JP4931239B2 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP4931239B2
JP4931239B2 JP2007218643A JP2007218643A JP4931239B2 JP 4931239 B2 JP4931239 B2 JP 4931239B2 JP 2007218643 A JP2007218643 A JP 2007218643A JP 2007218643 A JP2007218643 A JP 2007218643A JP 4931239 B2 JP4931239 B2 JP 4931239B2
Authority
JP
Japan
Prior art keywords
lithium metal
metal plate
lithium
separator
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007218643A
Other languages
Japanese (ja)
Other versions
JP2009054712A (en
Inventor
亘 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2007218643A priority Critical patent/JP4931239B2/en
Publication of JP2009054712A publication Critical patent/JP2009054712A/en
Application granted granted Critical
Publication of JP4931239B2 publication Critical patent/JP4931239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage device small in characteristic degradation by preventing free matter of small pieces of lithium metal from flowing out from the vicinity of a lithium metal plate in a cell, and high in safety. <P>SOLUTION: Both surfaces of the lithium metal plate is covered with two separators 4, and the two separators 4 are jointed to each other by a fused junction part 7 formed in the circumference of the lithium metal plate 8 to seal the lithium metal plate. The power storage element 1 is composed by stacking the sealed lithium metal plate, and a basic cell formed by facing, through the separators 4, a positive electrode 2 formed of a polarizing electrode to negative electrodes 3 each formed of an electrode with lithium ions previously doped therein by being brought into contact with lithium. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、二次電池の代替又は補助電力供給源としてのハイブリッドキャパシタを用いた蓄電デバイスに関する。   The present invention relates to an electricity storage device using a hybrid capacitor as an alternative or secondary power supply source for a secondary battery.

電気二重層キャパシタは、急速に充電ができ、大電流で放電することができると共に、1万回以上の充放電を繰り返しても、特性が劣化しないなど、Ni水素二次電池やLiイオン二次電池などの二次電池にはない特長を有している。このため、近年、二次電池の代替又は補助電力供給源として、電気二重層キャパシタに対する期待が高まっている。   Electric double layer capacitors can be charged quickly and can be discharged with a large current, and the characteristics will not deteriorate even after repeated charging and discharging 10,000 times or more. It has features not found in secondary batteries such as batteries. For this reason, in recent years, there is an increasing expectation for an electric double layer capacitor as an alternative to the secondary battery or as an auxiliary power supply source.

電気二重層キャパシタでは、活性炭を主成分とする分極性電極層を有する一対の分極性電極がセパレータを介して対向配置されてキャパシタ素子が構成され、同分極性電極層に電解液が含浸されている。そして、各分極性電極層と電解液との界面に電気二重層が形成される。この電気二重層キャパシタに電圧が印加されることにより、同電気二重層の静電容量に電荷が蓄積される。   In an electric double layer capacitor, a pair of polarizable electrodes each having a polarizable electrode layer mainly composed of activated carbon are disposed to face each other via a separator to constitute a capacitor element, and the polarizable electrode layer is impregnated with an electrolytic solution. Yes. Then, an electric double layer is formed at the interface between each polarizable electrode layer and the electrolytic solution. When a voltage is applied to the electric double layer capacitor, electric charges are accumulated in the capacitance of the electric double layer.

また、最近では正極に電気二重層キャパシタに用いられる分極性電極を使用し、負極にリチウムイオンを吸蔵、脱離しうる炭素材料を使用したハイブリッドキャパシタを用いた蓄電デバイスが提案されている。この蓄電デバイスの構成要素である蓄電素子では、負極にリチウムイオン吸蔵脱離電位が卑な炭素材料を用いることで蓄電素子の電圧(正極電極と負極電極の電位差)を高くすることが可能となり、高耐電圧かつ高エネルギー密度の蓄電素子を提供することができる。また、正極には電気二重層キャパシタで用いられる分極性電極を用いることにより、分極性電極層と電解液との界面に形成される電気二重層に電荷が蓄積される。リチウムイオン二次電池のように、正極活物質自体にリチウムイオンを吸蔵、脱離させる化学反応を伴わないため、充放電サイクルに優れた蓄電デバイスを提供することができる。   Recently, an electricity storage device using a hybrid capacitor using a polarizable electrode used for an electric double layer capacitor as a positive electrode and a carbon material capable of inserting and extracting lithium ions as a negative electrode has been proposed. In the electricity storage element that is a component of this electricity storage device, it becomes possible to increase the voltage of the electricity storage element (potential difference between the positive electrode and the negative electrode) by using a carbon material with a low lithium ion storage / desorption potential for the negative electrode, A power storage element with high withstand voltage and high energy density can be provided. In addition, by using a polarizable electrode used in an electric double layer capacitor for the positive electrode, charges are accumulated in the electric double layer formed at the interface between the polarizable electrode layer and the electrolytic solution. Unlike a lithium ion secondary battery, the positive electrode active material itself does not involve a chemical reaction that occludes and desorbs lithium ions, so that an electricity storage device having an excellent charge / discharge cycle can be provided.

例えば、特許文献1には、正極電極に活性炭からなる分極性電極を用い、負極電極に負極活物質としてリチウムをイオン化した状態で吸蔵・離脱しうる炭素材料にリチウムを化学的方法または電気化学的方法で吸蔵させた炭素質材料を用いたハイブリッド型の電気二重層キャパシタが提案されている。図3は、従来のハイブリッドキャパシタの蓄電素子の説明図である。図3に示すように、蓄電素子101は、正極102に分極性電極、負極103にリチウムを可逆的に担持可能な電極が用いられ、正極102と負極103の間にはセパレータ104を配置して基本セルを構成し、この基本セル上に、リチウム金属板108とセパレータ104が積層されている。これらの部材には、それぞれリチウム塩を含有する非水系溶液の電解液106が含浸された構成となっている。   For example, in Patent Document 1, a polarizable electrode made of activated carbon is used as a positive electrode, and lithium is used as a carbon material that can be occluded / released in a negative electrode active material in a state where lithium is ionized as a negative electrode active material. A hybrid electric double layer capacitor using a carbonaceous material occluded by the method has been proposed. FIG. 3 is an explanatory diagram of a power storage element of a conventional hybrid capacitor. As shown in FIG. 3, in the storage element 101, a polarizable electrode is used for the positive electrode 102, an electrode capable of reversibly carrying lithium is used for the negative electrode 103, and a separator 104 is disposed between the positive electrode 102 and the negative electrode 103. A basic cell is configured, and a lithium metal plate 108 and a separator 104 are laminated on the basic cell. These members are each impregnated with an electrolyte solution 106 of a non-aqueous solution containing a lithium salt.

特許文献2や特許文献3では、図3に示すような蓄電素子101を組み立てる際に、リチウム金属板108上にリチウム金属を担持させておいて電解液を注入することで、リチウム金属板108と負極103が電気化学的に接触し、電解液を介してリチウムイオンが負極活物質に担持されるという蓄電素子101が提案されている。   In Patent Document 2 and Patent Document 3, when assembling the electricity storage device 101 as shown in FIG. 3, a lithium metal is supported on the lithium metal plate 108 and an electrolyte is injected to A power storage device 101 has been proposed in which the negative electrode 103 is brought into electrochemical contact and lithium ions are supported on the negative electrode active material via an electrolytic solution.

特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 WO00/07255公報WO00 / 07255 WO2003/003395公報WO2003 / 003395 publication

上記蓄電素子101では、銅箔もしくは銅のエキスパンドメタルにリチウム金属箔を貼り付けたリチウム金属板108を用いて所定量のリチウムイオンを負極103の炭素材料にドープさせる構成となっている。ドープの工程では、リチウム金属は電子を放出しイオン化することで電解液に溶解し、一方負極の炭素材料は電解液のリチウムイオンと電子を取り込んで炭素層間化合物を形成する反応が起きている。このドープはリチウム金属板上にリチウム金属が担持されている限り反応が進行するため、リチウム金属箔の重量を規定してやれば負極炭素材料へのドープ量を制御することが可能となる。   The power storage device 101 has a configuration in which a predetermined amount of lithium ions is doped into the carbon material of the negative electrode 103 using a lithium metal plate 108 in which a lithium metal foil is bonded to a copper foil or a copper expanded metal. In the dope process, lithium metal emits electrons and is ionized to dissolve in the electrolytic solution, while the carbon material of the negative electrode undergoes a reaction that takes in lithium ions and electrons in the electrolytic solution to form a carbon intercalation compound. Since the reaction proceeds as long as the lithium metal is supported on the lithium metal plate, the doping amount of the negative electrode carbon material can be controlled by defining the weight of the lithium metal foil.

しかしながら、ドープの工程におけるリチウムの消費は、リチウム金属板の厚みのばらつきや接触抵抗の違いなどから一様ではなく、リチウム金属の担持状態や表面状態(例えば、酸化部分の存在等)によっては消費速度に違いが生じるため、リチウム金属板に担持されているリチウム金属の一部が小片状となり遊離する場合がある。この様な遊離物がセル内でリチウム金属板近傍から流出し正極集電体のアルミニウムと接触すると、リチウムとアルミニウム間で局部電池が形成し、結果としてアルミニウムの腐食を引き起こし、抵抗増加および信頼性低下の原因となる。さらに、リチウム金属の小片の遊離物は導電性を有しているため、場合によってはショートを引き起こす可能性があり、セルの安全性が低下するという問題がある。   However, the consumption of lithium in the doping process is not uniform due to variations in the thickness of the lithium metal plate and the difference in contact resistance. Depending on the lithium metal loading state and surface state (for example, the presence of an oxidized portion) Due to the difference in speed, some of the lithium metal supported on the lithium metal plate may become small pieces and be released. When such a free substance flows out from the vicinity of the lithium metal plate in the cell and comes into contact with the aluminum of the positive electrode current collector, a local battery is formed between the lithium and the aluminum, resulting in corrosion of the aluminum, increasing resistance and reliability. Causes a drop. Furthermore, since the liberated lithium metal pieces have electrical conductivity, there is a possibility that a short circuit may be caused in some cases, resulting in a problem that the safety of the cell is lowered.

本発明は、このような問題に鑑みてなされたもので、リチウム金属の小片の遊離物をセル内でリチウム金属板近傍から流出することを防ぎ、特性劣化が少なく、かつ安全性の高い蓄電デバイスを提供することを目的とする。   The present invention has been made in view of such a problem, and prevents a lithium metal small piece from flowing out from the vicinity of the lithium metal plate in the cell, has a small characteristic deterioration, and has a high safety. The purpose is to provide.

本発明は、セパレータを介して分極性電極からなる正極と、リチウム金属と接触させてリチウムイオンを予めドープした電極からなる負極とを対向させて基本セルを構成し、前記基本セルとリチウム金属板を積層し、電解液としてリチウム塩を含有する非水系の溶液を用いた蓄電デバイスにおいて、前記リチウム金属板は矩形状であり、前記リチウム金属を担持した前記リチウム金属板の両表面を他の2枚のセパレータで挟み込むとともに、前記他の2枚のセパレータは前記リチウム金属板の4辺の外周部に形成した融着接合部によって接合され、前記他の2枚のセパレータによって前記リチウム金属板が封止されたことを特徴とする蓄電デバイスである。 The present invention comprises a basic cell in which a positive electrode made of a polarizable electrode and a negative electrode made of an electrode preliminarily doped with lithium ions are brought into contact with lithium metal via a separator, and the basic cell and the lithium metal plate It was laminated, in the energy storage device using a solution of a non-aqueous, containing a lithium salt as an electrolytic solution, the lithium metal plate is rectangular, 2 both surfaces of the lithium metal plate carrying the lithium metal other with sandwiched by sheets of separator, the other two separators are joined by fusion bonding portion formed on the outer periphery of the four sides of the lithium metal plate, wherein the lithium metal plate by the other two separators is sealed It is an electricity storage device characterized by being stopped.

本発明の蓄電デバイスにおける蓄電素子は、リチウム金属板の両表面をセパレータで被覆し、リチウム金属板の周囲を融着させてセパレータに融着結合部を形成することで、リチウム金属板から発生するリチウム金属の小片の遊離物をセル内でリチウム金属板近傍から流出することを防止することができる。   The electricity storage element in the electricity storage device of the present invention is generated from the lithium metal plate by covering both surfaces of the lithium metal plate with a separator and fusing the periphery of the lithium metal plate to form a fusion bonding portion in the separator. It is possible to prevent the lithium metal small pieces from flowing out from the vicinity of the lithium metal plate in the cell.

さらに、融着接合部によってリチウム金属の遊離物の流出を抑えることで、導電性を有するリチウム金属の遊離物との接触による正極集電体のアルミニウムの腐食を防ぐことができ、結果として蓄電デバイスの特性劣化および信頼性低下を防止することができる。また、リチウム金属の遊離物の流出を防ぐことで、金属リチウムによるショートを抑制することができる。   Furthermore, by suppressing the outflow of the lithium metal free substance by the fusion bonded portion, corrosion of the positive electrode current collector aluminum due to contact with the conductive lithium metal free object can be prevented, and as a result, the electricity storage device It is possible to prevent deterioration of characteristics and deterioration of reliability. Moreover, the short circuit by metallic lithium can be suppressed by preventing the outflow of the lithium metal free substance.

従って、負極電極へのリチウムイオンのドープの工程において、リチウム金属の消費速度の違いによりリチウム金属の浮遊物が生成しても、セパレータの融着接合部よってリチウム金属板が完全に封止されており、リチウム金属の遊離物の流出をなくすことができる。   Therefore, in the step of doping lithium ions into the negative electrode, even if lithium metal floats are generated due to the difference in the consumption rate of lithium metal, the lithium metal plate is completely sealed by the fusion bonded portion of the separator. Thus, the outflow of free lithium metal can be eliminated.

以下、図面に基づいて本発明の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態における蓄電素子の説明図である。図1に示すように、蓄電素子1は、正極2に分極性電極、負極3にリチウムを可逆的に担持可能な電極が用いられ、正極2と負極3の間にはセパレータ4が配置され、他のセパレータ4でリチウム金属板8(図示せず)が覆われ、積層されている。これらの部材には、それぞれリチウム塩を含有する非水系溶液の電解液6が含浸された構成となっている。リチウム金属板8を覆っているセパレータ4はリチウム金属板8の周囲を融着して接合した融着接合部7により袋状とされている。   FIG. 1 is an explanatory diagram of a power storage element according to an embodiment of the present invention. As shown in FIG. 1, the storage element 1 uses a polarizable electrode as the positive electrode 2 and an electrode capable of reversibly carrying lithium in the negative electrode 3, and a separator 4 is disposed between the positive electrode 2 and the negative electrode 3. A lithium metal plate 8 (not shown) is covered with another separator 4 and laminated. These members are each impregnated with an electrolyte solution 6 of a non-aqueous solution containing a lithium salt. The separator 4 covering the lithium metal plate 8 is formed into a bag shape by a fusion bonded portion 7 in which the periphery of the lithium metal plate 8 is fused and bonded.

図2は、リチウム金属板をセパレータで被覆した上面図である。図2において、最前面のセパレータ4の裏面には延在した外部接続電極部を有する集電体からなるリチウム金属板8が配置され、さらにその裏面にはもう1枚のセパレータ4が配置され、リチウム金属板8の外周部となる2枚のセパレータ4の外周部は融着接合部7にて接合されている。リチウム金属板8を2枚のセパレータ4でサンドイッチ状に挟み、外周部に溶着接合部7を設けることでリチウム金属板8はセパレータ4で封止されている。   FIG. 2 is a top view of a lithium metal plate covered with a separator. In FIG. 2, a lithium metal plate 8 made of a current collector having an extended external connection electrode portion is disposed on the back surface of the frontmost separator 4, and another separator 4 is disposed on the back surface thereof. The outer peripheral portions of the two separators 4 that are the outer peripheral portions of the lithium metal plate 8 are joined by the fusion joint portion 7. The lithium metal plate 8 is sealed with the separator 4 by sandwiching the lithium metal plate 8 between the two separators 4 and providing the weld joint 7 on the outer periphery.

本実施の形態では、このような構成の蓄電素子1を組み立て、その際にリチウム金属板8にリチウム金属を担持させておいて電解液を加えると電解液を介して負極3とリチウム金属板8は電気化学的に接触し、リチウム金属板8のリチウム金属が溶解してリチウム金属イオンが負極3の負極活物質にドープされる。なお、このリチウム金属の主体は、リチウム金属板8のセパレータ4で封止された箇所に担持させる。   In the present embodiment, the storage element 1 having such a configuration is assembled, and when the lithium metal is supported on the lithium metal plate 8 and an electrolytic solution is added, the negative electrode 3 and the lithium metal plate 8 are interposed via the electrolytic solution. Are in electrochemical contact, the lithium metal of the lithium metal plate 8 is dissolved, and lithium metal ions are doped into the negative electrode active material of the negative electrode 3. The main body of the lithium metal is carried at a location sealed by the separator 4 of the lithium metal plate 8.

上記のようにリチウム金属板8はセパレータの融着接合部7によって封止されているため、負極3へのリチウムドープ中にリチウム金属の遊離物が発生した場合でも、リチウム金属の遊離物は融着接合部7で設けられた空間から外部へ流出することが防止される。つまり、リチウム金属板8から発生するリチウム金属の遊離物がセパレータ4の外部に存在する他の電極の集電体と接触することが防止できる。   As described above, since the lithium metal plate 8 is sealed by the fusion-bonding portion 7 of the separator, the lithium metal free matter is melted even when lithium metal free matter is generated during lithium doping to the negative electrode 3. Outflow from the space provided by the bonding joint 7 to the outside is prevented. That is, it is possible to prevent the liberated lithium metal generated from the lithium metal plate 8 from coming into contact with the current collectors of other electrodes existing outside the separator 4.

ここで、本実施の形態の蓄電素子について、具体的に説明する。正極2は、アルミニウム箔またはニッケル箔等からなる集電体5と炭素材料を主成分とする活物質とを一体化させたものである。集電体5は外部の電極と接続するための延在した外部接続電極部を有している。正極2は、さらに導電剤とバインダが加えられて製造される。炭素材料としては、木材、鋸屑、椰子殻、パルプ廃液などの植物系物質、石炭、石油重質油、またはそれらを熱分解して得られる石炭系及び石油系ピッチ、石油コークス、カーボンエアロゲル、タールピッチなどの化石燃料系物質、フェノール樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデンなどの合成高分子系物質など各種の原料が用いられ、これらの原料を炭化後、ガス賦活法または薬品賦活法によって賦活した比表面積が700〜3000m2/g、特に1000〜2000m2/gの炭素材料が好ましい。 Here, the power storage element of this embodiment will be specifically described. The positive electrode 2 is obtained by integrating a current collector 5 made of aluminum foil or nickel foil and an active material mainly composed of a carbon material. The current collector 5 has an extended external connection electrode portion for connecting to an external electrode. The positive electrode 2 is manufactured by further adding a conductive agent and a binder. Carbon materials include plant materials such as wood, sawdust, coconut husk and pulp waste, coal, heavy petroleum oil, or coal-based and petroleum-based pitches obtained by pyrolyzing them, petroleum coke, carbon aerogel, tar Various raw materials such as fossil fuel-based materials such as pitch, synthetic polymer materials such as phenol resin, polyvinyl chloride resin, and polyvinylidene chloride are used. After carbonizing these materials, they are activated by gas activation method or chemical activation method. the specific surface area of 700~3000m 2 / g, in particular carbon materials 1000 to 2000 2 / g are preferred.

導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、5〜30重量%程度添加するのがより好ましい。また、バインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリブタジエンゴム、スチレン−ブタジエンゴムなどが用いられ、3〜20重量%程度のバインダを含んで作製させるのが好ましく、特に、ポリテトラフルオロエチレンが耐熱性、耐薬品性、シート強度の観点から好ましい。   As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is more preferable to add about 5 to 30% by weight. In addition, as the binder, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, polybutadiene rubber, styrene-butadiene rubber, and the like are used. In particular, polytetrafluoroethylene is preferable from the viewpoints of heat resistance, chemical resistance, and sheet strength.

負極3は、銅箔またはニッケル箔等からなる集電体5と活物質とを一体化させたものである。集電体5は外部の電極と接続するための延在した外部接続電極部を有している。負極3は、さらに導電剤とバインダが加えられて製造される。活物質としては、リチウムイオンのドープ、脱ドープが可能な、グラファイト、不定形炭素などの炭素系材料、SnO2等のSn系複合酸化物等を用いることができる。導電剤としては、アセチレンブラック、ケッチェンブラックのようなカーボンブラック、天然黒鉛、熱膨張黒鉛炭素繊維が好ましく、5〜30重量%程度添加するのがより好ましい。また、バインダとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリブタジエンゴム、スチレン−ブタジエンゴムなどが用いられ、3〜20重量%程度のバインダを含んで作製させるのが好ましく、特に、ポリフッ化ビニリデンが耐熱性、耐薬品性、シート強度の観点から好ましい。 The negative electrode 3 is obtained by integrating a current collector 5 made of copper foil or nickel foil and an active material. The current collector 5 has an extended external connection electrode portion for connecting to an external electrode. The negative electrode 3 is manufactured by further adding a conductive agent and a binder. As the active material, it is possible to use carbon-based materials such as graphite and amorphous carbon, Sn-based composite oxides such as SnO 2 and the like that can be doped and dedoped with lithium ions. As the conductive agent, carbon black such as acetylene black and ketjen black, natural graphite, and thermally expanded graphite carbon fiber are preferable, and it is more preferable to add about 5 to 30% by weight. In addition, as the binder, polytetrafluoroethylene, polyvinylidene fluoride, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, polybutadiene rubber, styrene-butadiene rubber, and the like are used. In particular, polyvinylidene fluoride is preferable from the viewpoints of heat resistance, chemical resistance, and sheet strength.

セパレータは、厚さが10〜50μmと薄く、電子絶縁性およびイオン透過性の高い材料が好ましく、特に限定されるものではないが、例えば、ポリエチレンやポリプロピレンなどの不織布、またはビスコースレイヨンや天然セルロースの抄紙等が好適に使用される。   The separator is preferably made of a material having a thin thickness of 10 to 50 μm and high electronic insulation and ion permeability, and is not particularly limited. For example, a nonwoven fabric such as polyethylene or polypropylene, or viscose rayon or natural cellulose. Papermaking or the like is preferably used.

リチウム金属板8は、銅の集電体5上にリチウム金属が張り合わされて一体化されている構造となっている。なお、このリチウム金属は負極へのリチウムをドープする際に溶解してしまうものである。銅の集電体5はプレーン箔でも良く、エンボス加工もしくは貫通孔を有するエキスパンド状の形状でもよい。また、リチウム金属板8はセパレータ4に覆われており、リチウム金属板8の外周部となるセパレータ4の外周部は、融着接合部7にて接合して形成され、袋状とされる。このように、袋状のセパレータ4にリチウム金属板8が収納され、リチウム金属板8が封止される。   The lithium metal plate 8 has a structure in which lithium metal is laminated and integrated on a copper current collector 5. This lithium metal is dissolved when doping the negative electrode with lithium. The copper current collector 5 may be a plain foil or may be an embossed or expanded shape having a through hole. Moreover, the lithium metal plate 8 is covered with the separator 4, and the outer peripheral portion of the separator 4 which is the outer peripheral portion of the lithium metal plate 8 is formed by bonding at the fusion bonding portion 7 and is formed into a bag shape. Thus, the lithium metal plate 8 is accommodated in the bag-like separator 4 and the lithium metal plate 8 is sealed.

上述の融着接合部7は、熱可塑性の樹脂を加熱融着、超音波融着、高周波融着等の融着手段によって形成することができる。特に、ポリエチレン、ポリプロピレン等の熱可塑性の微多孔性フィルムのセパレータであれば、セパレータ同士を融着する際に容易に融着接合部を形成することが可能となる。また、熱可塑性ではないセルロース等の不織布のセパレータを用いる場合でも、セパレータの間に熱可塑性樹脂であるポリフロピレン、ポリエチレン及びアイオノマーを挟んで融着することでセルロース材質の繊維間に熱可塑性樹脂が流れ込み、次いで冷却されることで融着接合部7を形成することができる。   The above-mentioned fusion bonding part 7 can be formed by fusion means such as heat fusion, ultrasonic fusion, and high frequency fusion of thermoplastic resin. In particular, in the case of a separator made of a thermoplastic microporous film such as polyethylene or polypropylene, it is possible to easily form a fusion bonded portion when the separators are fused. Even when a non-thermoplastic non-woven fabric separator such as cellulose is used, the thermoplastic resin flows between the fibers of the cellulose material by fusing the thermoplastic resin such as polyfloprene, polyethylene and ionomer between the separators. Then, the fusion bonded portion 7 can be formed by cooling.

以上、添付図面を参照しながら、本発明に係る蓄電デバイスの好適な実施の形態について説明したが、本発明は、係る例にのみ限定されるものではない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the electricity storage device according to the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

次に、具体的な実施例を挙げ、本発明の蓄電素子について、さらに詳しく説明する。   Next, a specific example is given and the electrical storage element of this invention is demonstrated in more detail.

(実施例1)
比表面積2500m2/gのKOH賦活炭とカーボンブラックを重量比8:1の割合で混合し、この混合粉末にバインダとしてNメチルピロリドンに溶解したポリフッ化ビニリデン(混合粉末:バインダ=9:1)を加え混練してスラリーを得た。次いで、エッチング処理された厚さ30μmのアルミニウム箔に、そのスラリーを均一に両面塗布した。その後、乾燥し圧延処理することで塗布厚80μmずつの正極電極シートを得た。正極については、上記で得られた電極を、その活物質が塗布されている部分が23mm×32mm になるように2枚切り出した。
Example 1
Polyvinylidene fluoride (mixed powder: binder = 9: 1) in which KOH activated charcoal having a specific surface area of 2500 m 2 / g and carbon black were mixed at a weight ratio of 8: 1 and dissolved in N-methylpyrrolidone as a binder. And kneaded to obtain a slurry. Next, the slurry was uniformly coated on both sides of the etched aluminum foil having a thickness of 30 μm. Then, the positive electrode sheet with a coating thickness of 80 μm was obtained by drying and rolling. For the positive electrode, two of the electrodes obtained above were cut out so that the portion where the active material was applied was 23 mm × 32 mm 2.

次いで、アモルファス炭素材とカーボンブラックを重量比90:5の割合で混合し、この混合粉末にバインダとしてNメチルピロリドンに溶解したポリフッ化ビニリデン(混合粉末:バインダ=95:5)を加え混練してスラリーを得た。次いで、厚さ15μmの銅箔にそのスラリーを均一に両面塗布した。その後、乾燥し圧延処理することで塗布厚20μmずつの負極電極シートを得た。負極については、上記で得られた電極を、その活物質が塗布されている部分が24mm×33mm になるように3枚切り出した。   Next, an amorphous carbon material and carbon black are mixed at a weight ratio of 90: 5, and polyvinylidene fluoride (mixed powder: binder = 95: 5) dissolved in N-methylpyrrolidone as a binder is added to this mixed powder and kneaded. A slurry was obtained. Next, the slurry was uniformly coated on both sides of a copper foil having a thickness of 15 μm. Then, the negative electrode sheet with a coating thickness of 20 μm was obtained by drying and rolling. As for the negative electrode, three of the electrodes obtained above were cut out so that the portion where the active material was applied was 24 mm × 33 mm.

次に、厚さ40μmのリチウム金属箔を20mm×30mm(ドープ能力:49mAh)に切り抜き、このリチウム箔を厚さ15μmで20mm×30mmの銅箔に圧着し、リチウム金属板を得た。このリチウム金属板を2枚のセルロース材質のセパレータで挟み込み、さらにリチウム金属板の周囲に熱可塑性樹脂であるアイオノマーを配置した。このアイオノマーが配置されている部位をセパレータ上から熱融着することで、リチウム電極の外周部に熱可塑性樹脂の融着接合部を設けた。   Next, a lithium metal foil having a thickness of 40 μm was cut out to 20 mm × 30 mm (doping ability: 49 mAh), and this lithium foil was pressure-bonded to a copper foil having a thickness of 15 μm and 20 mm × 30 mm to obtain a lithium metal plate. This lithium metal plate was sandwiched between two cellulose separators, and an ionomer, which is a thermoplastic resin, was placed around the lithium metal plate. A portion where the ionomer is disposed is heat-sealed from above the separator, so that a fusion bonding portion of a thermoplastic resin is provided on the outer peripheral portion of the lithium electrode.

上記のようにして作製した正極電極と負極電極を最も外側の電極板は負極電極になるようにし、その負極電極の外側にセパレータを設置されるように交互に積層した(セパレータ/負極電極/セパレータ/正極ユニット/セパレータ/負極電極/セパレータ/正極ユニット/セパレータ/負極電極/セパレータという順番で負極電極および正極電極、セパレータを積層した)。なお、正極、負極、リチウム金属板の集電体は、製造時に延在する外部電極接合部を有するように切り抜いている。さらに、この積層体の最外層にセパレータで覆われたリチウム金属板を配置し、このリチウム金属板の集電体と積層した負極の集電体各々の外部電極接合部と外装フィルムの外部に突出した負極の外部電極を一括して超音波溶接した。同様に、正極の外部電極接合部と外装フィルム(図示せず)の外部に突出した正極の外部電極を一括して超音波溶接した。   The positive electrode and the negative electrode produced as described above were alternately laminated so that the outermost electrode plate would be a negative electrode and a separator was placed outside the negative electrode (separator / negative electrode / separator The negative electrode, the positive electrode, and the separator were stacked in the order of / positive electrode unit / separator / negative electrode / separator / positive electrode unit / separator / negative electrode / separator). Note that the current collectors of the positive electrode, the negative electrode, and the lithium metal plate are cut out so as to have external electrode joints extending at the time of manufacture. Furthermore, a lithium metal plate covered with a separator is disposed on the outermost layer of the laminate, and the negative electrode current collector laminated with the current collector of the lithium metal plate protrudes outside the exterior film and the exterior film. The negative external electrodes were ultrasonically welded together. Similarly, the positive electrode external electrode joint and the positive electrode protruding outside the exterior film (not shown) were ultrasonically welded together.

これにより得られた電極積層体を外装フィルムに収納し、電解液を注入した。電解液は、エチレンカーボネートとジエチルカーボネートとを体積比で1:1に混合した溶媒に、LiPF6 を濃度が1mol/Lとなるよう溶解した電解液を使用した。電解液注入後、真空雰囲気中にて外装体を封止し、これによって蓄電デバイスを得た。   The electrode laminate thus obtained was housed in an exterior film, and an electrolytic solution was injected. As the electrolytic solution, an electrolytic solution in which LiPF6 was dissolved to a concentration of 1 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used. After injecting the electrolyte, the outer package was sealed in a vacuum atmosphere, thereby obtaining an electricity storage device.

(実施例2)
ポリエチレン材質のセパレータを使用する以外は、実施例1と同様な方法で蓄電デバイスを作製した。
(Example 2)
An electricity storage device was produced in the same manner as in Example 1 except that a polyethylene separator was used.

(実施例3)
ポリエチレン材質のセパレータを使用し、熱可塑性樹脂を用いずにセパレータ同士を熱融着させて融着接合部を設けた以外は実施例1と同様な方法で蓄電デバイスを作製した。
(Example 3)
A power storage device was produced in the same manner as in Example 1 except that a polyethylene separator was used and the separator was thermally fused without using a thermoplastic resin to provide a fusion bonded part.

(比較例)
実施例1において、リチウム金属板の電極を2枚のセルロース材質のセパレータで挟み込み、融着接合部を設けなかった以外は実施例1と同様の方法で蓄電デバイスを作製した。
(Comparative example)
In Example 1, an electric storage device was produced in the same manner as in Example 1 except that the electrode of the lithium metal plate was sandwiched between two cellulose separators and no fusion bonding part was provided.

以上のようにして、実施例1〜3および比較例の方法で作製した蓄電デバイスを得た。作製した蓄電デバイスは、25℃に設定した恒温槽内で、ESR(等価直列抵抗)を測定した。ここで、ESRは交流1kHzの正弦波の発振器を用い、蓄電デバイスに交流電流10mAを流し蓄電デバイス両端の電圧を測定し算出することで求めた。次に、最大電流10mA、最大電圧4.0Vで1時間定電流定電圧充電を行い、放電電流を5mAとして蓄電素子の電圧が2Vを示すまで一定電流で放電して、初期電流容量を確認した。   As described above, power storage devices manufactured by the methods of Examples 1 to 3 and the comparative example were obtained. The produced electricity storage device was measured for ESR (equivalent series resistance) in a thermostat set at 25 ° C. Here, ESR was obtained by using a sine wave oscillator with an alternating current of 1 kHz, passing an alternating current of 10 mA through the electric storage device, and measuring and calculating the voltage across the electric storage device. Next, constant current and constant voltage charging was performed for 1 hour at a maximum current of 10 mA and a maximum voltage of 4.0 V, the discharge current was 5 mA, and discharge was performed at a constant current until the voltage of the storage element showed 2 V, and the initial current capacity was confirmed. .

初期特性確認後、60℃の高温槽に蓄電デバイスを移動し、印加電圧4.0Vで1000時間の電圧印加試験を行った。印加試験終了後、25℃に設定した高温槽内で3時間放置し、初期特性の測定時と同じ測定条件で蓄電デバイスの特性を確認した。   After confirming the initial characteristics, the electricity storage device was moved to a high-temperature bath at 60 ° C., and a voltage application test for 1000 hours was performed at an applied voltage of 4.0V. After the application test was completed, the sample was left for 3 hours in a high-temperature bath set at 25 ° C., and the characteristics of the electricity storage device were confirmed under the same measurement conditions as those for the initial characteristics.

実施例1〜3および比較例の方法で作製した電気二重層コンデンサの、初期特性及び電圧印加前後のESR、静電容量及び自己放電特性の平均値を表1に示す。なお、ESRおよび静電容量、自己放電特性は、作製したサンプル100個の平均値である。   Table 1 shows the initial characteristics and average values of ESR, capacitance and self-discharge characteristics before and after voltage application of the electric double layer capacitors produced by the methods of Examples 1 to 3 and the comparative example. The ESR, capacitance, and self-discharge characteristics are average values of 100 manufactured samples.

Figure 0004931239
Figure 0004931239

表1より、実施例1〜3と比較例のESRおよび放電電流容量を比べると、初期の値は同等値である。しかしながら、比較例においてはリチウム金属の微粒子の遊離が要因と考えられる短絡が発生しているのが確認された。本実施例ではリチウム金属板の両面がセパレータで覆われるとともに、セパレータはリチウム金属板の周囲に形成した融着接合部によって接合されており、リチウム金属板がセパレータで封止されているため、リチウム金属微粒子の遊離による短絡を抑えることができた。   From Table 1, when the ESR and discharge current capacity of Examples 1 to 3 and the comparative example are compared, the initial values are equivalent. However, in the comparative example, it was confirmed that a short circuit occurred due to liberation of lithium metal fine particles. In this embodiment, both sides of the lithium metal plate are covered with the separator, and the separator is joined by a fusion joint formed around the lithium metal plate, and the lithium metal plate is sealed with the separator. Short-circuiting due to the release of metal fine particles could be suppressed.

また、電圧試験後の比較例では100個のサンプルのうち、2個のESRが50mΩを越えているものがあった。これらの内部を分解し解析した結果、正極集電体にリチウム金属遊離物との接触による腐食が生じており、これによって電気特性を劣化させたと考える。実施例1〜3においては、著しいESRの劣化も確認されず、60℃、印加電圧4.0Vで1000時間の電圧印加試験を行っても良好な結果が得られたと考える。   Further, in the comparative example after the voltage test, out of 100 samples, two ESRs exceeded 50 mΩ. As a result of disassembling and analyzing these interiors, the positive electrode current collector was corroded by contact with lithium metal liberation, and this is considered to have deteriorated the electrical characteristics. In Examples 1 to 3, no significant ESR degradation was confirmed, and it was considered that good results were obtained even when a voltage application test for 1000 hours was performed at 60 ° C. and an applied voltage of 4.0 V.

以上の結果より、2枚のセパレータシートの外周部を融着して袋状に加工し、この袋状セパレータ内にリチウム金属板を収納させることにより、短絡不良を抑えることができ、さらに信頼性に優れた蓄電デバイスを製造することができることがわかった。この際に、セパレータシートの材質として安価な天然セルロース等の材質を用いることが可能であることがわかった。なお、外周部の融着には、外周部に熱可塑性樹脂のアイオノマーを配置しても、熱可塑性樹脂のシートを用いてもともに良好な結果が得られることがわかった。   From the above results, the outer periphery of the two separator sheets is fused and processed into a bag shape, and the lithium metal plate is stored in the bag-shaped separator, so that short-circuit defects can be suppressed and reliability is further improved. It was found that an electricity storage device excellent in the production can be manufactured. At this time, it was found that an inexpensive material such as natural cellulose can be used as a material for the separator sheet. It has been found that good results can be obtained for both fusion of the outer peripheral portion and the thermoplastic resin ionomer on the outer peripheral portion, or using a thermoplastic resin sheet.

なお、今回の実施例ではセルロース、ポリエチレン材質のセパレータを使用したが、樹脂およびセルロース材質以外の多孔質セパレータに応用が可能であり、これらに限定されるのもではない。   In this example, cellulose and polyethylene separators were used, but the present invention can be applied to porous separators other than resins and cellulose materials, and is not limited thereto.

本発明の実施の形態における蓄電素子の説明図。Explanatory drawing of the electrical storage element in embodiment of this invention. リチウム金属板をセパレータで被覆した上面図。The top view which coat | covered the lithium metal plate with the separator. 従来のハイブリッドキャパシタの蓄電素子の説明図。Explanatory drawing of the electrical storage element of the conventional hybrid capacitor.

符号の説明Explanation of symbols

1,101 蓄電素子
2,102 正極
3,103 負極
4,104 セパレータ
5,105 集電体
6,106 電解液
7 融着接合部
8,108 リチウム金属板
DESCRIPTION OF SYMBOLS 1,101 Electric storage element 2,102 Positive electrode 3,103 Negative electrode 4,104 Separator 5,105 Current collector 6,106 Electrolyte 7 Fusion joint part 8,108 Lithium metal plate

Claims (1)

セパレータを介して分極性電極からなる正極と、リチウム金属と接触させてリチウムイオンを予めドープした電極からなる負極とを対向させて基本セルを構成し、前記基本セルとリチウム金属板を積層し、電解液としてリチウム塩を含有する非水系の溶液を用いた蓄電デバイスにおいて、前記リチウム金属板は矩形状であり、前記リチウム金属を担持した前記リチウム金属板の両表面を他の2枚のセパレータで挟み込むとともに、前記他の2枚のセパレータは前記リチウム金属板の4辺の外周部に形成した融着接合部によって接合され、前記他の2枚のセパレータによって前記リチウム金属板が封止されたことを特徴とする蓄電デバイス。 A basic cell is configured by facing a positive electrode made of a polarizable electrode through a separator and a negative electrode made of an electrode pre-doped with lithium ions in contact with lithium metal, and the basic cell and the lithium metal plate are laminated, In an electricity storage device using a non-aqueous solution containing a lithium salt as an electrolytic solution, the lithium metal plate is rectangular, and both surfaces of the lithium metal plate carrying the lithium metal are separated by two other separators. In addition, the other two separators were joined by the fusion joints formed on the outer periphery of the four sides of the lithium metal plate, and the lithium metal plate was sealed by the other two separators. An electricity storage device characterized by the above.
JP2007218643A 2007-08-24 2007-08-24 Power storage device Expired - Fee Related JP4931239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007218643A JP4931239B2 (en) 2007-08-24 2007-08-24 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007218643A JP4931239B2 (en) 2007-08-24 2007-08-24 Power storage device

Publications (2)

Publication Number Publication Date
JP2009054712A JP2009054712A (en) 2009-03-12
JP4931239B2 true JP4931239B2 (en) 2012-05-16

Family

ID=40505548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007218643A Expired - Fee Related JP4931239B2 (en) 2007-08-24 2007-08-24 Power storage device

Country Status (1)

Country Link
JP (1) JP4931239B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188141A (en) * 2008-02-06 2009-08-20 Fuji Heavy Ind Ltd Electric power storage device
JP5145279B2 (en) * 2009-03-26 2013-02-13 富士重工業株式会社 Electric storage device and manufacturing method thereof
JP2010287641A (en) * 2009-06-10 2010-12-24 Nec Tokin Corp Energy storage device
KR101138474B1 (en) 2010-08-31 2012-04-25 삼성전기주식회사 Method of manufacturing lithium ion capaciotor and lithium ion capaciotor manufactured using the same
JP5828633B2 (en) * 2010-12-20 2015-12-09 Jsr株式会社 Lithium ion capacitor
JP6962070B2 (en) * 2017-08-29 2021-11-05 スズキ株式会社 Air battery and negative electrode complex used for it

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797260B2 (en) * 2001-03-13 2011-10-19 Tdk株式会社 Electrochemical devices
JP2008130734A (en) * 2006-11-20 2008-06-05 Hitachi Aic Inc Electric double layer capacitor

Also Published As

Publication number Publication date
JP2009054712A (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4753369B2 (en) Stacked electrochemical device
CN101814372B (en) Electric storage device, and production method thereof
JP5357276B2 (en) Power storage device cell, and manufacturing method and storage method thereof
JP2012169576A (en) Electrochemical device
JP4616005B2 (en) Power storage device
JP4386334B2 (en) Film power storage device
JPWO2004059672A1 (en) Power storage device and method for manufacturing power storage device
JP4931239B2 (en) Power storage device
JP2012138408A (en) Electrochemical device and manufacturing method thereof
KR20160114587A (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP5096851B2 (en) Method for manufacturing power storage device
JP2010161249A (en) Lithium ion capacitor
JP2012248556A (en) Electrochemical device and method for manufacturing the same
JP4986241B2 (en) Electrochemical device and manufacturing method thereof
JP2007287724A (en) Laminated electrochemical device
JP2004335889A (en) Electrochemical capacitor
JP2007201248A (en) Laminated electrochemical device
JP2011159642A (en) Electrochemical device
JP5158839B2 (en) Non-aqueous electrolyte electrochemical device
JP2011258798A (en) Electrochemical device
JP2002270470A (en) Electric double-layered capacitor
JP2004253562A (en) Electrochemical capacitor
JP2009088279A (en) Electrochemical device
JP3187172U (en) CNT / nonwoven composite capacitors
JP2010003471A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4931239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees