WO2015005294A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2015005294A1
WO2015005294A1 PCT/JP2014/068090 JP2014068090W WO2015005294A1 WO 2015005294 A1 WO2015005294 A1 WO 2015005294A1 JP 2014068090 W JP2014068090 W JP 2014068090W WO 2015005294 A1 WO2015005294 A1 WO 2015005294A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
storage device
capacity
active material
electrode
Prior art date
Application number
PCT/JP2014/068090
Other languages
French (fr)
Japanese (ja)
Inventor
照明 手塚
信雄 安東
Original Assignee
Jmエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jmエナジー株式会社 filed Critical Jmエナジー株式会社
Priority to JP2015526330A priority Critical patent/JP6487841B2/en
Publication of WO2015005294A1 publication Critical patent/WO2015005294A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electricity storage device having high energy density, high output, and durability.
  • an electricity storage device called a hybrid capacitor, which combines the electricity storage principles of a lithium ion secondary battery and an electric double layer capacitor, has attracted attention.
  • a hybrid capacitor a carbon material capable of inserting and extracting lithium ions is previously occluded and supported (hereinafter also referred to as dope) by a chemical method or an electrochemical method to lower the negative electrode potential. Therefore, an electricity storage device that can obtain a high energy density has been proposed (see, for example, Patent Document 1).
  • the cell capacity when discharging from a fully charged state to half the voltage is a [mAh]
  • the capacity when the charged negative electrode is discharged to 1.5 V [Li / Li + ] is the complete negative electrode capacity b [ mAh]
  • the ratio of the positive electrode active material and the negative electrode active material is regulated so as to satisfy 0.05 ⁇ a / b ⁇ 0.3
  • an organic electrolyte capacitor with a high output (for example, patent document) 2) is also proposed.
  • the present invention has been made based on the above circumstances, and an object thereof is to provide a power storage device having high energy density, high output, and durability.
  • the capacity when the battery is discharged from 0.75 hours to 1.25 hours from the fully charged state of the storage device to half the full charge voltage is defined as the cell capacity a (mAh).
  • the capacity when the negative electrode was discharged until the negative electrode potential became 1.5 V was defined as the complete negative electrode capacity b (mAh), and the negative electrode was charged with constant current-constant voltage at 0 V for 12 hours.
  • CCCV charge When the total negative electrode charge capacity c (mAh) is assumed, the capacity is 0.35 ⁇ a / b ⁇ 0.95, 0.55 ⁇ b / c ⁇ 1.00, 0.35 ⁇ a / c ⁇ 0.55 is satisfied, the electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 , and the electrode weight per unit area of the positive electrode active material layer is 70 g / m 2 to An electricity storage device, which is 110 g / m 2 .
  • the electricity storage device of the present invention for example, a lithium ion capacitor, a lithium ion secondary battery, high durability is obtained without deterioration even when the load on the negative electrode is increased, high energy density is obtained, and high output Characteristics are obtained.
  • the electricity storage device of the present invention basically has an electrode unit in which the positive electrode and the negative electrode are alternately stacked or wound via a separator in the outer container.
  • the outer container a cylindrical shape, a rectangular shape, a laminate shape, or the like can be appropriately used, and is not particularly limited.
  • positive electrode means the electrode on the side where current flows out during discharging and current flows in during charging
  • negative electrode refers to current flowing in during discharging. It means the pole on the side where current flows out during charging.
  • “dope” means occlusion, adsorption or insertion, and refers to a phenomenon in which at least one of lithium ions and anions enters the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material.
  • “de-doping” means desorption and release, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
  • the negative electrode and the positive electrode is previously doped with lithium ions. More preferably, the negative electrode is pre-doped with lithium ions.
  • the negative electrode is pre-doped with lithium ions.
  • a method of pre-doping lithium ions into at least one of the negative electrode and the positive electrode for example, metallic lithium or the like is disposed in the electricity storage device as a lithium electrode, and the lithium is contacted by electrochemical contact between at least one of the negative electrode and the positive electrode and the lithium electrode.
  • a method of doping ions is used.
  • lithium ions can be uniformly doped into at least one of the negative electrode and the positive electrode also by locally arranging the lithium electrode in the cell and bringing it into electrochemical contact.
  • the electricity storage device of the present invention includes, for example, a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector having holes penetrating the front and back surfaces, a first separator, and a negative electrode current collector having holes penetrating the front and back surfaces.
  • a negative electrode on which a negative electrode active material layer is formed, and a second separator are wound or laminated in this order, and at least one lithium electrode is disposed in an excess portion of the first separator so as not to contact the positive electrode, A lithium electrode is short-circuited to constitute an electrode unit.
  • the electrolyte is filled to start doping of lithium ions from the lithium electrode, and the negative electrode active material layer is doped with lithium ions be able to.
  • an electrical storage device is comprised.
  • the electricity storage device of the present invention include a lithium ion capacitor and a lithium ion secondary battery.
  • a lithium ion capacitor is preferable.
  • the lithium ion capacitor means an electricity storage device containing lithium ions in which the positive electrode is a polarizable electrode and the negative electrode is a non-polarizable electrode.
  • a positive electrode material of a lithium ion capacitor a material having a large specific surface area such as activated carbon or polyacene is preferably used, and as a negative electrode material, the surface of core particles made of graphite, non-graphitizable carbon, or natural graphite is derived from tar or pitch.
  • a carbonaceous material such as a polyacene organic semiconductor (PAS) having a polyacene skeleton structure of 05, a metal oxide such as lithium titanate, a metal alloy such as silicon or tin is preferably used.
  • the negative electrode is preferably a negative electrode doped with lithium ions in advance.
  • a lithium ion capacitor in which the negative electrode is a negative electrode doped with lithium ions in advance is preferable because the use of the electricity storage device can be started from the charging operation.
  • the lithium ion capacitor of the present invention preferably has an energy density of 31.5 Wh / L or more, and more preferably 33 Wh / L or more.
  • the lithium ion secondary battery means an electricity storage device containing lithium ions in which the positive electrode and the negative electrode are non-polarizable electrodes.
  • the positive electrode material of the lithium ion secondary battery transition metal composite oxides such as lithium cobaltate and lithium iron phosphate are preferably used.
  • the negative electrode material carbonaceous materials such as graphite and non-graphitizable carbon, metal oxides such as lithium titanate, metal alloys such as silicon and tin are preferably used.
  • the capacity when discharging from the fully charged state of the electricity storage device to half the full charge voltage over 0.75 hours to 1.25 hours is defined as a cell capacity a (mAh)
  • the capacity when the negative electrode in a fully charged state of the electricity storage device was discharged until the negative electrode potential reached 1.5 V (Li / Li + ) was defined as the complete negative electrode capacity b (mAh), and the negative electrode was kept at 0 V for 12 hours.
  • the total negative charge capacity c (mAh) is constant current-constant voltage charge (CCCV charge) over 0.35 ⁇ a / b ⁇ 0.95, 0.55 ⁇ b / c ⁇ 1.
  • the electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3
  • the electrode weight per unit area of the positive electrode active material layer having a characteristic that but a 70g / m 2 ⁇ 110g / m 2 .
  • the state of full charge of the electricity storage device means a state of charge arbitrarily set within the range of the maximum voltage that can be used over a long period of time without causing problems such as gas generation and resistance increase.
  • the fully charged voltage of the electricity storage device depends on the type of the electricity storage device, the material configuration of the positive and negative electrodes, and the electrolyte composition. In a lithium ion capacitor, the full charge voltage is about 3.6V to 4.0V, and in the lithium ion secondary battery, the full charge voltage is about 4.1V to 4.5V.
  • the potential of the negative electrode is preferably 0.2 V (Li / Li + ) or less, and 0.1 V (Li / Li + ) or less when fully charged. Is more preferable. Application of a voltage higher than the fully charged voltage is not preferable because it causes deterioration of the electricity storage device.
  • the cell capacity a varies depending on the cell size, but can be controlled by adjusting the mass of the positive electrode active material relative to the mass of the negative electrode active material when a positive electrode active material and a negative electrode active material having a predetermined capacity are used. Specifically, for example, when the basis weight of the negative electrode active material layer constituting the negative electrode is constant, the cell capacity a can be increased as the basis weight of the positive electrode active material layer is increased.
  • the cell capacity a is a current value (hereinafter referred to as a “current value ⁇ ”) at which the discharge time is 0.75 hours to 1.25 hours when discharging from a fully charged state to half the full charged voltage. ) Measured by discharging. Specifically, first, the power storage device is charged at a constant current having a current value ⁇ until the cell voltage reaches a set voltage related to full charge, and then a constant current-constant voltage charge in which the constant voltage of the set voltage is applied. (CCCV charge) is performed for 30 minutes until the battery is fully charged. Next, the battery is discharged from this state at a constant current of a current value ⁇ until it becomes half the set voltage. By repeating this charge / discharge five times, the storage device is brought into a steady state, and the capacity measured when the battery is discharged for the fifth time is defined as the cell capacity a.
  • a current value ⁇ a current value at which the discharge time is 0.75 hours to 1.25 hours when discharging from a fully charged state to
  • a constant voltage of 3.8 V is charged after charging the cell voltage to 3.8 V with a constant current of 200 mA (current value ⁇ ).
  • a constant current-constant voltage charge (CCCV charge) is applied for 30 minutes to achieve a fully charged state, and then the battery is discharged from this state at a constant current of 200 mA (current value ⁇ ) until the cell voltage reaches 1.9V.
  • the time required for the discharge at this time is about 1 hour. If the discharge is performed at a constant current of 2000 mA, the discharge time is 6 minutes or less and greatly falls below 0.75 hours depending on the internal resistance of the cell.
  • 0.75 hours to 1.25 hours defined in the present invention does not mean what value can be taken, and a current value that can be discharged to half the voltage in about 1 hour is derived and discharged. It specifies the approximate time to be performed. Specifically, it is preferable to set a current value that can be discharged in a range of 0.9 hours to 1.1 hours.
  • the complete negative electrode capacity b can be controlled by adjusting the amount of lithium ions doped in the negative electrode active material constituting the negative electrode when fully charged. Specifically, for example, as the thickness of the lithium electrode is increased, the complete negative electrode capacity b can be increased. Further, when the capacity of the positive electrode is increased, the complete negative electrode capacity b can be increased.
  • the complete negative electrode capacity b of the electricity storage device is the total of the negative electrode capacities obtained by the following measurements for each negative electrode in the fully charged electricity storage device.
  • the complete negative electrode capacity b is a constant current-constant voltage charge (CCCV charge) in which a power storage device is charged with a constant current having a current value ⁇ until the cell voltage reaches a set voltage, and then a constant voltage of a set voltage is applied. For 30 minutes until fully charged. Next, this fully charged power storage device is decomposed in an argon box so that the positive electrode and the negative electrode are not short-circuited, and the negative electrode is taken out.
  • CCCV charge constant current-constant voltage charge
  • the negative electrode is used as a working electrode, and the counter electrode and the reference electrode are made of a lithium metal plate. Each electrode plate is used to assemble a triode cell for measuring the negative electrode capacity, and this is discharged at a constant current of ⁇ until the negative electrode potential becomes 1.5 V, and the negative electrode capacity is measured.
  • the total negative electrode capacity b is obtained by multiplying the measured negative electrode capacity by the total number of negative electrodes.
  • the current value ⁇ is the same value as the current value ⁇ when there is only one negative electrode constituting the electricity storage device, and there are a plurality of negative electrodes constituting the electricity storage device, and each negative electrode has the same configuration. When it has, it becomes a value obtained by dividing the current value ⁇ by the number of negative electrodes.
  • a negative electrode other than the negative electrode located at the outermost part can be selected and taken out as a negative electrode for producing a three-electrode cell for measuring negative electrode capacity. Needed.
  • This negative electrode is used as the working electrode, and the counter electrode (both sides of the working electrode) And a three-electrode cell for measuring the negative electrode capacity using an electrode plate made of a lithium metal plate as a reference electrode, and the negative electrode at a constant current of 18.2 mA (current value ⁇ : 200 mA ⁇ 11 sheets).
  • the negative electrode capacity is measured by discharging until the potential reaches 1.5 V, and by multiplying this value by 11, the complete negative electrode capacity b can be obtained.
  • the ratio (a / b) of the cell capacity a to the complete negative electrode capacity b is 0.35 ⁇ a / b ⁇ 0.95. When a / b is less than 0.35, the energy density decreases.
  • a / b is larger than 0.95, lithium deposition is likely to occur during the cycle test, and the durability is deteriorated. Further, the capacity reduction due to lithium consumption is accelerated, and the characteristics are deteriorated.
  • a / b is preferably 0.36 ⁇ a / b ⁇ 0.93, and particularly preferably satisfies 0.45 ⁇ a / b ⁇ 0.7.
  • the negative electrode in the electricity storage device of the present invention has a total negative electrode charge capacity c (mAh) of 0.55 ⁇ b when the capacity when the negative electrode is charged with constant current-constant voltage (CCCV) at 0 V for 12 hours. It is necessary to satisfy /c ⁇ 1.00 and 0.35 ⁇ a / c ⁇ 0.55.
  • CCCV constant current-constant voltage
  • the ratio b / c of the complete negative electrode capacity b to the total negative electrode charge capacity c is in the above range, a high capacity retention rate is obtained for the power storage device, and high durability is obtained.
  • b / c is less than 0.55, lithium is insufficient and cycle durability is deteriorated.
  • the ratio a / c of the cell capacity a to the total negative electrode charge capacity c is less than 0.35, the energy density is lowered.
  • a / c is larger than 0.55, the capacity drop during the cycle test is increased and the durability is deteriorated. 0.36 ⁇ a / c ⁇ 0.54 is preferable, and 0.4 ⁇ a / c ⁇ 0.5 is particularly preferable.
  • the total negative electrode charge capacity c can be controlled by adjusting the type and mass of the negative electrode active material contained in the negative electrode. Specifically, for example, the total negative electrode charge capacity c can be increased as the mass ratio of the negative electrode active material in the negative electrode active material layer is increased. For example, when graphite, graphite-based composite particles, and polyacene organic semiconductor (PAS) are compared with the same weight as the negative electrode active material, the total negative electrode charge capacity c increases when PAS is used.
  • PAS polyacene organic semiconductor
  • the total negative electrode charging capacity c of the electricity storage device is the total of the respective negative electrode capacities obtained by the following measurements relating to the respective negative electrodes constituting the electricity storage device. Specifically, the total negative electrode charge capacity c is first charged by charging a negative electrode capacity measurement tripolar cell for measuring the complete negative electrode capacity b until the negative electrode potential becomes 0 V at a constant current of ⁇ . Then, constant current-constant voltage charging (CCCV charging) in which a constant voltage of 0 V is applied is performed for 12 hours, and the negative electrode capacity at this time is measured, whereby the total negative electrode charging capacity c is obtained.
  • CCCV charging constant current-constant voltage charging
  • the total negative electrode charge capacity c is equal to the negative electrode capacity measured in the three-electrode cell for measuring the negative electrode capacity. It is calculated
  • the positive electrode and the negative electrode are respectively provided with a positive electrode current collector and a negative electrode current collector that receive and distribute electricity.
  • a positive electrode current collector and a negative electrode current collector it is preferable to use a current collector in which through holes are formed.
  • the form and number of through holes in the positive electrode current collector and the negative electrode current collector are not particularly limited, and lithium ions and electrolysis supplied electrochemically from a lithium electrode arranged to face at least one of the positive electrode and the negative electrode It can set so that the lithium ion in a liquid can move between the front and back of an electrode, without interrupted
  • a porous current collector having through holes can be used.
  • the positive electrode current collector having a through hole for example, an expanded metal or a punching metal in which a through hole penetrating the back surface is formed by mechanical driving, laser processing using a CO 2 laser, a YAG laser, a UV laser, or the like is used.
  • a current collector in which a through hole penetrating the surface or a current collector in which a through hole is formed on the front and back surfaces by etching or electrolytic etching can be used.
  • the material of the positive electrode current collector aluminum, stainless steel or the like can be used, and aluminum is particularly preferable.
  • the thickness of the positive electrode current collector is not particularly limited, but it may be usually 1 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m to 40 ⁇ m, particularly preferably 10 ⁇ m to 40 ⁇ m.
  • the porosity (%) of the through holes of the positive electrode current collector is preferably 20% to 50%, more preferably 20% to 40%.
  • the porosity (%) of the positive electrode current collector can be obtained by the following formula (1).
  • Porosity (%) [1- (mass of positive electrode current collector / true specific gravity of positive electrode current collector) / (apparent volume of positive electrode current collector)] ⁇ 100 (1)
  • the positive electrode active material a material capable of reversibly doping and dedoping at least one kind of anion such as lithium ion and tetrafluoroborate is used, and examples thereof include activated carbon powder.
  • the specific surface area of the activated carbon is preferably 1900 m 2 / g to 3000 m 2 / g, and more preferably 1950 m 2 / g to 2800 m 2 / g.
  • the 50% volume cumulative diameter (D50) of the activated carbon is preferably 2 ⁇ m to 8 ⁇ m, particularly preferably 2 ⁇ m to 5 ⁇ m, from the viewpoint of the packing density of the activated carbon.
  • the energy density of the electricity storage device can be further improved.
  • the value of the 50% volume cumulative diameter (D50) is obtained by, for example, the microtrack method.
  • the positive electrode active material layer is formed by attaching the positive electrode active material to the positive electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like.
  • the thickness of the positive electrode active material layer is preferably 55 ⁇ m to 95 ⁇ m on one side, more preferably 60 ⁇ m to 90 ⁇ m, and particularly preferably 65 to 80 ⁇ m.
  • Electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 .
  • the electrode density of the positive electrode active material layer is less than 0.54 g / cm 3 .
  • the electrode density of the positive electrode active material layer is larger than 0.7 g / cm 3 , the pre-doping property is deteriorated and the cycle characteristics are deteriorated.
  • Electrode density of the positive electrode active material layer is preferably from 0.54g / cm 3 ⁇ 0.68g / cm 3, and even more preferably 0.6g / cm 3 ⁇ 0.68g / cm 3.
  • the electrode density of the positive electrode active material layer is usually determined by washing the positive electrode obtained by disassembling the electricity storage device with diethyl carbonate and vacuum drying at 100 ° C., then the mass of the positive electrode active material layer and the outer shape of the positive electrode active material It is determined by measuring the volume (apparent volume) and dividing the mass of the positive electrode active material layer by the outer volume of the positive electrode active material layer.
  • the “external volume of the positive electrode active material layer” is a volume calculated based on the measured values of the vertical dimension, the horizontal dimension, and the thickness dimension of the positive electrode active material layer.
  • a method of setting the electrode density within the above range a method of forming by a roll press or the like can be mentioned.
  • the electrode weight per unit area of the positive electrode active material layer is 70 g / m 2 to 110 g / m 2 .
  • the electrode weight per unit area of the positive electrode active material layer is preferably 75 g / m 2 to 110 g / m 2 .
  • the weight per unit area of the positive electrode active material layer was determined by washing the positive electrode obtained by disassembling the electricity storage device with diethyl carbonate and drying at 100 ° C., then punching the active material layer part into a predetermined area and measuring the mass. It is calculated by peeling the active material layer, measuring the mass of the current collector, and dividing the mass of the active material layer by the area.
  • the negative electrode current collector stainless steel, copper, nickel, or the like can be used.
  • the thickness of the negative electrode current collector is not particularly limited, but is usually 1 ⁇ m to 50 ⁇ m, preferably 5 ⁇ m to 40 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • the negative electrode current collector preferably has a hole penetrating the front and back surfaces, and the hole diameter of the through hole is, for example, 0.5 ⁇ m to 400 ⁇ m, preferably 0.5 ⁇ m to 350 ⁇ m, and preferably 1 ⁇ m. It is particularly preferred that the particle diameter is ⁇ 330 ⁇ m. Further, the porosity (%) of the through holes of the negative electrode current collector is preferably 20% to 70%, and more preferably 20% to 60%. Here, the porosity (%) of the negative electrode current collector can be obtained by the following formula (2).
  • Porosity (%) [1- (Mass of negative electrode current collector / true specific gravity of negative electrode current collector) / (apparent volume of negative electrode current collector)] ⁇ 100
  • Examples of the negative electrode current collector having a through hole include, for example, an expanded metal or a punching metal in which a through hole penetrating the back surface is formed by mechanical driving, laser processing using a CO 2 laser, a YAG laser, a UV laser, or the like.
  • a current collector in which a through-hole penetrating the back surface or a current collector in which a through-hole is formed on the front and back surfaces by etching can be used.
  • the negative electrode active material it is preferable to use graphite particles among materials that can be reversibly doped / dedoped with lithium ions.
  • graphite-based composite particles in which the surface of core particles made of graphite, non-graphitizable carbon, and natural graphite are coated with a graphitized substance derived from tar or pitch, and a heat-treated product of an aromatic condensation polymer.
  • PAS polyacene-based organic semiconductors
  • the aromatic condensation polymer refers to a condensate of an aromatic hydrocarbon compound and aldehydes.
  • the aromatic hydrocarbon compound include phenol, cresol, and xylenol
  • examples of the aldehyde include formaldehyde, acetaldehyde, and furfural.
  • the particle size is preferably graphite particles having a 50% volume cumulative diameter (D50) in the range of 1.0 ⁇ m to 10 ⁇ m from the viewpoint of improving the output, and graphite particles in the range of 2 ⁇ m to 5 ⁇ m. More preferred. Graphite-based particles having a 50% volume cumulative diameter (D50) of less than 1.0 ⁇ m are difficult to produce, and the durability may be reduced due to gas generation during charging. On the other hand, with graphite-based particles having a 50% volume cumulative diameter (D50) exceeding 10 ⁇ m, it is difficult to obtain an electricity storage device having a sufficiently low internal resistance.
  • D50 50% volume cumulative diameter
  • the negative electrode active material preferably has a specific surface area of 0.1 m 2 / g to 200 m 2 / g, more preferably 0.5 m 2 / g to 50 m 2 / g.
  • the specific surface area of the negative electrode active material is less than 0.1 m 2 / g, the resistance of the obtained electricity storage device is increased, while when the specific surface area of the negative electrode active material exceeds 200 m 2 / g, The irreversible capacity at the time of charging of the electricity storage device to be increased is high, and gas may be generated at the time of charging, which may reduce durability.
  • the 50% volume cumulative diameter (D50) of the graphite-based particles is a value determined by, for example, a microtrack method.
  • the negative electrode active material layer is formed by adhering the negative electrode active material to the negative electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like.
  • the preferable range of the thickness of the negative electrode active material layer varies depending on the balance with the mass of the positive electrode active material layer, but the thickness on one side may be 10 ⁇ m to 80 ⁇ m, preferably 10 ⁇ m to 65 ⁇ m, and more preferably 10 ⁇ m to 50 ⁇ m.
  • each electrode positive electrode or negative electrode
  • each electrode includes each active material powder (positive electrode active material or negative electrode active material), a binder, and, if necessary, a conductive material, a thickener such as carboxymethyl cellulose (CMC),
  • CMC carboxymethyl cellulose
  • the slurry can be produced by mixing with water or an organic solvent and applying the resulting slurry to a current collector, or by forming the slurry into a sheet and sticking it to the current collector.
  • examples of the binder include a rubber-based binder such as SBR, a fluorine-containing resin obtained by seed polymerization of polytetrafluoroethylene, polyvinylidene fluoride, etc. with an acrylic resin, or an acrylic resin.
  • examples of the conductive material include acetylene black, ketjen black, graphite, and metal powder.
  • the amount of each of the binder and the conductive material to be added varies depending on the electric conductivity of the active material used, the shape of the electrode to be produced, etc., but both are usually preferably 2% by mass to 20% by mass with respect to the active material, In particular, 2% by mass to 10% by mass is more preferable.
  • a material having an air permeability measured by a method based on JISP8117 in the range of 1 sec to 200 sec can be used.
  • it can be appropriately selected from non-woven fabrics and microporous membranes composed of polyethylene, polypropylene, polyester, cellulose, polyolefin, cellulose / rayon, etc., and particularly polyethylene, polypropylene, cellulose / It is preferable to use a rayon nonwoven fabric.
  • the thickness of the separator is, for example, 5 ⁇ m to 20 ⁇ m, and preferably 5 ⁇ m to 15 ⁇ m. When the thickness of the separator is less than 5 ⁇ m, a short circuit is likely to occur. On the other hand, when it is larger than 20 ⁇ m, the resistance becomes high.
  • Electrode In the electricity storage device of the present invention, an aprotic organic solvent electrolyte solution of lithium salt is used as the electrolyte.
  • aprotic organic solvent of electrolyte examples include ethylene carbonate (hereinafter also referred to as “EC”), propylene carbonate (hereinafter also referred to as “PC”), cyclic carbonates such as butylene carbonate, and dimethyl carbonate. (Hereinafter also referred to as “DMC”), chain carbonates such as ethyl methyl carbonate (hereinafter also referred to as “EMC”), diethyl carbonate (hereinafter also referred to as “DEC”), and methylpropyl carbonate. You may use the mixed solvent which mixed 2 or more types of these.
  • the aprotic organic solvent constituting the electrolytic solution is an organic solvent other than cyclic carbonate and chain carbonate, for example, cyclic ester such as ⁇ -butyrolactone, cyclic sulfone such as sulfolane, cyclic ether such as dioxolane, propionic acid, etc. It may contain a chain carboxylic acid ester such as ethyl and a chain ether such as dimethoxyethane.
  • lithium salt of the electrolyte in the electrolytic solution examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2, etc.
  • LiPF 6 is preferably used because of its high ion conductivity and low resistance.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol / L or more, more preferably 0.5 to 1.5 mol / L, because low internal resistance can be obtained.
  • the electricity storage device of the present invention has a capacity retention rate of 95% or more after 10,000 cycles of constant current charge / discharge at a time rate of 10 C in a voltage range of 3.8 V to 2.2 V. Furthermore, in the electricity storage device of the present invention, the rate of increase in the internal resistance after 10000 cycles of constant current charge / discharge at a time rate of 10 C in the voltage range of 3.8 V to 2.2 V is 3% or less.
  • the electricity storage device of the present invention satisfies 0.35 ⁇ a / b ⁇ 0.95, 0.55 ⁇ b / c ⁇ 1.00, 0.35 ⁇ a / c ⁇ 0.55, and the positive electrode
  • the electrode density of the active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 and the electrode weight per unit area of the positive electrode active material layer satisfies 70 g / m 2 to 110 g / m 2 .
  • higher capacity can be obtained.
  • the maintenance rate can be maintained and the increase in internal resistance can be suppressed.
  • a wound-type, plate-like or sheet-like positive electrode and negative electrode in which a belt-like positive electrode and a negative electrode are wound through a separator are laminated in three or more layers via a separator.
  • a laminated type in which a unit having such a laminated structure is enclosed in an outer film or a rectangular outer can.
  • the structures of these power storage devices are known, for example, from Japanese Patent Application Laid-Open No. 2004-266091, and can have the same configuration as those power storage devices.
  • the electricity storage device of the present invention is not limited to a wound or stacked lithium ion capacitor, and can be suitably applied to a lithium ion secondary battery and other electricity storage devices.
  • Fabrication of positive electrode Conductive paint (Nippon Graphite Bunny Height T-602DEFK) is applied to both sides of a current collector material made of aluminum electrolytic etching foil having a pore diameter of 1 ⁇ m and a thickness of 30 ⁇ m.
  • the coating width was set to 100 mm
  • the coating thickness of both sides combined was set to 125 ⁇ m
  • both sides were coated, followed by drying under reduced pressure to form conductive layers on the front and back surfaces of the positive electrode current collector.
  • activated carbon particles having a 50% volume cumulative diameter (D50) value of 3 ⁇ m and a specific surface area of 2000 m 2 / g on the conductive layer formed on the front and back surfaces of the positive electrode current collector (Cataler Co., Ltd .: -CEP21K) (Positive electrode active material) 43 wt%, binder 1.5 wt% (manufactured by JSR: TRD201B), carboxylmethylcellulose sodium salt (Daicel 1120) 2 wt%, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) HS100)
  • a slurry containing 2.5 wt% and water 51 wt% was coated on both sides using a vertical die type double-side coating machine, then dried under reduced pressure and roll pressed to form an electrode on the conductive layer.
  • a positive electrode active material layer as a layer was formed.
  • the portion obtained by laminating the conductive layer and electrode layer of the positive electrode current collector thus obtained (hereinafter also referred to as “coating portion” for the positive electrode) is 60 mm ⁇ 80 mm, and no layers are formed.
  • the electrode layer is formed on both surfaces of the positive electrode current collector by cutting into a size of 60 mm ⁇ 95 mm so that the portion (hereinafter also referred to as “uncoated part” for the positive electrode) is 60 mm ⁇ 15 mm.
  • a positive electrode was produced.
  • Graphite-based composite particles having a pitch-coated surface (1) (Nippon Carbon Co., Ltd .: AGP30) (negative electrode active material) 40 wt%, SBR binder (JSR Co., Ltd .: TRD2001) 1 wt% and carboxymethyl cellulose sodium salt (Daicel) 1120)
  • a slurry containing 1.5 wt%, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd .: HS100) 2 wt%, and water 55.5 wt% was coated on both sides using a vertical die type double-side coating machine.
  • the portion where the electrode layer of the negative electrode current collector thus obtained (hereinafter also referred to as “coating portion” for the negative electrode) is 65 mm ⁇ 85 mm, and the portion where the electrode layer is not formed (hereinafter, A negative electrode having electrode layers formed on both sides of a negative electrode current collector was prepared by cutting into a size of 65 mm ⁇ 100 mm so that the negative electrode was also referred to as an “uncoated part”. .
  • a lithium ion supply member is prepared by cutting the foil-like lithium metal having a thickness of 46 ⁇ m so that the size of the foil-like lithium metal is 65 mm ⁇ 85 mm and pressing the copper foil on a copper foil having a thickness of 25 ⁇ m (manufactured by Nippon Foil Co., Ltd.). And this lithium ion supply member was arrange
  • a copper negative electrode power tab was stacked and welded. Thereby, a lithium ion capacitor element was obtained.
  • the positive electrode terminal and the negative electrode terminal of the electrode laminate unit project outward from the end portion of the other exterior film at the position serving as the housing portion on the other exterior film.
  • One exterior film was overlapped on this electrode laminate unit, and three sides (including two sides from which the positive electrode terminal and the negative electrode terminal protrude) at the outer peripheral edge of one exterior film and the other exterior film were heat-sealed.
  • an electrolytic solution containing LiPF 6 at a concentration of 1.2 mol / L using a mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (3: 1: 4 by volume, respectively) as an aprotic organic solvent is prepared.
  • the negative electrode was doped with lithium ions from a lithium foil (lithium ion supply member) by being left for 10 days.
  • a test laminate outer lithium ion capacitor (hereinafter referred to as cell 1) was produced. A total of four similar cells 1 were produced. The average cell capacity of the obtained cell 1 was 190 mAh.
  • a positive electrode obtained by disassembling one cell 1 is immersed in a container containing diethyl carbonate for 30 minutes for washing treatment, vacuum-dried at 100 ° C., and then placed in any place where an active material layer exists. Two pieces having a size of 2 cm 2 were cut out, the weight of one cut out positive electrode was measured with an electronic balance, and the thickness was measured with a micrometer. Next, only the current collector in the uncoated region where no active material layer was present was cut into the same size, the weight was measured with an electronic balance, and the thickness was measured with a micrometer. The weight of the positive electrode active material layer was calculated by subtracting the weight of the obtained current collector from the weight of the positive electrode.
  • the thickness of only the obtained current collector was subtracted from the thickness of the positive electrode to calculate the thickness of the positive electrode active material layer, and the external volume (apparent volume) of the positive electrode active material was calculated.
  • the positive electrode active material layer density was determined by dividing the mass of the positive electrode active material layer by the outer volume of the positive electrode active material layer.
  • the value obtained by multiplying the negative electrode capacity of 11 (the number of negative electrodes) by 11 (the number of negative electrodes) when discharging until Li + ) is defined as the complete negative electrode capacity b, and Table 1 shows the results based on the complete negative electrode capacity b.
  • (V) Cycle characteristic test [Capacity maintenance rate] The cell 1 is charged at a constant current of 1.9 A (time rate 10 C) until the cell voltage becomes 3.8 V, and then the cell voltage becomes 2.2 V at a constant current of 1.9 A. The cycle test was repeated 10,000 times for the charge / discharge cycle to discharge up to. The ratio of the capacity at the 10,000th cycle to the capacity at the first cycle in this cycle test is shown in Table 1 as a capacity retention rate. Table 1 shows “ ⁇ ” when the capacity maintenance ratio is 95% or more, “ ⁇ ” when 90% or more and less than 95%, and “x” when less than 90%.
  • the initial DC-IR is 10.35 m ⁇ or less, and the energy density is greater than 31.5 Wh / L, it is marked as ⁇ . Furthermore, when the capacity maintenance rate is 95% or more and the resistance increase rate is 3% or less, it is marked as ⁇ . When it is out of the above range, it is x.
  • the electrode density and basis weight of the positive electrode active material layer, a / b, b / c, and a / c are set as shown in Table 1, and the separator thickness is changed according to Table 1.
  • four S2-S13 and four C1-C10 were prepared in the same manner.
  • the cell capacity a, the complete negative electrode capacity b, the total negative electrode charge capacity c, the energy density and the DC-IR were measured in the same manner as in Example 1, and a cycle characteristic test was conducted to evaluate the characteristics. Went.
  • the current value was changed in accordance with the capacity of each cell so that the time rate was the same as that in Example 1. The results based on these results are shown in Table 1.
  • the positive electrode active material satisfying 0.35 ⁇ a / b ⁇ 0.95, 0.55 ⁇ b / c ⁇ 1.00, and 0.35 ⁇ a / c ⁇ 0.55 If the cell has a layer electrode density of 0.54 g / cm 3 to 0.7 g / cm 3 and a positive electrode active material layer electrode weight of 70 g / m 2 to 110 g / m 2 , a DC-IR In other words, it was possible to obtain an electric storage device having a low balance, that is, a large output, a high energy density, and a good balance of performance capable of suppressing a decrease in capacity and an increase in resistance after cycle testing.
  • the capacity drop during the cycle test became large and the characteristics deteriorated.
  • the C2 cell had an a / c of less than 0.35, so the energy density decreased.
  • the C3 cell had a b / c value exceeding 1.00, the capacity drop during the cycle test was large and the cell characteristics deteriorated.
  • the C4 cell had a b / c of less than 0.55, the capacity decreased and the resistance increased during the cycle test, and the characteristics deteriorated.
  • the initial DC-IR was high, the resistance increased during the cycle test, the capacity decreased, and the cell characteristics deteriorated.
  • the C6 cell has an electrode weight per unit area of the positive electrode active material layer of less than 70 g / cm 2 , the energy density was lowered.
  • the electrode density of the positive electrode active material layer was larger than 0.7 g / cm 3 , the initial DC-IR was high, the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
  • the C8 cell had a lower energy density because the positive electrode active material layer had an electrode density of less than 0.54 g / cm 3 .
  • the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
  • the a / b of the C10 cell was less than 0.35, the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
  • the electricity storage device of the present invention can be used as a lithium ion capacitor, a lithium ion secondary battery, etc., with high energy density and high output characteristics without deterioration even when the capacity of the negative electrode is increased.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-146835 filed on July 12, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

 Provided is a power storage device having high energy density, low resistance, and high durability. A power storage device provided with: an electrode unit in which a positive electrode on which a positive-electrode active-substance layer is formed and a negative electrode on which a negative-electrode active-substance layer is formed are layered in alternating fashion interposed by a separator, and an electrolyte made from an aprotic organic solvent electrolyte solution of a lithium salt. The expressions 0.35 ≤ a/b ≤ 0.95, 0.55 ≤ b/c ≤ 1.00, and 0.35 ≤ a/c ≤ 0.55 hold, where a is the cell capacity (mAh) when the power storage device is discharged from a fully charged state to a voltage that is half the fully charged voltage in 0.75 to 1.25 hours, b is the full negative-electrode capacity (mAh) when the negative electrode in the fully charged state is discharged to the point at which the negative electrode potential reaches 1.5 V (Li/Li+), and c is the total negative-electrode charge capacity (mAh) when the negative electrode at 0V is subjected to constant current, constant voltage (CCCV) charging over 12 hours. The electrode density of the positive-electrode active-substance layer is 0.54-0.7 g/cm3, and the electrode weight of the positive-electrode active-substance layer is 70-110 g/m2.

Description

蓄電デバイスPower storage device
 本発明は、高エネルギー密度、高出力、及び耐久性を有する蓄電デバイスに関する。 The present invention relates to an electricity storage device having high energy density, high output, and durability.
 近年、リチウムイオン二次電池および電気二重層キャパシタの蓄電原理が組み合わされた、ハイブリッドキャパシタと称される蓄電デバイスが注目されている。
 かかるハイブリッドキャパシタとしては、リチウムイオンを吸蔵、脱離し得る炭素材料に、予め化学的方法または電気化学的方法によって、リチウムイオンを吸蔵、担持(以下、ドープともいう。)させて負極電位を下げることにより、高いエネルギー密度が得られる蓄電デバイスが提案されている(例えば、特許文献1参照。)。また、満充電の状態から半分の電圧まで放電した際のセル容量をa〔mAh〕、充電状態の負極を1.5V〔Li/Li+ 〕まで放電させた時の容量を完全負極容量b〔mAh〕としたときに、0.05≦a/b≦0.3を満たすように正極活物質と負極活物質との比率を規定して高出力化を図った有機電解質キャパシタ(例えば、特許文献2参照。)なども提案されている。
In recent years, an electricity storage device called a hybrid capacitor, which combines the electricity storage principles of a lithium ion secondary battery and an electric double layer capacitor, has attracted attention.
In such a hybrid capacitor, a carbon material capable of inserting and extracting lithium ions is previously occluded and supported (hereinafter also referred to as dope) by a chemical method or an electrochemical method to lower the negative electrode potential. Therefore, an electricity storage device that can obtain a high energy density has been proposed (see, for example, Patent Document 1). Also, the cell capacity when discharging from a fully charged state to half the voltage is a [mAh], and the capacity when the charged negative electrode is discharged to 1.5 V [Li / Li + ] is the complete negative electrode capacity b [ mAh], the ratio of the positive electrode active material and the negative electrode active material is regulated so as to satisfy 0.05 ≦ a / b ≦ 0.3, and an organic electrolyte capacitor with a high output (for example, patent document) 2) is also proposed.
 しかし、特許文献2のように高出力化を図る構成にした場合、電気二重層キャパシタよりは高エネルギー密度化を図っているが、一般的なリチウムイオンキャパシタの中ではエネルギー密度は低い結果をもたらす。
 また、特許文献1のように正極活物質重量を大きくした場合は、エネルギー密度の高いリチウムイオンキャパシタが得られる。このように、正極活物質重量を大きくした場合、放電末期の抵抗が高くなるためレート特性が低下するとともに、従来のキャパシタと比較するとサイクル特性が悪くなる。その原因は、負極への負荷が高くなるためであり、充放電を繰り返すと、負極活物質中のリチウムイオンの消費によりセル容量の低下が早くなると考えられる。即ち、高出力化と高エネルギー密度化はトレードオフの関係となっており、蓄電デバイスの性能の良好なバランスを保つことが困難であった。
However, when it is configured to increase the output as in Patent Document 2, the energy density is higher than that of the electric double layer capacitor, but the result is that the energy density is lower in a general lithium ion capacitor. .
Moreover, when the positive electrode active material weight is increased as in Patent Document 1, a lithium ion capacitor having a high energy density can be obtained. As described above, when the weight of the positive electrode active material is increased, the resistance at the end of discharge is increased, so that the rate characteristic is lowered and the cycle characteristic is deteriorated as compared with the conventional capacitor. The reason for this is that the load on the negative electrode is increased. If charging and discharging are repeated, it is considered that the decrease in cell capacity is accelerated due to the consumption of lithium ions in the negative electrode active material. That is, there is a trade-off relationship between higher output and higher energy density, and it has been difficult to maintain a good balance of the performance of the electricity storage device.
日本特許第4015993号公報Japanese Patent No. 4015993 国際公開WO2005/031773号パンフレットInternational Publication WO2005 / 031773 Pamphlet
 本発明は、上記のような事情に基づいてなされたものであり、その目的は、高エネルギー密度、高出力、及び耐久性を有する蓄電デバイスを提供することにある。 The present invention has been made based on the above circumstances, and an object thereof is to provide a power storage device having high energy density, high output, and durability.
 本発明者らは、上記の目的を達成すべく研究をすすめたところ、以下の構成を要旨とする本発明に到達した。
(1)正極集電体上に正極活物質層が形成された正極および負極集電体上に負極活物質層が形成された負極が、セパレータを介して交互に積層されて構成された電極ユニットと、リチウム塩の非プロトン性有機溶媒溶液よりなる電解液とを備えた蓄電デバイスであって、
 蓄電デバイスの満充電の状態から、満充電の電圧の半分の電圧まで0.75時間~1.25時間かけて放電したときの容量をセル容量a(mAh)とし、蓄電デバイスの満充電の状態の負極を、負極電位が1.5V(Li/Li+ )になるまで放電させたときの容量を完全負極容量b(mAh)とし、前記負極を0Vにて12時間にわたって定電流-定電圧充電(CCCV充電)としたときの容量を総負極充電容量c(mAh)とするとき、0.35≦a/b≦0.95、0.55≦b/c≦1.00、0.35≦a/c≦0.55を満たし、前記正極活物質層の電極密度が0.54g/cm~0.7g/cmで、且つ前記正極活物質層の電極目付量が70g/m~110g/mであることを特徴とする蓄電デバイス。
The inventors of the present invention have studied to achieve the above object, and have reached the present invention having the following constitution.
(1) An electrode unit in which a positive electrode having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode having a negative electrode active material layer formed on a negative electrode current collector are alternately laminated via separators And an electrolytic device comprising an aprotic organic solvent solution of a lithium salt,
The capacity when the battery is discharged from 0.75 hours to 1.25 hours from the fully charged state of the storage device to half the full charge voltage is defined as the cell capacity a (mAh). The capacity when the negative electrode was discharged until the negative electrode potential became 1.5 V (Li / Li + ) was defined as the complete negative electrode capacity b (mAh), and the negative electrode was charged with constant current-constant voltage at 0 V for 12 hours. (CCCV charge) When the total negative electrode charge capacity c (mAh) is assumed, the capacity is 0.35 ≦ a / b ≦ 0.95, 0.55 ≦ b / c ≦ 1.00, 0.35 ≦ a / c ≦ 0.55 is satisfied, the electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 , and the electrode weight per unit area of the positive electrode active material layer is 70 g / m 2 to An electricity storage device, which is 110 g / m 2 .
(2)前記負極活物質層は黒鉛系粒子を含む上記(1)に記載の蓄電デバイス。
(3)前記正極活物質層は活性炭を含むことを特徴とする上記(1)または(2)に記載の蓄電デバイス。
(4)前記セパレータの厚みが5μm~20μmである上記(1)~(3)に記載の蓄電デバイス。
(5)前記正極集電体および/または負極集電体が、貫通孔を有している上記(1)~(4)のいずれか1項に記載の蓄電デバイス。
(6)前記電極ユニットが、積層型または捲回型である上記(1)~(5)のいずれか1項に記載の蓄電デバイス。
(7)前記負極が、予めリチウムイオンがドープされた負極である上記(1)~(6)のいずれか1項に記載の蓄電デバイス。
(8)リチウムイオンキャパシタである上記(1)~(7)のいずれか1項に記載の蓄電デバイス。
(9)エネルギー密度が31.5Wh/L以上である上記(8)に記載の蓄電デバイス。
(2) The electricity storage device according to (1), wherein the negative electrode active material layer includes graphite-based particles.
(3) The electricity storage device according to (1) or (2), wherein the positive electrode active material layer includes activated carbon.
(4) The electricity storage device according to any one of (1) to (3), wherein the separator has a thickness of 5 μm to 20 μm.
(5) The electricity storage device according to any one of (1) to (4), wherein the positive electrode current collector and / or the negative electrode current collector have a through hole.
(6) The electricity storage device according to any one of (1) to (5), wherein the electrode unit is a laminated type or a wound type.
(7) The electricity storage device according to any one of (1) to (6), wherein the negative electrode is a negative electrode doped with lithium ions in advance.
(8) The electricity storage device according to any one of (1) to (7), wherein the electricity storage device is a lithium ion capacitor.
(9) The electricity storage device according to (8), wherein the energy density is 31.5 Wh / L or more.
 本発明の蓄電デバイス、例えば、リチウムイオンキャパシタ、リチウムイオン二次電池によれば、負極への負荷を大きくしても劣化することなく高い耐久性を保ち、高エネルギー密度が得られると共に、高出力特性が得られる。 According to the electricity storage device of the present invention, for example, a lithium ion capacitor, a lithium ion secondary battery, high durability is obtained without deterioration even when the load on the negative electrode is increased, high energy density is obtained, and high output Characteristics are obtained.
 本発明の蓄電デバイスは、基本的に、正極と負極とを、セパレータを介して交互に積層あるいは捲回させた電極ユニットを外装容器内に有する。外装容器は、円筒型、角型、ラミネート型等を適宜使用することができ、特に限定されない。
 本発明の蓄電デバイスにおいて、「正極」とは、放電の際に電流が流出し、充電の際に電流が流入する側の極を意味し、「負極」とは、放電の際に電流が流入し、充電の際に電流が流出する側の極を意味する。
The electricity storage device of the present invention basically has an electrode unit in which the positive electrode and the negative electrode are alternately stacked or wound via a separator in the outer container. As the outer container, a cylindrical shape, a rectangular shape, a laminate shape, or the like can be appropriately used, and is not particularly limited.
In the electricity storage device of the present invention, “positive electrode” means the electrode on the side where current flows out during discharging and current flows in during charging, and “negative electrode” refers to current flowing in during discharging. It means the pole on the side where current flows out during charging.
 本明細書において、「ドープ」とは、吸蔵、吸着または挿入を意味し、正極活物質にリチウムイオンおよびアニオンの少なくとも一方が入る現象、あるいは、負極活物質にリチウムイオンが入る現象をいう。また、「脱ドープ」とは、脱離、放出を意味し、正極活物質からリチウムイオンもしくはアニオンが脱離する現象、または負極活物質からリチウムイオンが脱離する現象をいう。 In this specification, “dope” means occlusion, adsorption or insertion, and refers to a phenomenon in which at least one of lithium ions and anions enters the positive electrode active material, or a phenomenon in which lithium ions enter the negative electrode active material. Further, “de-doping” means desorption and release, and refers to a phenomenon in which lithium ions or anions are desorbed from the positive electrode active material, or a phenomenon in which lithium ions are desorbed from the negative electrode active material.
 本発明の蓄電デバイスは、負極および正極の少なくとも一方にリチウムイオンを予めドープするのが好ましい。負極にリチウムイオンを予めドープするのがより好ましい。
 負極および正極の少なくとも一方にリチウムイオンを予めドープする方法としては、例えば、金属リチウム等をリチウム極として蓄電デバイスに配置し、負極および正極の少なくとも一方とリチウム極との電気化学的接触によって、リチウムイオンをドープさせる方法が用いられる。
In the electricity storage device of the present invention, it is preferable that at least one of the negative electrode and the positive electrode is previously doped with lithium ions. More preferably, the negative electrode is pre-doped with lithium ions.
As a method of pre-doping lithium ions into at least one of the negative electrode and the positive electrode, for example, metallic lithium or the like is disposed in the electricity storage device as a lithium electrode, and the lithium is contacted by electrochemical contact between at least one of the negative electrode and the positive electrode and the lithium electrode. A method of doping ions is used.
 本発明の蓄電デバイスでは、リチウム極をセル中に局所的に配置して電気化学的接触させることによっても、負極および正極の少なくとも一方にリチウムイオンを均一にドープすることができる。 In the electricity storage device of the present invention, lithium ions can be uniformly doped into at least one of the negative electrode and the positive electrode also by locally arranging the lithium electrode in the cell and bringing it into electrochemical contact.
 本発明の蓄電デバイスは、例えば、表裏面を貫通する孔を有した正極集電体に正極活物質層を形成した正極、第1のセパレータ、表裏面を貫通する孔を有した負極集電体に負極活物質層を形成した負極、第2のセパレータの順に捲回または積層させ、正極と接触しないように第1のセパレータの余剰部に少なくとも1つのリチウム極を配置し、負極集電体とリチウム極を短絡させて、電極ユニットを構成する。角型、円筒型またはラミネート状の外装容器に電極ユニットを封入した後、電解液を充填させることで、リチウム極からのリチウムイオンのドープが開始され、負極活物質層中にリチウムイオンをドープすることができる。これにより、蓄電デバイスを構成する。 The electricity storage device of the present invention includes, for example, a positive electrode in which a positive electrode active material layer is formed on a positive electrode current collector having holes penetrating the front and back surfaces, a first separator, and a negative electrode current collector having holes penetrating the front and back surfaces. A negative electrode on which a negative electrode active material layer is formed, and a second separator are wound or laminated in this order, and at least one lithium electrode is disposed in an excess portion of the first separator so as not to contact the positive electrode, A lithium electrode is short-circuited to constitute an electrode unit. After the electrode unit is sealed in a rectangular, cylindrical or laminated outer container, the electrolyte is filled to start doping of lithium ions from the lithium electrode, and the negative electrode active material layer is doped with lithium ions be able to. Thereby, an electrical storage device is comprised.
 本発明の蓄電デバイスの具体例としては、リチウムイオンキャパシタおよびリチウムイオン二次電池をあげることができるが、なかでもリチウムイオンキャパシタであるのが好ましい。 Specific examples of the electricity storage device of the present invention include a lithium ion capacitor and a lithium ion secondary battery. Among these, a lithium ion capacitor is preferable.
 本発明において、リチウムイオンキャパシタとは、正極が分極性電極であり、負極が非分極性電極である、リチウムイオンを含有する蓄電デバイスを意味する。
 リチウムイオンキャパシタの正極材料としては、活性炭、ポリアセン等の比表面積の大きな材料が好ましく用いられ、負極の材料としては、黒鉛、難黒鉛化炭素、天然黒鉛よりなる芯粒子の表面がタールもしくはピッチ由来の黒鉛化物質によって被覆されている黒鉛系複合粒子、および、芳香族系縮合ポリマーの熱処理物であって水素原子および炭素原子の原子数比(水素原子/炭素原子)が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)等の炭素質材料、チタン酸リチウム等の金属酸化物、シリコン、スズ等の金属合金等が好ましく用いられる。リチウムイオンキャパシタとしては、負極が、予めリチウムイオンをドープした負極であるのが好ましい。負極が、予めリチウムイオンをドープした負極であるリチウムイオンキャパシタは、充電操作から蓄電デバイスの使用開始ができるので好ましい。本発明のリチウムイオンキャパシタは、エネルギー密度が31.5Wh/L以上であるのが好ましく、33Wh/L以上であるのがさらに好ましい。
In the present invention, the lithium ion capacitor means an electricity storage device containing lithium ions in which the positive electrode is a polarizable electrode and the negative electrode is a non-polarizable electrode.
As a positive electrode material of a lithium ion capacitor, a material having a large specific surface area such as activated carbon or polyacene is preferably used, and as a negative electrode material, the surface of core particles made of graphite, non-graphitizable carbon, or natural graphite is derived from tar or pitch. Graphite-based composite particles coated with a graphitized material and a heat-treated product of an aromatic condensation polymer having a hydrogen atom / carbon atom number ratio (hydrogen atom / carbon atom) of 0.50 to 0.00. A carbonaceous material such as a polyacene organic semiconductor (PAS) having a polyacene skeleton structure of 05, a metal oxide such as lithium titanate, a metal alloy such as silicon or tin is preferably used. As the lithium ion capacitor, the negative electrode is preferably a negative electrode doped with lithium ions in advance. A lithium ion capacitor in which the negative electrode is a negative electrode doped with lithium ions in advance is preferable because the use of the electricity storage device can be started from the charging operation. The lithium ion capacitor of the present invention preferably has an energy density of 31.5 Wh / L or more, and more preferably 33 Wh / L or more.
 本発明において、リチウムイオン二次電池とは、正極および負極が非分極性電極である、リチウムイオンを含有する蓄電デバイスを意味する。リチウムイオン二次電池の正極材料としては、コバルト酸リチウム、リン酸鉄リチウム等の遷移金属複合酸化物等が好ましく用いられる。負極材料としては、黒鉛、難黒鉛化炭素等の炭素質材料、チタン酸リチウム等の金属酸化物、シリコン、スズ等の金属合金等が好ましく用いられる。 In the present invention, the lithium ion secondary battery means an electricity storage device containing lithium ions in which the positive electrode and the negative electrode are non-polarizable electrodes. As the positive electrode material of the lithium ion secondary battery, transition metal composite oxides such as lithium cobaltate and lithium iron phosphate are preferably used. As the negative electrode material, carbonaceous materials such as graphite and non-graphitizable carbon, metal oxides such as lithium titanate, metal alloys such as silicon and tin are preferably used.
 本発明の蓄電デバイスは、蓄電デバイスの満充電の状態から、満充電の電圧の半分の電圧まで0.75時間~1.25時間かけて放電したときの容量をセル容量a(mAh)とし、蓄電デバイスの満充電の状態の負極を、負極電位が1.5V(Li/Li+ )になるまで放電させたときの容量を完全負極容量b(mAh)とし、前記負極を0Vにて12時間にわたって定電流-定電圧充電(CCCV充電)したときの容量を総負極充電容量c(mAh)としたとき、0.35≦a/b≦0.95、0.55≦b/c≦1.00、0.35≦a/c≦0.55を満たし、前記正極活物質層の電極密度が0.54g/cm~0.7g/cmで、且つ前記正極活物質層の電極目付量が70g/m~110g/mであるという特徴を有する。 In the electricity storage device of the present invention, the capacity when discharging from the fully charged state of the electricity storage device to half the full charge voltage over 0.75 hours to 1.25 hours is defined as a cell capacity a (mAh), The capacity when the negative electrode in a fully charged state of the electricity storage device was discharged until the negative electrode potential reached 1.5 V (Li / Li + ) was defined as the complete negative electrode capacity b (mAh), and the negative electrode was kept at 0 V for 12 hours. If the total negative charge capacity c (mAh) is constant current-constant voltage charge (CCCV charge) over 0.35 ≦ a / b ≦ 0.95, 0.55 ≦ b / c ≦ 1. 00, 0.35 ≦ a / c ≦ 0.55, the electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 , and the electrode weight per unit area of the positive electrode active material layer having a characteristic that but a 70g / m 2 ~ 110g / m 2 .
 本発明において、蓄電デバイスの満充電の状態とは、ガス発生や抵抗の上昇などの不具合が無く、長期にわたって使用できる最大電圧の範囲内で任意に設定した充電状態を意味する。蓄電デバイスの満充電の電圧は、蓄電デバイスの種類、正負極の材料構成、および電解液組成に依存する。リチウムイオンキャパシタでは、満充電の電圧は、3.6V~4.0V程度であり、リチウムイオン二次電池では、満充電の電圧は、4.1V~4.5V程度である。リチウムイオンキャパシタおよびリチウムイオン二次電池では、満充電時において、負極の電位は、0.2V(Li/Li+ )以下であるのが好ましく、0.1V(Li/Li+ )以下であるのがさらに好ましい。満充電の電圧以上の電圧印加は、蓄電デバイスの劣化を招くので好ましくない。 In the present invention, the state of full charge of the electricity storage device means a state of charge arbitrarily set within the range of the maximum voltage that can be used over a long period of time without causing problems such as gas generation and resistance increase. The fully charged voltage of the electricity storage device depends on the type of the electricity storage device, the material configuration of the positive and negative electrodes, and the electrolyte composition. In a lithium ion capacitor, the full charge voltage is about 3.6V to 4.0V, and in the lithium ion secondary battery, the full charge voltage is about 4.1V to 4.5V. In a lithium ion capacitor and a lithium ion secondary battery, the potential of the negative electrode is preferably 0.2 V (Li / Li + ) or less, and 0.1 V (Li / Li + ) or less when fully charged. Is more preferable. Application of a voltage higher than the fully charged voltage is not preferable because it causes deterioration of the electricity storage device.
 セル容量aは、セルサイズによっても変化するが、所定容量の正極活物質、負極活物質を使用する場合、負極活物質の質量に対する正極活物質の質量を調整することによって制御することができる。具体的には、例えば負極を構成する負極活物質層の目付が一定である場合には、正極活物質層の目付を大きくするほど、セル容量aを大きくすることができる。 The cell capacity a varies depending on the cell size, but can be controlled by adjusting the mass of the positive electrode active material relative to the mass of the negative electrode active material when a positive electrode active material and a negative electrode active material having a predetermined capacity are used. Specifically, for example, when the basis weight of the negative electrode active material layer constituting the negative electrode is constant, the cell capacity a can be increased as the basis weight of the positive electrode active material layer is increased.
〔セル容量aの測定方法〕
 セル容量aは、満充電の状態から、満充電の電圧の半分の電圧まで放電するときの放電時間が0.75時間~1.25時間となる電流値(以下、「電流値α」という。)で放電させることによって測定される。具体的には、まず、蓄電デバイスを、電流値αの定電流にてセル電圧が満充電に係る設定電圧になるまで充電した後、当該設定電圧の定電圧を印加する定電流-定電圧充電(CCCV充電)を30分間行って満充電の状態にする。次いで、この状態から、電流値αの定電流にて、設定電圧の半分の電圧になるまで放電する。この充放電を5回繰り返すことで蓄電デバイスを定常状態とし、5回目に放電したときに測定される容量が、セル容量aとされる。
[Measurement method of cell capacity a]
The cell capacity a is a current value (hereinafter referred to as a “current value α”) at which the discharge time is 0.75 hours to 1.25 hours when discharging from a fully charged state to half the full charged voltage. ) Measured by discharging. Specifically, first, the power storage device is charged at a constant current having a current value α until the cell voltage reaches a set voltage related to full charge, and then a constant current-constant voltage charge in which the constant voltage of the set voltage is applied. (CCCV charge) is performed for 30 minutes until the battery is fully charged. Next, the battery is discharged from this state at a constant current of a current value α until it becomes half the set voltage. By repeating this charge / discharge five times, the storage device is brought into a steady state, and the capacity measured when the battery is discharged for the fifth time is defined as the cell capacity a.
 一例を挙げると、例えば、セル容量が200mAh程度とされる蓄電デバイスの場合、200mA(電流値α)の定電流にてセル電圧が3.8Vになるまで充電した後、3.8Vの定電圧を印加する定電流-定電圧充電(CCCV充電)を30分間行って満充電の状態にし、次いで、この状態から200mA(電流値α)の定電流にてセル電圧が1.9Vになるまで放電することにより、セル容量aを測定することができる。この際の放電に要する時間は約1時間となる。仮に2000mAの定電流にて放電した場合、セルの内部抵抗にもよるが、放電時間が6分以下となり、0.75時間を大きく下回るため、蓄電デバイスが有している正確なセル容量aを測定することはできない。
 なお、本発明で規定している0.75時間~1.25時間とは、いかような値を取り得るわけではなく、約1時間前後で半分の電圧に放電ができる電流値を導き出して放電する目安時間を規定しているものである。具体的には0.9時間~1.1時間の範囲で放電できる電流値を設定することが好ましい。
For example, in the case of a power storage device having a cell capacity of about 200 mAh, for example, a constant voltage of 3.8 V is charged after charging the cell voltage to 3.8 V with a constant current of 200 mA (current value α). A constant current-constant voltage charge (CCCV charge) is applied for 30 minutes to achieve a fully charged state, and then the battery is discharged from this state at a constant current of 200 mA (current value α) until the cell voltage reaches 1.9V. By doing so, the cell capacity a can be measured. The time required for the discharge at this time is about 1 hour. If the discharge is performed at a constant current of 2000 mA, the discharge time is 6 minutes or less and greatly falls below 0.75 hours depending on the internal resistance of the cell. It cannot be measured.
It should be noted that 0.75 hours to 1.25 hours defined in the present invention does not mean what value can be taken, and a current value that can be discharged to half the voltage in about 1 hour is derived and discharged. It specifies the approximate time to be performed. Specifically, it is preferable to set a current value that can be discharged in a range of 0.9 hours to 1.1 hours.
 完全負極容量bは、負極を構成する負極活物質に満充電時にドープされるリチウムイオンの量を調整することによって制御することができる。具体的には、例えばリチウム極の厚みを大きくするほど、完全負極容量bを大きくすることができる。また、正極の容量を大きくすると、完全負極容量bを大きくすることができる。 The complete negative electrode capacity b can be controlled by adjusting the amount of lithium ions doped in the negative electrode active material constituting the negative electrode when fully charged. Specifically, for example, as the thickness of the lithium electrode is increased, the complete negative electrode capacity b can be increased. Further, when the capacity of the positive electrode is increased, the complete negative electrode capacity b can be increased.
〔完全負極容量bの測定方法〕
 蓄電デバイスの完全負極容量bは、満充電状態の蓄電デバイスにおける各負極に係る下記測定によって得られる負極容量の合計である。
 完全負極容量bは、まず、蓄電デバイスを、電流値αの定電流にてセル電圧が設定電圧になるまで充電した後、設定電圧の定電圧を印加する定電流-定電圧充電(CCCV充電)を30分間行って満充電の状態にする。次いで、この満充電させた蓄電デバイスを、例えば、アルゴンボックス内にて正極と負極が短絡しないように分解して負極を取り出し、この負極を作用極とし、対極および参照極にリチウム金属板からなる電極板を各々用いて負極容量測定用の3極セルを組み立て、これを電流値βの定電流にて負極電位が1.5Vになるまで放電してその負極容量を測定する。測定した負極容量に総負極枚数をかけることで完全負極容量bが得られる。
 ここに、電流値βは、蓄電デバイスを構成する負極が1つのみである場合は電流値αと同じ値となり、蓄電デバイスを構成する負極が複数であり、かつ、各負極が同一の構成を有する場合は電流値αを負極の数で除した値となる。
 蓄電デバイスに3つ以上の負極が含有されている場合は、負極容量測定用の3極セルを作製するための負極としては、最外部に位置される負極以外の負極を選択して取り出すことが必要とされる。
[Measurement method of complete negative electrode capacity b]
The complete negative electrode capacity b of the electricity storage device is the total of the negative electrode capacities obtained by the following measurements for each negative electrode in the fully charged electricity storage device.
The complete negative electrode capacity b is a constant current-constant voltage charge (CCCV charge) in which a power storage device is charged with a constant current having a current value α until the cell voltage reaches a set voltage, and then a constant voltage of a set voltage is applied. For 30 minutes until fully charged. Next, this fully charged power storage device is decomposed in an argon box so that the positive electrode and the negative electrode are not short-circuited, and the negative electrode is taken out. The negative electrode is used as a working electrode, and the counter electrode and the reference electrode are made of a lithium metal plate. Each electrode plate is used to assemble a triode cell for measuring the negative electrode capacity, and this is discharged at a constant current of β until the negative electrode potential becomes 1.5 V, and the negative electrode capacity is measured. The total negative electrode capacity b is obtained by multiplying the measured negative electrode capacity by the total number of negative electrodes.
Here, the current value β is the same value as the current value α when there is only one negative electrode constituting the electricity storage device, and there are a plurality of negative electrodes constituting the electricity storage device, and each negative electrode has the same configuration. When it has, it becomes a value obtained by dividing the current value α by the number of negative electrodes.
When three or more negative electrodes are contained in the electricity storage device, a negative electrode other than the negative electrode located at the outermost part can be selected and taken out as a negative electrode for producing a three-electrode cell for measuring negative electrode capacity. Needed.
 一例を挙げると、例えば、200mAhのセル容量を有し、同一の構成の11枚の負極を有する蓄電デバイスの場合、200mA(電流値α)の定電流にてセル電圧が3.8Vになるまで充電した後、3.8Vの定電圧を印加する定電流-定電圧充電(CCCV充電)を30分間行って満充電の状態にする。次いで、この満充電させた蓄電デバイスを、アルゴンボックス内にて正極と負極が短絡しないように分解して最内部に位置される負極を取り出し、この負極を作用極とし、対極(作用極の両面に配置)および参照極にリチウム金属板からなる電極板を各々用いて負極容量測定用の3極セルを組み立て、これを18.2mA(電流値β:200mA÷11枚)の定電流にて負極電位が1.5Vになるまで放電してその負極容量を測定し、この値を11倍することにより、完全負極容量bを得ることができる。
 本発明における、完全負極容量bに対するセル容量aの割合(a/b)は、0.35≦a/b≦0.95である。a/bが0.35未満の場合、エネルギー密度が低下する。一方、a/bが0.95より大きい場合は、サイクル試験時にリチウム析出が生じやすく耐久性が悪くなるとともに、リチウム消費による容量低下がはやくなり、特性が悪化する。a/bは、0.36≦a/b≦0.93であるのが好ましく、特に、0.45≦a/b≦0.7を満たすことが好ましい。
For example, in the case of an electricity storage device having a cell capacity of 200 mAh and 11 negative electrodes having the same configuration, until the cell voltage reaches 3.8 V at a constant current of 200 mA (current value α). After charging, constant current-constant voltage charging (CCCV charging) for applying a constant voltage of 3.8 V is performed for 30 minutes to obtain a fully charged state. Next, this fully charged power storage device is disassembled in an argon box so that the positive electrode and the negative electrode are not short-circuited, and the negative electrode located at the innermost portion is taken out. This negative electrode is used as the working electrode, and the counter electrode (both sides of the working electrode) And a three-electrode cell for measuring the negative electrode capacity using an electrode plate made of a lithium metal plate as a reference electrode, and the negative electrode at a constant current of 18.2 mA (current value β: 200 mA ÷ 11 sheets). The negative electrode capacity is measured by discharging until the potential reaches 1.5 V, and by multiplying this value by 11, the complete negative electrode capacity b can be obtained.
In the present invention, the ratio (a / b) of the cell capacity a to the complete negative electrode capacity b is 0.35 ≦ a / b ≦ 0.95. When a / b is less than 0.35, the energy density decreases. On the other hand, when a / b is larger than 0.95, lithium deposition is likely to occur during the cycle test, and the durability is deteriorated. Further, the capacity reduction due to lithium consumption is accelerated, and the characteristics are deteriorated. a / b is preferably 0.36 ≦ a / b ≦ 0.93, and particularly preferably satisfies 0.45 ≦ a / b ≦ 0.7.
 また、本発明の蓄電デバイスにおける負極は、負極を0Vにて12時間にわたって定電流-定電圧(CCCV)充電したときの容量を総負極充電容量c(mAh)としたとき、0.55≦b/c≦1.00を満たし、また、0.35≦a/c≦0.55を満たすことが必要である。
 総負極充電容量cに対する完全負極容量bの割合b/cが上記の範囲にあることにより、蓄電デバイスに高い容量維持率が得られて高い耐久性が得られる。一方、b/cが0.55未満の場合、リチウムが不足しサイクル耐久性が悪化する。また、1.00を超える場合は、リチウムが析出しやすくサイクル特性が悪化する。0.55≦b/c≦1.00が好ましく、特に、0.70≦b/c≦0.90を満たすことが好ましい。
In addition, the negative electrode in the electricity storage device of the present invention has a total negative electrode charge capacity c (mAh) of 0.55 ≦ b when the capacity when the negative electrode is charged with constant current-constant voltage (CCCV) at 0 V for 12 hours. It is necessary to satisfy /c≦1.00 and 0.35 ≦ a / c ≦ 0.55.
When the ratio b / c of the complete negative electrode capacity b to the total negative electrode charge capacity c is in the above range, a high capacity retention rate is obtained for the power storage device, and high durability is obtained. On the other hand, when b / c is less than 0.55, lithium is insufficient and cycle durability is deteriorated. On the other hand, if it exceeds 1.00, lithium is liable to precipitate and the cycle characteristics are deteriorated. 0.55 ≦ b / c ≦ 1.00 is preferable, and 0.70 ≦ b / c ≦ 0.90 is particularly preferable.
 また、総負極充電容量cに対するセル容量aの割合a/cが0.35未満の場合、エネルギー密度が低下する。一方、a/cが0.55より大きい場合、サイクル試験時の容量低下が大きくなり耐久性が悪くなる。0.36≦a/c≦0.54が好ましく、特に、0.4≦a/c≦0.5を満たすことが好ましい。 Also, when the ratio a / c of the cell capacity a to the total negative electrode charge capacity c is less than 0.35, the energy density is lowered. On the other hand, when a / c is larger than 0.55, the capacity drop during the cycle test is increased and the durability is deteriorated. 0.36 ≦ a / c ≦ 0.54 is preferable, and 0.4 ≦ a / c ≦ 0.5 is particularly preferable.
 総負極充電容量cは、負極に含有させる負極活物質の種類および質量を調整することによって制御することができる。具体的には、例えば,負極活物質層中の負極活物質の質量比率を大きくするほど、総負極充電容量cを大きくすることができる。例えば、負極活物質として黒鉛、黒鉛系複合粒子とポリアセン系有機半導体(PAS)とを同じ重量で比較すると、PASを用いた場合の方が総負極充電容量cは大きくなる。 The total negative electrode charge capacity c can be controlled by adjusting the type and mass of the negative electrode active material contained in the negative electrode. Specifically, for example, the total negative electrode charge capacity c can be increased as the mass ratio of the negative electrode active material in the negative electrode active material layer is increased. For example, when graphite, graphite-based composite particles, and polyacene organic semiconductor (PAS) are compared with the same weight as the negative electrode active material, the total negative electrode charge capacity c increases when PAS is used.
〔総負極充電容量cの測定方法〕
 蓄電デバイスの総負極充電容量cは、当該蓄電デバイスを構成する各負極に係る下記測定によって得られる各負極容量の合計である。
 総負極充電容量cは、具体的には、まず、完全負極容量bを測定するための負極容量測定用の3極セルを、電流値βの定電流にて負極電位が0Vになるまで充電して、0Vの定電圧を印加する定電流-定電圧充電(CCCV充電)を12時間行い、このときの負極容量を測定することにより、総負極充電容量cが得られる。
 蓄電デバイスに複数の負極が含有されており、かつ、各負極が同一の構成を有する場合は、総負極充電容量cは、負極容量測定用の3極セルにおいて測定された負極容量に、蓄電デバイスに含有される負極数を掛けることにより求められる。
[Measurement method of total negative electrode charge capacity c]
The total negative electrode charging capacity c of the electricity storage device is the total of the respective negative electrode capacities obtained by the following measurements relating to the respective negative electrodes constituting the electricity storage device.
Specifically, the total negative electrode charge capacity c is first charged by charging a negative electrode capacity measurement tripolar cell for measuring the complete negative electrode capacity b until the negative electrode potential becomes 0 V at a constant current of β. Then, constant current-constant voltage charging (CCCV charging) in which a constant voltage of 0 V is applied is performed for 12 hours, and the negative electrode capacity at this time is measured, whereby the total negative electrode charging capacity c is obtained.
When a plurality of negative electrodes are contained in the electric storage device and each negative electrode has the same configuration, the total negative electrode charge capacity c is equal to the negative electrode capacity measured in the three-electrode cell for measuring the negative electrode capacity. It is calculated | required by multiplying the number of negative electrodes contained in.
 次に、本発明の蓄電デバイスを構成する、各構成要素について説明する。
〔集電体〕
 正極および負極には、それぞれ電気を受配電する正極集電体および負極集電体が備えられている。このような正極集電体および負極集電体としては、貫通孔が形成された集電体を用いることが好ましい。正極集電体および負極集電体における貫通孔の形態、数等は特に限定されず、正極および負極の少なくとも一方に対向して配置されたリチウム極から電気化学的に供給されるリチウムイオンおよび電解液中のリチウムイオンが各電極集電体に遮断されることなく、電極の表裏間を移動できるように設定することができる。
Next, each component which comprises the electrical storage device of this invention is demonstrated.
[Current collector]
The positive electrode and the negative electrode are respectively provided with a positive electrode current collector and a negative electrode current collector that receive and distribute electricity. As such a positive electrode current collector and a negative electrode current collector, it is preferable to use a current collector in which through holes are formed. The form and number of through holes in the positive electrode current collector and the negative electrode current collector are not particularly limited, and lithium ions and electrolysis supplied electrochemically from a lithium electrode arranged to face at least one of the positive electrode and the negative electrode It can set so that the lithium ion in a liquid can move between the front and back of an electrode, without interrupted | blocked by each electrode electrical power collector.
〔正極集電体〕
 正極集電体としては、貫通孔を有する多孔質集電体を用いることができる。
 貫通孔を有する正極集電体としては、例えば機械的な打ち込みによって裏表面を貫通する貫通孔が形成されたエキスパンドメタルやパンチングメタルや、CO2 レーザー、YAGレーザー、UVレーザーなどによるレーザー加工によって裏表面を貫通する貫通孔が形成された集電体や、エッチング、電解エッチングによって表裏面に貫通孔が形成された集電体を用いることができる。
[Positive electrode current collector]
As the positive electrode current collector, a porous current collector having through holes can be used.
As the positive electrode current collector having a through hole, for example, an expanded metal or a punching metal in which a through hole penetrating the back surface is formed by mechanical driving, laser processing using a CO 2 laser, a YAG laser, a UV laser, or the like is used. A current collector in which a through hole penetrating the surface or a current collector in which a through hole is formed on the front and back surfaces by etching or electrolytic etching can be used.
 正極集電体の材質としては、アルミニウム、ステンレス鋼等を用いることができ、特にアルミニウムが好ましい。また、正極集電体の厚みは特に限定されないが、通常、1μm~50μmであればよく、5μm~40μmが好ましく、10μm~40μmが特に好ましい。 As the material of the positive electrode current collector, aluminum, stainless steel or the like can be used, and aluminum is particularly preferable. Further, the thickness of the positive electrode current collector is not particularly limited, but it may be usually 1 μm to 50 μm, preferably 5 μm to 40 μm, particularly preferably 10 μm to 40 μm.
 正極集電体の貫通孔の気孔率(%)は、20%~50%が好ましく、20%~40%がより好ましい。ここで、正極集電体の気孔率(%)は下記式(1)により求めることができる。
  気孔率(%)=〔1-(正極集電体の質量/正極集電体の真比重)/(正極集電体の見かけ体積)〕×100   (1)
The porosity (%) of the through holes of the positive electrode current collector is preferably 20% to 50%, more preferably 20% to 40%. Here, the porosity (%) of the positive electrode current collector can be obtained by the following formula (1).
Porosity (%) = [1- (mass of positive electrode current collector / true specific gravity of positive electrode current collector) / (apparent volume of positive electrode current collector)] × 100 (1)
〔正極活物質〕
 正極活物質としては、リチウムイオンおよびテトラフルオロボレート等の少なくとも1種のアニオンを可逆的にドープ・脱ドープ可能な物質が用いられ、例えば活性炭粉末が挙げられる。活性炭の比表面積は、1900m2 /g~3000m2 /gであることが好ましく、さらに、1950m2 /g~2800m2 /gであることが好ましい。また、活性炭の50%体積累積径(D50)は、活性炭の充填密度の観点から、2μm~8μmが好ましく、特に2μm~5μmが好ましい。活性炭の比表面積および50%体積累積径(D50)が前記範囲にあると、蓄電デバイスのエネルギー密度をさらに向上させることができる。ここで、50%体積累積径(D50)の値は、例えば、マイクロトラック法により求められる。
[Positive electrode active material]
As the positive electrode active material, a material capable of reversibly doping and dedoping at least one kind of anion such as lithium ion and tetrafluoroborate is used, and examples thereof include activated carbon powder. The specific surface area of the activated carbon is preferably 1900 m 2 / g to 3000 m 2 / g, and more preferably 1950 m 2 / g to 2800 m 2 / g. The 50% volume cumulative diameter (D50) of the activated carbon is preferably 2 μm to 8 μm, particularly preferably 2 μm to 5 μm, from the viewpoint of the packing density of the activated carbon. When the specific surface area and 50% volume cumulative diameter (D50) of the activated carbon are in the above ranges, the energy density of the electricity storage device can be further improved. Here, the value of the 50% volume cumulative diameter (D50) is obtained by, for example, the microtrack method.
〔正極活物質層〕
 正極活物質層は、正極集電体に、正極活物質を塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される。この正極活物質層の厚みは、片面の厚みが55μm~95μmが好ましく、60μm~90μmがより好ましく、65~80μmが特に好ましい。正極活物質層の層厚を上記範囲にすることにより、正極活物質層内を移動するイオンの拡散抵抗を小さくするとこができ、これにより、内部抵抗を下げることができる。そして、正極容量を大きくすることができることから、セル容量を大きくすることができ、その結果、蓄電デバイスの高容量化を図ることができる。
[Positive electrode active material layer]
The positive electrode active material layer is formed by attaching the positive electrode active material to the positive electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like. The thickness of the positive electrode active material layer is preferably 55 μm to 95 μm on one side, more preferably 60 μm to 90 μm, and particularly preferably 65 to 80 μm. By setting the thickness of the positive electrode active material layer in the above range, the diffusion resistance of ions moving in the positive electrode active material layer can be reduced, and thereby the internal resistance can be lowered. Since the positive electrode capacity can be increased, the cell capacity can be increased, and as a result, the capacity of the electricity storage device can be increased.
〔正極活物質層:電極密度〕
 正極活物質層の電極密度は、0.54g/cm~0.7g/cmである。正極活物質層の電極密度が0.54g/cm未満の場合、エネルギー密度が低下する。一方、正極活物質層の電極密度が0.7g/cmより大きい場合、プレドープ性が悪くなり、サイクル特性が悪化する。正極活物質層の電極密度は、0.54g/cm~0.68g/cmであるのが好ましく、0.6g/cm~0.68g/cmであるのが更に好ましい。
 正極活物質層の電極密度は、通常、蓄電デバイスを解体することによって得られた正極をジエチルカーボネートで洗浄処理して100℃で真空乾燥した後、正極活物質層の質量および正極活物質の外形体積(見掛けの体積)を測定し、正極活物質層の質量を当該正極活物質層の外形体積によって除することによって求められる。ここで、「正極活物質層の外形体積」とは、正極活物質層の縦寸法、横寸法および厚み寸法を測定し、その測定値に基づいて算出される体積である。
 なお、電極密度を上記範囲に設定する方法としては、ロールプレス等によって形成する方法が挙げられる。
[Positive electrode active material layer: electrode density]
The electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 . When the electrode density of the positive electrode active material layer is less than 0.54 g / cm 3 , the energy density decreases. On the other hand, when the electrode density of the positive electrode active material layer is larger than 0.7 g / cm 3 , the pre-doping property is deteriorated and the cycle characteristics are deteriorated. Electrode density of the positive electrode active material layer is preferably from 0.54g / cm 3 ~ 0.68g / cm 3, and even more preferably 0.6g / cm 3 ~ 0.68g / cm 3.
The electrode density of the positive electrode active material layer is usually determined by washing the positive electrode obtained by disassembling the electricity storage device with diethyl carbonate and vacuum drying at 100 ° C., then the mass of the positive electrode active material layer and the outer shape of the positive electrode active material It is determined by measuring the volume (apparent volume) and dividing the mass of the positive electrode active material layer by the outer volume of the positive electrode active material layer. Here, the “external volume of the positive electrode active material layer” is a volume calculated based on the measured values of the vertical dimension, the horizontal dimension, and the thickness dimension of the positive electrode active material layer.
In addition, as a method of setting the electrode density within the above range, a method of forming by a roll press or the like can be mentioned.
〔正極活物質層:目付量〕
 正極活物質層の電極目付量は、70g/m~110g/mである。
 正極活物質層の目付量は、正極活物質層の電極目付量が70g/cm未満の場合、エネルギー密度が低下する。一方、正極活物質層の電極目付量が110g/cmより大きい場合、抵抗が上昇するため、サイクル特性が悪化する。正極活物質層の電極目付量は、75g/m~110g/mであるのが好ましい。
 正極活物質層の目付量は、蓄電デバイスを解体することによって得られた正極をジエチルカーボネートで洗浄処理して100℃で乾燥した後、活物質層部分を所定の面積に打ち抜いて質量測定後、活物質層を剥離して集電体の質量を測定し、活物質層の質量を面積で除することによって算出される。
[Positive electrode active material layer: basis weight]
The electrode weight per unit area of the positive electrode active material layer is 70 g / m 2 to 110 g / m 2 .
When the basis weight of the positive electrode active material layer is less than 70 g / cm 2 , the energy density decreases. On the other hand, when the electrode weight per unit area of the positive electrode active material layer is larger than 110 g / cm 2 , the resistance increases, and the cycle characteristics deteriorate. The electrode weight per unit area of the positive electrode active material layer is preferably 75 g / m 2 to 110 g / m 2 .
The weight per unit area of the positive electrode active material layer was determined by washing the positive electrode obtained by disassembling the electricity storage device with diethyl carbonate and drying at 100 ° C., then punching the active material layer part into a predetermined area and measuring the mass. It is calculated by peeling the active material layer, measuring the mass of the current collector, and dividing the mass of the active material layer by the area.
〔負極集電体〕
 負極集電体としては、ステンレス鋼、銅、ニッケル等を用いることができる。
 負極集電体の厚みは特に限定されないが、通常1μm~50μmであり、5μm~40μmが好ましく、10μm~30μmが特に好ましい。
[Negative electrode current collector]
As the negative electrode current collector, stainless steel, copper, nickel, or the like can be used.
The thickness of the negative electrode current collector is not particularly limited, but is usually 1 μm to 50 μm, preferably 5 μm to 40 μm, and particularly preferably 10 μm to 30 μm.
 負極集電体には表裏面を貫通する孔を有していることが好ましく、その貫通孔の孔径は、例えば、0.5μm~400μmであり、0.5μm~350μmであることが好ましく、1μm~330μmであることが特に好ましい。
 また、負極集電体の貫通孔の気孔率(%)は、20%~70%が好ましく、20%~60%がより好ましい。ここで、負極集電体の気孔率(%)は下記式(2)により求めることができる。
   気孔率(%)=〔1-(負極集電体の質量/負極集電体の真比重)/(負極集電体の見かけ体積)〕×100     (2)
 貫通孔を有する負極集電体としては、例えば、機械的な打ち込みによって裏表面を貫通する貫通孔が形成されたエキスパンドメタルやパンチングメタルや、CO2 レーザー、YAGレーザー、UVレーザーなどによるレーザー加工によって裏表面を貫通する貫通孔が形成された集電体や、エッチングによって表裏面に貫通孔が形成された集電体を用いることができる。
The negative electrode current collector preferably has a hole penetrating the front and back surfaces, and the hole diameter of the through hole is, for example, 0.5 μm to 400 μm, preferably 0.5 μm to 350 μm, and preferably 1 μm. It is particularly preferred that the particle diameter is ˜330 μm.
Further, the porosity (%) of the through holes of the negative electrode current collector is preferably 20% to 70%, and more preferably 20% to 60%. Here, the porosity (%) of the negative electrode current collector can be obtained by the following formula (2).
Porosity (%) = [1- (Mass of negative electrode current collector / true specific gravity of negative electrode current collector) / (apparent volume of negative electrode current collector)] × 100 (2)
Examples of the negative electrode current collector having a through hole include, for example, an expanded metal or a punching metal in which a through hole penetrating the back surface is formed by mechanical driving, laser processing using a CO 2 laser, a YAG laser, a UV laser, or the like. A current collector in which a through-hole penetrating the back surface or a current collector in which a through-hole is formed on the front and back surfaces by etching can be used.
〔負極活物質〕
 負極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能である物質のうち、黒鉛系粒子を用いることが好ましい。具体的には、黒鉛、難黒鉛化炭素、天然黒鉛よりなる芯粒子の表面がタールもしくはピッチ由来の黒鉛化物質によって被覆されている黒鉛系複合粒子、および、芳香族系縮合ポリマーの熱処理物であって水素原子および炭素原子の原子数比(水素原子/炭素原子)が0.50~0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)からなる群から選ばれる少なくとも一つを用いることが好ましい。PASの場合、水素原子と炭素原子との原子数比が0.50を超える場合は、電子伝導性が低くなるため、セルの内部抵抗が低くなるおそれがある。一方、該原子数比が0.05を下回る場合は、単位重量当たりの容量が低下するため、セルのエネルギー密度が低下するおそれがある。
 上記芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物をいう。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等が挙げられ、また、アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、フルフラール等が挙げられる。
[Negative electrode active material]
As the negative electrode active material, it is preferable to use graphite particles among materials that can be reversibly doped / dedoped with lithium ions. Specifically, graphite-based composite particles in which the surface of core particles made of graphite, non-graphitizable carbon, and natural graphite are coated with a graphitized substance derived from tar or pitch, and a heat-treated product of an aromatic condensation polymer. And at least one selected from the group consisting of polyacene-based organic semiconductors (PAS) having a polyacene-based skeleton structure in which the atomic ratio of hydrogen atoms to carbon atoms (hydrogen atom / carbon atom) is 0.50 to 0.05 Is preferably used. In the case of PAS, when the atomic ratio of hydrogen atoms to carbon atoms exceeds 0.50, the electron conductivity is lowered, so that the internal resistance of the cell may be lowered. On the other hand, when the atomic ratio is less than 0.05, the capacity per unit weight is lowered, so that the energy density of the cell may be lowered.
The aromatic condensation polymer refers to a condensate of an aromatic hydrocarbon compound and aldehydes. Examples of the aromatic hydrocarbon compound include phenol, cresol, and xylenol, and examples of the aldehyde include formaldehyde, acetaldehyde, and furfural.
 負極活物質としては、その粒度は、出力向上の点から50%体積累積径(D50)が1.0μm~10μmの範囲にある黒鉛系粒子が好ましく、2μm~5μmの範囲にある黒鉛系粒子がより好ましい。50%体積累積径(D50)が1.0μm未満の黒鉛系粒子は、その製造が困難であり、また充電時にガスが発生するなどして耐久性が低下するおそれがある。一方、50%体積累積径(D50)が10μmを超える黒鉛系粒子では、内部抵抗が充分に小さい蓄電デバイスを得ることが困難となる。
 また、負極活物質は、比表面積が0.1m2 /g~200m2 /gであることが好ましく、より好ましくは0.5m2 /g~50m2 /gである。負極活物質の比表面積が0.1m2 /g未満である場合には、得られる蓄電デバイスの抵抗が高くなり、一方、負極活物質の比表面積が200m2 /gを超える場合には、得られる蓄電デバイスの充電時の不可逆容量が高くなり、充電時にガスが発生するなどして耐久性が低下するおそれがある。
 黒鉛系粒子の50%体積累積径(D50)は、例えば、マイクロトラック法により求められる値である。
As the negative electrode active material, the particle size is preferably graphite particles having a 50% volume cumulative diameter (D50) in the range of 1.0 μm to 10 μm from the viewpoint of improving the output, and graphite particles in the range of 2 μm to 5 μm. More preferred. Graphite-based particles having a 50% volume cumulative diameter (D50) of less than 1.0 μm are difficult to produce, and the durability may be reduced due to gas generation during charging. On the other hand, with graphite-based particles having a 50% volume cumulative diameter (D50) exceeding 10 μm, it is difficult to obtain an electricity storage device having a sufficiently low internal resistance.
The negative electrode active material preferably has a specific surface area of 0.1 m 2 / g to 200 m 2 / g, more preferably 0.5 m 2 / g to 50 m 2 / g. When the specific surface area of the negative electrode active material is less than 0.1 m 2 / g, the resistance of the obtained electricity storage device is increased, while when the specific surface area of the negative electrode active material exceeds 200 m 2 / g, The irreversible capacity at the time of charging of the electricity storage device to be increased is high, and gas may be generated at the time of charging, which may reduce durability.
The 50% volume cumulative diameter (D50) of the graphite-based particles is a value determined by, for example, a microtrack method.
〔負極活物質層〕
 負極活物質層は、負極集電体に、負極活物質を塗布、印刷、射出、噴霧、蒸着または圧着等により付着させることによって形成される。この負極活物質層の厚みは、正極活物質層の質量とのバランスによって好ましい範囲は変わるが、片面の厚みが10μm~80μmであればよく、10μm~65μmが好ましく、10μm~50μmがより好ましい。負極活物質層の層厚を上記範囲にすることにより、必要な負極容量を確保することができ、かつ、負極活物質層内を移動するイオンの拡散抵抗を小さくすることができ、これにより、内部抵抗を下げることができる。
[Negative electrode active material layer]
The negative electrode active material layer is formed by adhering the negative electrode active material to the negative electrode current collector by coating, printing, injection, spraying, vapor deposition, pressure bonding, or the like. The preferable range of the thickness of the negative electrode active material layer varies depending on the balance with the mass of the positive electrode active material layer, but the thickness on one side may be 10 μm to 80 μm, preferably 10 μm to 65 μm, and more preferably 10 μm to 50 μm. By making the layer thickness of the negative electrode active material layer in the above range, the required negative electrode capacity can be secured, and the diffusion resistance of ions moving in the negative electrode active material layer can be reduced. The internal resistance can be lowered.
〔バインダ〕
 上記のような正極活物質層を有する正極および負極活物質層を有する負極の作製は、通常用いられる既知の方法によって行うことができる。
 例えば、各電極(正極または負極)は、各活物質粉末(正極活物質または負極活物質)と、バインダと、必要に応じて、導電材、カルボキシメチルセルロース(CMC)等の増粘剤とを、水または有機溶媒に加えて混合し、得られるスラリーを集電体に塗布する方法、あるいは当該スラリーをシート状に成形して集電体に貼付することにより、作製することができる。
[Binder]
The positive electrode having the positive electrode active material layer and the negative electrode having the negative electrode active material layer as described above can be produced by a known method that is usually used.
For example, each electrode (positive electrode or negative electrode) includes each active material powder (positive electrode active material or negative electrode active material), a binder, and, if necessary, a conductive material, a thickener such as carboxymethyl cellulose (CMC), The slurry can be produced by mixing with water or an organic solvent and applying the resulting slurry to a current collector, or by forming the slurry into a sheet and sticking it to the current collector.
 上記の各電極の作製において、バインダとしては、例えば、SBR等のゴム系バインダ、ポリ四フッ化エチレン、ポリフッ化ビニリデン等をアクリル系樹脂でシード重合させた含フッ素系樹脂、またはアクリル系樹脂等を用いることができる。
 また、導電材としては、例えば、アセチレンブラック、ケッチェンブラック、グラファイト、金属粉末等が挙げられる。
 バインダおよび導電材の各々の添加量は、用いる活物質の電気伝導度、作製される電極形状等によっても異なるが、いずれも、通常、活物質に対して2質量%~20質量%が好ましく、特に2質量%~10質量%がより好ましい。
In the production of each of the above electrodes, examples of the binder include a rubber-based binder such as SBR, a fluorine-containing resin obtained by seed polymerization of polytetrafluoroethylene, polyvinylidene fluoride, etc. with an acrylic resin, or an acrylic resin. Can be used.
Examples of the conductive material include acetylene black, ketjen black, graphite, and metal powder.
The amount of each of the binder and the conductive material to be added varies depending on the electric conductivity of the active material used, the shape of the electrode to be produced, etc., but both are usually preferably 2% by mass to 20% by mass with respect to the active material, In particular, 2% by mass to 10% by mass is more preferable.
〔セパレータ〕
 本発明の蓄電デバイスにおけるセパレータとしては、JISP8117に準拠した方法により測定された透気度が1sec~200secの範囲内にある材料を用いることができる。具体的には、例えばポリエチレン、ポリプロピレン、ポリエステル、セルロース、ポリオレフィン、セルロース/レーヨンなどから構成される不織布や微多孔質膜等の中から適宜選択して用いることができ、特にポリエチレン、ポリプロピレンまたはセルロース/レーヨン製の不織布を用いることが好ましい。
 セパレータの厚みは、例えば、5μm~20μmであり、5μm~15μmであることが好ましい。セパレータの厚みが、5μm未満の場合、短絡が生じやすくなる。一方、20μmより大きい場合、抵抗が高くなる。
[Separator]
As the separator in the electricity storage device of the present invention, a material having an air permeability measured by a method based on JISP8117 in the range of 1 sec to 200 sec can be used. Specifically, for example, it can be appropriately selected from non-woven fabrics and microporous membranes composed of polyethylene, polypropylene, polyester, cellulose, polyolefin, cellulose / rayon, etc., and particularly polyethylene, polypropylene, cellulose / It is preferable to use a rayon nonwoven fabric.
The thickness of the separator is, for example, 5 μm to 20 μm, and preferably 5 μm to 15 μm. When the thickness of the separator is less than 5 μm, a short circuit is likely to occur. On the other hand, when it is larger than 20 μm, the resistance becomes high.
〔電解液〕
 本発明の蓄電デバイスにおいては、電解液として、リチウム塩の非プロトン性有機溶媒電解質溶液が用いられる。
[Electrolyte]
In the electricity storage device of the present invention, an aprotic organic solvent electrolyte solution of lithium salt is used as the electrolyte.
〔電解液の非プロトン性有機溶媒〕
 電解液を構成する非プロトン性有機溶媒としては、例えば、エチレンカーボネート(以下、「EC」ともいう。)、プロピレンカーボネート(以下、「PC」ともいう。)、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート(以下、「DMC」ともいう。)、エチルメチルカーボネート(以下、「EMC」ともいう。)、ジエチルカーボネート(以下、「DEC」ともいう。)、メチルプロピルカーボネート等の鎖状カーボネートが挙げられる。これらのうちの2種以上を混合した混合溶媒を用いてもよい。
 本発明において電解液を構成する非プロトン性有機溶媒は、環状カーボネートおよび鎖状カーボネート以外の有機溶媒、例えば、γ-ブチロラクトン等の環状エステル、スルホラン等の環状スルホン、ジオキソラン等の環状エーテル、プロピオン酸エチル等の鎖状カルボン酸エステル、ジメトキシエタン等の鎖状エーテル等を含有していてもよい。
[Aprotic organic solvent of electrolyte]
Examples of the aprotic organic solvent constituting the electrolytic solution include ethylene carbonate (hereinafter also referred to as “EC”), propylene carbonate (hereinafter also referred to as “PC”), cyclic carbonates such as butylene carbonate, and dimethyl carbonate. (Hereinafter also referred to as “DMC”), chain carbonates such as ethyl methyl carbonate (hereinafter also referred to as “EMC”), diethyl carbonate (hereinafter also referred to as “DEC”), and methylpropyl carbonate. You may use the mixed solvent which mixed 2 or more types of these.
In the present invention, the aprotic organic solvent constituting the electrolytic solution is an organic solvent other than cyclic carbonate and chain carbonate, for example, cyclic ester such as γ-butyrolactone, cyclic sulfone such as sulfolane, cyclic ether such as dioxolane, propionic acid, etc. It may contain a chain carboxylic acid ester such as ethyl and a chain ether such as dimethoxyethane.
〔電解質〕
 電解液における電解質のリチウム塩としては、例えば、LiClO4 、LiAsF6 、LiBF4 、LiPF6 、LiN(C2 F5 SO2 )2 、LiN(CF3 SO2 )2 等が挙げられ、特に、イオン伝導性が高く、低抵抗であることから、LiPF6 が好適に用いられる。電解液におけるリチウム塩の濃度は、低い内部抵抗が得られることから、0.1mol/L以上であることが好ましく、0.5~1.5mol/Lであることがより好ましい。
〔Electrolytes〕
Examples of the lithium salt of the electrolyte in the electrolytic solution include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2, etc. LiPF 6 is preferably used because of its high ion conductivity and low resistance. The concentration of the lithium salt in the electrolytic solution is preferably 0.1 mol / L or more, more preferably 0.5 to 1.5 mol / L, because low internal resistance can be obtained.
 本発明の蓄電デバイスは、3.8V~2.2Vの電圧範囲で、時間率10Cの定電流充放電を10000サイクル行った後の容量維持率が95%以上となる。更に、本発明の蓄電デバイスは、3.8V~2.2Vの電圧範囲で、時間率10Cの定電流充放電を10000サイクル行った後の内部抵抗上昇率が3%以下となる。これは、本発明の蓄電デバイスが、0.35≦a/b≦0.95、0.55≦b/c≦1.00、0.35≦a/c≦0.55を満たし、前記正極活物質層の電極密度が0.54g/cm~0.7g/cmで、且つ前記正極活物質層の電極目付量が70g/m~110g/mを満たすことにより、より高い容量維持率を維持でき、内部抵抗の上昇を抑制できることを示すものである。本発明の蓄電デバイスの構成にすることで、高出力化と高エネルギー密度化のトレードオフの関係を良好なバランスを保つことが可能となる。 The electricity storage device of the present invention has a capacity retention rate of 95% or more after 10,000 cycles of constant current charge / discharge at a time rate of 10 C in a voltage range of 3.8 V to 2.2 V. Furthermore, in the electricity storage device of the present invention, the rate of increase in the internal resistance after 10000 cycles of constant current charge / discharge at a time rate of 10 C in the voltage range of 3.8 V to 2.2 V is 3% or less. This is because the electricity storage device of the present invention satisfies 0.35 ≦ a / b ≦ 0.95, 0.55 ≦ b / c ≦ 1.00, 0.35 ≦ a / c ≦ 0.55, and the positive electrode When the electrode density of the active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 and the electrode weight per unit area of the positive electrode active material layer satisfies 70 g / m 2 to 110 g / m 2 , higher capacity can be obtained. This shows that the maintenance rate can be maintained and the increase in internal resistance can be suppressed. By configuring the power storage device of the present invention, it is possible to maintain a good balance between the trade-off relationship between higher output and higher energy density.
〔蓄電デバイスの構造〕
 本発明の蓄電デバイスの構造としては、特に、帯状の正極と負極とをセパレータを介して捲回させる捲回型、板状またはシート状の正極と負極とをセパレータを介して各3層以上積層された積層型、このように積層された構成のユニットを外装フィルム内または角型外装缶内に封入された積層型等が挙げられる。
 これらの蓄電デバイスの構造は、例えば、特開2004-266091号公報等により既知であり、それらの蓄電デバイスと同様の構成とすることができる。
[Structure of electricity storage device]
As the structure of the electricity storage device of the present invention, in particular, a wound-type, plate-like or sheet-like positive electrode and negative electrode in which a belt-like positive electrode and a negative electrode are wound through a separator are laminated in three or more layers via a separator. And a laminated type in which a unit having such a laminated structure is enclosed in an outer film or a rectangular outer can.
The structures of these power storage devices are known, for example, from Japanese Patent Application Laid-Open No. 2004-266091, and can have the same configuration as those power storage devices.
 以上、本発明の実施の形態について具体的に説明したが、本発明は上記の例に限定されず、種々の変更を加えることができる。
 例えば、本発明の蓄電デバイスは、捲回型または積層型のリチウムイオンキャパシタに限定されず、リチウムイオン二次電池、他の蓄電デバイスにも好適に適用することができる。
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to said example, A various change can be added.
For example, the electricity storage device of the present invention is not limited to a wound or stacked lithium ion capacitor, and can be suitably applied to a lithium ion secondary battery and other electricity storage devices.
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定して解釈されない。 Hereinafter, specific examples of the present invention will be described, but the present invention is not construed as being limited to these examples.
〔実施例1(S1):セルの作製例1〕
(1)正極の作製
 孔径が1μm、厚さが30μmのアルミニウム電解エッチング箔よりなる集電体材料の両面に、導電性塗料(日本黒鉛製バニーハイトT-602DEFK)を、縦型ダイ方式の両面塗工機を用い、塗工幅が100mm、両面合わせた塗布厚みを125μmに設定して両面塗工した後、減圧乾燥させることにより、正極集電体の表裏面に導電層を形成した。
 次いで、正極集電体の表裏面に形成された導電層上に、50%体積累積径(D50)の値が3μmで、比表面積が2000m2 /gの活性炭粒子(キャタラー社製:―CEP21K)(正極活物質)43wt%と、スラリー全体に対してバインダ1.5wt%(JSR社製:TRD201B)とカルボキシルメチルセルロースナトリウム塩(ダイセル社製:1120)2wt%、アセチレンブラック(電気化学工業社製:HS100)2.5wt%、水51wt%とを含有するスラリーを、縦型ダイ方式の両面塗工機を用いて両面塗工した後、減圧乾燥させてロールプレスすることにより、導電層上に電極層である正極活物質層を形成した。
 このようにして得られた、正極集電体の導電層および電極層が積層された部分(以下、正極について「塗工部」ともいう。)が60mm×80mm、いずれの層も形成されてない部分(以下、正極について「未塗工部」ともいう。)が60mm×15mmとなるように、60mm×95mmの大きさに切断することにより、正極集電体の両面に電極層が形成されてなる正極を作製した。
[Example 1 (S1): Cell production example 1]
(1) Fabrication of positive electrode Conductive paint (Nippon Graphite Bunny Height T-602DEFK) is applied to both sides of a current collector material made of aluminum electrolytic etching foil having a pore diameter of 1 μm and a thickness of 30 μm. Using a processing machine, the coating width was set to 100 mm, the coating thickness of both sides combined was set to 125 μm, and both sides were coated, followed by drying under reduced pressure to form conductive layers on the front and back surfaces of the positive electrode current collector.
Next, activated carbon particles having a 50% volume cumulative diameter (D50) value of 3 μm and a specific surface area of 2000 m 2 / g on the conductive layer formed on the front and back surfaces of the positive electrode current collector (Cataler Co., Ltd .: -CEP21K) (Positive electrode active material) 43 wt%, binder 1.5 wt% (manufactured by JSR: TRD201B), carboxylmethylcellulose sodium salt (Daicel 1120) 2 wt%, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) HS100) A slurry containing 2.5 wt% and water 51 wt% was coated on both sides using a vertical die type double-side coating machine, then dried under reduced pressure and roll pressed to form an electrode on the conductive layer. A positive electrode active material layer as a layer was formed.
The portion obtained by laminating the conductive layer and electrode layer of the positive electrode current collector thus obtained (hereinafter also referred to as “coating portion” for the positive electrode) is 60 mm × 80 mm, and no layers are formed. The electrode layer is formed on both surfaces of the positive electrode current collector by cutting into a size of 60 mm × 95 mm so that the portion (hereinafter also referred to as “uncoated part” for the positive electrode) is 60 mm × 15 mm. A positive electrode was produced.
(2)負極の作製
 貫通孔径300μm、気孔率55%、厚さが25μmの銅製ケミカルエッチング箔からなる負極集電体の両面に、50%体積累積径(D50)の値が6μmの黒鉛粒子の表面をピッチコートした黒鉛系複合粒子(1)(日本カーボン社製:AGP30)(負極活物質)40wt%と、SBRバインダ(JSR社製:TRD2001)1wt%とカルボキシルメチルセルロースナトリウム塩(ダイセル社製:1120)1.5wt%、アセチレンブラック(電気化学工業社製:HS100)2wt%、と水55.5wt%とを含有するスラリーを、縦型ダイ方式の両面塗工機を用いて両面塗工した後、乾燥させてロールプレスすることにより、負極集電体の表裏面に電極層である負極活物質層を形成した。
 このようにして得られた、負極集電体の電極層が形成された部分(以下、負極について「塗工部」ともいう。)が65mm×85mm、電極層が形成されてない部分(以下、負極について「未塗工部」ともいう。)が65mm×15mmになるように、65mm×100mmの大きさに切断することにより、負極集電体の両面に電極層が形成された負極を作製した。
(2) Production of Negative Electrode Graphite particles having a 50% volume cumulative diameter (D50) of 6 μm on both sides of a negative electrode current collector made of a copper chemical etching foil having a through-hole diameter of 300 μm, a porosity of 55%, and a thickness of 25 μm. Graphite-based composite particles having a pitch-coated surface (1) (Nippon Carbon Co., Ltd .: AGP30) (negative electrode active material) 40 wt%, SBR binder (JSR Co., Ltd .: TRD2001) 1 wt% and carboxymethyl cellulose sodium salt (Daicel) 1120) A slurry containing 1.5 wt%, acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd .: HS100) 2 wt%, and water 55.5 wt% was coated on both sides using a vertical die type double-side coating machine. Then, it was made to dry and roll-pressed, and the negative electrode active material layer which is an electrode layer was formed in the front and back of a negative electrode collector.
The portion where the electrode layer of the negative electrode current collector thus obtained (hereinafter also referred to as “coating portion” for the negative electrode) is 65 mm × 85 mm, and the portion where the electrode layer is not formed (hereinafter, A negative electrode having electrode layers formed on both sides of a negative electrode current collector was prepared by cutting into a size of 65 mm × 100 mm so that the negative electrode was also referred to as an “uncoated part”. .
(3)セパレータの作製
 厚み15μm、透気度100secのセルロース/レーヨン複合材料からなるフィルムを70mm×91mmに切断してセパレータを作製した。
(3) Production of Separator A film made of a cellulose / rayon composite material having a thickness of 15 μm and an air permeability of 100 sec was cut into 70 mm × 91 mm to produce a separator.
(4)リチウムイオンキャパシタ要素の作製
 先ず、正極10枚、負極11枚、セパレータ22枚を用意し、正極と負極とを、それぞれの塗工部は重なるが、それぞれの未塗工部は反対側になり重ならないよう、セパレータ、負極、セパレータ、正極の順で積重し、積層体の4辺をテープにより固定することにより、電極積層ユニットを作製した。
 次いで、厚みが46μmの箔状のリチウム金属の大きさが65mm×85mmになるように切断し、厚さ25μmの銅箔(日本製箔社製)に圧着することにより、リチウムイオン供給部材を作製し、このリチウムイオン供給部材を電極積層ユニットのセパレータを介して負極と対向するよう配置した。
 そして、作製した電極積層ユニットの10枚の正極の各々の未塗工部に、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.15mmのアルミニウム製の正極用電源タブを重ねて溶接した。一方、電極積層ユニットの11枚の負極の各々の未塗工部およびリチウムイオン供給部材の各々に、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.2mmの銅製の負極用電源タブを重ねて溶接した。これにより、リチウムイオンキャパシタ要素を得た。
(4) Production of Lithium Ion Capacitor Element First, 10 positive electrodes, 11 negative electrodes, and 22 separators are prepared, and the positive electrode and the negative electrode are overlapped with each other, but the respective uncoated portions are opposite to each other. In order not to overlap each other, the separator, the negative electrode, the separator, and the positive electrode were stacked in this order, and the four sides of the laminate were fixed with a tape to produce an electrode laminate unit.
Next, a lithium ion supply member is prepared by cutting the foil-like lithium metal having a thickness of 46 μm so that the size of the foil-like lithium metal is 65 mm × 85 mm and pressing the copper foil on a copper foil having a thickness of 25 μm (manufactured by Nippon Foil Co., Ltd.). And this lithium ion supply member was arrange | positioned so as to oppose a negative electrode through the separator of an electrode lamination | stacking unit.
And for the positive electrode made of aluminum having a width of 50 mm, a length of 50 mm, and a thickness of 0.15 mm, in which a sealant film is heat-sealed in advance to the uncoated portion of each of the 10 positive electrodes of the produced electrode laminate unit The power tabs were stacked and welded. On the other hand, each of the 11 negative electrodes of the electrode laminate unit, each of the uncoated portion and the lithium ion supply member, having a width of 50 mm, a length of 50 mm, and a thickness of 0.2 mm, in which a sealant film is heat-sealed to the seal portion in advance. A copper negative electrode power tab was stacked and welded. Thereby, a lithium ion capacitor element was obtained.
(5)リチウムイオンキャパシタの作製
 ポリプロピレン層、アルミニウム層およびナイロン層が積層され、寸法が90mm(縦幅)×127mm(横幅)×0.15mm(厚み)で、中央部分に72mm(縦幅)×105mm(横幅)の絞り加工が施された一方の外装フィルム、並びにポリプロピレン層、アルミニウム層およびナイロン層が積層され、寸法が90mm(縦幅)×127mm(横幅)×0.15mm(厚み)の他方の外装フィルムを作製した。
(5) Production of Lithium Ion Capacitor A polypropylene layer, an aluminum layer, and a nylon layer are laminated, the dimensions are 90 mm (vertical width) × 127 mm (horizontal width) × 0.15 mm (thickness), and 72 mm (vertical width) × One exterior film that has been subjected to a drawing process of 105 mm (width), and a polypropylene layer, an aluminum layer, and a nylon layer are laminated, and the other dimension is 90 mm (length) × 127 mm (width) × 0.15 mm (thickness) An exterior film was prepared.
 次いで、他方の外装フィルム上における収容部となる位置に、上記のリチウムイオンキャパシタ要素を、その電極積層ユニットの正極端子および負極端子の各々が、他方の外装フィルムの端部から外方に突出するよう配置した。この電極積層ユニットに一方の外装フィルムを重ね合わせ、一方の外装フィルムおよび他方の外装フィルムの外周縁部における3辺(正極端子および負極端子が突出する2辺を含む)を熱融着した。
 一方、非プロトン性有機溶媒として、エチレンカーボネート、プロピレンカーボネートおよびジエチルカーボネート(体積比で、それぞれ、3:1:4)の混合溶媒を用い、濃度1.2mol/LのLiPF6 を含む電解液を調製した。
 次いで、一方の外装フィルムおよび他方の外装フィルムの間に、上記電解液を注入した後、一方の外装フィルムおよび他方の外装フィルムの外周縁部における残りの一辺を熱融着した。そして、この状態で、10日間放置することにより、リチウム箔(リチウムイオン供給部材)からリチウムイオンを負極にドープした。
 上記のようにして、試験用ラミネート外装リチウムイオンキャパシタ(以下、セル1という。)を作製した。なお、同様のセル1を合計で4個作製した。
 得られたセル1のセル容量の平均値は190mAhだった。
Next, the positive electrode terminal and the negative electrode terminal of the electrode laminate unit project outward from the end portion of the other exterior film at the position serving as the housing portion on the other exterior film. Arranged. One exterior film was overlapped on this electrode laminate unit, and three sides (including two sides from which the positive electrode terminal and the negative electrode terminal protrude) at the outer peripheral edge of one exterior film and the other exterior film were heat-sealed.
On the other hand, an electrolytic solution containing LiPF 6 at a concentration of 1.2 mol / L using a mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (3: 1: 4 by volume, respectively) as an aprotic organic solvent. Prepared.
Subsequently, after inject | pouring the said electrolyte solution between one exterior film and the other exterior film, the remaining one side in the outer periphery part of one exterior film and the other exterior film was heat-seal | fused. Then, in this state, the negative electrode was doped with lithium ions from a lithium foil (lithium ion supply member) by being left for 10 days.
As described above, a test laminate outer lithium ion capacitor (hereinafter referred to as cell 1) was produced. A total of four similar cells 1 were produced.
The average cell capacity of the obtained cell 1 was 190 mAh.
〔正極活物質層:密度〕
 1つのセル1を解体することによって得られた正極を、ジエチルカーボネートの入った容器に30分間浸漬して洗浄処理し、100℃で真空乾燥した後、活物質層の存在する任意の場所を2×2cmのサイズに2つ切り出し、切り出した1つの正極の重さを電子天秤で測定し、厚みをマイクロメーターで測定した。次いで、活物質層の存在していない未塗工領域の集電体のみを同じにサイズに切り出して電子天秤にて重さを測定し、厚みをマイクロメーターで測定した。得られた集電体のみの重さを正極の重さから差し引いて、正極活物質層の重さを算出した。次いで、得られた集電体のみの厚みを正極の厚みから差し引いて、正極活物質層の厚みを算出し、正極活物質の外形体積(見掛けの体積)を算出した。次いで、正極活物質層の質量を当該正極活物質層の外形体積によって除することによって正極活物質層密度を求めた。
[Positive electrode active material layer: density]
A positive electrode obtained by disassembling one cell 1 is immersed in a container containing diethyl carbonate for 30 minutes for washing treatment, vacuum-dried at 100 ° C., and then placed in any place where an active material layer exists. Two pieces having a size of 2 cm 2 were cut out, the weight of one cut out positive electrode was measured with an electronic balance, and the thickness was measured with a micrometer. Next, only the current collector in the uncoated region where no active material layer was present was cut into the same size, the weight was measured with an electronic balance, and the thickness was measured with a micrometer. The weight of the positive electrode active material layer was calculated by subtracting the weight of the obtained current collector from the weight of the positive electrode. Next, the thickness of only the obtained current collector was subtracted from the thickness of the positive electrode to calculate the thickness of the positive electrode active material layer, and the external volume (apparent volume) of the positive electrode active material was calculated. Next, the positive electrode active material layer density was determined by dividing the mass of the positive electrode active material layer by the outer volume of the positive electrode active material layer.
〔正極活物質層:目付量〕
 正極活物質層の密度を測定する際に作った2cm×2cmの残りの1つの正極の重さを電子天秤で測定し、活物質層を剥離し集電体の質量を測定し、活物質層の質量を面積で除することによって、正極活物質層目付量を算出した。
[Positive electrode active material layer: basis weight]
The weight of the remaining 2 cm × 2 cm positive electrode made when measuring the density of the positive electrode active material layer was measured with an electronic balance, the active material layer was peeled off, the mass of the current collector was measured, and the active material layer The mass per unit area of the positive electrode active material layer was calculated by dividing the mass by the area.
〔セルの性能の評価〕
 残りの得られた3つのセル1について、以下のようにして、セル容量a、完全負極容量b、総負極充電容量c、エネルギー密度およびDC-IRを測定すると共に、耐久性試験を行い、特性の評価を行った。
[Evaluation of cell performance]
With respect to the remaining three cells 1 obtained, the cell capacity a, the complete negative electrode capacity b, the total negative electrode charge capacity c, the energy density and the DC-IR were measured and the durability test was performed as follows. Was evaluated.
(i)セル容量aの測定およびエネルギー密度の計算
 セル1の1個に対し、0.19A(電流値α)の定電流にてセル電圧が3.8Vになるまで充電した後、3.8Vの定電圧充電を30分間行った後、0.19Aの定電流にてセル電圧が1.9Vになるまで放電する充放電操作を5回繰り返し行った。5回目の充放電操作における放電の際の容量をセル容量aとした。セル容量aに基づく結果を表1に示す。なお、5回目の充放電操作における放電に要した時間は1.04時間であった。
 また、得られたセル容量aと平均セル電圧との積を、セル1の体積で除した値をエネルギー密度(Wh/L)として表1に示す。
(I) Measurement of cell capacity a and calculation of energy density After charging one cell 1 with a constant current of 0.19 A (current value α) until the cell voltage becomes 3.8 V, 3.8 V After performing the constant voltage charging for 30 minutes, the charging / discharging operation of discharging until the cell voltage became 1.9 V at a constant current of 0.19 A was repeated 5 times. The capacity at the time of discharge in the fifth charge / discharge operation was defined as cell capacity a. The results based on the cell capacity a are shown in Table 1. The time required for the discharge in the fifth charge / discharge operation was 1.04 hours.
Table 1 shows the energy density (Wh / L) as a value obtained by dividing the product of the obtained cell capacity a and the average cell voltage by the volume of the cell 1.
(ii)完全負極容量bの測定
 上記のセル容量aの測定後、セル1を0.19Aの定電流にてセル電圧が3.8Vになるまで充電した後、3.8Vの定電圧充電を30分間行って満充電させた。この満充電させたセル1を分解して負極を取り出し、対極としてリチウム金属板を使用した負極容量測定用セルを組み立て、これを0.0173Aの定電流にて負極電位が1.5V(Li/Li+ )になるまで放電させたときの負極容量に11(負極枚数)を掛けた値を完全負極容量bとし、完全負極容量bに基づく結果を表1に示す。
(Ii) Measurement of complete negative electrode capacity b After measurement of the above cell capacity a, the cell 1 was charged with a constant current of 0.19 A until the cell voltage reached 3.8 V, and then charged with a constant voltage of 3.8 V. Fully charged by going for 30 minutes. The fully charged cell 1 is disassembled to take out the negative electrode, and a negative electrode capacity measuring cell using a lithium metal plate as a counter electrode is assembled. The negative electrode potential is 1.5 V (Li / L) at a constant current of 0.0173 A. The value obtained by multiplying the negative electrode capacity of 11 (the number of negative electrodes) by 11 (the number of negative electrodes) when discharging until Li + ) is defined as the complete negative electrode capacity b, and Table 1 shows the results based on the complete negative electrode capacity b.
(iii)総負極充電容量cの測定
 負極容量測定用セルについて、上記の完全負極容量bの測定後、上記のセル容量aの測定と同様にして、0.0173Aの定電流にてセルの電圧が0Vになるまで充電した後、0Vの定電圧充電を12時間行った。このときの負極容量に11(負極枚数)を掛けた値を総負極充電容量cとし、総負極充電容量cに基づく結果を表1に示す。
(Iii) Measurement of the total negative electrode charge capacity c For the negative electrode capacity measurement cell, after the measurement of the complete negative electrode capacity b, the cell voltage at a constant current of 0.0173 A in the same manner as the measurement of the cell capacity a. Was charged until the voltage became 0 V, and then constant voltage charging at 0 V was performed for 12 hours. The value obtained by multiplying the negative electrode capacity at this time by 11 (the number of negative electrodes) is the total negative electrode charge capacity c, and Table 1 shows the results based on the total negative electrode charge capacity c.
(iv)DC-IRの測定
 容量維持率測定前のセルに対し、サイクル試験開始前で1.9A(時間率10C)の定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行い、次いで19A(時間率100C)の定電流でセル電圧が2.2Vになるまで放電した。その際の1秒後と3秒後の電圧の近似直線を取って0秒まで外挿し、外挿した電圧と3.8Vとの差(ΔV)を電流値19Aで割った際の値を直流内部抵抗(DC-IR)とする。
(Iv) Measurement of DC-IR The cell before the capacity retention rate measurement is charged with a constant current of 1.9 A (time rate 10 C) until the cell voltage reaches 3.8 V before the cycle test is started, and then 3. A constant current-constant voltage charge applying a constant voltage of 8 V was performed for 0.5 hour, and then discharged at a constant current of 19 A (time ratio 100 C) until the cell voltage reached 2.2 V. At that time, the approximate straight lines of the voltage after 1 second and 3 seconds are taken and extrapolated to 0 second, and the difference between the extrapolated voltage and 3.8V (ΔV) divided by the current value 19A is DC. Internal resistance (DC-IR).
(v)サイクル特性試験:
〔容量維持率〕
 上記のセル1に対して、1.9A(時間率10C)の定電流にてセル電圧が3.8Vとなるまで充電した後、1.9Aの定電流にてセル電圧が2.2Vとなるまで放電する充放電サイクルを10,000回繰り返すサイクル試験を実施した。このサイクル試験における1サイクル目の容量に対する10,000サイクル目の容量の比率を容量維持率として表1に示す。また、容量維持率が95%以上である場合を「○」、90%以上95%未満である場合を「△」、90%未満である場合を「×」として表1に示す。
〔抵抗上昇率〕
 容量維持率測定用のセルに対し、サイクル試験開始前後で1.9A(時間率10C)の定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流-定電圧充電を0.5時間行い、次いで19A(時間率100C)の定電流でセル電圧が2.2Vになるまで放電した。この3.8V-2.2Vのサイクルを繰り返し、10回目の直流内部抵抗を測定した。サイクル試験前後での抵抗上昇率が3%以下である場合を「○」、3%より大きく5%以下の場合を「△」、5%より大きい場合を「×」として表1に示す。
(V) Cycle characteristic test:
[Capacity maintenance rate]
The cell 1 is charged at a constant current of 1.9 A (time rate 10 C) until the cell voltage becomes 3.8 V, and then the cell voltage becomes 2.2 V at a constant current of 1.9 A. The cycle test was repeated 10,000 times for the charge / discharge cycle to discharge up to. The ratio of the capacity at the 10,000th cycle to the capacity at the first cycle in this cycle test is shown in Table 1 as a capacity retention rate. Table 1 shows “◯” when the capacity maintenance ratio is 95% or more, “Δ” when 90% or more and less than 95%, and “x” when less than 90%.
[Rate of increase in resistance]
The cell for measuring the capacity retention rate is charged with a constant current of 1.9 A (time rate 10 C) before and after the start of the cycle test until the cell voltage becomes 3.8 V, and then a constant voltage of 3.8 V is applied. Current-constant voltage charging was performed for 0.5 hour, and then discharging was performed at a constant current of 19 A (time rate 100 C) until the cell voltage reached 2.2 V. This cycle of 3.8V-2.2V was repeated, and the DC internal resistance at the 10th time was measured. Table 1 shows the case where the rate of increase in resistance before and after the cycle test is 3% or less as “◯”, the case where it is greater than 3% and 5% or less as “Δ”, and the case where it is greater than 5% as “X”.
〔総合判定〕
 作製したセルがショートするなどの不具合なく作動し、初期のDC-IRが10.35mΩ以下、エネルギー密度が31.5Wh/Lより大きい場合は、○とする。さらに、容量維持率が95%以上であり、抵抗上昇率が3%以下である場合は、〇とする。前記範囲を外れる場合は×とする。
〔Comprehensive judgment〕
If the fabricated cell operates without any problems such as short-circuiting, the initial DC-IR is 10.35 mΩ or less, and the energy density is greater than 31.5 Wh / L, it is marked as ◯. Furthermore, when the capacity maintenance rate is 95% or more and the resistance increase rate is 3% or less, it is marked as ◯. When it is out of the above range, it is x.
〔実施例2(S2)~実施例13(S13)および比較例1(C1)~10(S10)のセルの作製例〕
 実施例1のセルの作製例1において、正極活物質層の電極密度と目付量と、a/b、b/c、a/cを表1の通りにすると共に、セパレータ厚みを表1に従って変更したことの他は同様にして、S2~S13および、C1~C10を各々4個ずつ作製した。
 これらのS2~S13について、実施例1と同様にして、セル容量a、完全負極容量b、総負極充電容量c、エネルギー密度およびDC-IRを測定すると共に、サイクル特性試験を行い、特性の評価を行った。なお、DC-IR測定とサイクル特性試験では、時間率が実施例1の場合と一致するように、各セルの容量にあわせて電流値を変化させた。
 これらの結果に基づく結果を表1に示す。
[Examples of manufacturing cells of Example 2 (S2) to Example 13 (S13) and Comparative Examples 1 (C1) to 10 (S10)]
In the cell production example 1 of Example 1, the electrode density and basis weight of the positive electrode active material layer, a / b, b / c, and a / c are set as shown in Table 1, and the separator thickness is changed according to Table 1. Except for the above, four S2-S13 and four C1-C10 were prepared in the same manner.
For these S2 to S13, the cell capacity a, the complete negative electrode capacity b, the total negative electrode charge capacity c, the energy density and the DC-IR were measured in the same manner as in Example 1, and a cycle characteristic test was conducted to evaluate the characteristics. Went. In the DC-IR measurement and the cycle characteristic test, the current value was changed in accordance with the capacity of each cell so that the time rate was the same as that in Example 1.
The results based on these results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、0.35≦a/b≦0.95、0.55≦b/c≦1.00、0.35≦a/c≦0.55を満たし、前記正極活物質層の電極密度が0.54g/cm~0.7g/cmで、且つ前記正極活物質層の電極目付量が70g/m~110g/mを満たすセルにすれば、DC-IRが低い、すなわち出力が大きく、エネルギー密度が高く、サイクル試験後の容量低下、抵抗増加を抑制できる性能のバランスが良い蓄電デバイスを得ることができた。 As shown in Table 1, the positive electrode active material satisfying 0.35 ≦ a / b ≦ 0.95, 0.55 ≦ b / c ≦ 1.00, and 0.35 ≦ a / c ≦ 0.55 If the cell has a layer electrode density of 0.54 g / cm 3 to 0.7 g / cm 3 and a positive electrode active material layer electrode weight of 70 g / m 2 to 110 g / m 2 , a DC-IR In other words, it was possible to obtain an electric storage device having a low balance, that is, a large output, a high energy density, and a good balance of performance capable of suppressing a decrease in capacity and an increase in resistance after cycle testing.
 C1のセルはa/cが0.54より大きいため、サイクル試験時の容量低下が大きくなり特性が悪化した。
 C2のセルはa/cが0.35未満のため、エネルギー密度が低下した。
 C3のセルはb/cが1.00を超えるため、サイクル試験時の容量低下が大きくなりセルの特性が悪化した。
 C4のセルはb/cが0.55未満のため、サイクル試験時に、容量低下および抵抗増加が生じ特性が悪化した。
 C5のセルは正極活物質層の電極目付量が110g/cmより大きいため、初期のDC-IRが高く、サイクル試験時に抵抗上昇、容量低下が生じセル特性が悪化した。
 C6のセルは正極活物質層の電極目付量が70g/cm未満のため、エネルギー密度が低下した。
 C7のセルは正極活物質層の電極密度が0.7g/cmより大きいため、初期のDC-IRが高く、サイクル試験時に容量低下および抵抗増加が生じ、セルの特性が悪化した。
 C8のセルは一方、正極活物質層の電極密度が0.54g/cm未満のため、エネルギー密度が低下した。
 C9のセルはa/bが0.95より大きいため、サイクル試験時に容量低下および抵抗増加が生じ、セルの特性が悪化した。
 C10のセルはa/bが0.35未満のため、サイクル試験時に容量低下および抵抗増加が生じ、セルの特性が悪化した。
 上記の結果から、各比較例C1~C10は、本願発明の構成の何れかを満たさない蓄電デバイスであったため、本願の目的とする出力が大きく、エネルギー密度が高く、サイクル試験後の容量低下、抵抗増加を抑制できる性能のバランスが良い蓄電デバイスを得ることができなかった。
Since the C / C cell had a / c larger than 0.54, the capacity drop during the cycle test became large and the characteristics deteriorated.
The C2 cell had an a / c of less than 0.35, so the energy density decreased.
Since the C3 cell had a b / c value exceeding 1.00, the capacity drop during the cycle test was large and the cell characteristics deteriorated.
Since the C4 cell had a b / c of less than 0.55, the capacity decreased and the resistance increased during the cycle test, and the characteristics deteriorated.
In the C5 cell, since the electrode weight per unit area of the positive electrode active material layer was larger than 110 g / cm 2 , the initial DC-IR was high, the resistance increased during the cycle test, the capacity decreased, and the cell characteristics deteriorated.
Since the C6 cell has an electrode weight per unit area of the positive electrode active material layer of less than 70 g / cm 2 , the energy density was lowered.
In the C7 cell, since the electrode density of the positive electrode active material layer was larger than 0.7 g / cm 3 , the initial DC-IR was high, the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
On the other hand, the C8 cell had a lower energy density because the positive electrode active material layer had an electrode density of less than 0.54 g / cm 3 .
In the C9 cell, since a / b was larger than 0.95, the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
Since the a / b of the C10 cell was less than 0.35, the capacity decreased and the resistance increased during the cycle test, and the cell characteristics deteriorated.
From the above results, each of Comparative Examples C1 to C10 was an electricity storage device that did not satisfy any of the configurations of the present invention. Therefore, the target output of the present application was large, the energy density was high, the capacity decreased after the cycle test, An electric storage device with a good balance of performance that can suppress an increase in resistance could not be obtained.
 本発明の蓄電デバイスは、負極の利用容量を大きくしても劣化することなく、高エネルギー密度が得られるとともに、高出力特性が得られ、リチウムイオンキャパシタ、リチウムイオン二次電池などとして広く利用される。
 なお、2013年7月12日に出願された日本特許出願2013-146835号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The electricity storage device of the present invention can be used as a lithium ion capacitor, a lithium ion secondary battery, etc., with high energy density and high output characteristics without deterioration even when the capacity of the negative electrode is increased. The
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-146835 filed on July 12, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (11)

  1.  正極集電体上に正極活物質層が形成された正極および負極集電体上に負極活物質層が形成された負極が、セパレータを介して交互に積層されて構成された電極ユニットと、リチウム塩の非プロトン性有機溶媒溶液よりなる電解液とを備えた蓄電デバイスであって、
     蓄電デバイスの満充電の状態から、満充電の電圧の半分の電圧まで0.75~1.25時間かけて放電したときの容量をセル容量a(mAh)とし、蓄電デバイスの満充電の状態の負極を、負極電位が1.5V(Li/Li+ )になるまで放電させたときの容量を完全負極容量b(mAh)とし、前記負極を0Vにて12時間にわたって定電流-定電圧充電(CCCV充電)したときの容量を総負極充電容量c(mAh)とするとき、0.35≦a/b≦0.95、0.55≦b/c≦1.00、0.35≦a/c≦0.55を満たし、前記正極活物質層の電極密度が0.54g/cm~0.7g/cmで、且つ前記正極活物質層の電極目付量が70g/m~110g/mであることを特徴とする蓄電デバイス。
    An electrode unit in which a positive electrode having a positive electrode active material layer formed on a positive electrode current collector and a negative electrode having a negative electrode active material layer formed on a negative electrode current collector are alternately stacked via a separator; and lithium An electricity storage device comprising an electrolyte solution comprising an aprotic organic solvent solution of a salt,
    The capacity when discharging from the fully charged state of the electricity storage device to half the voltage of the full charge over 0.75 to 1.25 hours is defined as the cell capacity a (mAh). The capacity when the negative electrode was discharged until the negative electrode potential reached 1.5 V (Li / Li + ) was defined as a complete negative electrode capacity b (mAh), and the negative electrode was charged at constant current-constant voltage at 0 V for 12 hours ( When the capacity when CCCV charging is set to the total negative electrode charging capacity c (mAh), 0.35 ≦ a / b ≦ 0.95, 0.55 ≦ b / c ≦ 1.00, 0.35 ≦ a / c ≦ 0.55 is satisfied, the electrode density of the positive electrode active material layer is 0.54 g / cm 3 to 0.7 g / cm 3 , and the electrode weight per unit area of the positive electrode active material layer is 70 g / m 2 to 110 g / A power storage device characterized by being m 2 .
  2.  前記負極活物質層は黒鉛系粒子を含む請求項1に記載の蓄電デバイス。 The electricity storage device according to claim 1, wherein the negative electrode active material layer includes graphite-based particles.
  3.  前記正極活物質層は活性炭を含む請求項1または請求項2に記載の蓄電デバイス。 The electric storage device according to claim 1 or 2, wherein the positive electrode active material layer includes activated carbon.
  4.  前記セパレータの厚みが5μm~20μmである請求項1~請求項3のいずれか1項に記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 3, wherein the separator has a thickness of 5 袖 m to 20 袖 m.
  5.  前記正極集電体および/または負極集電体が、貫通孔を有している請求項1~請求項4のいずれか1項に記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 4, wherein the positive electrode current collector and / or the negative electrode current collector has a through hole.
  6.  前記電極ユニットが、積層型または捲回型である請求項1~請求項5のいずれか1項に記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 5, wherein the electrode unit is a stacked type or a wound type.
  7.  前記負極が、予めリチウムイオンがドープされた負極である請求項1~請求項6のいずれか1項に記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 6, wherein the negative electrode is a negative electrode doped with lithium ions in advance.
  8.  リチウムイオンキャパシタである請求項1~請求項7のいずれか1項に記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 7, wherein the electricity storage device is a lithium ion capacitor.
  9.  エネルギー密度が31.5Wh/L以上である請求項8に記載の蓄電デバイス。 The energy storage device according to claim 8, wherein the energy density is 31.5 Wh / L or more.
  10.  3.8V~2.2Vの電圧範囲で、時間率10Cの定電流充放電を10000サイクル行った後の容量維持率が95%以上である、請求項1~請求項9のいずれか項に記載の蓄電デバイス。 The capacity maintenance ratio after performing 10,000 cycles of constant current charge / discharge at a time rate of 10 C in a voltage range of 3.8 V to 2.2 V is 95% or more, according to any one of claims 1 to 9. Power storage device.
  11.  3.8V~2.2Vの電圧範囲で、時間率10Cの定電流充放電を10000サイクル行った後の内部抵抗上昇率が3%以下である、請求項1~請求項10のいずれか1項に記載の蓄電デバイス。 11. The rate of increase in internal resistance after 10,000 cycles of constant current charge / discharge at a time rate of 10 C in a voltage range of 3.8 V to 2.2 V is 3% or less. The electricity storage device described in 1.
PCT/JP2014/068090 2013-07-12 2014-07-07 Power storage device WO2015005294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015526330A JP6487841B2 (en) 2013-07-12 2014-07-07 Power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013146835 2013-07-12
JP2013-146835 2013-07-12

Publications (1)

Publication Number Publication Date
WO2015005294A1 true WO2015005294A1 (en) 2015-01-15

Family

ID=52279974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068090 WO2015005294A1 (en) 2013-07-12 2014-07-07 Power storage device

Country Status (2)

Country Link
JP (1) JP6487841B2 (en)
WO (1) WO2015005294A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896579A (en) * 2016-04-26 2016-08-24 西南交通大学 Charging pile planning method considering overvoltage caused by electric vehicle tripping due to voltage sag of distribution network
JP2018056414A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
CN112042029A (en) * 2018-04-19 2020-12-04 Jm能源株式会社 Lithium ion secondary battery, lithium ion capacitor, and methods for producing these

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116101A (en) * 2005-09-26 2007-05-10 Nisshinbo Ind Inc Electric double layer capacitor
JP2008294314A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Capacitor
JP2009260187A (en) * 2008-04-21 2009-11-05 Nissin Electric Co Ltd Electrical storage device
JP2010267878A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Nonaqueous lithium type electric storage element

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400996B1 (en) * 2001-06-29 2011-05-11 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
JP4971729B2 (en) * 2006-09-04 2012-07-11 富士重工業株式会社 Lithium ion capacitor
JP2009224391A (en) * 2008-03-13 2009-10-01 Japan Gore Tex Inc Positive electrode material for lithium ion capacitor, and lithium ion capacitor
JPWO2012063545A1 (en) * 2010-11-10 2014-05-12 Jmエナジー株式会社 Lithium ion capacitor
JP5828633B2 (en) * 2010-12-20 2015-12-09 Jsr株式会社 Lithium ion capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007116101A (en) * 2005-09-26 2007-05-10 Nisshinbo Ind Inc Electric double layer capacitor
JP2008294314A (en) * 2007-05-28 2008-12-04 Sanyo Electric Co Ltd Capacitor
JP2009260187A (en) * 2008-04-21 2009-11-05 Nissin Electric Co Ltd Electrical storage device
JP2010267878A (en) * 2009-05-15 2010-11-25 Asahi Kasei Corp Nonaqueous lithium type electric storage element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896579A (en) * 2016-04-26 2016-08-24 西南交通大学 Charging pile planning method considering overvoltage caused by electric vehicle tripping due to voltage sag of distribution network
JP2018056414A (en) * 2016-09-30 2018-04-05 旭化成株式会社 Nonaqueous lithium power storage element
CN112042029A (en) * 2018-04-19 2020-12-04 Jm能源株式会社 Lithium ion secondary battery, lithium ion capacitor, and methods for producing these

Also Published As

Publication number Publication date
JP6487841B2 (en) 2019-03-20
JPWO2015005294A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP4857073B2 (en) Lithium ion capacitor
JP4731967B2 (en) Lithium ion capacitor
WO2011125325A1 (en) Electricity accumulator device
KR101862433B1 (en) Lithium-ion capacitor
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
JPWO2007026492A1 (en) Lithium ion capacitor
JP2007158273A (en) Lithium ion capacitor
JPWO2012053256A1 (en) Lithium ion capacitor
JP2007180431A (en) Lithium ion capacitor
JP2008252013A (en) Lithium-ion capacitor
JP2012004491A (en) Power storage device
JP2013140977A (en) Electrode, method for manufacturing the same, and electrochemical capacitor including the same
JP2006338963A (en) Lithium ion capacitor
JP2006286926A (en) Lithium ion capacitor
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JPWO2012127991A1 (en) Power storage device
JP2010287641A (en) Energy storage device
JP6487841B2 (en) Power storage device
JP5921897B2 (en) Lithium ion capacitor
JP6254360B2 (en) Power storage device
KR20130093805A (en) Electrode, method for preparing the same, and super capacitor using the same
JP2013089606A (en) Electrode sheet, method of manufacturing the same and power storage device using the same
JP2012028366A (en) Power storage device
JP5650029B2 (en) Lithium ion capacitor
JP2010141065A (en) Electric storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526330

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822685

Country of ref document: EP

Kind code of ref document: A1