JP5158839B2 - Non-aqueous electrolyte electrochemical device - Google Patents

Non-aqueous electrolyte electrochemical device Download PDF

Info

Publication number
JP5158839B2
JP5158839B2 JP2007076533A JP2007076533A JP5158839B2 JP 5158839 B2 JP5158839 B2 JP 5158839B2 JP 2007076533 A JP2007076533 A JP 2007076533A JP 2007076533 A JP2007076533 A JP 2007076533A JP 5158839 B2 JP5158839 B2 JP 5158839B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
aqueous electrolyte
electrochemical device
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007076533A
Other languages
Japanese (ja)
Other versions
JP2008235169A (en
Inventor
光司 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007076533A priority Critical patent/JP5158839B2/en
Publication of JP2008235169A publication Critical patent/JP2008235169A/en
Application granted granted Critical
Publication of JP5158839B2 publication Critical patent/JP5158839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はハイブリッドキャパシタ等の非水電解液系電気化学デバイスに関する。   The present invention relates to a non-aqueous electrolyte based electrochemical device such as a hybrid capacitor.

有機溶媒系電解液を使用する充放電可能な電源には、電気二重層キャパシタ、リチウムイオン二次電池などがあり、近年電気二重層キャパシタの正極とリチウムイオン二次電池の負極とを組み合わせたハイブリットキャパシタも知られている。電気二重層キャパシタは、分極性電極として正極・負極とも活性炭を使用することにより、分極性電極とイオン伝導性の電解液界面に形成される電気二重層に電荷を蓄積して使用する電気化学デバイスである。電気二重層キャパシタでは、使用する電解液の溶媒と電解質の選択にもよるが、単一の電気二重層キャパシタの耐電圧は、水系電解液を使用すると1.2V、有機系電解液を使用すると2.7Vの耐電圧である。この場合より大きいエネルギー容量の電気二重層キャパシタを実現するには、電気二重層キャパシタの耐電圧をさらに高くすることである。   Chargeable / dischargeable power sources that use organic solvent electrolytes include electric double layer capacitors and lithium ion secondary batteries. Recently, hybrids that combine the positive electrode of an electric double layer capacitor and the negative electrode of a lithium ion secondary battery. Capacitors are also known. An electric double layer capacitor is an electrochemical device that accumulates and uses charges in the electric double layer formed at the interface between the polarizable electrode and the ion conductive electrolyte by using activated carbon for both the positive and negative electrodes as the polarizable electrode. It is. In an electric double layer capacitor, the withstand voltage of a single electric double layer capacitor is 1.2 V when an aqueous electrolyte is used, and when an organic electrolyte is used, although it depends on the choice of solvent and electrolyte of the electrolyte used. It has a withstand voltage of 2.7V. In this case, in order to realize an electric double layer capacitor having a larger energy capacity, it is necessary to further increase the withstand voltage of the electric double layer capacitor.

リチウム二次電池は、リチウム含有遷移金属酸化物を主成分とする正極とリチウムイオンを吸蔵・脱離しうる炭素材料を主成分とする負極とリチウム塩を含む有機系電解液とからなり、充電によりリチウムイオンが正極より脱離し負極炭素材料に吸蔵され、放電により負極からリチウムイオンが脱離し、正極にリチウムイオンが吸蔵される。リチウムイオン二次電池は、電気二重層キャパシタに比べて高電圧、高容量という性質を有するが、抵抗が高く、また充放電サイクルによる寿命がある。   A lithium secondary battery is composed of a positive electrode mainly composed of a lithium-containing transition metal oxide, a negative electrode mainly composed of a carbon material capable of absorbing and desorbing lithium ions, and an organic electrolyte containing a lithium salt. Lithium ions are desorbed from the positive electrode and stored in the negative electrode carbon material, lithium ions are desorbed from the negative electrode by discharge, and lithium ions are stored in the positive electrode. A lithium ion secondary battery has properties of high voltage and high capacity compared to an electric double layer capacitor, but has high resistance and has a life due to a charge / discharge cycle.

近年、正極に活性炭、負極にリチウムイオンを吸蔵・脱離しうる炭素材料を用いたハイブリッドタイプのキャパシタが検討されている。負極がリチウムイオンの吸蔵・脱離反応を伴うためリチウム金属により近い卑な電位で推移するため、従来の正極・負極に活性炭を用いた電気二重層キャパシタよりも高耐電圧化が可能となり、よって高エネルギー化が可能となる。   In recent years, hybrid type capacitors using activated carbon for the positive electrode and a carbon material capable of inserting and extracting lithium ions for the negative electrode have been studied. Since the negative electrode is associated with a lithium ion insertion / desorption reaction, it moves at a base potential closer to that of lithium metal. Therefore, it is possible to increase the withstand voltage compared to the conventional electric double layer capacitor using activated carbon for the positive electrode and negative electrode. High energy can be achieved.

ハイブリッドキャパシタは、電気二重層キャパシタよりも高エネルギー化が可能となるため、電気自動車などのモーター駆動用エネルギー源あるいはエネルギー回生システムとして、また無停電電源装置等新しい用途への適用が検討され、ハイブリッドキャパシタが次世代デバイスとして非常に期待されている。   Since the hybrid capacitor can achieve higher energy than the electric double layer capacitor, its application to a new application such as an uninterruptible power supply as an energy source for driving a motor such as an electric vehicle or an energy regeneration system has been studied. Capacitors are highly expected as next-generation devices.

ハイブリッドキャパシタの技術として特許文献1では、活性炭を主成分とする正極と、易黒鉛化炭素材料に予めリチウムを吸蔵させた炭素材料体を負極とする二次電池が提案されている。易黒鉛化炭素材料を用いたハイブリッドキャパシタは、負極がより卑な電位挙動を示すため高エネルギー化が可能であるが、放電のレート特性に劣るという問題がある。また、負極材料に難黒鉛化炭素を用いた特許として特許文献2があり、負極にフェノール系樹脂を不活性ガス雰囲気中で熱縮合反応させ、ポリアセン骨格構造からなるポリアセン有機半導体を主成分とする負極を用いた非水電解液二次電池を提案している。ポリアセンはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨張・収縮といった構造変化が無いためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対して等方的な分子構造であるため急速充電、急速放電にも優れた特性を有する、しかし放電とともに負極の電位が著しく変化するため、ハイブリットキャパシタに使用する際に高エネルギー化を図るには、リチウムのドープ量を極限まで高めなければならないと言う問題がある。極限までリチウムをドープすると充放電の繰り返しによるデントライト(こけ状のリチウム結晶)生成により、セパレータを貫通し、内部ショートが起こると言う問題がある。   As a hybrid capacitor technology, Patent Document 1 proposes a secondary battery using a positive electrode mainly composed of activated carbon and a negative electrode composed of a carbon material body in which lithium is previously occluded in an easily graphitizable carbon material. A hybrid capacitor using an easily graphitized carbon material can be increased in energy because the negative electrode exhibits a more basic potential behavior, but has a problem in that it has poor discharge rate characteristics. Further, Patent Document 2 discloses a patent using non-graphitizable carbon as a negative electrode material. The main component is a polyacene organic semiconductor composed of a polyacene skeleton structure by subjecting a negative electrode to a thermal condensation reaction of a phenolic resin in an inert gas atmosphere. A non-aqueous electrolyte secondary battery using a negative electrode is proposed. Polyacene has an amorphous structure, so there is no structural change such as expansion / contraction due to insertion / extraction of lithium ions, and it has excellent cycle characteristics, and isotropic molecular structure for insertion / extraction of lithium ions Therefore, it has excellent characteristics for rapid charge and rapid discharge, but the potential of the negative electrode changes significantly with discharge. Therefore, in order to achieve high energy when used for hybrid capacitors, the doping amount of lithium is limited to the limit. There is a problem that it must be raised. When lithium is doped to the limit, there is a problem that an internal short circuit occurs through the separator due to generation of dentlite (moss-like lithium crystal) by repeated charge and discharge.

特開昭64−14882号公報JP-A 64-14882 国際公開WO2004/059672号パンフレットInternational Publication WO2004 / 056772 Pamphlet

そこで、本発明の目的は、高エネルギー特性を有し、放電レート特性に優れた、非水電解液系電気化学デバイスを提供することにある。   Therefore, an object of the present invention is to provide a non-aqueous electrolyte-based electrochemical device having high energy characteristics and excellent discharge rate characteristics.

本発明の非水電解液系電気化学デバイスは、活性炭を主成分とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料に化学的方法又は電気化学的方法で予めリチウムを吸蔵させた炭素材料を主成分とする負極と、リチウム塩からなる電解質を含む有機溶媒系電解液とを有する非水電解液系電気化学デバイスにおいて、前記負極主成分の炭素材料が易黒鉛化炭素及び難黒鉛化炭素の2成分からなることを特徴とし、その炭素材料に含まれる難黒鉛化炭素材料の重量比率は3.3〜33.3%であるとよく、その難黒鉛化炭素は、X線広角回折法による(002)面の面間隔が0.341〜0.390nmで、c軸方向の結晶子の大きさ(Lc)が0.5〜18nmである無定形炭素材料より選ばれた少なくとも1種類であり、且つ、易黒鉛化炭素は、X線広角回折法による(002)面の面間隔が0.340nm以下で、c軸方向の結晶子の大きさ(Lc)が20〜230nmである高結晶性炭素材料より選ばれた少なくとも1種類であるとよい。   The non-aqueous electrolyte system electrochemical device of the present invention includes a positive electrode mainly composed of activated carbon, and a carbon material in which lithium is occluded in advance by a chemical method or an electrochemical method in a carbon material that can occlude and desorb lithium ions. In a non-aqueous electrolyte-based electrochemical device having a negative electrode mainly comprising a lithium salt and an organic solvent-based electrolyte containing an electrolyte comprising a lithium salt, the carbon material of the negative electrode is composed of graphitizable carbon and non-graphitizable carbon. The weight ratio of the non-graphitizable carbon material contained in the carbon material is preferably 3.3 to 33.3%, and the non-graphitizable carbon is obtained by an X-ray wide angle diffraction method. (002) plane spacing of 0.341 to 0.390 nm and at least one selected from amorphous carbon materials having a c-axis direction crystallite size (Lc) of 0.5 to 18 nm. Yes and easy graphite Carbon was selected from highly crystalline carbon materials having a (002) plane spacing of 0.340 nm or less and a c-axis direction crystallite size (Lc) of 20 to 230 nm by X-ray wide angle diffraction. It is good that there is at least one kind.

本発明では、正極の炭素材料には活性炭を用い、リチウムイオンを吸蔵、脱離する負極の炭素材料として易黒鉛化炭素及び難黒鉛化炭素を混合したものを用い、リチウム塩からなる電解質を含む有機溶媒系電解液を用いることにより、高エネルギー密度で且つ高放電レートの出力特性に優れる非水電解液系電気化学デバイスを提供することができる。   In the present invention, activated carbon is used as the positive electrode carbon material, and a mixture of easily graphitizable carbon and non-graphitizable carbon is used as the negative electrode carbon material that absorbs and desorbs lithium ions, and includes an electrolyte made of a lithium salt. By using the organic solvent-based electrolytic solution, it is possible to provide a non-aqueous electrolyte-based electrochemical device that has high energy density and excellent output characteristics at a high discharge rate.

以下、本発明の実施の形態を説明する。まず、図面を参照して、本発明の一実施の形態での非水電解液系電気化学デバイスの構造を説明する。   Embodiments of the present invention will be described below. First, with reference to the drawings, the structure of a non-aqueous electrolyte based electrochemical device in one embodiment of the present invention will be described.

図1は、本発明の一実施の形態による非水電解液系電気化学デバイス(ハイブリットキャパシタ)を示し、図1(a)はその平面図、図1(b)は正面図、図1(c)は正断面図である。1はハイブリッドキャパシタ、2は外部取り出し用の負極リード板、3は外部取り出し用の正極リード板、4は外装フィルム、5は電極積層体、8は正極電極、9はセパレータ、12は負極電極である。   FIG. 1 shows a non-aqueous electrolyte type electrochemical device (hybrid capacitor) according to an embodiment of the present invention, FIG. 1 (a) is a plan view thereof, FIG. 1 (b) is a front view thereof, and FIG. ) Is a front sectional view. 1 is a hybrid capacitor, 2 is a negative electrode lead plate for external extraction, 3 is a positive electrode lead plate for external extraction, 4 is an exterior film, 5 is an electrode laminate, 8 is a positive electrode, 9 is a separator, and 12 is a negative electrode is there.

図6は本発明に係る電極積層体5を示し、図6(a)はその平面図、図6(b)はその斜視図である。   6 shows an electrode laminate 5 according to the present invention, FIG. 6 (a) is a plan view thereof, and FIG. 6 (b) is a perspective view thereof.

図1(c)に示すように、ハイブリットキャパシタは、複数枚の電極板を有する電極積層体5及び電解液を収納した外装フィルム4と電極積層体5に接続されて外装フィルム4の外部に突出した正極リード板3及び負極リード板2とを有する。外装フィルム4は、たとえば内面に熱可塑性樹脂を配する金属箔との複合フィルムなどからなるシートを袋状にしたのもので形成され、その中に電極積層体5及びリチウム塩からなる電解質を含む有機溶媒系電解液を収容した後、真空雰囲気中で封止される。   As shown in FIG. 1 (c), the hybrid capacitor is connected to the electrode laminate 5 having a plurality of electrode plates and the exterior film 4 containing the electrolytic solution and the electrode laminate 5 and protrudes outside the exterior film 4. Positive electrode lead plate 3 and negative electrode lead plate 2. The exterior film 4 is formed of, for example, a bag made of a composite film with a metal foil having a thermoplastic resin disposed on the inner surface, and includes an electrode laminate 5 and an electrolyte made of a lithium salt therein. After containing the organic solvent electrolyte, it is sealed in a vacuum atmosphere.

外装フィルム4内に収容される電極積層体5の斜視図は図6(b)のとおりである。電極積層体5は、正極電極8と負極電極12とセパレータ9を有し、外側がセパレータ9となるようにセパレータ−負極板−セパレータ−正極板−セパレータと積層されている。   The perspective view of the electrode laminated body 5 accommodated in the exterior film 4 is as FIG.6 (b). The electrode laminate 5 has a positive electrode 8, a negative electrode 12, and a separator 9, and is laminated with a separator-negative electrode plate-separator-positive electrode plate-separator so that the outer side becomes the separator 9.

次に、この電極積層体に用いる正極電極、負極電極及びセパレータの製造方法を説明する。   Next, the manufacturing method of the positive electrode used for this electrode laminated body, a negative electrode, and a separator is demonstrated.

正極電極は、アルミニウム箔又はニッケル箔等からなる集電体と炭素材料を主成分とする活物質とを一体化させたものである。炭素材料としては、木材、鋸屑、椰子殻、パルプ廃液などの植物系物質、石炭、石油重質油、又はそれらを熱分解して得られる石炭系及び石油系ピッチ、石油コークス、カーボンエアロゲル、タールピッチなどの化石燃料系物質、フェノール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの合成高分子系物質など各種のものが用いられ、これら原料を炭化後、ガス賦活法又は薬品賦活法によって賦活した比表面積が700〜3000m/g(特に1500〜2500m/gが好ましい)の活性炭を用いる。導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、5〜30重量%程度添加するのがより好ましい。 The positive electrode is obtained by integrating a current collector made of an aluminum foil or a nickel foil and an active material mainly composed of a carbon material. Carbon materials include plant materials such as wood, sawdust, coconut husk and pulp waste liquid, coal, heavy petroleum oil, or coal-based and petroleum-based pitch obtained by pyrolyzing them, petroleum coke, carbon aerogel, tar Various materials such as fossil fuel-based materials such as pitch, synthetic polymer materials such as phenolic resin, polyvinyl chloride resin, and polyvinylidene chloride were used. After carbonizing these raw materials, they were activated by gas activation method or chemical activation method. Activated carbon having a specific surface area of 700 to 3000 m 2 / g (preferably 1500 to 2500 m 2 / g) is used. As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is more preferable to add about 5 to 30% by weight.

バインダ物質としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコールなどが用いられ、3〜20重量%程度のバインダを含んで作製するのが好ましく、特にポリテトラフルオロエチレンが耐熱性、耐薬品性、シート強度の観点から好ましい。   As the binder material, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, or the like is used, and it is preferable that the binder material is prepared by including about 3 to 20% by weight of the binder. Ethylene is preferred from the viewpoints of heat resistance, chemical resistance and sheet strength.

他方、負極電極は、銅箔又はニッケル箔等からなる集電体と活物質とを一体化させたものである。活物質は主成分の炭素材料に導電剤及びバインダを加えて形成するが、リチウムイオンのドープ、脱ドープが可能な炭素材料として、易黒鉛化炭素と難黒鉛化炭素(炭素材料に対する重量比率で3.3〜33.3%)とを混合したものを用いる。   On the other hand, the negative electrode is obtained by integrating a current collector made of copper foil or nickel foil and an active material. The active material is formed by adding a conductive agent and a binder to the main carbon material. As carbon materials that can be doped and dedoped with lithium ions, graphitizable carbon and non-graphitizable carbon (by weight ratio to the carbon material). 3.3 to 33.3%) is used.

この難黒鉛化炭素には、フェノールホルムアルデヒド樹脂炭、フルフリルアルコール樹脂炭、カーボンブラック、塩化ビニリデン炭、セルロース炭などを用い、易黒鉛化炭素には、ピッチコークス、メソカーボンマイクロビーズ、ニードルコークス、バルクメソフェーズ、フリュードコークス及びギルソナイトコークスなどを用いることができる。   For this non-graphitizable carbon, phenol formaldehyde resin charcoal, furfuryl alcohol resin charcoal, carbon black, vinylidene chloride charcoal, cellulose charcoal, etc. are used. For graphitizable carbon, pitch coke, mesocarbon microbeads, needle coke, Bulk mesophase, fluid coke, gilsonite coke and the like can be used.

また、X線解析によれば、難黒鉛化炭素は、X線広角回折法による(002)面の面間隔d002が0.341〜0.390nmで、c軸方向の結晶子の大きさ(Lc)が0.5〜18nmである無定形炭素材料とすることができ、また、易黒鉛化炭素は、X線広角回折法による(002)面の面間隔d002が0.340nm以下で、c軸方向の結晶子の大きさ(Lc)が20〜230nmである高結晶性炭素材料とすることができる。さらに、難黒鉛化炭素及び易黒鉛化炭素として各々2種以上を用いてもよい。 Further, according to X-ray analysis, non-graphitizable carbon has a (002) plane spacing d 002 of 0.341 to 0.390 nm according to the X-ray wide angle diffraction method and a crystallite size in the c-axis direction ( Lc) can be an amorphous carbon material having a thickness of 0.5 to 18 nm, and graphitizable carbon has an (002) plane spacing d 002 of 0.340 nm or less by X-ray wide angle diffraction method. A highly crystalline carbon material having a crystallite size (Lc) in the c-axis direction of 20 to 230 nm can be obtained. Furthermore, you may use 2 or more types as non-graphitizable carbon and graphitizable carbon, respectively.

導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、5〜30重量%程度添加するのがより好ましい。   As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is more preferable to add about 5 to 30% by weight.

またバインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリブタジエンゴム、スチレン−ブタジエンゴムなどが用いられ、3〜20重量%程度のバインダを含んで作製するのが好ましく、特にポリフッ化ビニリデンが耐熱性、耐薬品性、シート強度の観点から好ましい。   In addition, as the binder, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, polybutadiene rubber, styrene-butadiene rubber, or the like is used. In particular, polyvinylidene fluoride is preferable from the viewpoints of heat resistance, chemical resistance, and sheet strength.

セパレータは、厚さが薄く、電子絶縁性及びイオン透過性の高い材料が好ましく、特に限定されるものではないが、たとえば、ポリエチレンやポリプロピレンなどの不織布、又はビスコースレイヨンや天然セルロースの抄紙等が好適に使用される。   The separator is preferably made of a material having a small thickness and high electronic insulation and ion permeability, and is not particularly limited. For example, a nonwoven fabric such as polyethylene or polypropylene, or papermaking of viscose rayon or natural cellulose is used. Preferably used.

次に図面を参照して電極積層体の製造方法を説明する。   Next, the manufacturing method of an electrode laminated body is demonstrated with reference to drawings.

図2は本発明に係る正極電極及び負極電極を示す。図2(a)は正極電極の平面図、図2(b)はリチウム金属圧着済み負極電極の平面図であり、6は正極リード端子、7は活物質(正極)、8は正極電極、10は負極リード端子、11は活物質(負極)、12は負極電極、13はリチウム金属である。   FIG. 2 shows a positive electrode and a negative electrode according to the present invention. 2 (a) is a plan view of the positive electrode, FIG. 2 (b) is a plan view of the negative electrode after lithium metal pressure bonding, 6 is a positive lead terminal, 7 is an active material (positive electrode), 8 is a positive electrode, 10 Is a negative electrode lead terminal, 11 is an active material (negative electrode), 12 is a negative electrode, and 13 is lithium metal.

図3は本発明に係るセパレータ9の平面図である。   FIG. 3 is a plan view of the separator 9 according to the present invention.

図4は本発明に係るセパレータ/正極電極/セパレータのセットを示す平面図であり、8は正極電極、9はセパレータである。   FIG. 4 is a plan view showing a separator / positive electrode / separator set according to the present invention, wherein 8 is a positive electrode and 9 is a separator.

図5は本発明に係る負極電極(リチウム金属圧着済み)/セパレータ/正極電極/セパレータのセットを示す平面図であり、9はセパレータ、12は負極電極である。   FIG. 5 is a plan view showing a set of a negative electrode (lithium metal crimped) / separator / positive electrode / separator according to the present invention, wherein 9 is a separator and 12 is a negative electrode.

まず、図2(a)のような正極電極、図2(b)のようなリチウム金属圧着済み負極電極を作製する。このとき、負極電極にリチウムを吸蔵させる方法は、公知の技術に従い、負極電極にリチウム金属を圧着して、化学的方法又は電気化学的方法により行う。次に、図3のようなセパレータを用い、図4のようなセパレータ/正極電極/セパレータのセットを作製し、さらに、図5のような負極電極(リチウム金属圧着済み)/セパレータ/正極電極/セパレータのセットを作製し、電極積層体を得る。   First, a positive electrode as shown in FIG. 2A and a lithium metal pressure-bonded negative electrode as shown in FIG. 2B are prepared. At this time, the method of occluding lithium in the negative electrode is performed by a chemical method or an electrochemical method by pressing a lithium metal on the negative electrode according to a known technique. Next, using the separator as shown in FIG. 3, a separator / positive electrode / separator set as shown in FIG. 4 was prepared. Further, as shown in FIG. 5, the negative electrode (lithium metal crimped) / separator / positive electrode / A set of separators is produced to obtain an electrode laminate.

以後、本実施の形態の非水電解液系電気化学デバイスの製造方法はすでに説明したとおりである。   Henceforth, the manufacturing method of the nonaqueous electrolyte system electrochemical device of this Embodiment is as having already demonstrated.

以下に、実施例、比較例を示し、本発明の特徴をさらに明確にする。   Examples and comparative examples are shown below to further clarify the features of the present invention.

(実施例1)比表面積2500m/gのKOH賦活炭とカーボンブラックを重量比80:10の割合で混合し、この混合粉末にバインダとしてNメチルピロリドンに溶解したポリフッ化ビニリデン(混合粉末:バインダ=90:10)を加え混練してスラリーを得た。次いでエッチング処理された厚さ30μmのアルミニウム箔にそのスラリーを均一に塗布した。その後、乾燥し圧延処理することで塗布厚100μmの正極電極シートを得た。上記で得られた電極を、その活物質が塗布されている部分が36.5mm×40mmになるように正極は1枚切り出した。 (Example 1) KOH activated charcoal having a specific surface area of 2500 m 2 / g and carbon black were mixed at a weight ratio of 80:10, and this mixed powder was dissolved in N-methylpyrrolidone as a binder (polyvinylidene fluoride (mixed powder: binder). = 90:10) and kneaded to obtain a slurry. Next, the slurry was uniformly applied to an etched aluminum foil having a thickness of 30 μm. Thereafter, drying and rolling were performed to obtain a positive electrode sheet having a coating thickness of 100 μm. One positive electrode was cut out from the electrode obtained above so that the portion where the active material was applied was 36.5 mm × 40 mm.

易黒鉛化炭素材料としての天然黒鉛(d002:0.335nm、Lc:229.1nm)と難黒鉛化炭素材料のカーボトロンP(d002:0.38nm、Lc:1.1nm)の負極活物質粉末(カーボトロンは登録商標)を重量比80:10の割合で混合し、次いで負極活物質粉末と導電剤カーボンブラックを重量比90:5の割合で混合し、この混合粉末にバインダとしてNメチルピロリドンに溶解したポリフッ化ビニリデン(混合粉末:バインダ=95:5)を加え混練してスラリーを得た。 Negative electrode active material of natural graphite (d 002 : 0.335 nm, Lc: 229.1 nm) as a graphitizable carbon material and carbotron P (d 002 : 0.38 nm, Lc: 1.1 nm) as a non-graphitizable carbon material Powder (Carbotron is a registered trademark) is mixed at a weight ratio of 80:10, then negative electrode active material powder and conductive agent carbon black are mixed at a weight ratio of 90: 5, and N-methylpyrrolidone is used as a binder in this mixed powder. Polyvinylidene fluoride dissolved in (mixed powder: binder = 95: 5) was added and kneaded to obtain a slurry.

次いで厚さ15μmの銅箔にそのスラリーを均一に塗布した。その後、乾燥し圧延処理することで塗布厚35μmの負極電極シートを得た。上記で得られた電極を、その活物質が塗布されている部分が38mm×42mmになるように負極は切り出した。次に厚み40μmのリチウム金属箔を20mm×23mmに切り抜き、このリチウム箔を負極電極に圧着した。   Next, the slurry was uniformly applied to a copper foil having a thickness of 15 μm. Then, the negative electrode sheet with a coating thickness of 35 μm was obtained by drying and rolling. The negative electrode was cut out from the electrode obtained above so that the portion coated with the active material was 38 mm × 42 mm. Next, a lithium metal foil having a thickness of 40 μm was cut out to 20 mm × 23 mm, and this lithium foil was pressure-bonded to the negative electrode.

上記のようにして作製した負極リード端子と外装フィルムの外部に突出した負極リード板を一括して超音波溶接した。同様に、正極リード端子と外装フィルムの外部に突出した正極リード板を一括して超音波溶接した。   The negative electrode lead terminal produced as described above and the negative electrode lead plate protruding outside the exterior film were collectively ultrasonically welded. Similarly, the positive electrode lead terminal and the positive electrode lead plate protruding outside the exterior film were collectively ultrasonically welded.

これにより得られた電極積層体を外装フィルムに収納し、次に電解液を注入した。電解液は、エチレンカーボネートとジエチルカーボネートとを体積比で1:1に混合した溶媒に、LiPFを濃度が1Mol/lとなるように加えた電解液を使用した。電解液注入後、真空雰囲気中にて外装体を封止した。負極電極上に配置したリチウム金属が電気的接触によりイオン化し、負極中に取り込まれた。リチウムが負極に吸蔵されていることは、正極の代わりにリチウム金属参照極を入れた系において確認を行った。これによって積層型ハイブリッドキャパシタ(非水電解液系電気化学デバイス)を得た。 The electrode laminate thus obtained was housed in an exterior film, and then an electrolyte solution was injected. As the electrolytic solution, an electrolytic solution in which LiPF 6 was added to a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 so as to have a concentration of 1 mol / l was used. After injecting the electrolyte, the outer package was sealed in a vacuum atmosphere. Lithium metal disposed on the negative electrode was ionized by electrical contact and taken into the negative electrode. The fact that lithium was occluded in the negative electrode was confirmed in a system in which a lithium metal reference electrode was inserted instead of the positive electrode. Thereby, a multilayer hybrid capacitor (non-aqueous electrolyte based electrochemical device) was obtained.

(実施例2)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、天然黒鉛70%重量と難黒鉛化炭素材20重量%を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Example 2) In Example 1, in place of 80% by weight of natural graphite and 10% by weight of non-graphitizable carbon material, 70% by weight of natural graphite and 20% by weight of non-graphitizable carbon material were used. Thus, a laminate type non-aqueous electrolyte type electrochemical capacitor was assembled.

(実施例3)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、天然黒鉛65%重量と難黒鉛化炭素材25重量%を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Example 3) In Example 1, instead of 80% by weight of natural graphite and 10% by weight of non-graphitizable carbon material, 65% by weight of natural graphite and 25% by weight of non-graphitizable carbon material were used. Thus, a laminate type non-aqueous electrolyte type electrochemical capacitor was assembled.

(実施例4)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、天然黒鉛87%重量と難黒鉛化炭素材3重量%を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Example 4) In Example 1, in place of 80% by weight of natural graphite and 10% by weight of non-graphitizable carbon material, 87% by weight of natural graphite and 3% by weight of non-graphitizable carbon material were used. Thus, a laminate type non-aqueous electrolyte type electrochemical capacitor was assembled.

(実施例5)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、天然黒鉛60%重量と難黒鉛化炭素材30重量%を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Example 5) In Example 1, instead of natural graphite 80% by weight and non-graphitizable carbon material 10% by weight, natural graphite 60% by weight and non-graphitizable carbon material 30% by weight were used. Thus, a laminate type non-aqueous electrolyte type electrochemical capacitor was assembled.

(比較例1)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、天然黒鉛90%重量を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Comparative Example 1) In Example 1, a laminate type non-aqueous electrolyte system was used in the same manner as in Example 1 except that 90% by weight of natural graphite was used instead of 80% by weight of natural graphite and 10% by weight of non-graphitizable carbon material. An electrochemical capacitor was assembled.

(比較例2)実施例1において、天然黒鉛80重量%と難黒鉛化炭素材10重量%に変えて、難黒鉛化炭素材90%重量を用い、実施例1と同様にしてラミネート型非水電解液系電気化学キャパシタを組み立てた。 (Comparative Example 2) In Example 1, instead of the natural graphite 80% by weight and the non-graphitizable carbon material 10% by weight, the non-graphitizable carbon material 90% by weight was used in the same manner as in Example 1, and the laminate type non-water An electrolyte-based electrochemical capacitor was assembled.

実施例1〜5及び比較例1、2で得た非水系電解液系電気化学キャパシタについて、その静電容量、耐電圧、直流抵抗、レート特性を測定した。このとき、定電流で使用電圧まで充電し、定電圧で30分間充電を行った後、所定電流で2.2Vまで充電した。静電容量(F)は放電電流容量(mAh)からF換算(静電容量換算)で算出し、直流抵抗は初期のIRドロップから算出した。その結果を表1に示す。なお、放電レート10C、20Cでの静電容量には、放電レート1Cでの静電容量に対する変化率(レート特性に対応)を付記した。   The non-aqueous electrolyte-based electrochemical capacitors obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were measured for capacitance, withstand voltage, direct current resistance, and rate characteristics. At this time, the battery was charged to a working voltage with a constant current, charged with a constant voltage for 30 minutes, and then charged to 2.2 V with a predetermined current. The electrostatic capacity (F) was calculated in terms of F (capacitance conversion) from the discharge current capacity (mAh), and the DC resistance was calculated from the initial IR drop. The results are shown in Table 1. In addition, the change rate (corresponding to the rate characteristic) with respect to the capacitance at the discharge rate 1C is appended to the capacitance at the discharge rates 10C and 20C.

Figure 0005158839
Figure 0005158839

表1の結果から本発明による非水電解液系電気化学キャパシタの実施例1〜3は、比較例1と同等の高容量・高耐圧を持ち、且つ、比較例2と同等の直流抵抗及びレート特性を持つ結果が得られている。これは、放電時に優先的に難黒鉛化炭素内に吸蔵されたリチウムイオンが脱離するためレート特性に優れ、またリチウム脱離に対する電位挙動が少ない易黒鉛化炭素により総体的に負極電位が低く保たれるため、放電時の負極電位挙動変化が少なく、高容量・高耐圧の結果が得られたと考える。   From the results of Table 1, Examples 1 to 3 of the non-aqueous electrolyte based electrochemical capacitor according to the present invention have the same high capacity and high breakdown voltage as Comparative Example 1, and the same DC resistance and rate as Comparative Example 2. Results with characteristics are obtained. This is because the lithium ions occluded in the non-graphitizable carbon preferentially desorb during discharge, and the rate characteristics are excellent, and the graphitized carbon with little potential behavior against lithium desorption generally lowers the negative electrode potential. Therefore, the change in the negative electrode potential behavior during discharge is small, and it is considered that a high capacity and high breakdown voltage result was obtained.

難黒鉛化炭素の配合比を3.3%とした実施例4は、実施例1〜3と比較すると、直流抵抗が大きく、レート特性も低下し、実用的な下限となる。また難黒鉛化炭素の配合比を33.3%とした実施例5は、実施例1〜3と比較し容量が小さくなり、実用的な上限となる。さらに高特性が要求されるときには、難黒鉛化炭素の配合比は、5〜30%程度にするのがよい。   In Example 4, in which the blending ratio of the non-graphitizable carbon is 3.3%, compared with Examples 1 to 3, the direct current resistance is large and the rate characteristics are lowered, which is a practical lower limit. Moreover, Example 5 which made the compounding ratio of non-graphitizable carbon 33.3% becomes small compared with Examples 1-3, and becomes a practical upper limit. When further high characteristics are required, the blending ratio of non-graphitizable carbon is preferably about 5 to 30%.

以上の結果より、本発明を実施することにより、積層型ハイブリッドキャパシタの製品において高耐圧、高容量、レート特性に優れた製品の作製が可能となった。   From the above results, by implementing the present invention, it has become possible to produce a multilayer hybrid capacitor product having a high breakdown voltage, a high capacity, and excellent rate characteristics.

本発明の一実施の形態による非水電解液系電気化学デバイスを示し、図1(a)はその平面図、図1(b)は正面図、図1(c)は正断面図。BRIEF DESCRIPTION OF THE DRAWINGS The non-aqueous-electrolyte type electrochemical device by one embodiment of this invention is shown, FIG. 1 (a) is the top view, FIG.1 (b) is a front view, FIG.1 (c) is a front sectional view. 本発明に係る正極電極及び負極電極を示し、図2(a)は正極電極の平面図、図2(b)はリチウム金属圧着済み負極電極の平面図。The positive electrode and negative electrode which concern on this invention are shown, Fig.2 (a) is a top view of a positive electrode, FIG.2 (b) is a top view of the lithium metal crimped negative electrode. 本発明に係るセパレータの平面図。The top view of the separator which concerns on this invention. 本発明に係るセパレータ/正極電極/セパレータのセットを示す平面図。The top view which shows the set of the separator / positive electrode / separator which concerns on this invention. 本発明に係る負極電極(リチウム金属圧着済み)/セパレータ/正極電極/セパレータのセットを示す平面図。The top view which shows the set of the negative electrode (lithium metal crimping completion | finish) / separator / positive electrode / separator which concerns on this invention. 本発明に係る電極積層体を示し、図6(a)はその平面図、図6(b)はその斜視図。The electrode laminated body which concerns on this invention is shown, Fig.6 (a) is the top view, FIG.6 (b) is the perspective view.

符号の説明Explanation of symbols

1 ハイブリッドキャパシタ
2 負極リード板
3 正極リード板
4 外装フィルム
5 電極積層体
6 正極リード端子
7,11 活物質
8 正極電極
9 セパレータ
10 負極リード端子
12 負極電極
13 リチウム金属
DESCRIPTION OF SYMBOLS 1 Hybrid capacitor 2 Negative electrode lead board 3 Positive electrode lead board 4 Exterior film 5 Electrode laminated body 6 Positive electrode lead terminal 7,11 Active material 8 Positive electrode 9 Separator 10 Negative electrode lead terminal 12 Negative electrode 13 Lithium metal

Claims (2)

活性炭を主成分とする正極と、リチウムイオンを吸蔵、脱離しうる炭素材料に化学的方法又は電気化学的方法で予めリチウムを吸蔵させた炭素材料を主成分とする負極と、リチウム塩からなる電解質を含む有機溶媒系電解液とを有する非水電解液系電気化学デバイスにおいて、前記負極の主成分の炭素材料が易黒鉛化炭素及び難黒鉛化炭素の2成分からなり、前記難黒鉛化炭素の重量比率は3.3〜33.3%であることを特徴とする非水電解液系電気化学デバイス。 A positive electrode mainly composed of activated carbon, a negative electrode mainly composed of a carbon material in which lithium is occluded and desorbed in advance by a chemical method or an electrochemical method, and an electrolyte comprising a lithium salt. in the non-aqueous electrolyte system electrochemical device having an organic electrolyte containing a Ri Do two components of the negative electrode of the main component of the carbon material graphitizable carbon and non-graphitizable carbon, the flame graphitized carbon The non-aqueous electrolyte system electrochemical device characterized in that the weight ratio of is 3.3 to 33.3% . 前記難黒鉛化炭素は、X線広角回折法による(002)面の面間隔が0.341〜0.390nmで、c軸方向の結晶子の大きさ(Lc)が0.5〜18nmである無定形炭素材料より選ばれた少なくとも1種類であり、且つ、前記易黒鉛化炭素は、X線広角回折法による(002)面の面間隔が0.340nm以下で、c軸方向の結晶子の大きさ(Lc)が20〜230nmである高結晶性炭素材料より選ばれた少なくとも1種類であることを特徴とする請求項記載の非水電解液系電気化学デバイス。 The non-graphitizable carbon has a (002) plane spacing of 0.341 to 0.390 nm and a crystallite size (Lc) in the c-axis direction of 0.5 to 18 nm according to the X-ray wide angle diffraction method. It is at least one selected from amorphous carbon materials, and the graphitizable carbon has a (002) plane spacing of 0.340 nm or less by X-ray wide angle diffraction method, and a crystallite in the c-axis direction. The non-aqueous electrolyte based electrochemical device according to claim 1 , wherein the non-aqueous electrolyte based electrochemical device is at least one selected from highly crystalline carbon materials having a size (Lc) of 20 to 230 nm.
JP2007076533A 2007-03-23 2007-03-23 Non-aqueous electrolyte electrochemical device Expired - Fee Related JP5158839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007076533A JP5158839B2 (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte electrochemical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007076533A JP5158839B2 (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte electrochemical device

Publications (2)

Publication Number Publication Date
JP2008235169A JP2008235169A (en) 2008-10-02
JP5158839B2 true JP5158839B2 (en) 2013-03-06

Family

ID=39907725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007076533A Expired - Fee Related JP5158839B2 (en) 2007-03-23 2007-03-23 Non-aqueous electrolyte electrochemical device

Country Status (1)

Country Link
JP (1) JP5158839B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554932B2 (en) * 2009-03-02 2014-07-23 旭化成株式会社 Non-aqueous lithium storage element
CN102696144B (en) * 2010-01-28 2015-01-14 三菱电机株式会社 Power storage device cell, manufacturing method therefor, and electricity storage device
JP2013077734A (en) * 2011-09-30 2013-04-25 Asahi Kasei Corp Electrode and method of manufacturing the same
JP6871676B2 (en) * 2015-11-26 2021-05-12 株式会社ジェイテクト Power storage device and manufacturing method of power storage device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414882A (en) * 1987-07-08 1989-01-19 Mitsubishi Gas Chemical Co Secondary battery
JPH08107048A (en) * 1994-08-12 1996-04-23 Asahi Glass Co Ltd Electric double-layer capacitor
JP2002260971A (en) * 1994-08-12 2002-09-13 Asahi Glass Co Ltd Electric double-layer capacitor
JPH1126024A (en) * 1997-07-08 1999-01-29 Unitika Ltd Nonaqueous lithium secondary battery
JP2000306609A (en) * 1999-04-20 2000-11-02 Asahi Glass Co Ltd Secondary power supply
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP3807854B2 (en) * 1998-10-16 2006-08-09 三菱化学株式会社 Electric double layer capacitor
JP4234356B2 (en) * 2002-05-27 2009-03-04 旭化成株式会社 Method for producing negative electrode material
JP2003346802A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP4105897B2 (en) * 2002-05-27 2008-06-25 旭化成株式会社 NEGATIVE ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND ELECTRIC STORAGE DEVICE
JP4731974B2 (en) * 2005-04-19 2011-07-27 富士重工業株式会社 Lithium ion capacitor
JP2006331702A (en) * 2005-05-24 2006-12-07 Hitachi Ltd Power storage device

Also Published As

Publication number Publication date
JP2008235169A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP5236765B2 (en) Organic electrolyte capacitor
JP5081214B2 (en) Organic electrolyte capacitor
JP4731967B2 (en) Lithium ion capacitor
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP4918418B2 (en) Lithium ion pre-doping method and method for producing lithium ion capacitor storage element
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
JP5228531B2 (en) Electricity storage device
KR101596511B1 (en) Positive electrode active material for lithium ion storage device and lithium ion storage device making use of the same
JP5096851B2 (en) Method for manufacturing power storage device
JP2012169576A (en) Electrochemical device
JP2007180431A (en) Lithium ion capacitor
Azaïs Manufacturing of industrial supercapacitors
JP2006286926A (en) Lithium ion capacitor
JP2006286923A (en) Lithium ion capacitor
JP5158839B2 (en) Non-aqueous electrolyte electrochemical device
JP4931239B2 (en) Power storage device
JP4803386B2 (en) Electric double layer capacitor
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
JP2008282838A (en) Hybrid electric double layer capacitor
KR101394743B1 (en) Lithium-ion capacitor and manufacturing method of therof
JP2007180429A (en) Lithium ion capacitor
JP4732074B2 (en) Lithium ion capacitor
JP2005093779A (en) Electric double layer capacitor
KR101102654B1 (en) The Composite Electrode Materials Showing Higher Power and Higher Energy
JP2007180434A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

R150 Certificate of patent or registration of utility model

Ref document number: 5158839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees