JP2006278928A - Capacitor and its manufacturing method - Google Patents

Capacitor and its manufacturing method Download PDF

Info

Publication number
JP2006278928A
JP2006278928A JP2005098922A JP2005098922A JP2006278928A JP 2006278928 A JP2006278928 A JP 2006278928A JP 2005098922 A JP2005098922 A JP 2005098922A JP 2005098922 A JP2005098922 A JP 2005098922A JP 2006278928 A JP2006278928 A JP 2006278928A
Authority
JP
Japan
Prior art keywords
positive electrode
metal oxide
capacitor
oxide powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005098922A
Other languages
Japanese (ja)
Inventor
Kunio Nishida
邦雄 西田
Etsuji Yamamoto
悦司 山本
Kazumichi Koga
一路 古賀
Hisashi Satake
久史 佐竹
Kazuya Kuriyama
和哉 栗山
Tsuguro Mori
嗣朗 森
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2005098922A priority Critical patent/JP2006278928A/en
Publication of JP2006278928A publication Critical patent/JP2006278928A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable capacitor which is high in energy density and output using a metal oxide for an anode, and improves cycle property, and to provide its manufacturing method. <P>SOLUTION: The capacitor comprises the anode mainly consisting of metal oxide powder and conductive powder, a cathode mainly consisting of a material capable of occluding/discharging lithium, and a non-aqueous system electrolyte formed by dissolving a lithium salt into a non-aqueous solvent. The metal oxide powder contained in the anode is 2 μm or less in average particle size, and/or 1 m<SP>2</SP>/g or more in specific surface area by BET method, a weight ratio of the metal oxide powder/the conductive powder contained in the anode is 3/7 to 7/3, and a uniform region representing a distributed degree is 30 μm or less inside the conductive powder within the anode of the metal oxide powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高容量と高出力とを兼ね備えたキャパシタ及びその製造方法に関する。   The present invention relates to a capacitor having both high capacity and high output, and a method for manufacturing the same.

近年、地球環境の保全および省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。   In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of the conservation of the global environment and the effective use of energy for resource conservation. Yes.

その中、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システムにおける高出力放電特性および/または高率充電受け入れ特性が要求されている。   Among them, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), the engine or the fuel cell operates at maximum efficiency. In order to cope with load-side output fluctuations or energy regeneration, high-power discharge characteristics and / or high-rate charge acceptance characteristics are required in the power storage system.

現在、高出力蓄電デバイスとしては、電極に活性炭を用いた電気二重層キャパシタがあり、2kW/lを超える出力特性を有する大型キャパシタが開発されている。しかしながら、そのエネルギー密度は、1〜10Wh/l程度に過ぎないので、例えば、上述の蓄電システムを構成する場合、その体積が大きくなる事が実用化課題として挙げられ、電極に活性炭を用いた電気二重層キャパシタに対し3倍〜5倍のエネルギー密度が望まれている。   At present, as a high power storage device, there is an electric double layer capacitor using activated carbon as an electrode, and a large capacitor having an output characteristic exceeding 2 kW / l has been developed. However, since the energy density is only about 1 to 10 Wh / l, for example, in the case of configuring the above-described power storage system, it is cited as a practical issue that the volume is increased. An energy density of 3 to 5 times that of a double layer capacitor is desired.

エネルギー密度の向上には、電気二重層キャパシタそのものの性能を向上させるアプローチのほかに、エネルギー密度的に圧倒的に有利な電気化学反応に伴う擬似容量を積極的に利用しようとするコンセプトがあり、酸化ルテニウム、バナジウム系酸化物、マンガン酸化物等の金属酸化物を炭素上に担持させ、キャパシタに応用しようとする多くの試みがある。   In addition to the approach to improve the performance of the electric double layer capacitor itself, there is a concept to actively use the pseudo capacity associated with the electrochemical reaction that is overwhelmingly advantageous in terms of energy density. There have been many attempts to apply metal oxides such as ruthenium oxide, vanadium oxide and manganese oxide on carbon and apply them to capacitors.

例えば、バナジウム系酸化物は容量も大きく、安価である為、有望なキャパシタ用正極材料の1つであり、V25ゾルと炭素材料とを混合し、これに発泡金属化ニッケルを浸し、乾燥する事により得られる電極は100Cレベルの出力で250mAh/g(V25ベース)の容量が得られている(例えば、非特許文献1参照)。また、超音波照射下、過マンガン酸ナトリウム水溶液中のMnO4 -イオンを還元することにより、アセチレンブラック上に非晶質マンガン酸化物を被覆した材料が開示されている。該材料は363mAh/gの容量を有すると報告されている(非特許文献2参照)。 For example, vanadium-based oxides are one of the promising positive electrode materials for capacitors because of their large capacity and low cost. V 2 O 5 sol and a carbon material are mixed, and metal foam nickel is immersed in this. The electrode obtained by drying has a capacity of 250 mAh / g (based on V 2 O 5 ) at an output of 100 C level (for example, see Non-Patent Document 1). Also disclosed is a material in which amorphous manganese oxide is coated on acetylene black by reducing MnO 4 ions in an aqueous sodium permanganate solution under ultrasonic irradiation. The material is reported to have a capacity of 363 mAh / g (see Non-Patent Document 2).

上述の材料を実用に供する場合、まず、電極に要求される特性として、ある一定以上の電極厚みあるいは密度が必要である。しかし、上記材料を用いて実用的な厚さ(例えば厚さ20μm以上)の電極を用いたキャパシタは、エネルギー密度は向上するものの、キャパシタの特徴である出力特性が得られないという問題がある。   When the above-described material is put into practical use, first, as a characteristic required for the electrode, an electrode thickness or density of a certain level or more is required. However, a capacitor using an electrode having a practical thickness (for example, a thickness of 20 μm or more) using the above material has a problem that although the energy density is improved, the output characteristics that are characteristic of the capacitor cannot be obtained.

一方、活性炭に前記疑似容量を生じる金属酸化物(例えば、リチウムバナジウム酸化物)を混合すると、活性炭単独で用いた場合に比べ容量が大きく、また、充電電圧が低電圧の場合にキャパシタの容量が大きくなると報告されているが、その実用的な観点からの出力特性に関しては何ら記載されていない。(例えば、特許文献1参照)。
日比野光宏他、スーパーキャパシタ正極を目指した酸化バナジウムゲルとカーボン粒子の複合化、「生産研究」、2001年9月、第53巻、9・10月号、p2-8 川春広和他、非晶質マンガン酸化物のソノケミカル合成と電気化学キャパシタ特性「第43回電池討論会講演要旨集」、2002年10月、2C02 p406-407 特開2000−138142号公報
On the other hand, when a metal oxide (for example, lithium vanadium oxide) that generates the pseudo capacity is mixed with activated carbon, the capacity is larger than when activated carbon alone is used, and the capacity of the capacitor is reduced when the charging voltage is low. Although it has been reported to be large, there is no description regarding the output characteristics from the practical viewpoint. (For example, see Patent Document 1).
Mitsuhiro Hibino et al. Compositing vanadium oxide gel and carbon particles for supercapacitor positive electrode, “Production Research”, September 2001, Vol. 53, September / October, p2-8 Kawakazu Hirokazu et al., Sonochemical Synthesis of Amorphous Manganese Oxides and Electrochemical Capacitor Characteristics "Abstracts of the 43rd Battery Conference", October 2002, 2C02 p406-407 JP 2000-138142 A

上記、従来技術は正極に金属酸化物を用いたキャパシタの可能性を示唆するものであるが、現状、実用化の観点から見ると、エネルギー密度、あるいは出力特性に不満足なものである。従って、本発明は、正極に金属酸化物を用いた高エネルギー密度、高出力を有し、サイクル特性が向上し、かつ信頼性の高いキャパシタ及びその製造方法を提供することを主な目的とする。   Although the above prior art suggests the possibility of a capacitor using a metal oxide for the positive electrode, it is unsatisfactory in energy density or output characteristics from the viewpoint of practical use. Accordingly, the main object of the present invention is to provide a capacitor having a high energy density and high output using a metal oxide for the positive electrode, improved cycle characteristics, and high reliability, and a method for manufacturing the same. .

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、平均粒子径が2μm以下及び/又はBET法による比表面積が1m2/g以上の金属酸化物粉末を、導電性粉末により正極に一定以上のレベルで分散させることにより上記目的を達成できることを見出し、本発明を完成するに至った。 The present inventor conducted research while paying attention to the problems of the prior art as described above, and as a result, a metal oxide powder having an average particle diameter of 2 μm or less and / or a specific surface area by the BET method of 1 m 2 / g or more. Has been found to be able to achieve the above-mentioned object by dispersing it in the positive electrode with a conductive powder at a certain level or higher, and the present invention has been completed.

請求項1に記載のキャパシタは、金属酸化物粉末および導電性粉末を主体とする正極、リチウムを吸蔵・放出可能な材料を主体とする負極およびリチウム塩が非水溶媒に溶解されてなる非水系電解液とを有するキャパシタにおいて、正極に含まれる金属酸化物粉末は平均粒子径が2μm以下及び/又はBET法による比表面積が1m2/g以上であり、正極に含まれる金属酸化物粉末/導電性粉末の重量比が3/7〜7/3であり、かつ、金属酸化物粉末の正極中の導電性粉末中での分散度合を表す均一領域が30μm以下であることを特徴としている。 The capacitor according to claim 1 is a non-aqueous system in which a positive electrode mainly composed of metal oxide powder and conductive powder, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a lithium salt are dissolved in a non-aqueous solvent. In a capacitor having an electrolytic solution, the metal oxide powder contained in the positive electrode has an average particle diameter of 2 μm or less and / or a specific surface area by the BET method of 1 m 2 / g or more. The weight ratio of the conductive powder is 3/7 to 7/3, and the uniform region representing the degree of dispersion of the metal oxide powder in the conductive powder in the positive electrode is 30 μm or less.

請求項2に記載のキャパシタは、正極の空隙率が30%以上70%以下である事を特徴としている。   The capacitor according to claim 2 is characterized in that the porosity of the positive electrode is 30% or more and 70% or less.

請求項3に記載のキャパシタは、正極の厚みが20μm以上である事を特徴としている。   The capacitor according to claim 3 is characterized in that the thickness of the positive electrode is 20 μm or more.

請求項4に記載のキャパシタは、正極に含まれる金属酸化物粉末が、第VA族,第VIA族,第VIIA族,第VIII族の遷移金属酸化物からなる群から選ばれる少なくとも1種以上であることを特徴としている。   The capacitor according to claim 4, wherein the metal oxide powder contained in the positive electrode is at least one selected from the group consisting of Group VA, Group VIA, Group VIIA, Group VIII transition metal oxides. It is characterized by being.

請求項5に記載のキャパシタは、正極に含まれる金属酸化物粉末が、リチウムを含む複合酸化物であることを特徴としている。   The capacitor according to claim 5 is characterized in that the metal oxide powder contained in the positive electrode is a composite oxide containing lithium.

請求項6に記載のキャパシタは、正極に含まれる金属酸化物粉末がマンガンを主体とする酸化物であることを特徴としている。   The capacitor according to claim 6 is characterized in that the metal oxide powder contained in the positive electrode is an oxide mainly composed of manganese.

請求項7に記載のキャパシタは、正極に含まれる導電性粉末が、アセチレンブラック、ケッチェンブラックからなる群から選ばれる少なくとも1種以上であることを特徴としている。   The capacitor according to claim 7 is characterized in that the conductive powder contained in the positive electrode is at least one selected from the group consisting of acetylene black and ketjen black.

請求項8に記載のキャパシタは、負極には活性炭を主体とする事を特徴としている。   The capacitor according to claim 8 is characterized in that the negative electrode is mainly composed of activated carbon.

上記請求項1から8の構成によれば、高エネルギー密度を有し、かつ高出力のキャパシタを得ることができる。   According to the configuration of the first to eighth aspects, a capacitor having a high energy density and a high output can be obtained.

請求項9に記載のキャパシタの製造方法は、請求項1〜8に記載のキャパシタにおいて、該正極の製造工程において、金属酸化物粉末、導電性粉末及びバインダーを含む混合物をロールにより分散する事を特徴としている。   The capacitor manufacturing method according to claim 9 is the capacitor according to any one of claims 1 to 8, wherein in the positive electrode manufacturing step, the mixture containing the metal oxide powder, the conductive powder and the binder is dispersed by a roll. It is a feature.

上記の製造方法によれば、高エネルギー密度、高出力で、かつ、サイクル特性のよいキャパシタを容易に製造することができる。   According to the above manufacturing method, a capacitor having high energy density, high output, and good cycle characteristics can be easily manufactured.

本発明のキャパシタは、以上のように、金属酸化物粉末および導電性粉末を主体とする正極、リチウムを吸蔵・放出可能な材料を主体とする負極およびリチウム塩が非水溶媒に溶解されてなる非水系電解液とを有するキャパシタにおいて、正極に含まれる金属酸化物粉末は平均粒子径が2μm以下及び/又はBET法による比表面積が1m2/g以上であり、正極に含まれる粉末/導電性粉末の重量比が3/7〜7/3であり、かつ、金属酸化物粉末の正極中の導電性粉末中での分散度合を表す均一領域が30μm以下である。それゆえ、実用的なキャパシタ構成(電極厚み、電極密度)においても、高エネルギー密度を有し、かつ、時間率放電(放電率)が100Cレベルの高出力を有するキャパシタを提供できるという効果を奏する。 As described above, the capacitor of the present invention comprises a positive electrode mainly composed of metal oxide powder and conductive powder, a negative electrode mainly composed of a material capable of inserting and extracting lithium, and a lithium salt dissolved in a non-aqueous solvent. In a capacitor having a non-aqueous electrolyte, the metal oxide powder contained in the positive electrode has an average particle diameter of 2 μm or less and / or a specific surface area by the BET method of 1 m 2 / g or more, and the powder / conductivity contained in the positive electrode The weight ratio of the powder is 3/7 to 7/3, and the uniform region representing the degree of dispersion of the metal oxide powder in the conductive powder in the positive electrode is 30 μm or less. Therefore, even in a practical capacitor configuration (electrode thickness, electrode density), it is possible to provide a capacitor having a high energy density and a high output with a time rate discharge (discharge rate) of 100 C level. .

本発明の一実施形態について、説明すれば以下のとおりである。   One embodiment of the present invention will be described as follows.

本発明のキャパシタは金属酸化物粉末および導電性粉末を主体とする正極、リチウムを吸蔵・放出可能な材料を主体とする負極およびリチウム塩が非水溶媒に溶解されてなる非水系電解液とを有するキャパシタにおいて、正極に含まれる粉末は平均粒子径が2μm以下及び/又はBET法による比表面積が1m2/g以上であり、正極に含まれる粉末/導電性粉末の重量比が3/7〜7/3であり、かつ、金属酸化物粉末の正極中の導電性粉末中での分散度合を表す均一領域が30μm以下である。 The capacitor of the present invention comprises a positive electrode mainly composed of a metal oxide powder and a conductive powder, a negative electrode mainly composed of a material capable of occluding and releasing lithium, and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent. In the capacitor, the powder contained in the positive electrode has an average particle diameter of 2 μm or less and / or a specific surface area by the BET method of 1 m 2 / g or more, and the weight ratio of the powder / conductive powder contained in the positive electrode is 3/7 to 7/3, and the uniform region representing the degree of dispersion of the metal oxide powder in the conductive powder in the positive electrode is 30 μm or less.

本発明の正極に用いる金属酸化物粉末はリチウムが可逆的に吸蔵・放出可能な材料であれば特に限定するものではないが、出力特性を発現させる為には、その平均粒子径は2μm以下及び/又はBET法による比表面積が1m2/g以上である。本発明で用いる粒子径とは平均粒子径を意味する。平均粒子径が2μmを超え、かつBET法による比表面積が1m2/g未満の場合、たとえ、導電性粉末に充分に分散させたとしても、充分な出力特性が得られない。本発明では便宜上、金属酸化物粉末と記載するが、その形状は特に限定されるものではなく、例えば、繊維状でも良く、その場合その繊維径が粒子径に相当する。これら金属酸化物粉末を得る方法は特に限定しないが、例えば、金属酸化物を粉砕、必要な場合、分級して所定の粒度を有する金属酸化物粉末を得る事も可能である。 The metal oxide powder used for the positive electrode of the present invention is not particularly limited as long as lithium is a material that can be reversibly occluded / released. However, in order to develop output characteristics, the average particle diameter is 2 μm or less and / Or specific surface area by BET method is 1 m 2 / g or more. The particle diameter used in the present invention means an average particle diameter. When the average particle diameter exceeds 2 μm and the specific surface area by the BET method is less than 1 m 2 / g, sufficient output characteristics cannot be obtained even if the particles are sufficiently dispersed in the conductive powder. In the present invention, it is described as a metal oxide powder for the sake of convenience, but the shape is not particularly limited. For example, the shape may be fibrous, and in that case, the fiber diameter corresponds to the particle diameter. The method for obtaining these metal oxide powders is not particularly limited. For example, the metal oxide powder can be pulverized and classified if necessary to obtain a metal oxide powder having a predetermined particle size.

本発明で用いることができる金属酸化物粉末としては、第VA族,第VIA族,第VIIA族,第VIII族の遷移金属酸化物からなる群から選ばれる少なくとも1種以上であることが好ましく、具体的にはバナジウム酸化物、クロム酸化物、マンガン酸化物、鉄酸化物、コバルト酸化物、ニッケル酸化物、コバルトニッケル複合酸化物等、あるいは、LiMn24、LiCoO2、LiNiO2、LiMnxNiy2等のリチウムを含む複合酸化物、更には、これら金属酸化物あるいはリチウムを含む複合酸化物にAl、B等の異種元素を含む複合酸化物が挙げられる。さらに好ましくは、マンガンを主体とする酸化物であり、特に、LiMnxOy系(量論値よりLiを過剰にしたLiMn24、Ni、Co等の遷移金属を複合した材料、Al、B等の異種元素を複合した材料)であることが好ましい。 The metal oxide powder that can be used in the present invention is preferably at least one selected from the group consisting of Group VA, Group VIA, Group VIIA, Group VIII transition metal oxides, Specifically, vanadium oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, nickel oxide, cobalt nickel composite oxide, etc., or LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiMn x Examples include composite oxides containing lithium such as Ni y O 2 , and composite oxides containing different elements such as Al and B in addition to these metal oxides or lithium-containing composite oxides. More preferably, it is an oxide mainly composed of manganese, in particular, a LiMnxOy system (a composite material of transition metals such as LiMn 2 O 4 , Ni, and Co in which Li is excessive from the stoichiometric value, Al, B, etc. A material in which different elements are combined is preferable.

本発明における導電性粉末とは、炭素材料粉末、金属材料粉末、金属酸化物粉末等、電子伝導性を有する粉末であれば特に限定されるものではないが、好ましくは比表面積が10m2/g以上、更に好ましくは50m2/g以上3000m2/g以下の炭素材料であり、具体的には、アセチレンブラック、ケッチェンブラック、活性炭等の炭素材料が好ましく、特に、アセチレンブラック、ケッチェンブラック等、その平均粒子径が1μm以下の材料を用いる事が好ましい。 The conductive powder in the present invention is not particularly limited as long as it is a powder having electronic conductivity such as a carbon material powder, a metal material powder, a metal oxide powder, or the like, but preferably has a specific surface area of 10 m 2 / g. More preferably, it is a carbon material of 50 m 2 / g or more and 3000 m 2 / g or less, and specifically, a carbon material such as acetylene black, ketjen black, activated carbon or the like is preferable, and in particular, acetylene black, ketjen black, etc. It is preferable to use a material having an average particle diameter of 1 μm or less.

本発明の正極におけるリチウムを吸蔵・放出可能な金属酸化物粉末/導電性粉末の重量比は3/7〜7/3である。重量比が3/7より小さいと金属酸化物粉末の量に対して導電性粉末が多すぎるため、出力特性は得られるもののエネルギー密度が低下してしまう。一方、重量比が7/3より大きいと金属酸化物粉末の量に対して導電性粉末が少なすぎるため、キャパシタの充放電性能を示すサイクル特性が低下してしまう。この重量比は正極に用いる金属酸化物粉末及び導電性粉末の比重、比表面積、粒子径等により適宜決定されるが、平均粒子径2μm以下及び/又はBET法による比表面積が1m2/g以上の金属酸化物粉末を、導電性粉末を用いて正極中に充分に分散できる比率、すなわち、分散度合いを表す均一領域が30μm以下とできる比率とすることが肝要である。 The weight ratio of metal oxide powder / conductive powder capable of inserting and extracting lithium in the positive electrode of the present invention is 3/7 to 7/3. When the weight ratio is less than 3/7, the conductive powder is too much with respect to the amount of the metal oxide powder, so that although the output characteristics are obtained, the energy density is lowered. On the other hand, if the weight ratio is larger than 7/3, the conductive powder is too small relative to the amount of the metal oxide powder, so that the cycle characteristics indicating the charge / discharge performance of the capacitor are deteriorated. This weight ratio is appropriately determined depending on the specific gravity, specific surface area, particle diameter, etc. of the metal oxide powder and conductive powder used for the positive electrode, but the average particle diameter is 2 μm or less and / or the specific surface area by the BET method is 1 m 2 / g or more. It is important that the metal oxide powder is sufficiently dispersed in the positive electrode using the conductive powder, that is, a ratio that allows the uniform region representing the degree of dispersion to be 30 μm or less.

通常、金属酸化物粉末を電池用電極にする場合、アセチレンブラック等の導電性粉末を数%から10%程度添加する。しかしながら、このような常法で作成した電極では、例え、その粒子径が2μm以下であったとしても、その金属酸化物粉末の導電性粉末中での分散が不充分となり、例えば、20μm以上の実用厚みを有する正極において、キャパシタで要求される100Cレベルの出力を得ることは困難である。したがって、従来技術にある金属酸化物を導電性粉末上に被覆、あるいは、担持させた材料においても、更に、導電性粉末(金属酸化物を被覆・担持していない導電性粉末)を加える必要があり、結果として、金属酸化物を被覆・担持する為の導電性粉末炭素材料が余分に必要となり、エネルギー密度的に不利になる。   Usually, when a metal oxide powder is used as a battery electrode, a conductive powder such as acetylene black is added in an amount of about several to 10%. However, in the electrode prepared by such a conventional method, even if the particle diameter is 2 μm or less, the dispersion of the metal oxide powder in the conductive powder becomes insufficient, for example, 20 μm or more. In a positive electrode having a practical thickness, it is difficult to obtain a 100 C level output required for a capacitor. Therefore, it is necessary to add a conductive powder (a conductive powder not coated or supported with a metal oxide) to a material in which a metal oxide according to the prior art is coated or supported on a conductive powder. As a result, an extra conductive powder carbon material for coating and supporting the metal oxide is required, which is disadvantageous in terms of energy density.

本発明の正極の製造法は特に限定されるものではなく、金属酸化物粉末が正極中の導電性粉末中に充分に分散できる方法で製造すれば良いが、例えば、金属酸化物粉末と導電性粉末を、必要に応じ少量の溶剤を加え、ボールミル、2本ロール、3本ロール等で分散した後、バインダーを加え(必要に応じて分散時に加えておいても良い)電極に成形する方法、金属酸化物粉末と導電性粉末をディスパー、自公転型分散機等を用いて溶媒中で分散した後、バインダーを加え(必要に応じて分散時に加えておいても良い)電極に成形する方法等が挙げられる。   The method for producing the positive electrode of the present invention is not particularly limited, and may be produced by a method in which the metal oxide powder can be sufficiently dispersed in the conductive powder in the positive electrode. A method of forming a powder into an electrode by adding a small amount of solvent as necessary, dispersing it with a ball mill, two rolls, three rolls, etc., and then adding a binder (may be added at the time of dispersion if necessary), A method in which a metal oxide powder and a conductive powder are dispersed in a solvent using a disper, a self-revolving disperser, etc., and then a binder is added (may be added at the time of dispersion if necessary) to form an electrode. Is mentioned.

好ましい製造方法としては、金属酸化物粉末、導電性粉末及びバインダーを含む混合物を、アルコール、アセトン等の溶剤を加え、2本ロール、3本ロール等のロールを用いて充分に分散した後、得られる分散混合物を所定の厚さ、形状に成形する方法が挙げられる。   As a preferable production method, a mixture containing a metal oxide powder, a conductive powder and a binder is added after a solvent such as alcohol and acetone is added and sufficiently dispersed using a roll such as a two-roll or a three-roll, and then obtained. A method of forming the dispersion mixture to be formed into a predetermined thickness and shape.

上記バインダーは特に限定されるもではないがポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。また、上述の好ましい製造法として挙げられるロールを用いてバインダーを添加し分散・成形する場合、バインダーとしてはポリ四フッ化エチレンが少量で強度のある電極が得られる為、好ましく用いる事ができる。   The binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. Further, when a binder is added and dispersed and molded using the rolls mentioned as the preferred production method described above, a strong electrode can be obtained with a small amount of polytetrafluoroethylene as the binder, so that it can be preferably used.

本発明において正極の厚みは、キャパシタの要求特性(容量・出力)により適宜決定されるものであるが、好ましくは20μm以上である。例えば、正極の厚みが20μm未満の場合、実際のキャパシタを設計した場合、集電体、セパレータの比率が高くなり、充分な容量(エネルギー密度)が得られず、本発明の目的を達成することが難しくなる。ここで、正極の厚みとは集電体を含まない電極層の厚みであり、集電体の両側に成形した場合、あるいは、金属網等の孔を有する集電体を用いる場合、電極全体の厚みから集電体の厚み(金属網等の孔を有する集電体の場合、その厚みは気孔を0%と仮定して換算)を減じた値を1/2にした厚みである。   In the present invention, the thickness of the positive electrode is appropriately determined depending on the required characteristics (capacitance / output) of the capacitor, but is preferably 20 μm or more. For example, when the thickness of the positive electrode is less than 20 μm, when an actual capacitor is designed, the ratio between the current collector and the separator becomes high, and sufficient capacity (energy density) cannot be obtained, thereby achieving the object of the present invention. Becomes difficult. Here, the thickness of the positive electrode is the thickness of the electrode layer that does not include the current collector, and when formed on both sides of the current collector, or when using a current collector having holes such as a metal net, The thickness obtained by subtracting the value obtained by subtracting the thickness of the current collector from the thickness (in the case of a current collector having holes such as a metal net, the pores are assumed to be 0%) is ½.

本発明においては金属酸化物粉末が正極中の導電性粉末中に充分に分散されている必要がある。この分散度合は特開2000−155089号公報に記載されている分散性評価方法に基づき、評価する事ができ、金属酸化物粉末の均一領域は30μm以下である。金属酸化物粉末の分散度合を表す均一領域が30μmを超える場合、上述の金属酸化物粉末の平均粒子径、金属酸化物粉末/導電性粉末の重量比が所定の範囲内であったとしても、充分な出力特性が得られない。   In the present invention, the metal oxide powder needs to be sufficiently dispersed in the conductive powder in the positive electrode. This degree of dispersion can be evaluated based on the dispersibility evaluation method described in JP 2000-155089 A, and the uniform region of the metal oxide powder is 30 μm or less. When the uniform region representing the degree of dispersion of the metal oxide powder exceeds 30 μm, even if the average particle diameter of the metal oxide powder and the weight ratio of the metal oxide powder / conductive powder are within a predetermined range, Sufficient output characteristics cannot be obtained.

均一領域については、特開2000−155089号公報に詳述されているが、均一領域は「被評価試料中に含有される所定の物質の分布状態を画像化し、得られた全体画像を複数の領域に均等に分割し、前記各領域における検出強度の平均値に有意差が認められない最小の領域を求め、前記最小の領域の大きさを表す絶対値」と定義され、所定の物質の分布状態を画像化する方法として、 (a)EPMAマッピング分析による方法、(b)SEM撮影による方法、(c)走査型プローブ顕微鏡を用いて原子間力を測定して画像化する方法、(d)オージェ電子顕微鏡マッピング分析による方法、(e)X線光電子分光法マッピング分析による方法、(f)蛍光X線分析法マッピング分析による方法が挙げられる。   The uniform region is described in detail in Japanese Patent Application Laid-Open No. 2000-155089. However, the uniform region is expressed by “imagining the distribution state of a predetermined substance contained in the sample to be evaluated, Divided evenly into regions, find the smallest region where no significant difference is found in the average value of the detected intensity in each region, defined as `` absolute value representing the size of the smallest region '', distribution of the predetermined substance As a method for imaging the state, (a) a method based on EPMA mapping analysis, (b) a method based on SEM imaging, (c) a method in which an atomic force is measured using a scanning probe microscope, and (d) Examples include a method by Auger electron microscope mapping analysis, (e) a method by X-ray photoelectron spectroscopy mapping analysis, and (f) a method by fluorescent X-ray analysis mapping analysis.

本発明の正極の空隙率は30%以上70%以下である。正極中の気孔にはキャパシタ製造時電解液が含浸されるが、電解液が正極中に分散された金属酸化物粉末粒子近傍に、電解液を充分に持たせる必要がある為、空隙率が30%未満の場合、本発明の特徴である出力が得られにくくなり、70%を超える場合、金属酸化物粉末の正極中での絶対量が不足する為、本発明の特徴であるエネルギー密度が低下する傾向にある。正極の空隙率とは、電極単位体積(集電体は含まない)あたりに占める(金属酸化物粉末、導電性粉末、バインダーの)固体成分を除いた空隙(孔)の占める割合を指し、正極の空隙率は、実際の正極の密度と、金属酸化物粉末、導電性粉末及びバインダーの真密度より計算することができる。なお、正極を構成する各物質の真密度は、金属酸化物(リチウムマンガン複合酸化物)が4.0g/cm3、導電性粉末(アセチレンブラック)が2.0g/cm3、バインダ(ポリ4フッ化エチレン)が2.2g/cm3である。 The porosity of the positive electrode of the present invention is 30% or more and 70% or less. The pores in the positive electrode are impregnated with an electrolytic solution at the time of manufacturing the capacitor. However, since the electrolytic solution needs to be sufficiently provided in the vicinity of the metal oxide powder particles dispersed in the positive electrode, the porosity is 30. If it is less than%, it is difficult to obtain the output characteristic of the present invention. If it exceeds 70%, the absolute amount of the metal oxide powder in the positive electrode is insufficient, so the energy density characteristic of the present invention is reduced. Tend to. The porosity of the positive electrode refers to the ratio of the voids (holes) excluding solid components (metal oxide powder, conductive powder, binder) per electrode unit volume (not including the current collector). The porosity of can be calculated from the actual density of the positive electrode and the true density of the metal oxide powder, conductive powder and binder. Incidentally, the true density of each material constituting the positive electrode, metal oxides (lithium-manganese composite oxide) 4.0 g / cm 3, the conductive powder (acetylene black) is 2.0 g / cm 3, binder (poly 4 Ethylene fluoride) is 2.2 g / cm 3 .

本発明のキャパシタは、リチウムを吸蔵・放出可能な材料を主体とする負極を用いる事ができるが、高出力を得る為には、比較的比表面積が高い炭素系材料を用いることが好ましく、例えば、活性炭が挙げられる。   The capacitor of the present invention can use a negative electrode mainly composed of a material capable of inserting and extracting lithium, but in order to obtain a high output, it is preferable to use a carbon-based material having a relatively high specific surface area. And activated carbon.

本発明のキャパシタに用いる正極、負極は、集電体上に形成する、あるいは、シート状に成形された電極を集電体に圧着あるいは導電性接着剤等を用いて接着する事により、集電体一体型電極とする事も可能である。この集電体の材質などは、特に限定されず、正極にはステンレス、アルミ、負極には銅、鉄、ステンレス等が使用できる。さらに、金属箔上あるいは金属の隙間に電極が形成可能である構造体、例えば、エキスパンドメタル、網材などを集電体として用いることもできる。   The positive electrode and negative electrode used in the capacitor of the present invention are formed on the current collector, or the current collector is bonded to the current collector by pressure bonding or using a conductive adhesive. A body-integrated electrode is also possible. The material of the current collector is not particularly limited, and stainless steel and aluminum can be used for the positive electrode, and copper, iron, stainless steel, and the like can be used for the negative electrode. Furthermore, a structure in which an electrode can be formed on a metal foil or in a gap between metals, for example, an expanded metal, a mesh material, or the like can be used as a current collector.

本発明のキャパシタにおいては、正極と負極に介在するセパレータとして、例えばポリエチレン、ポリプロピレンなどのポリオレフィン、ポリアミド、クラフト紙、ガラス、セルロース系材料を用いる事ができる。   In the capacitor of the present invention, as a separator interposed between the positive electrode and the negative electrode, for example, polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials can be used.

本発明のキャパシタは、リチウム塩が非水溶媒に溶解されてなる非水系電解液を用いる。本発明において用いる非水系電解液としては、リチウム塩を含む非水系電解液を用いることが可能であり、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF6、LiBF4、LiClO4などのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種または2種以上からなる有機溶媒に溶解したものを用いることができる。 The capacitor of the present invention uses a nonaqueous electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent. As the non-aqueous electrolyte solution used in the present invention, a non-aqueous electrolyte solution containing a lithium salt can be used. According to the use conditions such as the type of the positive electrode material, the property of the negative electrode material, the charging voltage, etc. It is determined. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used.

本発明のキャパシタの形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型等、その目的に応じ、適宜決定することが可能である。本発明の目的は高エネルギー密度かつ高出力のキャパシタを提供する事にある。エネルギー密度はキャパシタの大きさ、形状に依存するものであるが、例えば、上記、記述に基づき製造されるキャパシタは、外装を除く、正極、負極、集電体、セパレータの体積を基準として考えた場合、30Wh/l以上、好ましくは40Wh/l以上のものが得られ、かつ、出力に関しては2kW/l以上、好ましくは、3kW/l以上、更に好ましくは4kW/l以上の出力密度が得られる。また、本発明のキャパシタの平均電圧に関しても、2.5V以上、更に好ましくは3V以上にする事が好ましい。   The shape of the capacitor of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin shape, a cylindrical shape, a square shape, and a film shape. An object of the present invention is to provide a capacitor having a high energy density and a high output. Although the energy density depends on the size and shape of the capacitor, for example, the capacitor manufactured based on the above description was considered based on the volume of the positive electrode, negative electrode, current collector, and separator, excluding the exterior. In this case, a power density of 30 Wh / l or more, preferably 40 Wh / l or more can be obtained, and an output density of 2 kW / l or more, preferably 3 kW / l or more, more preferably 4 kW / l or more can be obtained. . Also, the average voltage of the capacitor of the present invention is preferably 2.5 V or more, more preferably 3 V or more.

以下に、実施例を示し、本発明の特徴とするところをさらに明確にするが、本発明は、実施例により何ら限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention, but the present invention is not limited to the examples.

(1)金属酸化物粉末である平均粒子径0.7μmでBET法による比表面積が8m2/gであるスピネル型リチウムマンガン複合酸化物(Li1.08Mn1.924)50重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)50重量部及びバインダーであるポリ4フッ化エチレン粉末8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、上記リチウムマンガン複合酸化物をアセチレンブラックに分散させた。続いて、ロールを用いてシート状に成形する事により厚さ70μmのシート電極(キャパシタ正極)を得た。 (1) 50 parts by weight of a spinel-type lithium manganese composite oxide (Li 1.08 Mn 1.92 O 4 ) having an average particle diameter of 0.7 μm, which is a metal oxide powder, and a specific surface area by BET method of 8 m 2 / g, and conductive powder By mixing 50 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 8 parts by weight of polytetrafluoroethylene powder as a binder, adding acetone appropriately, and passing it 10 times while turning back on a biaxial roller, The lithium manganese composite oxide was dispersed in acetylene black. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 70 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.0g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は61%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は27μmであった。 The density of the positive electrode obtained was 1.0 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 61%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform area obtained by EPMA mapping analysis of Mn atoms was 27 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) The negative electrode is activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10% with respect to 100 parts by weight of activated carbon) as a conductive material. The mixture was mixed in methylpyrrolidone and formed on a copper foil having a thickness of 18 μm. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを0.96mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、0.96mA(時間率放電1C相当電流)で3.0Vまで放電した。この時の容量は0.97mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い96mA(時間率放電100C相当電流)で放電した所、20秒の放電が可能であった。   This capacitor is charged to a voltage of 4.2 V with a current of 0.96 mA, and then a constant voltage and a constant current charge in which a constant voltage (4.2 V) is applied is performed for 2 hours, and then 0.96 mA (current corresponding to a time rate discharge 1 C). The battery was discharged to 3.0V. The capacity at this time was 0.97 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, when the same charge was performed and the battery was discharged at 96 mA (current equivalent to 100C hour rate discharge), 20 seconds of discharge was possible.

正極、負極、集電体、セパレータの体積を基準として考えた場合のエネルギー密度は55Wh/lであり、96mA(時間率放電100C相当電流)時の出力密度は4.6kW/lであった。   When considered based on the volume of the positive electrode, the negative electrode, the current collector, and the separator, the energy density was 55 Wh / l, and the output density at 96 mA (current corresponding to a time rate discharge of 100 C) was 4.6 kW / l.

さらに、図1にこのキャパシタの充放電の性能をサイクル特性で示す。サイクル特性は、50C−CCサイクル(4.2V−3.0V間)で行い、測定条件は、充電:4.2Vで2時間、50C定電流で充電、放電:終止電圧3.0Vまで1C定電流で放電、測定温度:25℃である。   Further, FIG. 1 shows the charge / discharge performance of this capacitor in terms of cycle characteristics. The cycle characteristics are 50C-CC cycles (between 4.2V and 3.0V), and the measurement conditions are charging: 4.2V for 2 hours, charging at a constant current of 50C, discharging: 1C constant up to a final voltage of 3.0V. Discharge with current, measurement temperature: 25 ° C.

図1に示すように、50C相当電流で1万回以上の充放電を繰り返しても、放電容量がほとんど変化せず、サイクル特性が飛躍的に向上していることが分かる。   As shown in FIG. 1, it can be seen that even when charging and discharging are repeated 10,000 times or more at a current equivalent to 50 C, the discharge capacity hardly changes and the cycle characteristics are dramatically improved.

比較例1Comparative Example 1

比較として、正極、負極に活性炭を用いた電気二重層キャパシタを試作してそのエネルギー密度を比較した。
(1)実施例1で用いた活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ20μmのアルミ箔上に成形した。電極層の厚みは80μmであり、密度は0.55g/cm3であった。
(2)上記電極を正極(サイズ:14×20mm)及び負極(サイズ:14×20mm)をセパレータ(厚さ50μmの電解コンデンサ紙)を介し対向させ、電解液としてプロピレンカーボネートの溶媒に1.0mol/lの濃度にテトラエチルアンモニウム・BF4を溶解した溶液を用いキャパシタを作成した。
As a comparison, an electric double layer capacitor using activated carbon for the positive electrode and the negative electrode was made as a trial and the energy density was compared.
(1) Activated carbon used in Example 1 (specific surface area: 1950 m 2 / g), polyvinylidene fluoride as binder (10% with respect to 100 parts by weight of activated carbon), acetylene black as conductive material (10% with respect to 100 parts by weight of activated carbon) ) Was mixed in N-methylpyrrolidone and formed on an aluminum foil having a thickness of 20 μm. The electrode layer had a thickness of 80 μm and a density of 0.55 g / cm 3 .
(2) The above electrode is opposed to a positive electrode (size: 14 × 20 mm) and a negative electrode (size: 14 × 20 mm) through a separator (electrolytic capacitor paper having a thickness of 50 μm), and 1.0 mol of propylene carbonate as an electrolytic solution is used as an electrolytic solution. A capacitor was prepared using a solution in which tetraethylammonium · BF 4 was dissolved at a concentration of 1 / l.

このキャパシタを0.65mAの電流で2.5Vまで充電しその後2.5Vの定電圧を印加する定電流定電圧充電を2時間行った。続いて、0.65mAの定電流で0Vまで放電した。放電容量は、0.65mAhであり、放電平均電圧は1.25Vであった。次に出力特性を確認する為、同様の充電を行い60mA(100C相当電流)で放電した所、25秒の放電が可能であった。   The capacitor was charged to 2.5 V with a current of 0.65 mA, and then a constant current and constant voltage charge for applying a constant voltage of 2.5 V was performed for 2 hours. Subsequently, the battery was discharged to 0 V with a constant current of 0.65 mA. The discharge capacity was 0.65 mAh, and the discharge average voltage was 1.25V. Next, in order to confirm the output characteristics, the same charging was performed and discharging was performed at 60 mA (equivalent to 100 C), and discharging for 25 seconds was possible.

正極、負極、集電体、セパレータの体積を基準として考えた場合のエネルギー密度は11Wh/lであり、60mA(100C相当電流)時の出力密度は1.0kW/lであった。   When considered based on the volume of the positive electrode, the negative electrode, the current collector, and the separator, the energy density was 11 Wh / l, and the output density at 60 mA (100 C equivalent current) was 1.0 kW / l.

実施例1の本発明のキャパシタと比較例の電気二重層キャパシタの正極、負極、集電体、セパレータの体積はほぼ同等である。この結果から、本発明のキャパシタは従来の電気二重層キャパシタに比べ、高エネルギー密度を有し、高い出力も得られ、かつ、サイクル特性も向上している事が明らかである。   The volumes of the positive electrode, negative electrode, current collector, and separator of the inventive capacitor of Example 1 and the electric double layer capacitor of the comparative example are substantially the same. From this result, it is clear that the capacitor of the present invention has a higher energy density, higher output, and improved cycle characteristics as compared with the conventional electric double layer capacitor.

比較例2Comparative Example 2

(1)実施例1で用いた平均粒子径0.7μmでBET法による比表面積が8m2/gであるスピネル型リチウムマンガン複合酸化物50重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)50重量部及びバインダーであるポリ4フッ化エチレン粉末を8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら2回通し、その後、ロールを用いてシート状に成形する事により厚さ70μmのシート電極(キャパシタ正極)を得た。 (1) 50 parts by weight of a spinel-type lithium manganese composite oxide having an average particle diameter of 0.7 μm and a specific surface area by BET method of 8 m 2 / g used in Example 1 and acetylene black (electrochemical industry) (Made by Denka Black) 50 parts by weight and 8 parts by weight of polytetrafluoroethylene powder as a binder are mixed, acetone is added as appropriate, and the mixture is passed through a biaxial roller twice, and then rolled into a sheet. A sheet electrode (capacitor positive electrode) having a thickness of 70 μm was obtained by molding.

得られた正極の密度は0.83g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は67%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は36μmであった。 The density of the positive electrode obtained was 0.83 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 67%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform region obtained by EPMA mapping analysis of Mn atoms was 36 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)負極は実施例1同様、活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) The negative electrode was activated carbon (specific surface area: 1950 m 2 / g) as in Example 1, polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10 with respect to 100 parts by weight of activated carbon) as a conductive material. %) Was mixed in N-methylpyrrolidone and formed on a 18 μm thick copper foil. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを0.8mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、0.8mA(1C相当電流)で3.0Vまで放電した。この時の容量は0.8mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い80mA(100C相当電流)で放電したが、電圧降下が大きく、充分な出力が得られなかった。   This capacitor is charged to 4.2 V with a current of 0.8 mA, and then subjected to constant voltage and constant current charging to apply a constant voltage (4.2 V) for 2 hours, and then 3.0 V at 0.8 mA (1 C equivalent current). Discharged until. The capacity at this time was 0.8 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, the same charge was performed and the battery was discharged at 80 mA (current equivalent to 100 C), but the voltage drop was large and a sufficient output could not be obtained.

金属酸化物粉末の分散度合を表す均一領域が30μmを超え、分散が不十分であると上述の金属酸化物粉末の平均粒子径、金属酸化物粉末/導電性粉末の重量比が所定の範囲内であったとしても、充分な出力特性、サイクル特性が得られない。   If the uniform region representing the degree of dispersion of the metal oxide powder exceeds 30 μm and the dispersion is insufficient, the average particle diameter of the metal oxide powder and the weight ratio of the metal oxide powder / conductive powder are within a predetermined range. However, sufficient output characteristics and cycle characteristics cannot be obtained.

図2は均一領域と放電容量との関係を示し、実施例1と比較例2を比較すると、比較例2ではローラを通過させる回数が2回と少ない場合、均一領域が36μmとなり分散性が向上せず、100C放電での放電容量が0.217mAhしか得られない。   FIG. 2 shows the relationship between the uniform area and the discharge capacity. When Example 1 and Comparative Example 2 are compared, in Comparative Example 2, when the number of times the roller passes is as small as 2 times, the uniform area becomes 36 μm and the dispersibility is improved. Without this, only 0.217 mAh discharge capacity at 100 C discharge can be obtained.

これに対して実施例1ではローラに10回通過させることにより均一領域が27μmとなり分散性が向上し、100C放電での放電容量が0.537mAhと大幅に向上する。   On the other hand, in Example 1, by passing 10 times through the roller, the uniform area becomes 27 μm and the dispersibility is improved, and the discharge capacity at 100 C discharge is greatly improved to 0.537 mAh.

さらにローラに6回通過させた場合均一領域が30μmとなり、100C放電での放電容量が0.375mAhと実用上充分な放電容量が得られる。   Furthermore, when it is passed through the roller six times, the uniform area becomes 30 μm, and the discharge capacity at 100 C discharge is 0.375 mAh, so that a practically sufficient discharge capacity can be obtained.

このことより分散性が向上し、均一領域が30μm以下とするためには、少なくともローラに6回は通過させることが必要であることが分かる。   From this, it can be seen that in order to improve the dispersibility and make the uniform region 30 μm or less, it is necessary to pass through the roller at least six times.

比較例3Comparative Example 3

(1)平均粒子径5.6μmでBET法による比表面積が0.8m2/gであるスピネル型リチウムマンガン複合酸化物50重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)50重量部及びバインダーであるポリ4フッ化エチレン粉末を8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、上記リチウムマンガン複合酸化物をアセチレンブラックに分散させた。続いて、ロールを用いてシート状に成形する事により厚さ65μmのシート電極(キャパシタ正極)を得た。 (1) Spinel-type lithium manganese composite oxide having an average particle size of 5.6 μm and a specific surface area by BET method of 0.8 m 2 / g and acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo) as conductive powder ) Mixing 50 parts by weight and 8 parts by weight of polytetrafluoroethylene powder as a binder, adding acetone appropriately, and passing the mixture 10 times while folding it back on a biaxial roller, thereby dispersing the lithium manganese composite oxide in acetylene black I let you. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 65 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.0g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は61%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は28μmであった。 The density of the positive electrode obtained was 1.0 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 61%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform region obtained by EPMA mapping analysis of Mn atoms was 28 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) The negative electrode is activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10% with respect to 100 parts by weight of activated carbon) as a conductive material. The mixture was mixed in methylpyrrolidone and formed on a copper foil having a thickness of 18 μm. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを1.0mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、1.0mA(1C相当電流)で3.0Vまで放電した。この時の容量は1.01mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い100mA(100C相当電流)で放電した所、8秒しか放電できず、初期電圧降下も0.6Vと実施例1に比べ大きかった。   This capacitor is charged to 4.2 V with a current of 1.0 mA, and then a constant voltage and constant current charge for applying a constant voltage (4.2 V) is performed for 2 hours, and then 3.0 V at 1.0 mA (1 C equivalent current). Discharged until. The capacity at this time was 1.01 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, when the same charge was performed and the battery was discharged at 100 mA (equivalent to 100 C), it was discharged only for 8 seconds, and the initial voltage drop was 0.6 V, which was larger than that in Example 1.

粒子径が大きくBET比表面積が1m2/g未満の場合、金属酸化物粉末/導電性粉末の重量比、あるいは、均一領域が本発明の範囲であっても、高い出力、サイクル特性を得る事が難しくなる。 When the particle diameter is large and the BET specific surface area is less than 1 m 2 / g, high output and cycle characteristics can be obtained even if the weight ratio of metal oxide powder / conductive powder or the uniform region is within the range of the present invention. Becomes difficult.

(1)実施例1で用いた平均粒子径0.7μmでBET法による比表面積が8m2/gであるスピネル型リチウムマンガン複合酸化物50重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)50重量部をナイロン製ボールミルにて分散し、この分散物に100重量部にバインダーであるポリ4フッ化エチレン粉末を8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、更に分散させた。続いて、ロールを用いてシート状に成形する事により厚さ75μmのシート電極(キャパシタ正極)を得た。 (1) 50 parts by weight of a spinel-type lithium manganese composite oxide having an average particle diameter of 0.7 μm and a specific surface area by BET method of 8 m 2 / g used in Example 1 and acetylene black (electrochemical industry) 50 parts by weight of Denka Black (manufactured by Denka Black) were dispersed in a nylon ball mill, and 100 parts by weight of this dispersion was mixed with 8 parts by weight of polytetrafluoroethylene powder as a binder, and acetone was added as appropriate. The sample was further dispersed by passing it 10 times while turning it back. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 75 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.23g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は37%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は27μmであった。 The density of the positive electrode obtained was 1.23 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 37%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform area obtained by EPMA mapping analysis of Mn atoms was 27 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)実施例1同様、負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) As in Example 1, the negative electrode was activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10 with respect to 100 parts by weight of activated carbon) as a conductive material. %) Was mixed in N-methylpyrrolidone and formed on a 18 μm thick copper foil. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを1.1mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、1.1mA(1C相当電流)で3.0Vまで放電した。この時の容量は1.14mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い110mA(100C相当電流)で放電した所、13秒の放電が可能であった。また、サイクル特性も50C相当電流で1万回以上となり、実施例1と同様に向上する。   The capacitor was charged to 4.2 V with a current of 1.1 mA, and then a constant voltage and constant current charge for applying a constant voltage (4.2 V) was performed for 2 hours, and then 3.0 V at 1.1 mA (1 C equivalent current). Discharged until. The capacity at this time was 1.14 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, when the same charge was performed and the battery was discharged at 110 mA (100 C equivalent current), a discharge of 13 seconds was possible. Further, the cycle characteristic is 10,000 times or more at a current equivalent to 50 C, which is improved in the same manner as in the first embodiment.

正極、負極、集電体、セパレータの体積を基準として考えた場合のエネルギー密度は61Wh/lであり、110mA(100C相当電流)時の出力密度は5.0kW/lであった。   When considered based on the volume of the positive electrode, the negative electrode, the current collector, and the separator, the energy density was 61 Wh / l, and the output density at 110 mA (100 C equivalent current) was 5.0 kW / l.

正極の空隙率が低下し、100C相当電流による放電容量が低下する傾向であるが、実用上堪え得る。このことより少なくとも30%以上の正極の空隙率が必要と考えられる。   Although the porosity of the positive electrode decreases and the discharge capacity due to a current equivalent to 100 C tends to decrease, it can be used practically. From this, it is considered that a porosity of the positive electrode of at least 30% or more is necessary.

(1)実施例1で用いた平均粒子径0.7μmでBET法による比表面積が8m2/gであるスピネル型リチウムマンガン複合酸化物60重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)40重量部、バインダーであるポリ4フッ化エチレン粉末を8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、上記リチウムマンガン複合酸化物をアセチレンブラックに分散させた。続いて、ロールを用いてシート状に成形する事により厚さ68μmのシート電極(キャパシタ正極)を得た。 (1) 60 parts by weight of a spinel-type lithium manganese composite oxide having an average particle diameter of 0.7 μm and a specific surface area by BET method of 8 m 2 / g used in Example 1, and acetylene black (electrochemical industry) (Made by Denka Black) 40 parts by weight, 8 parts by weight of polytetrafluoroethylene powder as a binder are mixed, and acetone is added as appropriate. Dispersed in acetylene black. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 68 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.04g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は62%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は27μmであった。 The density of the positive electrode obtained was 1.04 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 62%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform area obtained by EPMA mapping analysis of Mn atoms was 27 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)実施例1同様、負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) As in Example 1, the negative electrode was activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10 with respect to 100 parts by weight of activated carbon) as a conductive material. %) Was mixed in N-methylpyrrolidone and formed on a 18 μm thick copper foil. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを1.1mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、1.1mA(1C相当電流)で3.0Vまで放電した。この時の容量は1.1mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い110mA(100C相当電流)で放電した所、16秒の放電が可能であった。また、サイクル特性も50C相当電流で1万回以上となり、実施例1と同様に向上する。   The capacitor was charged to 4.2 V with a current of 1.1 mA, and then a constant voltage and constant current charge for applying a constant voltage (4.2 V) was performed for 2 hours, and then 3.0 V at 1.1 mA (1 C equivalent current). Discharged until. The capacity at this time was 1.1 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, the same charge was performed and the battery was discharged at 110 mA (100 C equivalent current), and 16 seconds of discharge was possible. Further, the cycle characteristic is 10,000 times or more at a current equivalent to 50 C, which is improved in the same manner as in the first embodiment.

正極、負極、集電体、セパレータの体積を基準として考えた場合のエネルギー密度は61Wh/lであり、110mA(100C相当電流)時の出力密度は5.4kW/lであった。   When considered based on the volume of the positive electrode, the negative electrode, the current collector, and the separator, the energy density was 61 Wh / l, and the output density at 110 mA (100 C equivalent current) was 5.4 kW / l.

比較例4Comparative Example 4

(1)実施例1で用いた平均粒子径0.7μmでBET法による比表面積が8m2/gであるスピネル型リチウムマンガン複合酸化物80重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)20重量部、バインダーであるポリ4フッ化エチレン粉末を8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、上記リチウムマンガン複合酸化物をアセチレンブラックに分散させた。続いて、ロールを用いてシート状に成形する事により厚さ68μmのシート電極(キャパシタ正極)を得た。 (1) 80 parts by weight of a spinel-type lithium manganese composite oxide having an average particle diameter of 0.7 μm and a specific surface area by BET method of 8 m 2 / g used in Example 1 and acetylene black (electrochemical industry) (Made by Denka Black) 20 parts by weight, 8 parts by weight of polytetrafluoroethylene powder as a binder are mixed, and acetone is added as appropriate. Dispersed in acetylene black. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 68 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.49g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は53%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は28μmであった。 The density of the positive electrode obtained was 1.49 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 53%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform region obtained by EPMA mapping analysis of Mn atoms was 28 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)実施例1同様、負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) As in Example 1, the negative electrode was activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride (10% with respect to 100 parts by weight of activated carbon) as a binder, and acetylene black (10 with respect to 100 parts by weight of activated carbon) as a conductive material. %) Was mixed in N-methylpyrrolidone and formed on a 18 μm thick copper foil. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを1.9mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、1.9mA(1C相当電流)で3.0Vまで放電した。この時の容量は1.9mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い190mA(100C相当電流)で放電した所、3秒しか放電できなかった。初期電圧降下も0.7Vと大きかった。   This capacitor is charged to 4.2 V with a current of 1.9 mA, and then a constant voltage and constant current charge is applied to apply a constant voltage (4.2 V) for 2 hours, and then 3.0 V at 1.9 mA (1 C equivalent current). Discharged until. The capacity at this time was 1.9 mAh, and the discharge average voltage was 3.95V. Next, in order to confirm the output characteristics, when the same charge was performed and the battery was discharged at 190 mA (100 C equivalent current), only 3 seconds could be discharged. The initial voltage drop was also as large as 0.7V.

このように金属酸化物粉末であるリチウムマンガン複合酸化物の量に対して、導電性粉末である導電性粉末であるアセチレンブラックの量が少なすぎると、金属酸化物粉末の平均粒子径、BET法による比表面積、均一領域が所定の範囲内であったとしても、充分な出力特性、サイクル特性が得られない。   As described above, when the amount of acetylene black as the conductive powder as the conductive powder is too small relative to the amount of the lithium manganese composite oxide as the metal oxide powder, the average particle size of the metal oxide powder, the BET method Even if the specific surface area and the uniform region are within the predetermined ranges, sufficient output characteristics and cycle characteristics cannot be obtained.

(1)金属酸化物粉末である平均粒子径2.55μmでBET法による比表面積が3.5m2/gであるスピネル型リチウムマンガン複合酸化物(Li1.14Mn1.864)60重量部と導電性粉末であるアセチレンブラック(電気化学工業製、デンカブラック)40重量部及びバインダーであるポリ4フッ化エチレン粉末8重量部を混合し、適宜アセトンを加え、2軸ローラーに折り返しながら10回通す事により、上記リチウムマンガン複合酸化物をアセチレンブラックに分散させた。続いて、ロールを用いてシート状に成形する事により厚さ70μmのシート電極(キャパシタ正極)を得た。 (1) 60 parts by weight of a spinel-type lithium manganese composite oxide (Li 1.14 Mn 1.86 O 4 ) having an average particle diameter of 2.55 μm, which is a metal oxide powder, and a specific surface area by a BET method of 3.5 m 2 / g and conductivity Mix 40 parts by weight of acetylene black (Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 8 parts by weight of polytetrafluoroethylene powder as a binder, add acetone as appropriate, and pass 10 times while turning it back on a biaxial roller. Thus, the lithium manganese composite oxide was dispersed in acetylene black. Subsequently, a sheet electrode (capacitor positive electrode) having a thickness of 70 μm was obtained by forming into a sheet using a roll.

得られた正極の密度は1.0g/cm3であり、この正極の密度と、リチウムマンガン複合酸化物、アセチレンブラック及びポリ4フッ化エチレンの真密度から計算される空隙率は68%であった。該電極中のリチウムマンガン複合酸化物分散度合を調べた。Mn原子のEPMAマッピング分析により得られる均一領域は27μmであった。 The density of the positive electrode obtained was 1.0 g / cm 3 , and the porosity calculated from the density of this positive electrode and the true density of lithium manganese composite oxide, acetylene black and polytetrafluoroethylene was 68%. It was. The degree of dispersion of the lithium manganese composite oxide in the electrode was examined. The uniform area obtained by EPMA mapping analysis of Mn atoms was 27 μm.

上記で得られたシート状の正極を20μmのアルミ箔に黒鉛系導電性接着剤で貼り付け正極とした。
(2)負極は活性炭(比表面積:1950m2/g)、バインダーとしてポリフッ化ビニリデン(活性炭100重量部に対し10%)、導電材としてアセチレンブラック(活性炭100重量部に対し10%)
をN-メチルピロリドン中で混合し、厚さ18μmの銅箔上に成形した。電極層の厚みは96μmであり、密度は0.55g/cm3であった。
(3)上記正極(サイズ:14×20mm)及び負極(サイズ:15×21mm)をセパレータ(厚さ25μmのポリエチレン性微多孔膜)を介し対向させ、電解液としてエチレンカーボネートとジエチルカーボネートを3:7重量比で混合した溶媒に1mol/lの濃度にLiPF6を溶解したものを用い、キャパシタを組み立てた。また、負極にはあらかじめ金属リチウムを貼り合わせ、電解液注液後負極活性炭中にドープした。
The sheet-like positive electrode obtained above was attached to a 20 μm aluminum foil with a graphite conductive adhesive to obtain a positive electrode.
(2) The negative electrode is activated carbon (specific surface area: 1950 m 2 / g), polyvinylidene fluoride as a binder (10% with respect to 100 parts by weight of activated carbon), and acetylene black as a conductive material (10% with respect to 100 parts by weight of activated carbon)
Were mixed in N-methylpyrrolidone and formed on a copper foil having a thickness of 18 μm. The electrode layer had a thickness of 96 μm and a density of 0.55 g / cm 3 .
(3) The positive electrode (size: 14 × 20 mm) and the negative electrode (size: 15 × 21 mm) are opposed to each other through a separator (polyethylene microporous film having a thickness of 25 μm), and ethylene carbonate and diethyl carbonate are used as an electrolyte solution in a ratio of 3: A capacitor was assembled by using LiPF 6 dissolved at a concentration of 1 mol / l in a solvent mixed at a weight ratio of 7%. Further, metallic lithium was bonded to the negative electrode in advance, and the negative electrode activated carbon was doped after electrolyte injection.

このキャパシタを0.95mAの電流で4.2Vまで充電し、その後定電圧(4.2V)を印加する定電圧定電流充電を2時間実施後、0.90mA(時間率放電1C相当電流)で3.0Vまで放電した。この時の容量は0.92mAhであり、放電平均電圧は3.95Vであった。次に出力特性を確認する為、同様の充電を行い95mA(時間率放電100C相当電流)で放電した所、17秒の放電が可能であった。また、サイクル特性も50C相当電流で1万回以上となり、実施例1と同様に向上する。   This capacitor is charged to 4.2 V with a current of 0.95 mA, and then a constant voltage and constant current charge for applying a constant voltage (4.2 V) is performed for 2 hours, and then 0.90 mA (current equivalent to 1 C of time rate discharge). The battery was discharged to 3.0V. The capacity at this time was 0.92 mAh, and the average discharge voltage was 3.95V. Next, in order to confirm the output characteristics, when the same charge was performed and the battery was discharged at 95 mA (current equivalent to 100C hour rate discharge), 17 seconds of discharge was possible. Further, the cycle characteristic is 10,000 times or more at a current equivalent to 50 C, which is improved in the same manner as in the first embodiment.

正極、負極、集電体、セパレータの体積を基準として考えた場合のエネルギー密度は52Wh/lであり、95mA(時間率放電100C相当電流)時の出力密度は4.6kW/lであった。   When considered based on the volume of the positive electrode, the negative electrode, the current collector, and the separator, the energy density was 52 Wh / l, and the output density at 95 mA (current corresponding to a time rate discharge of 100 C) was 4.6 kW / l.

本発明のキャパシタの用途としては、例えば、ハイブリッド電気自動車、燃料電池電気自動車等の出力蓄電デバイスとしての用途等が挙げられる。また、携帯型電子・情報機器、小型モーター駆動機器、機械等のピーク電流負荷吸収に用いる事も可能である。本キャパシタは従来課題とされる高エネルギー密度と高出力の両立を可能とすることができ、さらにはサイクル特性が向上し、出力蓄電デバイスの小型、軽量化に貢献するものである。   Examples of the use of the capacitor of the present invention include use as an output power storage device such as a hybrid electric vehicle and a fuel cell electric vehicle. It can also be used to absorb peak current loads in portable electronic / information devices, small motor drive devices, machines, and the like. This capacitor can achieve both high energy density and high output, both of which have been the subject of the prior art, and further improves cycle characteristics, contributing to the reduction in size and weight of the output power storage device.

サイクル特性と放電容量との関係を示す図である。It is a figure which shows the relationship between cycling characteristics and discharge capacity. 均一領域と放電容量との関係を示す図である。It is a figure which shows the relationship between a uniform area | region and discharge capacity.

Claims (9)

金属酸化物粉末および導電性粉末を主体とする正極、
リチウムを吸蔵・放出可能な材料を主体とする負極および
リチウム塩が非水溶媒に溶解されてなる非水系電解液とを有するキャパシタにおいて、
正極に含まれる金属酸化物粉末は平均粒子径が2μm以下及び/又はBET法による比表面積が1m2/g以上であり、
正極に含まれる金属酸化物粉末/導電性粉末の重量比が3/7〜7/3であり、かつ、
金属酸化物粉末の正極中の導電性粉末中での分散度合を表す均一領域が30μm以下であることを特徴とするキャパシタ。
A positive electrode mainly composed of metal oxide powder and conductive powder;
In a capacitor having a negative electrode mainly composed of a material capable of inserting and extracting lithium and a non-aqueous electrolyte solution in which a lithium salt is dissolved in a non-aqueous solvent,
The metal oxide powder contained in the positive electrode has an average particle size of 2 μm or less and / or a specific surface area by the BET method of 1 m 2 / g or more,
The weight ratio of metal oxide powder / conductive powder contained in the positive electrode is 3/7 to 7/3, and
A capacitor, wherein a uniform region representing a degree of dispersion of the metal oxide powder in the conductive powder in the positive electrode is 30 μm or less.
正極の空隙率が30%以上70%以下である事を特徴とする請求項1に記載のキャパシタ。 2. The capacitor according to claim 1, wherein the porosity of the positive electrode is 30% or more and 70% or less. 正極の厚みが20μm以上である事を特徴とする請求項1、2のいずれかに記載のキャパシタ。 The capacitor according to claim 1, wherein the positive electrode has a thickness of 20 μm or more. 正極に含まれる金属酸化物粉末が、第VA族,第VIA族,第VIIA族,第VIII族の遷移金属酸化物からなる群から選ばれる少なくとも1種以上であることを特徴とする請求項1〜3のいずれかに記載のキャパシタ。 2. The metal oxide powder contained in the positive electrode is at least one selected from the group consisting of Group VA, Group VIA, Group VIIA, and Group VIII transition metal oxides. The capacitor according to any one of? 正極に含まれる金属酸化物粉末が、リチウムを含む複合酸化物であることを特徴とする請求項4に記載のキャパシタ。 The capacitor according to claim 4, wherein the metal oxide powder contained in the positive electrode is a composite oxide containing lithium. 正極に含まれる金属酸化物粉末がマンガンを主体とする酸化物であることを特徴とする請求項4、5のいずれかに記載のキャパシタ。 6. The capacitor according to claim 4, wherein the metal oxide powder contained in the positive electrode is an oxide mainly composed of manganese. 正極に含まれる導電性粉末が、アセチレンブラック、ケッチェンブラックからなる群から選ばれる少なくとも1種以上であることを特徴とする請求項1〜6のいずれかに記載のキャパシタ。 The capacitor according to claim 1, wherein the conductive powder contained in the positive electrode is at least one selected from the group consisting of acetylene black and ketjen black. 負極には活性炭を主体とする事を特徴とする請求項1〜8のいずれかに記載のキャパシタ。 The capacitor according to claim 1, wherein the negative electrode is mainly composed of activated carbon. 請求項1〜8に記載のキャパシタにおいて、該正極の製造工程において、金属酸化物粉末、導電性粉末及びバインダーを含む混合物をロールにより分散する事を特徴とするキャパシタの製造方法。 9. The method of manufacturing a capacitor according to claim 1, wherein, in the positive electrode manufacturing process, a mixture containing metal oxide powder, conductive powder and a binder is dispersed by a roll.
JP2005098922A 2005-03-30 2005-03-30 Capacitor and its manufacturing method Pending JP2006278928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098922A JP2006278928A (en) 2005-03-30 2005-03-30 Capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098922A JP2006278928A (en) 2005-03-30 2005-03-30 Capacitor and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006278928A true JP2006278928A (en) 2006-10-12

Family

ID=37213326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098922A Pending JP2006278928A (en) 2005-03-30 2005-03-30 Capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006278928A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059934B1 (en) * 2009-10-13 2011-08-26 한국세라믹기술원 Manufacturing method of hybrid supercapacitor
JP2012178267A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
JP2017228710A (en) * 2016-06-24 2017-12-28 日立化成株式会社 Lithium ion capacitor and electrolyte solution for lithium ion capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059934B1 (en) * 2009-10-13 2011-08-26 한국세라믹기술원 Manufacturing method of hybrid supercapacitor
JP2012178267A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
US8900757B2 (en) 2011-02-25 2014-12-02 Hitachi Automotive Systems, Ltd. Lithium ion secondary battery
JP2017228710A (en) * 2016-06-24 2017-12-28 日立化成株式会社 Lithium ion capacitor and electrolyte solution for lithium ion capacitor

Similar Documents

Publication Publication Date Title
Babu et al. Fast charging materials for high power applications
KR100807702B1 (en) Nonaqueous lithium secondary cell
JP5462445B2 (en) Lithium ion secondary battery
JP5182477B2 (en) Non-aqueous secondary battery
US7848081B2 (en) Lithium-ion capacitor
JP5229598B2 (en) Lithium secondary battery and manufacturing method thereof
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
JP2009076372A (en) Non-aqueous secondary battery
JP5512056B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2010108703A (en) Electrode for storage element, nonaqueous lithium type storage element, and method of manufacturing electrode for storage element
KR20140111952A (en) Secondary cell, method for manufacturing secondary cell, positive electrode for secondary cells, method for manufacturing positive electrode for secondary cells, battery pack, electronic device, and electric vehicle
JP2012004491A (en) Power storage device
JPWO2015199101A1 (en) Non-aqueous electrolyte secondary battery and assembled battery formed by connecting a plurality thereof
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
EP4235720A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP2008123826A (en) Power storage device
JP2006278928A (en) Capacitor and its manufacturing method
JP4003276B2 (en) Battery electrode and secondary battery using the same
JP4841814B2 (en) Non-aqueous secondary battery
JP2012028366A (en) Power storage device
WO2015005294A1 (en) Power storage device
Sun et al. Effectively enhance high voltage stability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode material with excellent energy density via La 2 O 3 surface modified
JP2014137881A (en) Production method of slurry for forming active material layer
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2022144122A (en) Nonaqueous alkali metal power storage element