JP2012028366A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2012028366A
JP2012028366A JP2010162526A JP2010162526A JP2012028366A JP 2012028366 A JP2012028366 A JP 2012028366A JP 2010162526 A JP2010162526 A JP 2010162526A JP 2010162526 A JP2010162526 A JP 2010162526A JP 2012028366 A JP2012028366 A JP 2012028366A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
electrode active
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162526A
Other languages
Japanese (ja)
Inventor
Daisuke Seki
関  大介
Masako Oya
昌子 大家
Noriyuki Hado
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010162526A priority Critical patent/JP2012028366A/en
Publication of JP2012028366A publication Critical patent/JP2012028366A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device having charging/discharging characteristics of no voltage changes versus time.SOLUTION: The power storage device includes a unit formed by alternately stacking positive electrodes 9 and negative electrodes 10 through separators 3. Each of the positive electrodes has a positive electrode active material layer 1 and a positive electrode current collector 4. Each of the negative electrodes 10 has a negative electrode active material layer 2 and a negative electrode current collector 5. Active carbon and transition metal oxide are combined with the positive electrode active material layer 1.

Description

本発明は、リチウムイオンキャパシタ等の蓄電デバイスに関するものである。   The present invention relates to an electricity storage device such as a lithium ion capacitor.

蓄電デバイスは、石油埋蔵量問題および地球温暖化等環境への配慮から、電気自動車などのモータ駆動用のエネルギー源、あるいはエネルギー回生システムのキーデバイスとして、さらには無停電電源装置、風力発電、太陽光発電への応用など、様々な新しい用途への適用が検討されており、次世代のデバイスとしてその期待度の高いデバイスである。   Energy storage devices are used as energy sources for driving motors such as electric vehicles, or as key devices for energy regeneration systems in consideration of oil reserves and environmental issues such as global warming. Application to various new uses such as application to photovoltaic power generation is being studied, and it is a highly anticipated device as a next-generation device.

近年、エネルギー源、エネルギー回生用途への適用において蓄電デバイスへのさらなる高エネルギー密度化および低抵抗化が求められている。   In recent years, there has been a demand for higher energy density and lower resistance for power storage devices in applications for energy sources and energy regeneration.

リチウムイオン二次電池は、リチウム含有遷移金属酸化物を主成分とする正極、リチウムイオンを吸蔵、脱離しうる炭素材料を主成分とする負極、およびリチウム塩を含む有機系電解液とから構成されている。リチウムイオン二次電池を充電すると、正極からリチウムイオンが脱離して負極の炭素材料に吸蔵され、放電したときは逆に負極からリチウムイオンが脱離して正極の金属酸化物に吸蔵される。リチウムイオン二次電池は電気二重層キャパシタに比べて高電圧、高容量であるという性質を有し、定電流での充電、放電の特性は、時間に対して、金属酸化物固有の電位付近で電圧が変化しない部分を有するが、反面その内部抵抗が高く、低抵抗化が困難である。   A lithium ion secondary battery is composed of a positive electrode mainly composed of a lithium-containing transition metal oxide, a negative electrode mainly composed of a carbon material capable of inserting and extracting lithium ions, and an organic electrolyte containing a lithium salt. ing. When the lithium ion secondary battery is charged, lithium ions are desorbed from the positive electrode and occluded in the carbon material of the negative electrode. Conversely, when discharged, lithium ions are desorbed from the negative electrode and occluded in the metal oxide of the positive electrode. Lithium ion secondary batteries have the characteristics of higher voltage and higher capacity than electric double layer capacitors, and the characteristics of charging and discharging at constant current are around the potential inherent to metal oxides over time. Although there is a portion where the voltage does not change, the internal resistance is high, and it is difficult to reduce the resistance.

一方、電気二重層キャパシタは、一般に使用する電解液の種類により、水系電解液タイプと、非水系電解液タイプとに分類されるが、単一の電気二重層キャパシタの耐電圧は、水系電解液タイプの場合で1.2V程度、非水系電解液タイプの場合でも2.7V程度であり、定電流での充電、放電の特性は、時間に対してほぼ直線となる特性を持つ。電気二重層キャパシタが蓄積可能なエネルギー容量を増加させるためには、正極に起因する容量をさらに高くすることが課題である。   On the other hand, electric double layer capacitors are generally classified into aqueous electrolyte type and non-aqueous electrolyte type depending on the type of electrolyte used, but the withstand voltage of a single electric double layer capacitor is aqueous electrolyte. In the case of the type, it is about 1.2 V, and in the case of the non-aqueous electrolyte type, it is about 2.7 V. The characteristics of charging and discharging at a constant current have characteristics that are almost linear with respect to time. In order to increase the energy capacity that can be stored in the electric double layer capacitor, it is a problem to further increase the capacity due to the positive electrode.

リチウムイオン二次電池の低抵抗化や電気二重層キャパシタの高容量化のためには負極にリチウムを含有(ドープ)させる技術とエネルギー密度及び出力密度を向上させることが必要とされている。   In order to reduce the resistance of a lithium ion secondary battery and increase the capacity of an electric double layer capacitor, it is necessary to improve the technology, energy density, and output density of the negative electrode containing lithium (doping).

例えば、特許文献1には、正極集電体及び負極集電体が、それぞれに表裏面を貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムとの電気化学的接触により電極の表裏間を移動し担持され、かつ該リチウムの対向面積が負極面積の40%以下である有機電解質電池が記載されている。   For example, Patent Document 1 discloses that a positive electrode current collector and a negative electrode current collector each have a hole penetrating the front and back surfaces, the negative electrode active material can reversibly carry lithium, and the negative electrode-derived lithium is a negative electrode. Alternatively, an organic electrolyte battery is described in which the electrode is moved and supported between the front and back surfaces of the electrode by electrochemical contact with lithium arranged opposite to the positive electrode, and the opposite area of the lithium is 40% or less of the negative electrode area. .

そして、特許文献2には、種類の異なる正極が負極を挟むように配置される正極を備えることにより、エネルギー密度及び出力密度を向上させることが可能となる蓄電デバイスが記載されている。   Patent Document 2 describes a power storage device that can improve energy density and output density by including positive electrodes that are arranged so that different types of positive electrodes sandwich the negative electrode.

特許第3485935号公報Japanese Patent No. 3485935 特開2009−26480号公報JP 2009-26480 A

リチウムイオンキャパシタは、正極に活性炭を用い、負極にリチウムイオンを吸蔵・脱離しうる炭素材料を用いている。充放電時に負極においてリチウムイオンの吸蔵、脱離反応を伴うことから、キャパシタ内部で実際に生じる両電極間の電位差は、負極により卑な値にて推移するリチウム金属を用いた場合により近い。従って、従来の正極、負極に活性炭を用いた電気二重層キャパシタと比較してより高耐電圧化することができ、よって蓄積可能なエネルギー量を電気二重層キャパシタと比較して大きく増加させる(高エネルギー化)ことが可能であり、かつリチウムイオン二次電池に比較して低抵抗である。   Lithium ion capacitors use activated carbon for the positive electrode and a carbon material that can occlude and desorb lithium ions for the negative electrode. Since the negative electrode is subjected to occlusion and desorption reactions in the negative electrode during charge and discharge, the potential difference between the two electrodes actually generated in the capacitor is closer to the case of using lithium metal that changes at a lower value by the negative electrode. Therefore, the withstand voltage can be further increased as compared with the conventional electric double layer capacitor using activated carbon for the positive electrode and the negative electrode, and the amount of energy that can be stored is greatly increased compared with the electric double layer capacitor (high Energy) and low resistance compared to lithium ion secondary batteries.

しかし、リチウムイオンキャパシタは定電流での充電、放電の特性は、時間に対してほぼ直線的に電圧が変化する特性を持ち、かつリチウムイオン二次電池に比較して蓄積可能なエネルギー量が少ない。   However, lithium-ion capacitors have constant current charging and discharging characteristics that vary in voltage almost linearly with time, and less energy can be stored than lithium-ion secondary batteries. .

上記の充電、放電の特性は、電気二重層キャパシタの特性とほぼ同等である。リチウムイオン二次電池のこれらの特性は、時間に対して電圧がほとんど変化しない部分を有している。   The above charging and discharging characteristics are almost the same as those of the electric double layer capacitor. These characteristics of the lithium ion secondary battery have a portion where the voltage hardly changes with time.

そして、特許文献2のように、複数の正極層をもつと、製造工程で、管理等が煩雑になることで製造コストが高くなる。さらに製品寿命が、どちらかの正極層に依存してしまう可能性がある。   And if it has a some positive electrode layer like patent document 2, a manufacturing cost will become high by management etc. becoming complicated by a manufacturing process. Further, the product life may depend on either positive electrode layer.

そこで、リチウムイオンキャパシタに、リチウムイオン二次電池のように時間に対して電圧がほとんど変化しない充電、放電の特性を付与させ、かつ蓄積可能なエネルギー量を増加させる、低コストで、簡便に製造できる蓄電デバイスが必要とされている。   Therefore, it is easy to manufacture at a low cost by giving the lithium ion capacitor the characteristics of charge and discharge that do not change voltage with time like a lithium ion secondary battery and increasing the amount of energy that can be stored. A power storage device that can be used is needed.

すなわち、本発明の技術的課題は、時間に対して電圧がほとんど変化しない充電、放電の特性を有し、かつ蓄積可能なエネルギー量を増加させる蓄電デバイスを提供することにある。   That is, the technical problem of the present invention is to provide a power storage device that has charging and discharging characteristics in which the voltage hardly changes with time and increases the amount of energy that can be stored.

本発明の蓄電デバイスは、活性炭と遷移金属酸化物を有する正極活物質層を備えることにより、時間に対して電圧がほとんど変化しない充電、放電の特性を有し、蓄積可能なエネルギー量を増加させることができることを見出したものである。すなわち本発明の蓄電デバイスは、リチウムイオンを含有する非水系の電解液と、正極集電体上に活性炭と遷移金属酸化物を有する正極活物質層が形成された正極と、負極集電体上にリチウムイオンを可逆的にドープ可能な負極活物質層が形成された負極とを備え、前記正極と前記負極をセパレータを介して交互に積層または捲回させ、リチウム供給源を前記負極に対向して配置したことを特徴とする。   The electricity storage device of the present invention includes a positive electrode active material layer having activated carbon and a transition metal oxide, thereby having charge and discharge characteristics in which the voltage hardly changes with time, and increasing the amount of energy that can be stored. It has been found that it can be. That is, the electricity storage device of the present invention includes a non-aqueous electrolyte solution containing lithium ions, a positive electrode in which a positive electrode active material layer having activated carbon and a transition metal oxide is formed on a positive electrode current collector, and a negative electrode current collector. And a negative electrode on which a negative electrode active material layer capable of reversibly doping lithium ions is formed, the positive electrode and the negative electrode are alternately stacked or wound through a separator, and a lithium supply source is opposed to the negative electrode. It is characterized by having arranged.

さらに、本発明の蓄電デバイスは、前記遷移金属酸化物は、マンガン酸化物からなっていてもよい。   Furthermore, in the electricity storage device of the present invention, the transition metal oxide may be made of manganese oxide.

さらに、本発明の蓄電デバイスは、前記正極活物質層の前記活性炭と前記遷移金属酸化物の混合比率を前記遷移金属酸化物の質量比で15%以上75%以下とすることが好ましい。   Furthermore, in the electricity storage device of the present invention, it is preferable that a mixing ratio of the activated carbon and the transition metal oxide in the positive electrode active material layer is 15% to 75% in terms of a mass ratio of the transition metal oxide.

このことにより、活性炭より蓄積可能なエネルギー量が多い遷移金属酸化物固有の電位で時間に対して電圧がほとんど変化しない充電、放電の特性を有することができる。   As a result, it is possible to have charge and discharge characteristics in which the voltage hardly changes with time at a potential unique to a transition metal oxide that has a larger amount of energy that can be stored than activated carbon.

本発明により、時間に対して電圧がほとんど変化しない充電、放電の特性を有して、かつ蓄積可能なエネルギー量を増加させることができる蓄電デバイスの提供が可能となる。   According to the present invention, it is possible to provide an electric storage device that has charging and discharging characteristics in which the voltage hardly changes with time and can increase the amount of energy that can be stored.

本発明の蓄電デバイスの構造を示す断面図。Sectional drawing which shows the structure of the electrical storage device of this invention.

本発明の実施の形態を説明する。   An embodiment of the present invention will be described.

本発明は、正極は活性炭と遷移金属酸化物を有する正極活物質層と正極集電体を有し、負極はリチウムイオンを可逆的にドープ可能な負極活物質層と負極集電体を有し、セパレータを介して正極と負極で交互に積層または捲回されたユニットを備えた蓄電デバイスであって、正極集電体及び負極集電体に箔、表裏面を貫通する孔を備えた箔又はエッチング箔を用い、電解液にリチウムイオンを含有する非水系の溶液を使用し、ユニットにリチウム供給源を負極と平行に対向させて配置することで、時間に対して電圧がほとんど変化しない充電、放電の特性を有し、かつ蓄積可能なエネルギー量を増加させることができることを見出したものである。   In the present invention, the positive electrode has a positive electrode active material layer having activated carbon and a transition metal oxide and a positive electrode current collector, and the negative electrode has a negative electrode active material layer and a negative electrode current collector that can be reversibly doped with lithium ions. , An electricity storage device comprising a unit that is alternately laminated or wound with a positive electrode and a negative electrode through a separator, the foil having a positive electrode current collector and a negative electrode current collector, a foil having holes penetrating the front and back surfaces, or Using an etching foil, using a non-aqueous solution containing lithium ions as the electrolyte, and placing the lithium source facing the unit in parallel with the negative electrode, charging with little change in voltage over time, It has been found that the amount of energy that can be stored and has discharge characteristics can be increased.

本発明によれば、蓄電デバイスを充電させる電圧と放電させる電圧の間に酸化還元電位を持つ遷移金属酸化物と、活性炭を混合した正極により、充電させる電圧(例えば4.5V)と前述の酸化還元電位(例えば標準電極電位で−1.5〜+1.5V程度)の間の領域では、充電時、放電時は時間に対してほぼ直線的に電圧が変化する。放電させる電圧(例えば1.5V)と前述の酸化還元電位の間の領域も同様である。それに対して、前述の酸化還元電位の領域付近では、充電時、放電時は時間に対して電圧の傾きが緩やかである。   According to the present invention, a voltage (for example, 4.5 V) to be charged by the positive electrode obtained by mixing a transition metal oxide having an oxidation-reduction potential between a voltage for charging and discharging a power storage device and activated carbon, and the aforementioned oxidation. In the region between the reduction potentials (for example, about −1.5 to +1.5 V as the standard electrode potential), the voltage changes almost linearly with time during charging and discharging. The same applies to the region between the voltage to be discharged (for example, 1.5 V) and the aforementioned oxidation-reduction potential. On the other hand, in the vicinity of the aforementioned oxidation-reduction potential region, the slope of the voltage with respect to time is gentle during charging and discharging.

図1は、本発明の蓄電デバイスの構造を示す断面図である。図1に示すように、正極9は、正極集電体4上に、活性炭と遷移金属酸化物を有する正極活物質層1を備えており、負極10は、負極集電体5上に、リチウムを可逆的にドープ可能な活物質を有する負極活物質層2を備えている。正極9と負極10の間にセパレータ3が配置される。   FIG. 1 is a cross-sectional view showing the structure of the electricity storage device of the present invention. As shown in FIG. 1, the positive electrode 9 includes a positive electrode active material layer 1 having activated carbon and a transition metal oxide on a positive electrode current collector 4, and the negative electrode 10 includes a lithium current collector 5 on a negative electrode current collector 5. The negative electrode active material layer 2 which has the active material which can be doped reversibly is provided. The separator 3 is disposed between the positive electrode 9 and the negative electrode 10.

正極9と負極10はセパレータ3を介して交互に積層したユニットで構成され、リチウムイオンを含有する非水系溶液である電解液6が含浸されている。ユニット最外部にリチウム供給源であるリチウム金属7を負極活物質層2の面に対向させて配置し、外装材8で覆い、蓄電デバイス11としている。   The positive electrode 9 and the negative electrode 10 are composed of units that are alternately stacked with separators 3 interposed therebetween, and are impregnated with an electrolytic solution 6 that is a non-aqueous solution containing lithium ions. A lithium metal 7 that is a lithium supply source is arranged on the outermost part of the unit so as to face the surface of the negative electrode active material layer 2, and is covered with an exterior material 8 to form an electricity storage device 11.

ここでいうユニットとは、負極が最外部になるように、セパレータを介して正極と負極で交互に積層されたものであり、負極は2枚以上、正極は1枚以上が積層されたものをいう。ユニットは、規定する容量に合わせて、何枚ずつであっても構わない。また、リチウム供給源を増やすために、ユニット中の負極及び正極の枚数を少なくして、ユニット数を増やしても構わない。   The unit here is one in which the positive electrode and the negative electrode are alternately laminated via the separator so that the negative electrode is the outermost part. The negative electrode is a laminate of two or more, and the positive electrode is laminated of one or more. Say. Any number of units may be used according to the specified capacity. In order to increase the number of lithium supply sources, the number of units may be increased by decreasing the number of negative electrodes and positive electrodes in the unit.

また、ユニットがリチウムイオンを含有する非水系溶液である電解液に含浸されると、リチウム供給源から負極活物質層にリチウムイオンがドープされる。このとき、本発明において、あらかじめ負極活物質層にリチウムイオンをドープさせる手段は特に限定されない。例えば、電気化学的にリチウムイオンを負極活物質層にドープさせる方法や、負極活物質層とリチウム金属を物理的に短絡させる方法がある。   Further, when the unit is impregnated with an electrolytic solution that is a non-aqueous solution containing lithium ions, the negative electrode active material layer is doped with lithium ions from a lithium supply source. At this time, in the present invention, means for doping the negative electrode active material layer with lithium ions in advance is not particularly limited. For example, there are a method of electrochemically doping lithium ions into the negative electrode active material layer and a method of physically short-circuiting the negative electrode active material layer and lithium metal.

リチウムイオン供給源には、リチウム金属またはリチウム−アルミニウム合金のようにリチウムイオンを供給できる物質を使用することができる。リチウム供給源の幅、長さのサイズは、負極活物質層と同サイズもしくはそれぞれそれより1〜2mm小さいのがリチウムイオンを負極活物質層にドープさせるうえで好ましい。厚みはリチウムイオンのドープ量によって変更することができる。   As the lithium ion source, a material capable of supplying lithium ions, such as lithium metal or a lithium-aluminum alloy, can be used. The size of the width and length of the lithium supply source is preferably the same as that of the negative electrode active material layer or 1-2 mm smaller than that in order to dope lithium ions into the negative electrode active material layer. The thickness can be changed depending on the doping amount of lithium ions.

負極集電体の材質としては、一般にリチウムイオン二次電池などに使用されている種々の材質を用いることができ、負極集電体およびリチウム金属の供給用集電体にはステンレス、銅、ニッケル等をそれぞれ用いることができる。また、集電体には圧延箔、電解箔及び、表裏面を貫通する孔を備えた貫通箔、エキスパンドメタルなど網状の箔(以下、多孔ラス箔)を用いることができる。   As the material of the negative electrode current collector, various materials generally used for lithium ion secondary batteries and the like can be used. For the negative electrode current collector and the current collector for supplying lithium metal, stainless steel, copper, nickel Etc. can be used respectively. The current collector may be a rolled foil, an electrolytic foil, a penetrating foil having holes penetrating the front and back surfaces, or a net-like foil (hereinafter referred to as porous lath foil) such as expanded metal.

負極活物質層の主成分である負極活物質は、リチウムイオンを可逆的にドープできる物質から形成される。例えば、リチウムイオン二次電池の負極に用いられる黒鉛材料や、難黒鉛化炭素材料、コークスなどの炭素材料、ポリアセン系物質等を挙げることができる。低抵抗化や低コスト化を考慮すると、黒鉛材料や、難黒鉛化炭素材料がより好ましい。   The negative electrode active material that is the main component of the negative electrode active material layer is formed of a material that can be reversibly doped with lithium ions. For example, a graphite material used for a negative electrode of a lithium ion secondary battery, a carbon material such as a non-graphitizable carbon material and coke, a polyacene-based substance, and the like can be given. In view of reduction in resistance and cost, graphite material and non-graphitizable carbon material are more preferable.

正極集電体にはアルミニウム、ステンレス等を用いることができる。正極活物質層の低抵抗化かつ低コスト化には、一般的にアルミ電解コンデンサや電気二重層キャパシタに用いられているアルミエッチング箔を使用することが好ましい。アルミエッチング箔は、アルミをエッチング処理することで比表面積を増やしているため、正極活物質層との接触面積が増えて抵抗は低減し、出力特性は向上する。また、汎用品であることから低コストが期待できる。アルミエッチング箔のエッチング処理はいずれのものでも使用できる。またリチウムイオン二次電池などに使用されている種々の圧延箔、電解箔、多孔ラス箔を用いることもできる。   Aluminum, stainless steel, or the like can be used for the positive electrode current collector. In order to reduce the resistance and cost of the positive electrode active material layer, it is preferable to use an aluminum etching foil generally used for an aluminum electrolytic capacitor or an electric double layer capacitor. Since the aluminum etching foil increases the specific surface area by etching aluminum, the contact area with the positive electrode active material layer increases, the resistance decreases, and the output characteristics improve. Moreover, since it is a general-purpose product, low cost can be expected. Any etching process can be used for the aluminum etching foil. Various rolled foils, electrolytic foils, and porous lath foils used for lithium ion secondary batteries can also be used.

正極活物質層の主成分である正極活物質の1つは、主としてアニオンまたはカチオンを可逆的に担持できる物質である活性炭から形成される。例えば、分極性を有するフェノール樹脂系活性炭、ヤシガラ系活性炭、石油コークス系活性炭やポリアセンなどの炭素材料を用いることができる。   One of the positive electrode active materials which are the main components of the positive electrode active material layer is formed from activated carbon which is a material capable of reversibly supporting anions or cations. For example, carbon materials such as polarizable phenol resin activated carbon, coconut shell activated carbon, petroleum coke activated carbon, and polyacene can be used.

正極活物質層の主成分である正極活物質のもう1つは、遷移金属酸化物でリチウムイオンのドービング、脱ドーピングできる物質から形成される。例えば、マンガン、鉄、コバルト、ニッケル、バナジウム、モリブデン、チタン、ジルコニウム及び銅から成る群、およびそれらの組み合せからなる正極材料なども用いることができる。   Another positive electrode active material that is a main component of the positive electrode active material layer is formed of a transition metal oxide that can be doped and dedoped with lithium ions. For example, a positive electrode material made of a group consisting of manganese, iron, cobalt, nickel, vanadium, molybdenum, titanium, zirconium, and copper, or a combination thereof can be used.

活性炭と遷移金属酸化物の混合質量比率は遷移金属酸化物の質量比として15%以上75%以下が好ましい。15%より少ないと、定電流での充電、放電の特性が、時間に対してほぼ直線的に電圧が変化する特性の効果がみられず、75%より多いと、大電流での充電、放電の容量が減少してしまう。すなわち、出力密度が減少してしまう。   The mixing mass ratio of the activated carbon and the transition metal oxide is preferably 15% or more and 75% or less as the mass ratio of the transition metal oxide. If it is less than 15%, there is no effect of charging and discharging at a constant current with a characteristic that the voltage changes almost linearly with time. If it is more than 75%, charging and discharging at a large current are not observed. The capacity of will decrease. That is, the output density is reduced.

正極活物質層および負極活物質層には、必要により導電助剤やバインダが添加される。導電助剤としては、黒鉛、カーボンブラック、ケッチェンブラック、気相成長カーボンやカーボンナノチューブなどが挙げられ、特にカーボンブラック、黒鉛が好ましい。バインダとしては、例えば、スチレンブタジエンゴム(SBR)等のゴム系バインダやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。   If necessary, a conductive additive and a binder are added to the positive electrode active material layer and the negative electrode active material layer. Examples of the conductive assistant include graphite, carbon black, ketjen black, vapor-grown carbon, and carbon nanotube, and carbon black and graphite are particularly preferable. As the binder, for example, a rubber-based binder such as styrene-butadiene rubber (SBR), a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used.

電解液には、リチウムイオンを含有する非水系の溶液を使用する。リチウムイオンを含有する非水系の溶液から構成される電解液の溶媒は、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチルラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。さらに、これらの溶媒を2種類以上混合した混合溶媒も用いることができる。この中で、少なくともプロピレンカーボネートとエチレンカーボネートいずれかを有することが特性上、好ましい。   As the electrolytic solution, a non-aqueous solution containing lithium ions is used. Solvents of the electrolytic solution composed of a non-aqueous solution containing lithium ions are, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyl lactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, Examples include methylene chloride and sulfolane. Furthermore, a mixed solvent obtained by mixing two or more of these solvents can also be used. Among these, it is preferable in view of characteristics to have at least either propylene carbonate or ethylene carbonate.

また、上記溶媒に溶解させる電解質は、電離してリチウムイオンを生成するものであれば良く、例えば、LiI、LiClO、LiAsF、LiBF、LiPF等が挙げられる。これらの溶質は、上記溶媒中に0.5mol/L以上とすることが好ましく、0.5mol/L以上、2.0mol/L以下とすることが特性上、特に好ましい。 The electrolyte to be dissolved in the solvent, as long as it generates lithium upon ionization, for example, LiI, LiClO 4, LiAsF 6 , LiBF 4, LiPF 6 , and the like. These solutes are preferably 0.5 mol / L or more, and particularly preferably 0.5 mol / L or more and 2.0 mol / L or less in the solvent.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

以下、実施例1〜7及び比較例1について説明する。実施例は活性炭と二酸化マンガンの混合質量比をそれぞれ任意の量に変え、比較例1は活性炭のみを正極活物質として使用した。   Hereinafter, Examples 1 to 7 and Comparative Example 1 will be described. In Examples, the mixing mass ratio of activated carbon and manganese dioxide was changed to arbitrary amounts, and in Comparative Example 1, only activated carbon was used as the positive electrode active material.

(実施例1)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を10質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを90質量部を混合し、正極活物質とした。
Example 1
10 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 90 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed, did.

活性炭と二酸化マンガンを混合した正極活物質を92質量部と、導電剤として黒鉛を8質量部混合した粉末に対し、バインダとしてスチレンブタジエンゴム3質量部、カルボキシルメチルセルロース3質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いで、厚さ20μmの多孔ラスアルミニウム箔を正極集電体として、その両面に上記スラリーを均一に塗布し、その後乾燥させて圧延プレスし、分極性電極層の厚みが両側にそれぞれ30μmの正極活物質層を成し正極を得た。この正極の厚みは80μmであった。また正極の端面の一部は集電体がタブ状に延出して取り出せるように電極板を形成しており、その部分の集電体の両面には正極活物質層を形成させず、アルミニウム箔を露出させた。   92 parts by mass of a positive electrode active material mixed with activated carbon and manganese dioxide and 8 parts by mass of graphite as a conductive agent are mixed with 3 parts by mass of styrene butadiene rubber as a binder, 3 parts by mass of carboxymethyl cellulose, and 200 masses of water as a solvent. And kneaded to obtain a slurry. Next, a porous lath aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and the slurry was uniformly applied to both sides thereof, then dried and rolled and pressed, and the positive electrode active layer having a polarizable electrode layer thickness of 30 μm on both sides was obtained. A material layer was formed to obtain a positive electrode. The thickness of this positive electrode was 80 μm. In addition, a part of the end face of the positive electrode is formed with an electrode plate so that the current collector can be taken out in the form of a tab, and a positive electrode active material layer is not formed on both surfaces of the current collector. Was exposed.

負極活物質である難黒鉛化材料粉末88質量部と、導電剤としてアセチレンブラック6質量部を混合した粉末に対し、バインダとしてスチレンブタジエンゴム5質量部、カルボキシルメチルセルロース4質量部、溶媒として水200質量部となるように加え、混練してスラリーを得た。次いで厚さ10μmの多孔ラス銅箔を負極集電体として、その両面に上記スラリーを均一に塗布し、その後乾燥させて圧延プレスし、分極性電極層の厚みが両側にそれぞれ20μmの負極活物質層を成し負極を得た。この負極の厚みは50μmであった。また負極の端面の一部は集電体がタブ状に延出して取り出せるように電極板を形成しており、その部分の集電体の両面には負極活物質層を形成させず、銅箔を露出させた。   The powder obtained by mixing 88 parts by mass of the non-graphitizable material powder as the negative electrode active material and 6 parts by mass of acetylene black as the conductive agent, 5 parts by mass of styrene butadiene rubber as the binder, 4 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water as the solvent. And kneaded to obtain a slurry. Next, a porous lath copper foil having a thickness of 10 μm is used as a negative electrode current collector, and the slurry is uniformly applied to both sides thereof, then dried and rolled and pressed, and the negative electrode active material having a polarizable electrode layer thickness of 20 μm on both sides. A layer was formed to obtain a negative electrode. The thickness of this negative electrode was 50 μm. In addition, a part of the end face of the negative electrode is formed with an electrode plate so that the current collector can be taken out in the form of a tab, and a negative electrode active material layer is not formed on both sides of the current collector of that part, and the copper foil Was exposed.

セパレータとして、厚さ30μmの天然セルロース材の薄板を使用した。このセパレータの寸法形状は、負極の電極板部分を除いた形状よりも少しだけ大きくなるように構成した。   As a separator, a thin plate of a natural cellulose material having a thickness of 30 μm was used. The size and shape of the separator was configured to be slightly larger than the shape excluding the electrode plate portion of the negative electrode.

ユニットあたりの積層した正極は4枚、負極は5枚、セパレータは10枚であった。箔の露出部分を除いたその寸法は、正極が39mm×29mm、負極が40mm×30mmであり、セパレータの寸法は、41mm×31mmであった。セパレータ、負極、セパレータ、正極、セパレータの順番でこれら三者のシートを順次積層した。このユニットの最上部と最下部にはそれぞれ必ずセパレータが1枚ずつ配置されるようにした。   There were 4 positive electrodes, 5 negative electrodes, and 10 separators per unit. The dimensions excluding the exposed portion of the foil were 39 mm × 29 mm for the positive electrode and 40 mm × 30 mm for the negative electrode, and the dimensions of the separator were 41 mm × 31 mm. These three sheets were sequentially laminated in the order of separator, negative electrode, separator, positive electrode, and separator. A separator was always placed at the top and bottom of the unit.

作製したユニットは、真空乾燥機を用いて130℃で6時間減圧処理した後、正極と負極の箔の露出部分に端子を溶接し、アルミラミネートフィルムで形成した容器に入れ、ユニットの最外部両側に、リチウム金属を負極活物質層に対向させて配置した。   The manufactured unit was vacuum-treated at 130 ° C. for 6 hours using a vacuum dryer, and then the terminals were welded to the exposed portions of the positive and negative foils, placed in a container formed of an aluminum laminate film, and the outermost sides of the unit. In addition, lithium metal was disposed to face the negative electrode active material layer.

エチレンカーボネートとジエチルカーボネートを1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液を注入し密閉して、リチウムイオンキャパシタを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved was injected into a mixed solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1, and sealed to produce a lithium ion capacitor.

作製したリチウムイオンキャパシタは、リチウム金属から負極活物質層に450mAh/gのリチウムイオンがドープされるように定電圧放電を行った。   The manufactured lithium ion capacitor was subjected to constant voltage discharge so that 450 mAh / g of lithium ions was doped from the lithium metal into the negative electrode active material layer.

定電流定電圧にて3.8Vで充電を3時間行い、セル電圧が2.2Vになるまで、4mA(1C)で放電した。次に、定電流定電圧にて3.8Vで充電を3時間行い、セル電圧が2.2Vになるまで、80mAで放電し、それぞれの放電容量を算出した。   The battery was charged at 3.8 V at a constant current and a constant voltage for 3 hours, and discharged at 4 mA (1 C) until the cell voltage reached 2.2 V. Next, charging was performed at 3.8 V at a constant current and constant voltage for 3 hours, and discharging was performed at 80 mA until the cell voltage reached 2.2 V, and the respective discharge capacities were calculated.

4mAで放電しているとき、時間とともに変わる電圧の変化を1秒ごとに記録し、それぞれの放電容量に対して、2.6Vから2.4Vの放電容量の割合を求めた。   When discharging at 4 mA, the change in voltage with time was recorded every second, and the ratio of the discharge capacity from 2.6 V to 2.4 V was determined for each discharge capacity.

(実施例2)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を20質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを80質量部を混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
(Example 2)
20 parts by mass of a powder of phenol-based activated carbon having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 80 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 are mixed with the positive electrode active material. did. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

(実施例3)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を25質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを75質量部を事前に混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
(Example 3)
25 parts by mass of a powder of phenol-based activated carbon having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 75 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed in advance. Substance. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

(実施例4)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を50質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを50質量部を事前に混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
Example 4
50 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 50 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed in advance. Substance. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

(実施例5)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を75質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを25質量部を事前に混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
(Example 5)
75 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 25 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed in advance. Substance. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

(実施例6)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を85質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを15質量部を事前に混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
(Example 6)
85 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 15 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed in advance. Substance. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

(実施例7)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末を90質量部と比表面積150m/g、密度5g/cmの二酸化マンガンを10質量部を事前に混合し、正極活物質とした。その後実施例1と同様の手順で試料を作製し、測定した。
(Example 7)
90 parts by mass of a phenol-based activated carbon powder having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 and 10 parts by mass of manganese dioxide having a specific surface area of 150 m 2 / g and a density of 5 g / cm 3 were mixed in advance. Substance. Thereafter, a sample was prepared and measured in the same procedure as in Example 1.

実施例1〜7は二酸化マンガンを用いたものであるが、他の鉄、コバルト、ニッケル、バナジウム、モリブデン、チタン、ジルコニウム及び銅などの遷移金属酸化物用いても同等の効果が見られる。   Although Examples 1-7 use manganese dioxide, the same effect is seen even if other transition metal oxides such as iron, cobalt, nickel, vanadium, molybdenum, titanium, zirconium and copper are used.

(比較例1)
比表面積1500m/g、密度2g/cmのフェノール系活性炭の粉末のみを正極活物質として、比較例1とした。その後実施例1と同様の手順で試料を作製し、測定した。このときの放電容量は4mAである。
(Comparative Example 1)
Comparative Example 1 was obtained by using only a powder of phenol-based activated carbon having a specific surface area of 1500 m 2 / g and a density of 2 g / cm 3 as a positive electrode active material. Thereafter, a sample was prepared and measured in the same procedure as in Example 1. The discharge capacity at this time is 4 mA.

実施例1〜7と比較例1を合わせて、活性炭−二酸化マンガンの質量比を示し、比較例1の4mAの放電容量を100%としてそれぞれの4mA、80mAの放電容量を示し、それぞれの例の4mAで放電容量したときを100%として2.6Vから2.4Vの放電容量との比率を表1に示す。この値は、作製した5個のリチウムイオンキャパシタの平均値を示している。   Examples 1 to 7 and Comparative Example 1 are combined to show the mass ratio of activated carbon-manganese dioxide. The discharge capacity of 4 mA of Comparative Example 1 is set to 100%, and the discharge capacities of 4 mA and 80 mA are shown. Table 1 shows the ratio of the discharge capacity from 2.6 V to 2.4 V, assuming that the discharge capacity at 4 mA is 100%. This value shows the average value of the five lithium ion capacitors produced.

Figure 2012028366
Figure 2012028366

二酸化マンガンの比率を増やしていくと、4mA放電時には単純に放電容量は増える。さらにそれぞれの実施例、比較例の4mAで放電時の放電容量を100%とした時の2.6Vから2.4Vの放電容量も増加する。これらの増加は材料の固有の容量と、酸化還元電位に起因する。この結果、二酸化マンガンを増やすと蓄積可能なエネルギー量を増加し、時間に対して電圧がほとんど変化しない部分も同様に増加する。   Increasing the proportion of manganese dioxide simply increases the discharge capacity during 4 mA discharge. Furthermore, the discharge capacity increases from 2.6 V to 2.4 V when the discharge capacity at the time of discharge is 100% at 4 mA of the respective examples and comparative examples. These increases are due to the inherent capacity of the material and the redox potential. As a result, when the amount of manganese dioxide is increased, the amount of energy that can be stored is increased, and the portion where the voltage hardly changes with respect to time also increases.

しかし、比較例1の4mAの放電容量を100%としてそれぞれの80mAの電流で放電させると、4mA放電の場合とは異なり、放電容量は増加しない。活性炭の充電、放電の反応はイオンの吸脱着であるのに対して、二酸化マンガンの反応は、リチウムイオンのドービング、脱ドーピングである。イオンの吸脱着の方がドービング、脱ドーピングより早い反応であることは知られている。   However, when the discharge capacity of 4 mA in Comparative Example 1 is set to 100% and discharge is performed at a current of 80 mA, the discharge capacity does not increase unlike the case of 4 mA discharge. Charging and discharging reactions of activated carbon are adsorption and desorption of ions, while manganese dioxide reactions are lithium ion doving and dedoping. It is known that adsorption / desorption of ions is faster than doving and dedoping.

表1より、実施例3〜7の80mAの放電容量は、比較例1の4mAの放電容量と同等であることが分かり、大電流を流したときでも容量は比較例1と同等となる。実施例1〜2の二酸化マンガンの量(80〜90%)になると、80mAの放電容量が減少するので、大きな電流を使う用途には向いていない。   From Table 1, it can be seen that the discharge capacity of 80 mA in Examples 3 to 7 is equivalent to the discharge capacity of 4 mA in Comparative Example 1, and the capacity is equivalent to that in Comparative Example 1 even when a large current is passed. When the amount of manganese dioxide in Examples 1 and 2 (80 to 90%) is reached, the discharge capacity of 80 mA is reduced, so that it is not suitable for applications using a large current.

本発明により、正極活物質層の活物質に活性炭と遷移金属酸化物を組み合わせることで、時間に対して電圧がほとんど変化しない充電、放電の特性を有して、大電流を流したときでも容量の減少がなく、かつ蓄積可能なエネルギー量を増加させることができる蓄電デバイスの提供が可能であることが確認できた。   According to the present invention, the active material of the positive electrode active material layer is combined with activated carbon and a transition metal oxide, so that it has a charge / discharge characteristic in which the voltage hardly changes with time, and even when a large current is passed. It has been confirmed that it is possible to provide an electricity storage device that can increase the amount of energy that can be stored without any decrease.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 正極活物質層
2 負極活物質層
3 セパレータ
4 正極集電体
5 負極集電体
6 電解液
7 リチウム金属
8 外装材
9 正極
10 負極
11 蓄電デバイス
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Negative electrode active material layer 3 Separator 4 Positive electrode collector 5 Negative electrode collector 6 Electrolytic solution 7 Lithium metal 8 Exterior material 9 Positive electrode 10 Negative electrode 11 Power storage device

Claims (3)

リチウムイオンを含有する非水系の電解液と、正極集電体上に活性炭と遷移金属酸化物を有する正極活物質層が形成された正極と、負極集電体上にリチウムイオンを可逆的にドープ可能な負極活物質層が形成された負極とを備え、前記正極と前記負極をセパレータを介して交互に積層または捲回させ、リチウム供給源を前記負極に対向して配置したことを特徴とする蓄電デバイス。   A non-aqueous electrolyte containing lithium ions, a positive electrode in which a positive electrode active material layer having activated carbon and a transition metal oxide is formed on a positive electrode current collector, and lithium ion reversibly doped on the negative electrode current collector A negative electrode on which a possible negative electrode active material layer is formed, wherein the positive electrode and the negative electrode are alternately stacked or wound through a separator, and a lithium supply source is arranged to face the negative electrode Power storage device. 前記遷移金属酸化物は マンガン酸化物からなることを特徴とする請求項1に記載の蓄電デバイス。   The electricity storage device according to claim 1, wherein the transition metal oxide is made of manganese oxide. 前記正極活物質層の前記活性炭と前記遷移金属酸化物の混合比率を前記遷移金属酸化物の質量比で15%以上75%以下とすることを特徴とする請求項1に記載の蓄電デバイス。   The power storage device according to claim 1, wherein a mixing ratio of the activated carbon and the transition metal oxide in the positive electrode active material layer is 15% or more and 75% or less in terms of a mass ratio of the transition metal oxide.
JP2010162526A 2010-07-20 2010-07-20 Power storage device Pending JP2012028366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162526A JP2012028366A (en) 2010-07-20 2010-07-20 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162526A JP2012028366A (en) 2010-07-20 2010-07-20 Power storage device

Publications (1)

Publication Number Publication Date
JP2012028366A true JP2012028366A (en) 2012-02-09

Family

ID=45780996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162526A Pending JP2012028366A (en) 2010-07-20 2010-07-20 Power storage device

Country Status (1)

Country Link
JP (1) JP2012028366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146792A1 (en) * 2012-03-28 2013-10-03 国立大学法人信州大学 Hybrid capacitor
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
JP2020510961A (en) * 2017-02-21 2020-04-09 マックスウェル テクノロジーズ インコーポレイテッド Prelithiated hybrid energy storage device
US11527747B2 (en) 2016-02-23 2022-12-13 Tesla, Inc. Elemental metal and carbon mixtures for energy storage devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146792A1 (en) * 2012-03-28 2013-10-03 国立大学法人信州大学 Hybrid capacitor
JP2015225876A (en) * 2014-05-26 2015-12-14 旭化成株式会社 Positive electrode active material for nonaqueous lithium type power-storage device, and nonaqueous lithium type power-storage device arranged by use thereof
US11527747B2 (en) 2016-02-23 2022-12-13 Tesla, Inc. Elemental metal and carbon mixtures for energy storage devices
US11901549B2 (en) 2016-02-23 2024-02-13 Tesla, Inc. Elemental metal and carbon mixtures for energy storage devices
JP2020510961A (en) * 2017-02-21 2020-04-09 マックスウェル テクノロジーズ インコーポレイテッド Prelithiated hybrid energy storage device
JP7113017B2 (en) 2017-02-21 2022-08-04 テスラ・インコーポレーテッド Prelithiated hybrid energy storage device
US11888108B2 (en) 2017-02-21 2024-01-30 Tesla, Inc. Prelithiated hybridized energy storage device

Similar Documents

Publication Publication Date Title
WO2011125325A1 (en) Electricity accumulator device
JP4857073B2 (en) Lithium ion capacitor
JP5228531B2 (en) Electricity storage device
US11551878B2 (en) Electricity storage device
US20090246624A1 (en) Carbon material for negative electrode, electric storage device, and product having mounted thereon electric storage device
US20120050950A1 (en) Lithium ion capacitor
JP2012004491A (en) Power storage device
JP2008252013A (en) Lithium-ion capacitor
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
JP2010287641A (en) Energy storage device
KR20150016072A (en) Positive electrode for lithium ion capacitor and lithium ion capacitor comprising the same
JP2012028366A (en) Power storage device
JP4731974B2 (en) Lithium ion capacitor
JP5742402B2 (en) Lithium secondary battery and manufacturing method thereof
JP2013089606A (en) Electrode sheet, method of manufacturing the same and power storage device using the same
JP6487841B2 (en) Power storage device
US20120050949A1 (en) Lithium ion capacitor and method of manufacturing the same
JP2005327489A (en) Positive electrode for power storage element
JP2008244378A (en) Capacitor device
JP2010141065A (en) Electric storage device
JP6100473B2 (en) Electrochemical devices
JP2013074283A (en) Electric power storage device
JP2013138096A (en) Electricity storage device
CN114597554A (en) Capacitor assisted lithium-sulfur battery
JP2012114201A (en) Power storage device