JP4731974B2 - Lithium ion capacitor - Google Patents

Lithium ion capacitor Download PDF

Info

Publication number
JP4731974B2
JP4731974B2 JP2005121571A JP2005121571A JP4731974B2 JP 4731974 B2 JP4731974 B2 JP 4731974B2 JP 2005121571 A JP2005121571 A JP 2005121571A JP 2005121571 A JP2005121571 A JP 2005121571A JP 4731974 B2 JP4731974 B2 JP 4731974B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
lithium
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005121571A
Other languages
Japanese (ja)
Other versions
JP2006303118A (en
Inventor
健治 小島
修 波戸崎
勉 藤井
信雄 安東
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2005121571A priority Critical patent/JP4731974B2/en
Publication of JP2006303118A publication Critical patent/JP2006303118A/en
Application granted granted Critical
Publication of JP4731974B2 publication Critical patent/JP4731974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極、負極、及び電解質としてリチウム塩の非プロトン性有機溶媒電解液を備えたリチウムイオンキャパシタに関する。   The present invention relates to a lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent electrolytic solution of a lithium salt as an electrolyte.

近年、グラファイト等の炭素材料を負極に用い、正極にLiCoO等のリチウム含有金属酸化物を用いた所謂リチウムイオン二次電池は高容量であり有力な蓄電装置として、主にノート型パソコンや携帯電話の主電源として実用化されている。リチウムイオン二次電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムイオンを供給し、更に放電では負極のリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であり、高電圧及び高容量、高安全性を有することを特長としている。 In recent years, a so-called lithium ion secondary battery using a carbon material such as graphite as a negative electrode and a lithium-containing metal oxide such as LiCoO 2 as a positive electrode has a high capacity and is an effective power storage device. It has been put to practical use as the main power source for telephones. The lithium ion secondary battery is a so-called rocking chair type battery in which lithium ions are supplied to the negative electrode from the lithium-containing metal oxide of the positive electrode by charging after the battery is assembled, and the lithium ion of the negative electrode is returned to the positive electrode in the discharge. It is characterized by high voltage, high capacity, and high safety.

一方、環境問題がクローズアップされる中、ガソリン車にかわる電気自動車用又はハイブリッド自動車用の蓄電装置(メイン電源と補助電源)の開発が盛んに行われ、また、自動車用の蓄電装置として、これまでは鉛電池が使用されてきた。しかし、車載用の電気設備や機器の充実により、エネルギー密度、出力密度の点から新しい蓄電装置が求められるようになってきている。   On the other hand, while environmental problems have been highlighted, the development of power storage devices (main power and auxiliary power) for electric vehicles or hybrid vehicles replacing gasoline vehicles has been actively carried out. Until now, lead batteries have been used. However, with the enhancement of in-vehicle electrical equipment and equipment, new power storage devices are being demanded in terms of energy density and output density.

かかる新しい蓄電装置としては、上記のリチウムイオン二次電池や電気二重層キャパシタが注目されている。しかし、リチウムイオン二次電池はエネルギー密度が高いものの出力特性、安全性やサイクル寿命には問題を残している。一方、電気二重層キャパシタは、ICやLSIのメモリーバックアップ用電源として利用されているが、一充電当たりの放電容量は電池に比べて小さい。しかし、瞬時の充放電特性に優れ、数万サイクル以上の充放電にも耐えるという、リチウムイオン二次電池にはない高い出力特性とメンテナンスフリー性を備えている。   As such a new power storage device, the above lithium ion secondary battery and electric double layer capacitor have attracted attention. However, although the lithium ion secondary battery has a high energy density, there are still problems in output characteristics, safety and cycle life. On the other hand, electric double layer capacitors are used as memory backup power sources for ICs and LSIs, but their discharge capacity per charge is smaller than batteries. However, it has excellent output characteristics and maintenance-free characteristics that are excellent in instantaneous charge / discharge characteristics and withstands charge / discharge of tens of thousands of cycles or more, which is not possible with lithium ion secondary batteries.

電気二重層キャパシタはこうした利点を有してはいるが、従来の一般的な電気二重層キャパシタのエネルギー密度は3〜4Wh/l程度で、リチウムイオン二次電池に比べて二桁程度小さい。電気自動車用を考えた場合、実用化には6〜10Wh/l、普及させるには20Wh/lのエネルギー密度が必要であるといわれている。   Although the electric double layer capacitor has such advantages, the energy density of the conventional general electric double layer capacitor is about 3 to 4 Wh / l, which is about two orders of magnitude smaller than that of the lithium ion secondary battery. When considering the use for electric vehicles, it is said that an energy density of 6 to 10 Wh / l is required for practical use and 20 Wh / l is necessary for spreading.

こうした高エネルギー密度、高出力特性を要する用途に対応する蓄電装置として、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリットキャパシタとも呼ばれる蓄電装置が注目されている。ハイブリッドキャパシタでは、通常、正極に分極性電極を使用し、負極に非分極性電極を使用するもので、電池の高いエネルギー密度と電気二重層の高い出力特性を兼ね備えた蓄電装置として注目されている。一方、このハイブリッドキャパシタにおいて、リチウムイオンを吸蔵、脱離しうる負極をリチウム金属と接触させて、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングともいう)させて負極電位を下げることにより、耐電圧を大きくしエネルギー密度を大幅に大きくすることを意図したキャパシタが提案されている。(特許文献1〜特許文献4参照)   In recent years, a power storage device called a hybrid capacitor, which combines the power storage principles of a lithium ion secondary battery and an electric double layer capacitor, has attracted attention as a power storage device corresponding to applications requiring such high energy density and high output characteristics. In hybrid capacitors, a polarizable electrode is usually used for the positive electrode and a non-polarizable electrode is used for the negative electrode, which is attracting attention as a power storage device that combines high energy density of the battery and high output characteristics of the electric double layer. . On the other hand, in this hybrid capacitor, a negative electrode capable of inserting and extracting lithium ions is brought into contact with lithium metal, and lithium ions are stored and supported (hereinafter also referred to as doping) by a chemical method or an electrochemical method in advance. There has been proposed a capacitor intended to increase the withstand voltage and greatly increase the energy density by lowering the potential. (See Patent Document 1 to Patent Document 4)

この種のハイブリッドキャパシタでは、高性能は期待されるものの、負極にリチウムイオンをドーピングさせる場合に、全負極に対して金属リチウムを貼り付けることを必要とすることや、あるいはセル内の一部に局所的にリチウム金属を配置させ負極と接触させることも可能であるが、ドーピングが極めて長時間を要することや負極全体に対する均一性のあるドーピングに問題を有し、特に、電極を捲回した円筒型装置や、複数枚の電極を積層した角型電池のような大型の高容量セルでは実用化は困難とされていた。   Although this type of hybrid capacitor is expected to have high performance, when lithium ions are doped into the negative electrode, it is necessary to attach metallic lithium to all the negative electrodes, or to a part of the cell. Although it is possible to place lithium metal locally and contact with the negative electrode, there is a problem in doping that requires a very long time and uniform doping with respect to the whole negative electrode, and in particular, a cylinder in which the electrode is wound. It has been considered difficult to put into practical use in large-sized high-capacity cells such as a type device or a square battery in which a plurality of electrodes are laminated.

しかし、この問題は、セルを構成する、負極集電体及び正極集電体の表裏に貫通する孔を設け、この貫通孔を通じてリチウムイオンが移動させ、同時にリチウムイオン供給源であるリチウム金属と負極を短絡させることにより、セルの端部にリチウム金属を配置するだけで、セル中の全負極にリチウムイオンをドーピングできることの発明により、一挙に解決するに至った(特許文献5参照)。なお、リチウムイオンのドーピングは、通常、負極に対して行なわれるが、負極とともに、又は負極の代わりに正極に行う場合も同様であることが特許文献5に記載されている。   However, this problem is that a through hole is formed in the front and back of the negative electrode current collector and the positive electrode current collector that constitute the cell, and lithium ions move through the through hole, and at the same time, lithium metal that is a lithium ion supply source and the negative electrode By short-circuiting, it was possible to do so all at once by arranging the lithium metal at the end of the cell and doping all the negative electrodes in the cell with lithium ions (see Patent Document 5). In addition, although doping of lithium ion is normally performed with respect to a negative electrode, it is described in patent document 5 that it is the same also when performing with a negative electrode with a positive electrode instead of a negative electrode.

かくして、電極を捲回した円筒型装置や、複数枚の電極を積層した角型電池のような大型のセルでも、装置中の全負極に対して短時間にかつ負極全体に均一にリチウムイオンがドーピングでき、耐電圧が向上したエネルギー密度が飛躍的に増大し、電気二重層キャパシタが本来有する大きい出力密度と相俟って、高容量のキャパシタが実現する見通しが得られた。   Thus, even in a large-sized cell such as a cylindrical device in which electrodes are wound or a square battery in which a plurality of electrodes are stacked, lithium ions are uniformly distributed over the entire negative electrode in a short time with respect to all the negative electrodes in the device. The energy density that can be doped and the withstand voltage is increased dramatically, and the high output density inherent in the electric double layer capacitor is expected to realize a high-capacity capacitor.

しかし、かかる高容量のキャパシタを実用化するためには、さらに、高容量、高エネルギー密度及び高出力密度とすることが要求されている。
特開平8−107048号公報 特開平9−55342号公報 特開平9−232190号公報 特開平11−297578号公報 国際公開WO98/033227号公報
However, in order to put such a high-capacity capacitor into practical use, it is further required to have a high capacity, a high energy density, and a high output density.
Japanese Patent Laid-Open No. 8-1007048 JP-A-9-55342 Japanese Patent Laid-Open No. 9-232190 JP-A-11-297578 International Publication No. WO98 / 033227

本発明は、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物
質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、負極及び/又は正極をリチウムイオンの供給源であるリチウム金属と電気化学的に接触させて、充電前に予め負極にリチウムイオンをドーピングする方式のリチウムイオンキャパシタにおいて、放電容量が高く、エネルギー密度の高いキャパシタを提供することを課題とする。更には、リチウムイオンのドーピングに使用するリチウム金属などのリチウムイオン供給源の量が少なく安価なキャパシタを提供することを課題とする。
In the present invention, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material is a material capable of reversibly supporting lithium ions. To provide a capacitor having a high discharge capacity and a high energy density in a lithium ion capacitor of a type in which lithium ions are electrochemically brought into contact with lithium metal which is a source of ions and lithium ions are previously doped into the negative electrode before charging. Let it be an issue. It is another object of the present invention to provide an inexpensive capacitor with a small amount of lithium ion source such as lithium metal used for doping lithium ions.

上記課題を解決するため、本発明者らは鋭意研究を行った結果、正極と負極を短絡させた後の正極及び負極電位が0.95V以下となるように、充電前に、負極及び/又は正極に対してリチウムイオンを予めドーピングさせたリチウムイオンキャパシタにおいては、そこで使用される負極活物質の物性が得られるキャパシタの充放電効率や放電容量と密接に関係し、該負極活物質として、易黒鉛化性炭素前駆体の炭化物から形成することにより、上記の課題を解決できることを見出し、本発明に到達した。 In order to solve the above problems, the present inventors have conducted intensive research. As a result, the negative electrode and / or the negative electrode and / or the negative electrode potential before charging so that the positive electrode and negative electrode potential after short-circuiting the positive electrode and the negative electrode is 0.95 V or less. Or in a lithium ion capacitor in which lithium ions are pre-doped with respect to the positive electrode, the physical properties of the negative electrode active material used there are closely related to the charge / discharge efficiency and discharge capacity of the capacitor, and as the negative electrode active material, The present inventors have found that the above-mentioned problems can be solved by forming from a carbon of an easily graphitizable carbon precursor, and have reached the present invention.

かくして、本発明は、以下の要旨を有することを特徴とするものである。
(1)正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えるリチウムイオンキャパシタであって、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極の電位が0.95V以下になるように負極及び/又は正極に対してリチウムイオンが充電前にドーピングされており、かつ、上記負極活物質は、易黒鉛化性炭素前駆体の炭化物からなることを特徴とするリチウムイオンキャパシタ。
(2)前記正極及び/又は負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、負極とリチウムイオン供給源との電気化学的接触によってリチウムイオンがドーピングされている上記(1)に記載のリチウムイオンキャパシタ。
(3)負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質重量が負極活物資の重量よりも大きい上記(1)又は(2)に記載のリチウムイオンキャパシタ。
(4)易黒鉛化性炭素前駆体が、コークス、タール、又は塩化ビニル樹脂である上記(1)〜(3)のいずれかに記載のリチウムイオンキャパシタ。
(5)負極活物質粒子の平均粒子径(D50)が0.5〜30μmであり、比表面積が0.1〜1000m/gである上記(1)〜(4)のいずれかに記載のリチウムイオンキャパシタ。
Thus, the present invention is characterized by having the following gist.
(1) A lithium ion capacitor comprising a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, wherein the positive electrode active material is a substance capable of reversibly supporting lithium ions and / or anions. The negative electrode active material is a material capable of reversibly carrying lithium ions, and the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 0.95 V or less so that A lithium ion capacitor, wherein ions are doped before charging, and the negative electrode active material is made of a carbide of a graphitizable carbon precursor.
(2) The positive electrode and / or the negative electrode each provided with a current collector having holes penetrating the front and back surfaces, and lithium ions are doped by electrochemical contact between the negative electrode and a lithium ion supply source ( The lithium ion capacitor as described in 1).
(3) The negative electrode active material has a capacitance per unit weight of 3 times or more as compared with the positive electrode active material, and the positive electrode active material weight is larger than the weight of the negative electrode active material. The lithium ion capacitor as described in 2).
(4) The lithium ion capacitor according to any one of (1) to (3), wherein the graphitizable carbon precursor is coke, tar, or vinyl chloride resin.
(5) The average particle diameter (D50) of the negative electrode active material particles is 0.5 to 30 μm, and the specific surface area is 0.1 to 1000 m 2 / g according to any one of (1) to (4) above. Lithium ion capacitor.

本発明によれば、予め負極及び/又は正極にリチウムイオンをドーピングする、特に大容量のキャパシタであって、放電容量が高く、エネルギー密度の高いキャパシタが提供される。更には、リチウムイオンのドーピングに使用するリチウムイオン供給源の量が少なく安価なキャパシタが提供される。本発明において、負極活物質として、易黒鉛化性炭素前駆体の炭化物から形成することにより、得られるキャパシタが何故に上記の如き優れた効果が達成されかのメカニズムについては、必ずしも明らかではないが、次のように推定される。予め負極及び/又は正極にリチウムイオンをドーピングするリチウムイオンキャパシタの特性は負極材に大きく依存する。したがって、本発明に用いられている負極材である易黒鉛化性炭素前駆体の炭化物の充放電電位範囲として0〜0.25Vの領域に大きな容量を有するために放電容量が高く、エネルギー密度の高い特性が発現するものと考えられる。また、リチウムイオン供給源の使用量が少なくてよい理由は、負極材である易黒鉛化性炭素前駆体の炭化物の初期の充放電効率が高く、少ない充電においても0〜0.25Vの領域に充分な容量をだせるためと考えられる。   ADVANTAGE OF THE INVENTION According to this invention, it is a capacitor | condenser with a high capacity | capacitance which is a negative electrode and / or a positive electrode doped beforehand with lithium ion, and has a high discharge capacity and a high energy density. Furthermore, an inexpensive capacitor with a small amount of lithium ion source used for doping lithium ions is provided. In the present invention, as a negative electrode active material, it is not necessarily clear about the mechanism by which the excellent effect as described above is achieved by forming a capacitor from an easily graphitizable carbon precursor. Is estimated as follows. The characteristics of the lithium ion capacitor in which the negative electrode and / or the positive electrode are previously doped with lithium ions largely depend on the negative electrode material. Therefore, since the charge / discharge potential range of the carbide of the graphitizable carbon precursor which is the negative electrode material used in the present invention has a large capacity in the region of 0 to 0.25 V, the discharge capacity is high and the energy density is high. It is thought that a high characteristic expresses. The reason why the amount of the lithium ion source used may be small is that the initial charge and discharge efficiency of the carbon of the graphitizable carbon precursor as the negative electrode material is high, and even in a small charge, it is in the range of 0 to 0.25 V. This is considered to be enough capacity.

本発明のリチウムイオンキャパシタは、正極、負極、及び、電解液としてリチウム塩の非プロトン性有機電解液を備え、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質である。ここで、「正極」とは、放電の際に電流が流れ出る側の極であり、「負極」とは放電の際に電流が流れ込む側の極をいう。   The lithium ion capacitor of the present invention comprises a positive electrode, a negative electrode, and an aprotic organic electrolyte of lithium salt as an electrolyte, and the positive electrode active material is a substance capable of reversibly supporting lithium ions and / or anions, The negative electrode active material is a material capable of reversibly supporting lithium ions. Here, the “positive electrode” is an electrode on the side where current flows out during discharge, and the “negative electrode” is an electrode on the side where current flows in during discharge.

本発明のリチウムイオンキャパシタでは、負極及び/又は正極に対するリチウムイオンのドーピングにより正極と負極を短絡させた後の正極の電位が0.95V以下にされていることが必要である。負極及び/又は正極に対するリチウムイオンのドーピングされていないキャパシタでは、正極及び負極の電位はいずれも3Vであり、充電前においては、正極と負極を短絡させた後の正極の電位は3Vである。なお、本発明で、正極と負極を短絡させた後の正極の電位が0.95V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が0.95V以下の場合をいう。即ち、(A)リチウムイオンによるドーピングの後、キャパシタセルの正極端子と負極端子を導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位、(B)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位。 In the lithium ion capacitor of the present invention, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited by doping lithium ions to the negative electrode and / or the positive electrode needs to be 0.95 V or less. In a capacitor in which lithium ions are not doped with respect to the negative electrode and / or the positive electrode, the potentials of the positive electrode and the negative electrode are both 3V, and before charging, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 3V. In the present invention, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 0.95 V or less means that the potential of the positive electrode obtained by either of the following two methods (A) or (B) It means the case of 0.95 V or less. That is, (A) After doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are left in a state of being directly coupled with a conductive wire for 12 hours or more, and then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential, (B) Charge-discharge tester discharges constant current to 0V over 12 hours and then leaves positive electrode terminal and negative electrode terminal connected with lead wire for 12 hours or more, then releases short circuit Positive electrode potential measured within 0.5 to 1.5 hours.

また、短絡後の正極電位が0.95V以下というのは、リチウムイオンがドーピングされたすぐ後だけに限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が0.95V以下となることである。 In addition, the positive electrode potential after short circuit is 0.95 V or less is not limited to just after lithium ions are doped, such as when short-circuiting after repeated charging, discharging or charging / discharging, In either state, the positive electrode potential after a short circuit is 0.95 V or less.

正極電位が0.95V以下になるということに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常3V(Li/Li)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、いずれの電位も約3Vとなるためセル電圧は約0Vとなり、短絡しても正極電位はかわらず約3Vである。また、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化性炭素のような炭素材を用いた、いわゆるハイブリットキャパシタの場合も同様であり、いずれの電位も約3Vとなるためセル電圧は約0Vとなり、短絡しても正極電位はかわらず約3Vである。正極と負極の重量バランスにもよるが充電すると負極電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキャパシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下する分、充電電圧を高めることが可能となるのである。しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリットキャパシタでは、正極の上限電位が例えば4.0Vとした場合、放電時の正極電位は3.0Vまでであり、正極の電位変化は1.0V程度と正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極表面にて電解液の分解に消費される場合や、炭素材の構造欠陥部にトラップされる等の説明がなされているが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を繰り返した後にセルを短絡させると正極電位は3Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか使えない場合、利用容量として半分しか使っていないこととなり、高電圧にはなるが高容量にはならないのである。 The fact that the positive electrode potential is 0.95 V or less will be described in detail below. As described above, activated carbon and carbon materials usually have a potential of around 3 V (Li / Li + ), and when a cell is formed using activated carbon for both the positive electrode and the negative electrode, both potentials are about 3 V. The voltage is about 0V, and even if it is short-circuited, the positive electrode potential is about 3V regardless. The same applies to a so-called hybrid capacitor using activated carbon for the positive electrode and carbon material such as graphite or non-graphitizable carbon used in the lithium ion secondary battery for the negative electrode. Since it becomes 3V, the cell voltage becomes about 0V, and even if it is short-circuited, the positive electrode potential is not changed and is about 3V. Although depending on the weight balance between the positive electrode and the negative electrode, when charged, the potential of the negative electrode transitions to around 0 V, so that the charging voltage can be increased, so that the capacitor has a high voltage and a high energy density. Generally, the upper limit of the charging voltage is determined to be a voltage at which the electrolyte solution does not decompose due to the increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased by the amount of decrease in the negative electrode potential. It is. However, in the above-described hybrid capacitor in which the positive electrode potential is about 3 V at the time of short circuit, when the upper limit potential of the positive electrode is 4.0 V, for example, the positive electrode potential at the time of discharge is up to 3.0 V, and the potential change of the positive electrode is 1. The capacity of the positive electrode of about 0 V is not fully utilized. Furthermore, when lithium ions are inserted (charged) and desorbed (discharged) into the negative electrode, the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. This is explained when it is consumed in the decomposition of the electrolyte solution on the negative electrode surface or trapped in the structural defect part of the carbon material. In this case, the charge / discharge of the negative electrode is compared with the charge / discharge efficiency of the positive electrode. When the efficiency is lowered and the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3 V, and the utilization capacity further decreases. That is, the positive electrode can be discharged from 4.0 V to 2.0 V. However, when only 4.0 V to 3.0 V can be used, only half of the usage capacity is used. It will not be.

ハイブリットキャパシタを高電圧、高エネルギー密度だけでなく、高容量そして更にエネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。   In order to increase not only high voltage and high energy density but also high capacity and energy density of the hybrid capacitor, it is necessary to improve the capacity of the positive electrode.

短絡後の正極電位が3.0Vよりも低下すればそれだけ利用容量が増え、高容量になるということである。0.95V以下になるためには、セルの充放電により充電される量だけでなく、別途リチウム金属から負極にリチウムイオンを充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡させた時には、正極、負極、リチウム金属の平衡電位になるため、正極電位、負極電位ともに3.0V以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が0.95V以下になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオンの調整をすることが必要である。 If the positive electrode potential after the short circuit falls below 3.0V, the utilization capacity increases and the capacity increases. In order to become 0.95 V or less, it is preferable to charge not only the amount charged by charging / discharging the cell but also separately charging lithium ions from lithium metal to the negative electrode. Since lithium ions are supplied from other than the positive electrode and the negative electrode, when they are short-circuited, the equilibrium potentials of the positive electrode, the negative electrode, and the lithium metal are reached, so that both the positive electrode potential and the negative electrode potential are 3.0 V or less. As the amount of lithium metal increases, the equilibrium potential decreases. If the negative electrode material and the positive electrode material change, the equilibrium potential also changes. Therefore, the lithium ions supported on the negative electrode are adjusted in consideration of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after the short circuit becomes 0.95 V or less. It is necessary.

本発明において、キャパシタセルを充電する前に、予め負極及び/又は正極にリチウムイオンをドーピングし、正極と負極を短絡させた後の正極の電位を0.95V以下にすることにより、正極の利用容量が高くなるため高容量となり、大きいエネルギー密度が得られる。リチウムイオンの供給量が多くなるほどに正極と負極を短絡させた時の正極電位は低くなりエネルギー密度は向上する。正極および/又は負極に供給されたリチウムイオンの量が少ないと正極と負極を短絡させた時に正極電位が0.95Vよりも高くなり、セルのエネルギー密度は小さくなる。 In the present invention, before charging the capacitor cell, the negative electrode and / or the positive electrode is preliminarily doped with lithium ions, and the positive electrode potential is 0.95 V or less after the positive electrode and the negative electrode are short-circuited. Since the use capacity becomes high, the capacity becomes high and a large energy density can be obtained. As the supply amount of lithium ions increases, the positive electrode potential when the positive electrode and the negative electrode are short-circuited decreases and the energy density improves . The positive electrode potential when the amount of supplied lithium ion to the positive electrode and / or negative electrode is less was short-circuiting between the positive electrode and the negative electrode is higher than 0.95 V, the energy density of the cell is reduced.

本発明で、リチウムイオンのドーピングは、負極と正極の片方あるいは両方いずれでもよいが、例えば正極に活性炭を用いた場合、リチウムイオンのドーピング量が多くなり正極電位が低くなると、リチウムイオンを不可逆的に消費してしまい、セルの容量が低下するなどの不具合が生じる場合がある。このため、負極と正極にドーピングするリチウムイオンは、それぞれの電極活物質を考慮し、これらの不具合を生じないようにするのが好ましい。本発明では、正極のドーピング量と負極のドーピング量を制御することは工程上煩雑となるため、リチウムイオンのドーピングは好ましくは負極に対して行われる。   In the present invention, lithium ion doping may be either one or both of the negative electrode and the positive electrode. For example, when activated carbon is used for the positive electrode, the lithium ion becomes irreversible when the amount of lithium ion doping increases and the positive electrode potential decreases. May cause problems such as a decrease in cell capacity. For this reason, it is preferable that the lithium ions doped in the negative electrode and the positive electrode do not cause these problems in consideration of the respective electrode active materials. In the present invention, since controlling the doping amount of the positive electrode and the doping amount of the negative electrode becomes complicated in the process, the doping of lithium ions is preferably performed on the negative electrode.

本発明のリチウムイオンキャパシタでは、特に、負極活物質の単位重量当たりの静電容量が正極活物質の単位重量当たりの静電容量の3倍以上を有し、かつ正極活物質重量が負極活物質重量よりも大きくする場合、高電圧且つ高容量のキャパシタが得られる。また、それと同時に、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量及び容量が大きくなる。   In the lithium ion capacitor of the present invention, in particular, the electrostatic capacity per unit weight of the negative electrode active material has more than three times the electrostatic capacity per unit weight of the positive electrode active material, and the positive electrode active material weight is the negative electrode active material When larger than the weight, a capacitor having a high voltage and a high capacity can be obtained. At the same time, when using a negative electrode having a capacitance per unit weight that is larger than the capacitance per unit weight of the positive electrode, the negative electrode active material weight is reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell are increased.

なお、本発明において、キャパシタセル(以下、単にセルもいう)の静電容量及び容量は次のように定義される。セルの静電容量とは、セルの単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はF(ファラッド)である。セルの単位重量当たりの静電容量とはセルの静電容量に対するセル内に充填している正極活物質重量と負極活物質重量の合計重量の除で示され、単位はF/gである。また、正極又は負極の静電容量とは、正極あるいは負極の単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はFである。正極あるいは負極の単位重量当たりの静電容量とは正極あるいは負極の静電容量をセル内に充填している正極あるいは負極活物質重量の除で示され、単位はF/gである。   In the present invention, the capacitance and capacity of a capacitor cell (hereinafter also simply referred to as a cell) are defined as follows. The capacitance of a cell indicates the amount of electricity flowing through the cell per unit voltage of the cell (the slope of the discharge curve), and the unit is F (farad). The capacitance per unit weight of the cell is expressed by dividing the total weight of the positive electrode active material weight and the negative electrode active material weight filled in the cell with respect to the cell capacitance, and the unit is F / g. The electrostatic capacity of the positive electrode or the negative electrode indicates the amount of electricity flowing through the cell per unit voltage of the positive electrode or the negative electrode (the slope of the discharge curve), and the unit is F. The capacitance per unit weight of the positive electrode or the negative electrode is expressed by dividing the positive electrode or negative electrode capacitance in the cell by the weight of the positive electrode or negative electrode active material, and the unit is F / g.

更に、セル容量とは、セルの放電開始電圧と放電終了電圧の差、即ち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので本特許においては換算してmAh表示する。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と正極の静電容量の積であり単位はCまたはmAh、同様に負極容量とは放電開始時の負極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量の積であり単位はCまたはmAhである。これらセル容量と正極容量、負極容量は一致する。   Furthermore, the cell capacity is the difference between the cell discharge start voltage and the discharge end voltage, that is, the product of the voltage change amount and the cell capacitance, and the unit is C (coulomb). 1C is 1A per second. Since this is the amount of charge when current flows, it is converted into mAh in this patent. The positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (amount of change in positive electrode potential) and the electrostatic capacity of the positive electrode. The unit is C or mAh. The product of the difference between the negative electrode potential and the negative electrode potential at the end of discharge (negative electrode potential change amount) and the negative electrode capacitance, and the unit is C or mAh. These cell capacity, positive electrode capacity, and negative electrode capacity coincide.

本発明のリチウムイオンキャパシタにおいて、予め負極及び/又は正極にリチウムイオンをドーピングさせる手段は特に限定されない。例えば、リチウムイオンを供給可能な、金属リチウムなどのリチウムイオン供給源をリチウム極としてキャパシタセル内に配置できる。リチウム供給源の量(リチウム金属等の重量)は、所定の負極の容量が得られる量だけあればよい。この場合、負極とリチウム極は物理的な接触(短絡)でもよいし、電気化学的にドーピングさせてもよい。リチウムイオン供給源は、導電性多孔体からなるリチウム極集電体上に形成してもよい。リチウム集電体となる導電性多孔体としては、ステンレスメッシュ等のリチウムイオン供給源と反応しない金属多孔体が使用できる。   In the lithium ion capacitor of the present invention, means for doping lithium ions into the negative electrode and / or the positive electrode in advance is not particularly limited. For example, a lithium ion supply source such as metallic lithium capable of supplying lithium ions can be disposed in the capacitor cell as a lithium electrode. The amount of the lithium supply source (weight of lithium metal or the like) may be as long as a predetermined negative electrode capacity can be obtained. In this case, the negative electrode and the lithium electrode may be in physical contact (short circuit) or may be electrochemically doped. The lithium ion supply source may be formed on a lithium electrode current collector made of a conductive porous body. As the conductive porous body serving as the lithium current collector, a porous metal body that does not react with a lithium ion supply source such as a stainless mesh can be used.

大容量の多層構造のキャパシタセルでは正極及び負極にそれぞれ電気を受配電する正極集電体及び負極集電体が備えられるが、かかる正極集電体及び負極集電体が使用され、かつリチウム極が設けられるセルの場合、リチウム極が負極集電体に対向する位置に設けられ、電気化学的に負極にリチウムイオン供給することが好ましい。この場合、正極集電体及び負極集電体として、例えばエキスパンドメタルのように表裏面を貫通する孔を備えた材料を用い、リチウム極を負極あるいは正極に対向させて配置する。この貫通孔の形態、数等は特に限定されず、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、設定することができる。   A large-capacity multilayer capacitor cell is provided with a positive electrode current collector and a negative electrode current collector for receiving and distributing electricity at the positive electrode and the negative electrode, respectively. The positive electrode current collector and the negative electrode current collector are used, and the lithium electrode In the case of a cell provided with a lithium electrode, it is preferable that the lithium electrode is provided at a position facing the negative electrode current collector and lithium ions are supplied to the negative electrode electrochemically. In this case, as the positive electrode current collector and the negative electrode current collector, for example, a material having holes penetrating the front and back surfaces such as expanded metal is used, and the lithium electrode is disposed so as to face the negative electrode or the positive electrode. The form, number, and the like of the through holes are not particularly limited, and can be set so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector.

本発明のリチウムイオンキャパシタでは、負極及び/又は正極にドーピングするリチウム極をセル中の局所的に配置した場合もリチウムイオンのドーピングが均一に行うことができる。従って、正極及び負極を積層もしくは捲回した大容量のセルの場合も、最外周又は最外側のセルの一部にリチウム極を配置することにより、スムーズにかつ均一に負極及び/又は正極にリチウムイオンをドーピングできる。   In the lithium ion capacitor of the present invention, lithium ions can be uniformly doped even when a lithium electrode doped in the negative electrode and / or the positive electrode is locally arranged in the cell. Therefore, even in the case of a large-capacity cell in which the positive electrode and the negative electrode are laminated or wound, the lithium electrode can be smoothly and uniformly placed on the negative electrode and / or the positive electrode by arranging the lithium electrode in a part of the outermost or outermost cell. Ions can be doped.

電極集電体の材質としては、一般にリチウム系電池に提案されている種々の材質を用いることができ、正極集電体にはアルミニウム、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ用いることができる。また、セル内に配置され、電気化学的接触により負極及び/又は正極にドーピングする場合のリチウムイオン供給源とは、リチウム金属あるいはリチウム−アルミニウム合金のように、少なくともリチウムを含有し、リチウムイオンを供給することのできる物質をいう。   As the material of the electrode current collector, various materials generally proposed for lithium batteries can be used, such as aluminum and stainless steel for the positive electrode current collector, stainless steel, copper, nickel and the like for the negative electrode current collector. Can be used respectively. In addition, the lithium ion supply source in the case where the negative electrode and / or the positive electrode are doped by electrochemical contact is contained in the cell and contains at least lithium, such as lithium metal or lithium-aluminum alloy, A substance that can be supplied.

本発明のリチウムイオンキャパシタにおける負極活物質は、リチウムイオンを可逆的に担持できる物質からなる。本発明で負極活物質は、易黒鉛化性炭素前駆体の炭化物から形成される。本発明において、「易黒鉛化性炭素前駆体」とは、黒鉛化が容易な有機化合物などの炭素含有物を意味する。黒鉛化が容易とは、例えば、約1500℃以下の比較的低温の焼成による炭化処理によって黒鉛構造が形成されることを意味する。黒鉛構造の形成は、例えば、X線回折パターンにおいて2θが25°付近に明白なピークを持つことにより確認することができる。なお、本発明の易黒鉛化性炭素前駆体に対して、難黒鉛化性炭素前駆体とは、黒鉛化が容易でないもので、黒鉛化には、高温度や場合により黒鉛化触媒が必要とされる。これらの難黒鉛化性炭素前駆体の例としては、セルロース、フェノール樹脂、エポキシ樹脂などがある。   The negative electrode active material in the lithium ion capacitor of the present invention is made of a material that can reversibly carry lithium ions. In the present invention, the negative electrode active material is formed from a carbide of a graphitizable carbon precursor. In the present invention, the “easily graphitizable carbon precursor” means a carbon-containing material such as an organic compound that can be easily graphitized. “Easily graphitized” means that, for example, a graphite structure is formed by carbonization treatment by firing at a relatively low temperature of about 1500 ° C. or less. Formation of the graphite structure can be confirmed, for example, by having a clear peak at 2θ around 25 ° in the X-ray diffraction pattern. In contrast to the graphitizable carbon precursor of the present invention, the non-graphitizable carbon precursor is not easily graphitized, and graphitization requires a graphitization catalyst at a high temperature or in some cases. Is done. Examples of these non-graphitizable carbon precursors include cellulose, phenolic resin, and epoxy resin.

本発明において、負極活物質の材料とされる易黒鉛化性炭素前駆体としては、コークス、タール、おが屑、塩化ビニル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂などが例示される。なかでも、石油若しくは石炭のコークス、タール又は、ピッチ、おが屑又は塩化ビニル樹脂が好ましい。これらの易黒鉛化性炭素前駆体は、温度400〜800℃、加熱時間が1〜3時間、窒素ガス、アルゴンガスなどの不活性雰囲気中で焼成され炭化物とされる。しかし、焼成を効率的に行うために、焼成温度は1500℃まで上げることができ、また、黒鉛化触媒を使用してもよい。
上記焼成で得られた炭化物は、必要に応じて、賦活処理しても良い。
In the present invention, examples of the graphitizable carbon precursor used as the negative electrode active material include coke, tar, sawdust, vinyl chloride resin, polyacrylonitrile resin, and polyimide resin. Among these, petroleum or coal coke, tar, pitch, sawdust or vinyl chloride resin is preferable. These graphitizable carbon precursors are baked in an inert atmosphere such as nitrogen gas or argon gas at a temperature of 400 to 800 ° C. and a heating time of 1 to 3 hours to form carbides. However, for efficient firing, the firing temperature can be raised to 1500 ° C., and a graphitization catalyst may be used.
The carbide obtained by the firing may be activated as necessary.

かくして得られる炭化物は、次いで粉砕される。粉砕は、ボールミル等の既知の粉砕機を用いて行われる。かかる粉砕により、炭化物粒子の粒度は、好ましくは、その50%体積累積径(D50ともいう)が0.5〜30μm、特に、0.5〜15μmであるのが好適である。更に、比表面積が0.1〜1000m/g、特に0.1〜500m/gが好適である。 The carbide thus obtained is then ground. The pulverization is performed using a known pulverizer such as a ball mill. By such pulverization, the carbide particles preferably have a 50% volume cumulative diameter (also referred to as D50) of 0.5 to 30 μm, particularly 0.5 to 15 μm. Further, a specific surface area of 0.1~1000m 2 / g, especially 0.1~500m 2 / g are preferred.

上記の炭化物粉末から本発明の負極の製造手段は既存のものが使用できる。即ち、炭化物粉末、バインダー及び必要に応じて導電性粉末を水系又は有機溶媒中に分散させてスラリーとし、該スラリーを必要に応じて使用される集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体に貼り付けてもよい。ここで使用されるバインダーとしては、例えば、SBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。上記で必要に応じて使用される導電剤としては、アセチレンブラック、グラファイト、金属粉末等が挙げられる。導電剤の使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40%の割合で加えることが適当である。   The existing means for producing the negative electrode of the present invention from the above carbide powder can be used. That is, a carbide powder, a binder and, if necessary, a conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to a current collector used as necessary, or the slurry is applied in advance. You may shape | mold in a sheet form and affix this on a collector. As the binder used here, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used. Examples of the conductive agent used as necessary in the above include acetylene black, graphite, and metal powder. The amount of the conductive agent used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add the conductive agent at a ratio of 2 to 40% with respect to the negative electrode active material.

リチウムイオンキャパシタの負極活物質としては、ポリアセン系物質(以下、PASともいう)が高容量を得る上でより好ましことが報告されている。PASは難黒鉛化性炭素前駆体であるフェノール樹脂の熱処理物であるが、一例としては、400mAh/gのリチウムイオンを担持(充電)させた後に放電させると650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを充電させると750F/g以上の静電容量が得られる。これに対し本発明に用いられる負極活物質の一例としてコークスの炭化物は、220mAh/gのリチウムイオンを充電させた後に放電させると650F/g以上の静電容量が得られ、また、300mAh/g以上のリチウムイオンを充電させると900F/g以上の静電容量が得られることから、より少ないリチウムイオンの供給によりPASと同等以上の容量が得られることから、リチウムイオンキャパシタ用の負極活物質として適している。   As a negative electrode active material of a lithium ion capacitor, it has been reported that a polyacene-based material (hereinafter also referred to as PAS) is more preferable for obtaining a high capacity. PAS is a heat-treated product of a phenol resin that is a non-graphitizable carbon precursor. As an example, when a discharge is performed after supporting 400 mAh / g of lithium ions, a capacitance of 650 F / g or more is obtained. Further, when a lithium ion of 500 mAh / g or more is charged, a capacitance of 750 F / g or more is obtained. On the other hand, as an example of the negative electrode active material used in the present invention, the coke carbide has a capacitance of 650 F / g or more when discharged after charging 220 mAh / g of lithium ions, and 300 mAh / g. As the above lithium ion is charged, a capacitance of 900 F / g or more can be obtained, and by supplying less lithium ions, a capacity equal to or higher than that of PAS can be obtained. As a negative electrode active material for a lithium ion capacitor, Is suitable.

一方、本発明のリチウムイオンキャパシタにおける正極活物質は、リチウムイオン及び/又はアニオンを可逆的に担持できる物質から形成される。正極活物質としては、例えば、活性炭、導電性高分子、PAS等の材料が使用できる。本発明で正極活物質の有する粒度特性は、平均粒子径(D50ともいう)が好ましくは2〜50μm、特に好ましくは2〜20μmである。また、比表面積が好ましくは600〜3000m/gであるのが好適である。 On the other hand, the positive electrode active material in the lithium ion capacitor of the present invention is formed from a material that can reversibly carry lithium ions and / or anions. As a positive electrode active material, materials, such as activated carbon, a conductive polymer, and PAS, can be used, for example. In the present invention, the particle size characteristic of the positive electrode active material is such that the average particle diameter (also referred to as D50) is preferably 2 to 50 μm, particularly preferably 2 to 20 μm. The specific surface area is preferably 600 to 3000 m 2 / g.

本発明における正極は、上記の正極活物質粉末から形成されるが、その手段は、上記負極の場合と同様に、既存のものが使用できる。即ち、正極活物質粉末、バインダー及び必要に応じて導電性粉末を水系又は有機溶媒中に分散させてスラリーとし、該スラリーを上記した集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体に貼り付けてもよい。ここで使用されるバインダーとしては、例えば、SBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。バインダーの使用量は、正極活物質の電気伝導度、電極形状等により異なるが、正極活物質に対して1〜20重量%の割合で加えることが適当である。   The positive electrode in the present invention is formed from the above positive electrode active material powder, and the existing means can be used as in the case of the negative electrode. That is, the positive electrode active material powder, the binder and, if necessary, the conductive powder are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the current collector, or the slurry is previously formed into a sheet shape. You may shape | mold and stick this to a collector. As the binder used here, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used. The amount of the binder used varies depending on the electrical conductivity of the positive electrode active material, the electrode shape, and the like, but it is appropriate to add 1 to 20% by weight based on the positive electrode active material.

本発明のリチウムイオンキャパシタにおける、非プロトン性有機溶媒電解質溶液を形成する非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。   Examples of the aprotic organic solvent for forming the aprotic organic solvent electrolyte solution in the lithium ion capacitor of the present invention include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, Examples include dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.

また、上記の単一あるいは混合の溶媒に溶解させる電解質は、リチウムイオンを生成しうる電解質であれば、あらゆるものを用いることができる。このような電解質としては、例えばLiClO、LiAsF、LiBF、LiPF等が挙げられる。上記の電解質及び溶媒は、充分に脱水された状態で混合され、電解質溶液とするのであるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/リットル以上とすることが好ましく、0.5〜1.5モル/リットルの範囲内とすることが更に好ましい。 Any electrolyte can be used as long as it is an electrolyte capable of generating lithium ions as the electrolyte dissolved in the single or mixed solvent. Examples of such an electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 and the like. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / liter in order to reduce the internal resistance of the electrolyte. It is preferable to set it as the above, and it is still more preferable to set it in the range of 0.5-1.5 mol / liter.

また、本発明のリチウムイオンキャパシタとしては、特に、帯状の正極と負極とをセパレータを介して捲回させる捲回型セル、板状の正極と負極とをセパレータを介して各3層以上積層された積層型セル、あるいは、板状の正極と負極とをセパレータを介した各3層以上積層物を外装フィルム内に封入したフィルム型セルなどの大容量のセルに適する。これらのセルの構造は既にリチウムイオン二次電池や自動車用に開発された大型の電気二重層キャパシタなどにより既に知られており、本発明のキャパシタセルもかバインダーの使用量は、正極活物質の電気伝導度、電極形状等により異なるが、正極活物質に対して1〜20重量%の割合で加えることが適当である。   In addition, as the lithium ion capacitor of the present invention, in particular, a wound type cell in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like positive electrode and a negative electrode are laminated in three or more layers through a separator. It is suitable for a large-capacity cell such as a laminated cell or a film-type cell in which a laminate of three or more layers each having a plate-like positive electrode and negative electrode through a separator is enclosed in an exterior film. The structures of these cells are already known from lithium ion secondary batteries and large electric double layer capacitors developed for automobiles. The capacitor cell of the present invention or the amount of binder used is that of the positive electrode active material. Although it varies depending on the electric conductivity, the electrode shape, etc., it is appropriate to add at a ratio of 1 to 20 wt% with respect to the positive electrode active material.

本発明のリチウムイオンキャパシタにおける、非プロトン性有機溶媒電解質溶液を形成する非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。   Examples of the aprotic organic solvent for forming the aprotic organic solvent electrolyte solution in the lithium ion capacitor of the present invention include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, Examples include dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.

また、上記の単一あるいは混合の溶媒に溶解させる電解質は、リチウムイオンを生成しうる電解質であれば、あらゆるものを用いることができる。このような電解質としては、例えばLiClO、LiAsF、LiBF、LiPF等が挙げられる。上記の電解質及び溶媒は、充分に脱水された状態で混合され、電解質溶液とするのであるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/リットル以上とすることが好ましく、0.5〜1.5モル/リットルの範囲内とすることが更に好ましい。 Any electrolyte can be used as long as it is an electrolyte capable of generating lithium ions as the electrolyte dissolved in the single or mixed solvent. Examples of such an electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 and the like. The above electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / liter in order to reduce the internal resistance of the electrolyte. It is preferable to set it as the above, and it is still more preferable to set it in the range of 0.5-1.5 mol / liter.

また、本発明のリチウムイオンキャパシタとしては、特に、帯状の正極と負極とをセパレータを介して捲回させる捲回型セル、板状の正極と負極とをセパレータを介して各3層以上積層された積層型セル、あるいは、板状の正極と負極とをセパレータを介した各3層以上積層物を外装フィルム内に封入したフィルム型セルなどの大容量のセルに適する。これらのセルの構造は、国際公開WO00/07255号公報、国際公開WO03/003395号公報、特開2004−266091号公報などにより既に知られており、本発明のキャパシタセルもかかる既存のセルと同様な構成とすることができる。   In addition, as the lithium ion capacitor of the present invention, in particular, a wound type cell in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like positive electrode and a negative electrode are laminated in three or more layers through a separator. It is suitable for a large-capacity cell such as a laminated cell or a film-type cell in which a laminate of three or more layers each having a plate-like positive electrode and negative electrode through a separator is enclosed in an exterior film. The structure of these cells is already known from International Publication WO00 / 07255, International Publication WO03 / 003395, Japanese Patent Application Laid-Open No. 2004-266091, etc., and the capacitor cell of the present invention is similar to such an existing cell. It can be set as a simple structure.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(ラミネートセル単極評価)
(実施例1)
負極活物質として用いる平均粒子径(D50)14μmのコークス原料に対し、熱履歴のばらつきを無くすために、780℃で2時間、窒素雰囲気中で熱処理して炭化を行った。この熱処理コークスは、CHN元素分析における水素/炭素原子数比が0.10であった。熱処理により粉末の凝集が起こるため、振動ミルで粉砕を行い、平均粒子径(D50)7μmの炭化物からなる易黒鉛化性炭素粉体を得た。
(Laminate cell single electrode evaluation)
Example 1
A coke material having an average particle size (D50) of 14 μm used as the negative electrode active material was carbonized by heat treatment at 780 ° C. for 2 hours in a nitrogen atmosphere in order to eliminate variation in thermal history. This heat-treated coke had a hydrogen / carbon atom number ratio of 0.10 in CHN elemental analysis. Since the powder was agglomerated by the heat treatment, the powder was pulverized by a vibration mill to obtain graphitizable carbon powder made of carbide having an average particle diameter (D50) of 7 μm.

この易黒鉛化性炭素粉体92重量部に対し、アセチレンブラック粉体6重量部、アクリレート系共重合体バインダー5重量部、カルボキシメチルセルロース(CMC)4重量部、イオン交換水200重量部を加えて混合攪拌機にて充分混合することにより負極スラリー1を得た。   To 92 parts by weight of this graphitizable carbon powder, 6 parts by weight of acetylene black powder, 5 parts by weight of acrylate copolymer binder, 4 parts by weight of carboxymethyl cellulose (CMC), and 200 parts by weight of ion-exchanged water were added. The negative electrode slurry 1 was obtained by sufficiently mixing with a mixing stirrer.

得られた負極スラリーを、厚さ18μmの銅箔片面に対し、固形分目付量にして2.5mg/cmになるよう塗工し、200℃で20時間真空乾燥して負極を得た。この負極を2.4×3.8cmサイズに切り出して負極箔電極1を作製した。 The obtained negative electrode slurry was applied to one side of a 18 μm thick copper foil so that the solid content was 2.5 mg / cm 2, and vacuum dried at 200 ° C. for 20 hours to obtain a negative electrode. The negative electrode was cut into a size of 2.4 × 3.8 cm 2 to prepare a negative electrode foil electrode 1.

上記負極箔電極1を、同サイズで厚み250μmの金属リチウムを対極として、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬ラミネートセルを2セル組み立てた。また、参照極には金属リチウムを用いた。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を用いた。 Two simulated laminate cells of the negative electrode foil electrode 1 were assembled with metallic lithium having the same size and thickness of 250 μm as a counter electrode, and a non-woven fabric made of polyethylene having a thickness of 50 μm as a separator. Moreover, metallic lithium was used for the reference electrode. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.

この模擬ラミネートセル1セルに対し、25℃において30mAの定電流で負極電位が25mVになるまで充電し、その後25mVの定電圧を印加する定電流−定電圧充電を12時間行った。次いで、3mAの定電流にて負極電位が1.5Vになるまで放電し、初期放電容量を測定した。結果を表1に示す。   One simulated laminate cell was charged at 25 ° C. with a constant current of 30 mA until the negative electrode potential became 25 mV, and then subjected to constant current-constant voltage charging in which a constant voltage of 25 mV was applied for 12 hours. Next, discharging was performed at a constant current of 3 mA until the negative electrode potential reached 1.5 V, and the initial discharge capacity was measured. The results are shown in Table 1.

また、残り1セルに対し、充電電流3mAにて負極活物質量に対して220mAh/g分のリチウムイオンを充電し、その後3mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極箔電極1の単位重量当たりの静電容量を求めたところ672F/gであった。   The remaining 1 cell was charged with 220 mAh / g of lithium ions with respect to the amount of the negative electrode active material at a charging current of 3 mA, and then discharged to 1.5 V at 3 mA. The capacitance per unit weight of the negative electrode foil electrode 1 was determined from the discharge time during which the potential of the negative electrode changed by 0.2 V from the potential of the negative electrode one minute after the start of discharge, and it was 672 F / g.

(比較例1)
負極活物質原料として、コークスの代わりに平均粒子径(D50)17μmの粒状フェノール樹脂(ベルパールR700;エアウォーターベルパール社製)を用いた。このフェノール樹脂粉末を静置型電気炉中に入れ、窒素雰囲気下で750℃まで50℃/時間の昇温速度で昇温し、更に750℃で5時間保持することによりPAS粉体を得た。更にこれをアルミナ製ボールミル粉砕機で6時間粉砕することにより、平均粒子径(D50)7μmのPAS粉体を得た。
(Comparative Example 1)
As a negative electrode active material material, a granular phenol resin (Bellpearl R700; manufactured by Air Water Bellpearl) having an average particle diameter (D50) of 17 μm was used instead of coke. This phenol resin powder was placed in a static electric furnace, heated to 750 ° C. at a heating rate of 50 ° C./hour in a nitrogen atmosphere, and further maintained at 750 ° C. for 5 hours to obtain a PAS powder. Furthermore, this was pulverized with an alumina ball mill pulverizer for 6 hours to obtain a PAS powder having an average particle diameter (D50) of 7 μm.

このPAS粉体を用いて、実施例1と同様に負極スラリー2を作製後、厚さ18μmの銅箔片面に塗工して負極箔電極2を得た。さらに負極箔電極2を用いて模擬ラミネートセルを2セル作製し、1セルに対し初期放電容量測定を行った。実施例1の結果と合わせて表1に評価結果を示す。   Using this PAS powder, a negative electrode slurry 2 was prepared in the same manner as in Example 1, and then coated on one side of a copper foil having a thickness of 18 μm to obtain a negative electrode foil electrode 2. Further, two simulated laminate cells were prepared using the negative electrode foil electrode 2, and initial discharge capacity was measured for one cell. Table 1 shows the evaluation results together with the results of Example 1.

また、残り1セルに対し、充電電流3mAにて負極活物質量に対して380mAh/g分のリチウムイオンを充電し、その後3mAにて1.5Vまで放電を行った。放電開始後1分後の負極の電位から0.2V電位変化する間の放電時間より負極箔電極2の単位重量当たりの静電容量を求めたところ671F/gであった。   Further, the remaining 1 cell was charged with 380 mAh / g of lithium ions with respect to the amount of the negative electrode active material at a charging current of 3 mA, and then discharged to 1.5 V at 3 mA. The capacitance per unit weight of the negative electrode foil electrode 2 was determined from the discharge time during which the potential of the negative electrode changed by 0.2 V from the potential of the negative electrode one minute after the start of discharge, and was 671 F / g.

Figure 0004731974
Figure 0004731974

表1からわかるように、負極活物質として、に易黒鉛化性炭素前駆体のコークスの炭化物を活物質粒子として用いた場合には、難黒鉛化性炭素前駆体を原料としたPAS粉体を用いた場合よりも、初期特性の充放電効率が高くなり、かつ放電容量を大きくとれることがわかる。すなわち、少ない充電量(少ないリチウムイオン量)で大きな放電容量が得られることがわかる。   As can be seen from Table 1, when a carbonized coke of an easily graphitizable carbon precursor is used as an active material particle as a negative electrode active material, a PAS powder made from a non-graphitizable carbon precursor as a raw material is used. It can be seen that the charge / discharge efficiency of the initial characteristics is higher and the discharge capacity can be made larger than when it is used. That is, it can be seen that a large discharge capacity can be obtained with a small amount of charge (a small amount of lithium ions).

(実施例2)
(正極活性炭スラリーの製造法)
おが屑を原料とし、電気炉中に入れ窒素気流下で50℃/時間の昇温速度で950℃まで昇温した後、窒素/水蒸気1:1の混合ガスにより12時間水蒸気賦活することにより、比表面積2450m/gの活性炭を製造した。該活性炭をアルミナ製ボールミル粉砕機で5時間粉砕して平均粒子径(D50)が7μmの活性炭粉末を得た。
(Example 2)
(Method for producing positive electrode activated carbon slurry)
By using sawdust as a raw material, putting it in an electric furnace and raising the temperature to 950 ° C. at a rate of temperature increase of 50 ° C./hour in a nitrogen stream, steam activation with a mixed gas of nitrogen / steam 1: 1 for 12 hours Activated carbon having a surface area of 2450 m 2 / g was produced. The activated carbon was pulverized with an alumina ball mill pulverizer for 5 hours to obtain activated carbon powder having an average particle diameter (D50) of 7 μm.

上記正極用活性炭粉末92重量部、アセチレンブラック粉体6重量部、アクリレート系共重合体バインダー7重量部、カルボキシメチルセルロース(CMC)4重量部及びイオン交換水200重量部を混合攪拌機にて充分混合することにより正極スラリー1を得た。得られた正極スラリー1を、カーボン系導電塗料を塗工した厚さ20μmのアルミ箔片面に対し、固形分目付量にして2.5mg/cmになるよう塗工し、200℃で20時間真空乾燥して正極を得た。この正極を2.4×3.8cmサイズに切り出して正極箔電極1を作製した。 92 parts by weight of the above activated carbon powder for positive electrode, 6 parts by weight of acetylene black powder, 7 parts by weight of acrylate copolymer binder, 4 parts by weight of carboxymethyl cellulose (CMC) and 200 parts by weight of ion-exchanged water are sufficiently mixed with a mixing stirrer. Thus, positive electrode slurry 1 was obtained. The obtained positive electrode slurry 1 was applied to a solid surface weight of 2.5 mg / cm 2 on one side of an aluminum foil with a thickness of 20 μm coated with a carbon-based conductive paint, and the coating was carried out at 200 ° C. for 20 hours. Vacuum drying was performed to obtain a positive electrode. This positive electrode was cut into a size of 2.4 × 3.8 cm 2 to produce a positive electrode foil electrode 1.

上記正極箔電極1を、同サイズで厚み250μmの金属リチウムを対極として、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬ラミネートセルを組み立てた。また、参照極には金属リチウムを用いた。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を用いた。 A simulated laminate cell was assembled using the positive electrode foil electrode 1 having a metal lithium having the same size and a thickness of 250 μm as a counter electrode and a non-woven fabric made of polyethylene having a thickness of 50 μm as a separator. Moreover, metallic lithium was used for the reference electrode. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.

この模擬ラミネートセルに対し、30mAの定電流で正極電位が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、3mAの定電流で正極電位が2.5Vになるまで放電した。3.5V〜2.5V間の放電時間より正極箔電極1の単位重量当たりの静電容量を求めたところ88F/gであった。   The simulated laminate cell was charged with a constant current of 30 mA until the positive electrode potential reached 3.8 V, and then subjected to constant current-constant voltage charging for applying a constant voltage of 3.8 V for 1 hour. Next, the battery was discharged at a constant current of 3 mA until the positive electrode potential became 2.5V. The capacitance per unit weight of the positive electrode foil electrode 1 was determined from the discharge time between 3.5 V and 2.5 V, and found to be 88 F / g.

(負極エキスパンドメタル電極の製造法)
厚さ32μm(開口率57%)の銅製エキスパンドメタル(日本金属工業社製)に対し、上記実施例1の負極スラリー1を縦型両面同時ダイコーターにて両面同時塗工し、乾燥することにより、総厚み144μmの負極エキスパンドメタル電極1を得た。
(Production method of negative electrode expanded metal electrode)
By applying both sides of the negative electrode slurry 1 of Example 1 to a copper expanded metal (made by Nippon Metal Industry Co., Ltd.) having a thickness of 32 μm (opening ratio: 57%) using a vertical double-sided simultaneous die coater and drying. A negative electrode expanded metal electrode 1 having a total thickness of 144 μm was obtained.

(正極エキスパンドメタル電極の製造法)
厚さ38μm(開口率45%)のアルミニウム製エキスパンドメタル(日本金属工業社製)の両面に水系のカーボン系導電塗料を縦型両面同時ダイコーターにて両面同時塗工し、乾燥することにより導電層が形成された正極用集電体を得た。総厚み(集電体厚みと導電層厚みの合計)は52μmであり貫通孔はほぼ導電塗料により閉塞された。上記正極スラリーをコンマコーターにて該正極集電体の両面に片面ずつ塗工、乾燥することにより、厚み266μmの正極エキスパンドメタル電極1を得た。
(Production method of positive electrode expanded metal electrode)
Water-based carbon conductive paint is coated on both sides of aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 38μm (aperture ratio 45%) on both sides with a vertical double-sided simultaneous die coater and dried to conduct electricity. A positive electrode current collector with a layer formed thereon was obtained. The total thickness (the total of the current collector thickness and the conductive layer thickness) was 52 μm, and the through holes were almost blocked by the conductive paint. A positive electrode expanded metal electrode 1 having a thickness of 266 μm was obtained by coating the positive electrode slurry on both surfaces of the positive electrode current collector with a comma coater one side at a time.

(積層セルの作製)
厚さ144μmの負極エキスパンドメタル電極1を2.4cm×3.8cmの大きさに、厚さ266μmの正極エキスパンドメタル電極1を2.4cm×3.8cmにカットし、セパレータとして厚さ35μmのセルロース/レーヨンの混合不織布を用いて、負極集電体、正極集電体の接続端子との溶接部(以下、接続端子溶接部という)がそれぞれ交互に反対側になるよう配置し、それぞれ負極6枚、正極5枚を積層したセルを作製した。
(Production of stacked cells)
The negative electrode expanded metal electrode 1 having a thickness of 144 μm is cut to a size of 2.4 cm × 3.8 cm, and the positive electrode expanded metal electrode 1 having a thickness of 266 μm is cut to 2.4 cm × 3.8 cm, and cellulose having a thickness of 35 μm is used as a separator. Using a non-woven fabric mixed with rayon, the negative electrode current collector and the positive electrode current collector are arranged so that the welded portions (hereinafter referred to as connection terminal welded portions) of the positive electrode current collector are alternately opposite to each other. A cell in which five positive electrodes were laminated was prepared.

最上部と最下部はセパレータを配置させて、4辺をテープ止めすることにより電極積層ユニットを得た。負極活物質重量に対して670F/g以上の静電容量を得るために、厚さ55μmのリチウム金属箔を厚さ80μmのステンレス網に圧着したものを作製し、これを負極と対向するように電極積層ユニットの最外部に1枚配置した。負極(6枚)とリチウム金属を圧着したステンレス網はそれぞれ溶接し、接触させ、負極とリチウム金属箔がショートした形の三極積層ユニットを得た。   Separators were placed on the uppermost and lowermost parts, and four sides were taped to obtain an electrode laminate unit. In order to obtain a capacitance of 670 F / g or more with respect to the weight of the negative electrode active material, a lithium metal foil having a thickness of 55 μm was prepared by pressure bonding to a stainless steel net having a thickness of 80 μm, and this was opposed to the negative electrode. One sheet was placed on the outermost part of the electrode laminate unit. The negative electrode (six pieces) and the stainless steel mesh to which the lithium metal was pressure bonded were welded and brought into contact with each other to obtain a three-pole laminated unit in which the negative electrode and the lithium metal foil were short-circuited.

次に、上記三極積層ユニットの正極集電体の端子溶接部(5枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのアルミニウム製正極端子を重ねて超音波溶接した。同様に負極集電体の端子溶接部(6枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのニッケル製負極端子を重ねて抵抗溶接し、縦102mm、横52mm、深さ1.3mmに深絞りした外装フィルム2枚の内部へ設置した。   Next, a positive electrode made of aluminum having a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm, in which a sealant film is heat-sealed in advance to the terminal welded portion (five pieces) of the positive electrode current collector of the three-pole laminated unit. The terminals were superposed and ultrasonically welded. Similarly, a negative electrode terminal made of nickel (width 10mm, length 30mm, thickness 0.2mm), in which a sealant film is heat-sealed to the seal portion in advance, is overlapped and resistance welded to the terminal welds (six pieces) of the negative electrode current collector. And installed in two exterior films deeply drawn to 102 mm in length, 52 mm in width, and 1.3 mm in depth.

外装ラミネートフィルムの端子部2辺と他の1辺を熱融着した後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を真空含浸させた後、残り1辺を減圧下にて熱融着し、真空封止を行うことによりフィルム型キャパシタを2セル組立てた。 After heat-sealing the two sides of the terminal portion of the exterior laminate film and the other side, 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 as an electrolytic solution. A solution in which LiPF 6 was dissolved at a concentration of 2 was vacuum impregnated, and the remaining one side was heat-sealed under reduced pressure, and vacuum sealing was performed to assemble two cell capacitors.

(セルの特性評価)
14日間室温にて放置後1セルを分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに670F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。
(Characteristic evaluation of cells)
When one cell was disassembled after standing at room temperature for 14 days, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 670 F / g or more per unit weight of the negative electrode active material were obtained. Judged to be precharged.

残ったフィルム型キャパシタのセルを、25℃で24時間放置した後に、200mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、20mAの定電流でセル電圧が1.9Vになるまで放電した。この3.8V−1.9Vのサイクルを繰り返し、3回目の放電容量を測定した。結果を表2に示す。   The remaining film-type capacitor cell is allowed to stand at 25 ° C. for 24 hours, then charged with a constant current of 200 mA until the cell voltage reaches 3.8 V, and then a constant current-constant voltage in which a constant voltage of 3.8 V is applied. Charging was performed for 1 hour. Next, the battery was discharged at a constant current of 20 mA until the cell voltage reached 1.9V. This 3.8V-1.9V cycle was repeated, and the third discharge capacity was measured. The results are shown in Table 2.

(比較例2)
比較例1と同様に、負極活物質にPAS粉体を用いて作製した負極スラリー2を用いて、実施例2の負極エキスパンドメタル電極作製と同じ方法で厚さ172μmの負極エキスパンドメタル電極2を作製した。この負極エキスパンドメタル電極2と、実施例2の正極エキスパンドメタル電極1を用いて、実施例2と同じ構成の積層フィルム型キャパシタを2セル組立てた。尚、負極活物質重量に対して670F/g以上の静電容量を得るためのリチウム金属箔の厚さを95μmとした。
(Comparative Example 2)
Similarly to Comparative Example 1, a negative electrode expanded metal electrode 2 having a thickness of 172 μm was prepared by using the negative electrode slurry 2 prepared using PAS powder as the negative electrode active material, in the same manner as in the preparation of the negative electrode expanded metal electrode of Example 2. did. Using this negative electrode expanded metal electrode 2 and the positive electrode expanded metal electrode 1 of Example 2, two cells of a laminated film capacitor having the same configuration as that of Example 2 were assembled. The thickness of the lithium metal foil for obtaining a capacitance of 670 F / g or more with respect to the weight of the negative electrode active material was 95 μm.

(セルの特性評価)
14日間室温にて放置後1セルを分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに670F/g以上の静電容量を得るためのリチウムイオンが予備充電されたと判断した。
(Characteristic evaluation of cells)
When one cell was disassembled after standing at room temperature for 14 days, all the lithium metal was completely lost. Therefore, lithium ions for obtaining a capacitance of 670 F / g or more per unit weight of the negative electrode active material were obtained. Judged to be precharged.

残ったフィルム型キャパシタのセルを、25℃で24時間放置した後に、実施例2と同様に、200mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、20mAの定電流でセル電圧が1.9Vになるまで放電した。この3.8V−1.9Vのサイクルを繰り返し、3回目の放電容量を測定した。実施例2の結果と合わせて表2に結果を示す。   The remaining film-type capacitor cell was allowed to stand at 25 ° C. for 24 hours, and then charged with a constant current of 200 mA until the cell voltage reached 3.8 V, and then a constant voltage of 3.8 V was applied. The applied constant current-constant voltage charge was performed for 1 hour. Next, the battery was discharged at a constant current of 20 mA until the cell voltage reached 1.9V. This 3.8V-1.9V cycle was repeated, and the third discharge capacity was measured. The results are shown in Table 2 together with the results of Example 2.

(実施例3)
リチウム金属箔の厚さを比較例2と同様にする以外は実施例2と同じ構成の積層フィルム型キャパシタを2セル組立てた。
(Example 3)
Two cells of a laminated film type capacitor having the same configuration as in Example 2 were assembled except that the thickness of the lithium metal foil was the same as in Comparative Example 2.

(セルの特性評価)
14日間室温にて放置後1セルを分解したところ、リチウム金属はいずれも完全に無くなっていた。
残ったフィルム型キャパシタのセルを、25℃で24時間放置した後に、実施例2と同様に、200mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、20mAの定電流でセル電圧が1.9Vになるまで放電した。この3.8V−1.9Vのサイクルを繰り返し、3回目の放電容量を測定した。実施例2、比較例2の結果と合わせて表2に結果を示す。
(Characteristic evaluation of cells)
When the cell was disassembled after standing at room temperature for 14 days, all of the lithium metal was completely lost.
The remaining film-type capacitor cell was allowed to stand at 25 ° C. for 24 hours, and then charged with a constant current of 200 mA until the cell voltage reached 3.8 V, and then a constant voltage of 3.8 V was applied. The applied constant current-constant voltage charge was performed for 1 hour. Next, the battery was discharged at a constant current of 20 mA until the cell voltage reached 1.9V. This 3.8V-1.9V cycle was repeated, and the third discharge capacity was measured. The results are shown in Table 2 together with the results of Example 2 and Comparative Example 2.

Figure 0004731974
Figure 0004731974

また、各1セルずつ、正極と負極を短絡させ正極の電位を測定したところ、いずれの正極電位も0.80〜0.95Vの範囲であり、0.95V以下であった。 Moreover, when the positive electrode and the negative electrode were short-circuited for each cell and the potential of the positive electrode was measured, all the positive electrode potentials were in the range of 0.80 to 0.95 V, and were 0.95 V or less.

表2に示すように、正極と負極を短絡させた後の正極電位が0.95V以下であることから、高いエネルギー密度を有した積層フィルム型キャパシタが得られたが、中でも負極活物質に難黒鉛化性炭素前駆体の炭化物を用いる場合よりも易黒鉛化性炭素前駆体の炭化物を用いる場合の方が少ないリチウム金属箔で同等以上のエネルギー密度が得られることがわかる。また同じリチウム金属箔を用いた場合はより大きなエネルギー密度が得られることがわかる。

As shown in Table 2, since the positive electrode potential after short-circuiting the positive electrode and the negative electrode was 0.95 V or less, a laminated film capacitor having a high energy density was obtained. It can be seen that the same or higher energy density can be obtained with a lithium metal foil in the case where the carbide of the graphitizable carbon precursor is used less than the case of using the carbide of the non-graphitizable carbon precursor. It can also be seen that a larger energy density can be obtained when the same lithium metal foil is used.

少ないリチウム金属箔で同等以上のエネルギー密度が得られることから材料費が安価であり、工業的にも優れる。   Since an energy density equal to or higher than that can be obtained with a small amount of lithium metal foil, the material cost is low and it is industrially excellent.

Claims (5)

正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えるリチウムイオンキャパシタであって、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極の電位が0.95V以下になるように負極及び/又は正極に対してリチウムイオンが充電前にドーピングされており、かつ、上記負極活物質は、易黒鉛化性炭素前駆体の炭化物からなることを特徴とするリチウムイオンキャパシタ。 A lithium ion capacitor comprising a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, wherein the positive electrode active material is a substance capable of reversibly carrying lithium ions and / or anions, The active material is a substance capable of reversibly carrying lithium ions, and the negative electrode and / or the positive electrode is charged with lithium ions so that the positive electrode potential is 0.95 V or less after the positive electrode and the negative electrode are short-circuited. A lithium ion capacitor that has been previously doped and that the negative electrode active material is made of a carbide of a graphitizable carbon precursor. 前記正極及び/又は負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、負極とリチウムイオン供給源との電気化学的接触によってリチウムイオンがドーピングされている請求項1に記載のリチウムイオンキャパシタ。   The said positive electrode and / or negative electrode are each equipped with the electrical power collector which has the hole which penetrates front and back, respectively, The lithium ion is doped by the electrochemical contact of a negative electrode and a lithium ion supply source. Lithium ion capacitor. 負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質重量が負極活物資の重量よりも大きい請求項1又は2に記載のリチウムイオンキャパシタ。   3. The lithium according to claim 1, wherein the negative electrode active material has a capacitance per unit weight of at least three times that of the positive electrode active material, and the weight of the positive electrode active material is larger than the weight of the negative electrode active material. Ion capacitor. 易黒鉛化性炭素前駆体が、コークス、タール、又は塩化ビニル樹脂である請求項1〜3のいずれかに記載のリチウムイオンキャパシタ。   The lithium ion capacitor according to claim 1, wherein the graphitizable carbon precursor is coke, tar, or vinyl chloride resin. 負極活物質粒子の平均粒子径(D50)が0.5〜30μmであり、比表面積が0.1〜1000m/gである請求項1〜4のいずれかに記載のリチウムイオンキャパシタ。 The lithium ion capacitor according to claim 1, wherein the negative electrode active material particles have an average particle diameter (D50) of 0.5 to 30 μm and a specific surface area of 0.1 to 1000 m 2 / g.
JP2005121571A 2005-04-19 2005-04-19 Lithium ion capacitor Active JP4731974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121571A JP4731974B2 (en) 2005-04-19 2005-04-19 Lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005121571A JP4731974B2 (en) 2005-04-19 2005-04-19 Lithium ion capacitor

Publications (2)

Publication Number Publication Date
JP2006303118A JP2006303118A (en) 2006-11-02
JP4731974B2 true JP4731974B2 (en) 2011-07-27

Family

ID=37471064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121571A Active JP4731974B2 (en) 2005-04-19 2005-04-19 Lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP4731974B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117942A (en) * 2006-11-06 2008-05-22 Gs Yuasa Corporation:Kk Electrochemical capacitor
JP5158839B2 (en) * 2007-03-23 2013-03-06 Necトーキン株式会社 Non-aqueous electrolyte electrochemical device
JP2009130066A (en) * 2007-11-22 2009-06-11 Sanyo Electric Co Ltd Lithium ion capacitor
JP5873971B2 (en) * 2009-11-13 2016-03-01 パナソニックIpマネジメント株式会社 Electrochemical capacitor and electrode used therefor
EP2515370B1 (en) 2009-12-16 2019-01-23 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (en) * 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414882A (en) * 1987-07-08 1989-01-19 Mitsubishi Gas Chemical Co Secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107048A (en) * 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Also Published As

Publication number Publication date
JP2006303118A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4971729B2 (en) Lithium ion capacitor
JP4731967B2 (en) Lithium ion capacitor
JP4857073B2 (en) Lithium ion capacitor
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP5236765B2 (en) Organic electrolyte capacitor
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP4924966B2 (en) Lithium ion capacitor
JP4813152B2 (en) Lithium ion capacitor
US20080220329A1 (en) Negative electrode active material for an electricity storage device and method for manufacturing the same
JPWO2004097867A1 (en) Organic electrolyte capacitor
JP2007180431A (en) Lithium ion capacitor
JP2009200302A (en) Method of manufacturing electricity storage device, and electricity storage device
WO2012063545A1 (en) Lithium ion capacitor
JP2006338963A (en) Lithium ion capacitor
JP2006286926A (en) Lithium ion capacitor
JP2006286923A (en) Lithium ion capacitor
JP2012004491A (en) Power storage device
JP2007019108A (en) Lithium ion capacitor
JP2007067088A (en) Lithium ion capacitor
JP4731974B2 (en) Lithium ion capacitor
JP2007180429A (en) Lithium ion capacitor
JP4705404B2 (en) Lithium ion capacitor
JP4731979B2 (en) Lithium ion capacitor
JP4732074B2 (en) Lithium ion capacitor
JP2008060479A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4731974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250