備する非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery including a negative electrode having both high capacity and high output.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。   In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of the effective use of energy aimed at preserving the global environment and conserving resources. Yes.

その中、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システムにおける高出力放電特性および/または高率充電受け入れ特性が要求されている。   Among them, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), the engine or the fuel cell operates at maximum efficiency. In order to cope with load-side output fluctuations or energy regeneration, high-power discharge characteristics and / or high-rate charge acceptance characteristics are required in the power storage system.

現在、上記要求に応えるべく、キャパシタ(電気二重層コンデンサ)の高エネルギー密度化、リチウムイオン電池の高出力化等の開発が進められている。リチウムイオン電池はコバルト、ニッケル、マンガン等のリチウム複合酸化物を正極とし、負極には黒鉛等の炭素材料を用いる。リチウムイオン電池用負極材料として適用可能な材料としては、黒鉛、非晶質炭素が一般的であり、その形状は球状、鱗片状、繊維状、不定形粒子等様々な形態を取る事ができる。また、カーボンブラック、カーボンナノチューブ等のナノ構造を有する炭素材料、高い比表面積を有する活性炭等も適用可能であるとされている。リチウムイオン電池の高出力化にはこれら材料のリチウムイオンの吸蔵・脱離速度を向上させる事が重要である。   Currently, developments such as higher energy density of capacitors (electric double layer capacitors) and higher output of lithium ion batteries are being promoted to meet the above requirements. Lithium ion batteries use a lithium composite oxide such as cobalt, nickel, or manganese as a positive electrode, and a carbon material such as graphite as a negative electrode. As a material applicable as a negative electrode material for a lithium ion battery, graphite and amorphous carbon are generally used, and the shape thereof can take various forms such as a spherical shape, a scale shape, a fibrous shape, and an amorphous particle. In addition, carbon materials having nanostructures such as carbon black and carbon nanotubes, activated carbon having a high specific surface area, and the like are also applicable. In order to increase the output of the lithium ion battery, it is important to improve the lithium ion storage / desorption rate of these materials.

非特許文献1には高出力型リチウムイオン用の負極材料として、黒鉛系材料に比べ、非晶質材料が出力面で有利である事が開示されている。非特許文献2には、活物質の粒度を変化させた場合の電池出力に関するシミュレーション結果より、活物質の粒度が小さい程、出力が向上する事が開示されている。また、特許文献1には直径5nm〜10nmカーボンナノチューブを含有する炭素質材料を負極活物質として用いることを特徴とする非水電解液二次電池が開示されており、特許文献2には、直径10nm、長さ0.5〜5μmのカーボンナノチューブ、直径30nm、長さ3〜10μmのカーボンナノチューブを負極に用いるリチウム二次電池が開示されている。
田中紀子他、高出力型リチウムイオン電池用負極炭素材料のパルス充放電挙動「第44回電池討論会講演要旨集」、2003年11月、1D25 p474−475 阿部孝昭他、リチウムイオン電池の高出力化「第43回電池討論会講演要旨集」、2002年10月、3A12 p218−219 特開平7−14573号公報 特開2003−331838号公報
Non-Patent Document 1 discloses that an amorphous material is more advantageous in terms of output as a negative electrode material for high-power lithium ions than graphite-based materials. Non-Patent Document 2 discloses that as the particle size of the active material is smaller, the output is improved from the simulation result regarding the battery output when the particle size of the active material is changed. Patent Document 1 discloses a nonaqueous electrolyte secondary battery using a carbonaceous material containing carbon nanotubes having a diameter of 5 nm to 10 nm as a negative electrode active material. Patent Document 2 discloses a diameter of A lithium secondary battery using a carbon nanotube having a diameter of 10 nm and a length of 0.5 to 5 μm and a carbon nanotube having a diameter of 30 nm and a length of 3 to 10 μm as a negative electrode is disclosed.
Noriko Tanaka et al., Pulse Charge / Discharge Behavior of Negative Carbon Material for High Power Lithium Ion Batteries “Abstracts of the 44th Battery Discussion Meeting”, November 2003, 1D25 p474-475 Takaaki Abe et al., High output of lithium-ion battery “Abstracts of the 43rd Battery Discussion Meeting”, October 2002, 3A12 p218-219 JP 7-14573 A JP 2003-331838 A

高出力型リチウムイオン電池の負極材料開発においては、リチウムイオンの吸蔵・脱離速度を向上させる事が重要であり、負極材料の粒度を小さくする事、あるいは、比表面積を大きくする事がその1つの方向である。上述の炭素材料の中で、カーボンブラック、カーボンナノチューブ等のナノ構造を有する炭素材料、高い比表面積を有する活性炭等がその候補と考えられる。しかし、これらナノ構造を有する材料を負極活物質として用いた場合、合材密度、電極の電気伝導度、高容量、高出力を兼ね備えた負極を得る事は難しかった。   In developing negative electrode materials for high-power lithium-ion batteries, it is important to improve the rate of occlusion / desorption of lithium ions. It is important to reduce the particle size of the negative electrode material or increase the specific surface area. There are two directions. Among the above-mentioned carbon materials, carbon materials having a nanostructure such as carbon black and carbon nanotubes, activated carbon having a high specific surface area, and the like are considered as candidates. However, when these nanostructured materials are used as the negative electrode active material, it has been difficult to obtain a negative electrode having a mixture density, electrode electrical conductivity, high capacity, and high output.

従って、本発明は、負極活物質の粒度を一定範囲に制御する事により、密度、電気伝導度、高容量、高出力を兼ね備えた負極を具備する高出力型リチウムイオン電池を提供することを主な目的とする。   Therefore, the present invention mainly provides a high-power type lithium ion battery having a negative electrode having density, electrical conductivity, high capacity, and high output by controlling the particle size of the negative electrode active material within a certain range. With a purpose.

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、平均粒径1μm以下0.1μm以上かつBET法による比表面積が500m/g未満の炭素質材料を負極の主成分として用いるなどにより、上記目的を達成できることを見出し、本発明を完成するに至った。 The present inventor conducted research while paying attention to the problems of the prior art as described above. As a result, the carbonaceous material having an average particle diameter of 1 μm or less and 0.1 μm or more and a specific surface area by the BET method of less than 500 m 2 / g. As a result, the present inventors have found that the above object can be achieved, for example, by using as a main component of the negative electrode.

請求項1に記載の非水系二次電池は、正極と、リチウムを吸蔵・放出可能な材料を主体とする負極と、リチウム塩が非水溶媒に溶解されてなる非水系電解液と、を有する非水系二次電池において、負極は平均粒径1μm以下0.1μm以上かつBET法による比表面積が20m /g未満の炭素質材料を主成分とし、かつ、合材密度が1.0g/cm3以上、かつ、電気伝導度が1.0×10−2S/cm以上である事を特徴としている。 The nonaqueous secondary battery according to claim 1 has a positive electrode, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent. In the non-aqueous secondary battery, the negative electrode is mainly composed of a carbonaceous material having an average particle diameter of 1 μm or less and 0.1 μm or more and a specific surface area by the BET method of less than 20 m 2 / g , and the composite material density is 1.0 g / cm. It is characterized by 3 or more and electric conductivity of 1.0 × 10 −2 S / cm or more.

請求項2に記載の非水系二次電池は、請求項1に記載の炭素質材料の粒度分布における90%粒子径が5μm以下である事を特徴としている。     The nonaqueous secondary battery according to claim 2 is characterized in that a 90% particle size in the particle size distribution of the carbonaceous material according to claim 1 is 5 μm or less.

請求項3に記載の非水系二次電池は、請求項1又は2に記載の非水系二次電池において、負極の主成分である炭素質材料は、平均繊維径が0.05μm以上1μm以下の繊維状炭素材料を粉砕したものである事を特徴としている。 The non-aqueous secondary battery according to claim 3 is the non-aqueous secondary battery according to claim 1 or 2 , wherein the carbonaceous material as the main component of the negative electrode has an average fiber diameter of 0.05 μm or more and 1 μm or less. It is characterized by pulverizing a fibrous carbon material.

請求項4に記載の非水系二次電池は、請求項1〜3のいずれか1項に記載の非水系二次電池において、負極の主成分である炭素質材料の水素/炭素の原子比が0.05未満である事を特徴としている。 The non-aqueous secondary battery according to claim 4 is the non-aqueous secondary battery according to any one of claims 1 to 3 , wherein the hydrogen / carbon atomic ratio of the carbonaceous material which is the main component of the negative electrode is the same. It is characterized by being less than 0.05.

請求項5に記載の非水系二次電池は、請求項1〜4のいずれか1項に記載の非水系二次電池において負極合材厚みが20μm以上である事を特徴としている。 The nonaqueous secondary battery according to claim 5 is characterized in that the thickness of the negative electrode mixture is 20 μm or more in the nonaqueous secondary battery according to any one of claims 1 to 4 .

上記請求項1から5の構成によれば、高エネルギー密度を有し、かつ、高出力の非水系二次電池を得ることができる。 According to the configuration of the first to fifth aspects, a non-aqueous secondary battery having a high energy density and a high output can be obtained.

本発明の非水系二次電池は、以上のように、正極、リチウムを吸蔵・放出可能な材料を主体とする負極、およびリチウム塩が非水溶媒に溶解されてなる非水系電解液を有する非水系二次電池において、負極は平均粒径1μm以下0.1μm以上かつBET法による比表面積が500m/g未満の炭素質材料を主成分とし、かつ、合材密度が1.0g/cm3以上、かつ、電気伝導度が1.0×10−2S/cm以上である。
それゆえ、高エネルギー密度を有し、かつ、10Cを超える高出力を有する非水系二次電池を提供できるという効果を奏する。
As described above, the non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. In the water-based secondary battery, the negative electrode is mainly composed of a carbonaceous material having an average particle diameter of 1 μm or less and 0.1 μm or more and a specific surface area by the BET method of less than 500 m 2 / g, and the composite material density is 1.0 g / cm 3. In addition, the electrical conductivity is 1.0 × 10 −2 S / cm or more.
Therefore, there is an effect that a non-aqueous secondary battery having a high energy density and a high output exceeding 10 C can be provided.

本発明の一実施形態について、説明すれば以下のとおりである。   One embodiment of the present invention will be described as follows.

本発明の非水系二次電池は正極と、リチウムを吸蔵・放出可能な材料を主体とする負極と、リチウム塩が非水溶媒に溶解されてなる非水系電解液と、を有する非水系二次電池において、負極は平均粒径1μm以下0.1μm以上かつBET法による比表面積が500m/g未満の炭素質材料を主成分とし、かつ、合材密度が1.0g/cm3以上、かつ、電気伝導度が1.0×10−2S/cm以上である。本発明におけるリチウムを吸蔵・放出可能な材料を主体とする負極は、黒鉛、非晶質炭素材料等の炭素質材料を主成分とし、その種類・形状については特に限定されるものではないが、水素/炭素の原子が0.05未満である場合、リチウムを効率良く吸蔵・放出できる事から好ましい。これら炭素質材料の平均粒径は1μm以下0.1μm以上であり、この値は市販のレーザー回折式粒度分布測定装置で測定する事ができる。本発明の炭素質材料の平均粒径が1μmを超える場合、充分な出力が得られず、0.1μm未満の場合、電極に成形する事が困難あるいは電極に成形できたとしても合材密度が低くなり、本発明の構成要件である1.0g/cm3以上の密度を得る事は困難である。また、充分な出力密度を得る為には、炭素質材料の粒度分布における90%粒子径を5μm以下にする事が望ましい。本発明における炭素質材料のBET法における比表面積は500m/g未満、好ましくは100m/g未満、更に好ましくは20m/g未満であり、比表面積が上限を超える場合、合材密度が低くなる、あるいは、リチウムを効率良く吸蔵・放出できない為、好ましくない。 The non-aqueous secondary battery of the present invention includes a positive electrode, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a non-aqueous secondary electrolyte in which a lithium salt is dissolved in a non-aqueous solvent. In the battery, the negative electrode is mainly composed of a carbonaceous material having an average particle size of 1 μm or less and 0.1 μm or more, and a specific surface area by the BET method of less than 500 m 2 / g, and the composite material density is 1.0 g / cm 3 or more, and The electrical conductivity is 1.0 × 10 −2 S / cm or more. The negative electrode mainly composed of a material capable of occluding and releasing lithium in the present invention is mainly composed of a carbonaceous material such as graphite and amorphous carbon material, and the type and shape thereof are not particularly limited, When the number of hydrogen / carbon atoms is less than 0.05, lithium is preferably occluded / released. These carbonaceous materials have an average particle size of 1 μm or less and 0.1 μm or more, and this value can be measured with a commercially available laser diffraction particle size distribution analyzer. When the average particle size of the carbonaceous material of the present invention exceeds 1 μm, sufficient output cannot be obtained, and when it is less than 0.1 μm, it is difficult to form into an electrode or the composite density is low even if it can be formed into an electrode. It is difficult to obtain a density of 1.0 g / cm 3 or more, which is a constituent requirement of the present invention. In order to obtain a sufficient output density, it is desirable that the 90% particle size in the particle size distribution of the carbonaceous material be 5 μm or less. The specific surface area in the BET method of the carbonaceous material in the present invention is less than 500 m 2 / g, preferably less than 100 m 2 / g, more preferably less than 20 m 2 / g. It is not preferable because it becomes low or lithium cannot be occluded / released efficiently.

本発明の非水系二次電池の負極の合材密度は1.0g/cm3以上である。合材密度が1.0g/cm3未満の場合、この負極を用いた非水系二次電池においてエネルギー密度が低下することから好ましくない。また、本発明の負極は電気伝導度が1.0×10−2S/cm以上であり、電気伝導度が1.0×10−2S/cm以下の場合、この負極を用いた非水系二次電池において充分な出力が得られない。 The composite density of the negative electrode of the nonaqueous secondary battery of the present invention is 1.0 g / cm 3 or more. When the composite material density is less than 1.0 g / cm 3 , the energy density is lowered in a non-aqueous secondary battery using this negative electrode, which is not preferable. Further, the negative electrode of the present invention has an electric conductivity of 1.0 × 10 −2 S / cm or more, and when the electric conductivity is 1.0 × 10 −2 S / cm or less, a non-aqueous system using this negative electrode A sufficient output cannot be obtained in the secondary battery.

本発明における炭素質材料の形状は特に限定されるものではなく、球状、繊維状、不定形粒子等から適宜選択されるものであるが、例えば、平均粒径1μm以下0.1μm以上の粒度分布を有する炭素質材料を得る為に、平均繊維径が0.05μm以上1μm以下の繊維状炭素質材料を粉砕して得る事も可能である。平均繊維径が0.05μm以上1μm以下の繊維状炭素質材料としては、気相成長炭素繊維(VGCF)等がある。この様な極細の繊維状炭素質材料を用いる場合、繊維がからまった二次凝集物が生じ易くなり、電極密度を高める事が難しいが、粒度分布における90%粒子径を5μm以下にする事により、合材密度が1.0g/cm3以上の負極を容易に得る事ができる。 The shape of the carbonaceous material in the present invention is not particularly limited, and is appropriately selected from spherical, fibrous, amorphous particles, and the like, for example, a particle size distribution having an average particle size of 1 μm or less and 0.1 μm or more. It is also possible to obtain a carbonaceous material having an average fiber diameter of 0.05 μm to 1 μm by pulverization. Examples of the fibrous carbonaceous material having an average fiber diameter of 0.05 μm or more and 1 μm or less include vapor grown carbon fiber (VGCF). When such an extremely fine fibrous carbonaceous material is used, secondary aggregates entangled with fibers tend to be generated, and it is difficult to increase the electrode density. However, the 90% particle size in the particle size distribution should be 5 μm or less. Thus, a negative electrode having a composite material density of 1.0 g / cm 3 or more can be easily obtained.

本発明における正極としては、特に、限定されるものではないが、例えば、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系等を用いることができ、また、導電性高分子、活性炭等の材料を用いる事ができる。   Although it does not specifically limit as a positive electrode in this invention, For example, lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or these mixtures, Furthermore, it is different in these composite oxides. A system to which one or more metal elements are added can be used, and materials such as a conductive polymer and activated carbon can be used.

本発明の非水系二次電池に用いる負極を成形する場合、必要に応じ、導電材、バインダーを用いる。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、例えば、通常本発明のリチウムを吸蔵・放出可能な炭素質材料の重量の1〜30%程度の割合とすることが好ましい。また、導電材の種類は、特に限定されるものではないが、カーボンブラック、アセチレンブラックが例示される。導電材量は、特に限定されず、例えば、通常本発明のリチウムを吸蔵・放出可能な炭素質材料の重量の1〜20%程度の割合とすることが好ましい。また、本発明の非水系二次電池に用いる負極は、塗布成形、プレス成形、ロール成形等一般的な電極成形法を用いて製造する事が可能である。   When forming the negative electrode used for the non-aqueous secondary battery of the present invention, a conductive material and a binder are used as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited. For example, the binder amount is preferably about 1 to 30% of the weight of the carbonaceous material capable of inserting and extracting lithium of the present invention. The type of the conductive material is not particularly limited, and examples thereof include carbon black and acetylene black. The amount of the conductive material is not particularly limited, and for example, it is usually preferable to set the ratio to about 1 to 20% of the weight of the carbonaceous material capable of inserting and extracting lithium of the present invention. Moreover, the negative electrode used for the non-aqueous secondary battery of this invention can be manufactured using general electrode forming methods, such as application | coating shaping | molding, press molding, and roll shaping | molding.

本発明の非水系二次電池に用いる負極は、集電体上に形成する、あるいは、シート状に成形された電極を集電体に圧着あるいは導電層を介して接着する事が可能である。この集電体の材質などは、特に限定されず、銅、鉄、ステンレス等が使用できる。さらに、金属箔上あるいは金属の隙間に電極が形成可能である構造体、例えば、エキスパンドメタル、網材などを集電体として用いることもできる。   The negative electrode used in the non-aqueous secondary battery of the present invention can be formed on a current collector, or an electrode formed in a sheet shape can be bonded to the current collector or bonded via a conductive layer. The material of the current collector is not particularly limited, and copper, iron, stainless steel and the like can be used. Furthermore, a structure in which an electrode can be formed on a metal foil or in a gap between metals, for example, an expanded metal, a mesh material, or the like can be used as a current collector.

本発明の非水系二次電池は、リチウム塩が非水溶媒に溶解されてなる非水系電解液を用いる。本発明において用いる非水系電解液としては、リチウム塩を含む非水系電解液を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF、LiBF、LiClOなどのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種または2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。 The non-aqueous secondary battery of the present invention uses a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. As the non-aqueous electrolyte solution used in the present invention, a non-aqueous electrolyte solution containing a lithium salt can be used. According to the use conditions such as the type of the positive electrode material, the property of the negative electrode material, the charging voltage, etc. It is determined. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less.

本発明の非水系二次電池の形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型等、その目的に応じ、適宜決定することが可能である。     The shape of the non-aqueous secondary battery of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin type, a cylindrical type, a square type, a film type, and the like.

以下に、実施例を示し、本発明の特徴とするところをさらに明確にするが、本発明は、実施例により何ら限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the examples.

(1)市販の黒鉛化気相成長炭素繊維(VGCF:繊維径、0.15μm)をボールミルにて粉砕し、平均粒径0.69μm、90%粒子径3.5μmの粉末(炭素質材料)を得た。該粉末のBET法による比表面積は8m/gであった。得られた粉末85重量部に導電材であるアセチレンブラック15重量部、バインダーとしてポリフッ化ビニリデン10重量部をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に塗布・乾燥する事により合材層を成形し、プレスする事により負極を得た。合材層の厚みは23μmであり、合材密度は1.2g/cmであった。電極の電気伝導度は1.5×10-2S/cmであった。
(2)上記負極を作用極とし、参照極、対極にリチウムを用い、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPFを溶解したものを用い、電気化学セルを組み立てた。
(3)炭素質材料1gに対し60mAの電流でリチウム電位に対して0.01Vまで充電し、その後定電圧(0.01V)を印加する定電圧定電流充電を8時間実施後、炭素質材料1gに対し60mAの電流で2.0Vまで放電した。この時の容量は炭素質材料重量に対し、290mAh/gであった。続いて、出力特性を確認する為、上記と同様の充電後、炭素質材料1gに対し6000mAで放電した。この時の容量は炭素質材料重量に対し、275mAh/gであった。
〔比較例1〕
(1) A commercially available graphitized vapor-grown carbon fiber (VGCF: fiber diameter, 0.15 μm) is pulverized by a ball mill to obtain a powder (carbonaceous material) having an average particle diameter of 0.69 μm and a 90% particle diameter of 3.5 μm. Obtained. The specific surface area of the powder according to the BET method was 8 m 2 / g. By mixing 85 parts by weight of the obtained powder with 15 parts by weight of acetylene black as a conductive material and 10 parts by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone, and coating and drying on a copper foil having a thickness of 18 μm. The composite material layer was molded and pressed to obtain a negative electrode. The thickness of the composite layer was 23 μm, and the composite density was 1.2 g / cm 3 . The electrical conductivity of the electrode was 1.5 × 10 −2 S / cm.
(2) LiPF 6 dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 3: 7 as an electrolyte, using lithium as a reference electrode and a counter electrode as the negative electrode. Was used to assemble an electrochemical cell.
(3) The carbonaceous material is charged with constant current at a current of 60 mA up to 0.01 V with respect to the lithium potential and then applied with a constant voltage (0.01 V) for 8 hours. 1 g was discharged to 2.0 V at a current of 60 mA. The capacity at this time was 290 mAh / g based on the weight of the carbonaceous material. Subsequently, in order to confirm the output characteristics, after charging in the same manner as described above, 1 g of carbonaceous material was discharged at 6000 mA. The capacity at this time was 275 mAh / g based on the weight of the carbonaceous material.
[Comparative Example 1]

(1)実施例1と同一の市販の黒鉛化気相成長炭素繊維(VGCF:繊維径、0.15μm)100重量部にバインダーとしてポリフッ化ビニリデンを10重量部をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に塗布・乾燥する事により合材層を成形し、プレスする事により負極を得た。使用した黒鉛化気相成長炭素繊維は平均粒径2.2μm、90%粒子径9.5μmであった。得られた負極の合材層の厚みは17μmであり、合材密度は0.75g/cmであった。電極の電気伝導度は1.2×10-2S/cmであった。
(2)上記負極を作用極とし、参照極、対極にリチウムを用い、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPFを溶解したものを用い、電気化学セルを組み立てた。
(3)炭素質材料1gに対し60mAの電流でリチウム電位に対して0.01Vまで充電し、その後定電圧(0.01V)を印加する定電圧定電流充電を8時間実施後、炭素質材料1gに対し60mAの電流で2.0Vまで放電した。この時の容量は炭素質材料重量に対し、230mAh/gであった。続いて、出力特性を確認する為、上記と同様の充電後、炭素質材料1gに対し6000mAで放電した。この時の容量は炭素質材料重量に対し、200mAh/gであった。
〔比較例2〕
(1) The same commercially available graphitized vapor grown carbon fiber (VGCF: fiber diameter, 0.15 μm) as in Example 1 was mixed with 10 parts by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone, A composite layer was formed by coating and drying on a 18 μm thick copper foil, and a negative electrode was obtained by pressing. The graphitized vapor-grown carbon fibers used had an average particle size of 2.2 μm and a 90% particle size of 9.5 μm. The thickness of the mixture layer of the obtained negative electrode was 17 μm, and the mixture density was 0.75 g / cm 3 . The electrical conductivity of the electrode was 1.2 × 10 −2 S / cm.
(2) LiPF 6 dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 3: 7 as an electrolyte, using lithium as a reference electrode and a counter electrode as the negative electrode. Was used to assemble an electrochemical cell.
(3) The carbonaceous material is charged with constant current at a current of 60 mA to 1 V with respect to lithium potential to 0.01 V and then applied with constant voltage (0.01 V) for 8 hours. 1 g was discharged to 2.0 V at a current of 60 mA. The capacity at this time was 230 mAh / g based on the weight of the carbonaceous material. Subsequently, in order to confirm the output characteristics, after charging in the same manner as described above, 1 g of carbonaceous material was discharged at 6000 mA. The capacity at this time was 200 mAh / g based on the weight of the carbonaceous material.
[Comparative Example 2]

(1)市販の黒鉛化気相成長炭素繊維(VGCF:繊維径、0.15μm)をボールミルにて粉砕し、平均粒径0.88μm、90%粒子径2.5μmの粉末(炭素質材料)を得た。該粉末のBET法による比表面積は48m/gであった。得られた粉末100重量部にバインダーとしてポリフッ化ビニリデンを10重量部をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に塗布・乾燥する事により合材層を成形し、プレスする事により負極を得た。合材層の厚みは22μmであり、合材密度は1.1g/cmであった。電極の電気伝導度は6×10-3S/cmであった。
(2)上記負極を作用極とし、参照極、対極にリチウムを用い、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPFを溶解したものを用い、電気化学セルを組み立てた。
(3)炭素質材料1gに対し60mAの電流でリチウム電位に対して0.01Vまで充電し、その後定電圧(0.01V)を印加する定電圧定電流充電を8時間実施後、炭素質材料1gに対し60mAの電流で2.0Vまで放電した。この時の容量は炭素質材料重量に対し、248mAh/gであった。続いて、出力特性を確認する為、上記と同様の充電後、炭素質材料1gに対し6000mAで放電した。この時の容量は炭素質材料重量に対し、171mAh/gであった。
(1) Commercially graphitized vapor-grown carbon fiber (VGCF: fiber diameter, 0.15 μm) is pulverized with a ball mill to obtain a powder (carbonaceous material) having an average particle diameter of 0.88 μm and a 90% particle diameter of 2.5 μm. Obtained. The specific surface area of the powder according to the BET method was 48 m 2 / g. 100 parts by weight of the obtained powder is mixed with 10 parts by weight of polyvinylidene fluoride as a binder in N-methylpyrrolidone, and the mixture layer is formed on a copper foil having a thickness of 18 μm and dried, and then pressed. Thus, a negative electrode was obtained. The thickness of the composite layer was 22 μm, and the composite density was 1.1 g / cm 3 . The electrical conductivity of the electrode was 6 × 10 −3 S / cm.
(2) LiPF 6 dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a weight ratio of 3: 7 as an electrolyte, using lithium as a reference electrode and a counter electrode as the negative electrode. Was used to assemble an electrochemical cell.
(3) The carbonaceous material is charged with constant current at a current of 60 mA to 1 V with respect to lithium potential to 0.01 V and then applied with constant voltage (0.01 V) for 8 hours. 1 g was discharged to 2.0 V at a current of 60 mA. The capacity at this time was 248 mAh / g based on the weight of the carbonaceous material. Subsequently, in order to confirm the output characteristics, after charging in the same manner as described above, 1 g of carbonaceous material was discharged at 6000 mA. The capacity at this time was 171 mAh / g based on the weight of the carbonaceous material.

本発明の非水系二次電池の用途としては、例えば、ハイブリッド電気自動車、燃料電池電気自動車等の出力蓄電デバイスとしての用途等が挙げられる。特に、本非水系二次電池は従来課題とされる高エネルギー密度と高出力の両立を可能とすることができ、出力蓄電デバイスの小型、軽量化に貢献するものである。


Examples of the use of the non-aqueous secondary battery of the present invention include use as an output power storage device such as a hybrid electric vehicle and a fuel cell electric vehicle. In particular, the present non-aqueous secondary battery can achieve both high energy density and high output, which have been the subject of the prior art, and contributes to reducing the size and weight of the output power storage device.


Claims (5)

正極と、リチウムを吸蔵・放出可能な材料を主体とする負極と、リチウム塩が非水溶媒に溶解されてなる非水系電解液と、を有する非水系二次電池において、負極は、平均粒径1μm以下0.1μm以上かつBET法による比表面積が20m /g未満の炭素質材料を主成分とし、かつ、合材密度が1.0g/cm3以上、かつ、電気伝導度が1.0×10−2S/cm以上である事を特徴とする非水系二次電池。 In a non-aqueous secondary battery having a positive electrode, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent, the negative electrode has an average particle size 1 μm or less 0.1 μm or more, a carbonaceous material having a BET method specific surface area of less than 20 m 2 / g as a main component, a composite material density of 1.0 g / cm 3 or more, and an electric conductivity of 1.0 A non-aqueous secondary battery characterized by being 10 −2 S / cm or more. 上記炭素質材料の粒度分布における90%粒子径が5μm以下である事を特徴とする請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein a 90% particle diameter in a particle size distribution of the carbonaceous material is 5 μm or less. 上記炭素質材料は、平均繊維径が0.05μm以上1μm以下の繊維状炭素材料を粉砕したものである事を特徴とする請求項1又は2に記載の非水系二次電池。 3. The non-aqueous secondary battery according to claim 1, wherein the carbonaceous material is obtained by pulverizing a fibrous carbon material having an average fiber diameter of 0.05 μm to 1 μm. 上記炭素質材料の水素/炭素の原子比が0.05未満である事を特徴とする請求項1〜3のいずれか1項に記載の非水系二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 3 , wherein the carbonaceous material has a hydrogen / carbon atomic ratio of less than 0.05. 請求項1〜4のいずれか1項に記載の非水系二次電池において、負極合材厚みが20μm以上である事を特徴とする非水系二次電池。 The nonaqueous secondary battery according to any one of claims 1 to 4 , wherein the negative electrode composite material has a thickness of 20 µm or more.
JP2004207855A 2004-07-14 2004-07-14 Non-aqueous secondary battery Active JP4841814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207855A JP4841814B2 (en) 2004-07-14 2004-07-14 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207855A JP4841814B2 (en) 2004-07-14 2004-07-14 Non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2006032070A JP2006032070A (en) 2006-02-02
JP4841814B2 true JP4841814B2 (en) 2011-12-21

Family

ID=35898174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207855A Active JP4841814B2 (en) 2004-07-14 2004-07-14 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP4841814B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103548187B (en) * 2011-05-23 2016-03-02 株式会社Lg化学 The height with the power density properties of enhancing exports lithium secondary battery
EP2696408B1 (en) 2011-05-23 2016-04-06 LG Chem, Ltd. High output lithium secondary battery having enhanced output density characteristic
CN103518277B (en) 2011-05-23 2016-03-23 株式会社Lg化学 The height with the power density properties of enhancing exports lithium secondary battery
CN103503204B (en) 2011-05-23 2016-03-09 株式会社Lg化学 The height with the power density properties of enhancing exports lithium secondary battery
EP2696409B1 (en) 2011-05-23 2017-08-09 LG Chem, Ltd. High energy density lithium secondary battery having enhanced energy density characteristic
JP2014514726A (en) 2011-05-23 2014-06-19 エルジー ケム. エルティーディ. High energy density lithium secondary battery with improved energy density characteristics
WO2013009078A2 (en) 2011-07-13 2013-01-17 주식회사 엘지화학 High-energy lithium secondary battery having improved energy density characteristics

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447679A (en) * 1990-06-13 1992-02-17 Showa Denko Kk Secondary battery
JP3135613B2 (en) * 1991-07-11 2001-02-19 株式会社東芝 Lithium secondary battery
JPH06103970A (en) * 1992-08-06 1994-04-15 Ricoh Co Ltd Negative electrode for secondary battery and secondary battery employing aforesaid negative electrode
JP3398771B2 (en) * 1993-10-21 2003-04-21 株式会社リコー Carbon electrode and secondary battery using the same
JP3002114B2 (en) * 1995-05-15 2000-01-24 鐘紡株式会社 Manufacturing method of battery electrode
JPH10189052A (en) * 1996-12-24 1998-07-21 Nikkiso Co Ltd Nonaqueous electrolytic secondary battery
JP2004003097A (en) * 1999-03-25 2004-01-08 Showa Denko Kk Carbon fiber, process for producing the same and electrode for electric batteries
JP2002117846A (en) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2003017132A (en) * 2001-07-02 2003-01-17 Kansai Research Institute Coin-shaped nonaqueous secondary cell
JP4376564B2 (en) * 2002-08-29 2009-12-02 昭和電工株式会社 Fine graphitized carbon fiber, production method thereof and use thereof
JP4120439B2 (en) * 2003-03-27 2008-07-16 株式会社豊田中央研究所 Lithium ion secondary battery
KR20080040049A (en) * 2004-01-05 2008-05-07 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium battery and lithium battery

Also Published As

Publication number Publication date
JP2006032070A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP5462445B2 (en) Lithium ion secondary battery
KR100807702B1 (en) Nonaqueous lithium secondary cell
JP5182477B2 (en) Non-aqueous secondary battery
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP6129404B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP5625059B2 (en) Metal-air secondary battery
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
JP7337049B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN107482182B (en) Carbon-coated ion-doped manganese phosphate lithium electrode material and preparation method thereof
JP2006216277A (en) Method of manufacturing electrode material for lithium secondary battery, electrode structure, and secondary battery
WO2020111201A1 (en) Lithium ion secondary battery positive electrode composition, lithium ion secondary battery positive electrode, and lithium ion secondary battery
JP2018125077A (en) Negative electrode for lithium ion secondary battery
JP2007335360A (en) Lithium secondary cell
TW201440299A (en) Negative electrode active material for lithium secondary cell, and lithium secondary cell
JP2010211990A (en) Charge and discharge control method of lithium ion secondary battery, secondary battery system, and hybrid automobile
JP4841814B2 (en) Non-aqueous secondary battery
CN114613939B (en) All-solid battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008060028A (en) Power storage device
JP2007018834A (en) Electrochemical device
JP2006278928A (en) Capacitor and its manufacturing method
CN110931754A (en) Negative electrode material, preparation method thereof, negative electrode plate and electrochemical device
TW201603375A (en) Electrode for non-aqueous electrolyte secondary battery
JP5209171B2 (en) Capacitor and manufacturing method thereof
JP4944472B2 (en) Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070705

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4841814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250