JP5228531B2 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
JP5228531B2
JP5228531B2 JP2008046610A JP2008046610A JP5228531B2 JP 5228531 B2 JP5228531 B2 JP 5228531B2 JP 2008046610 A JP2008046610 A JP 2008046610A JP 2008046610 A JP2008046610 A JP 2008046610A JP 5228531 B2 JP5228531 B2 JP 5228531B2
Authority
JP
Japan
Prior art keywords
storage device
positive electrode
activated carbon
negative electrode
nitroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008046610A
Other languages
Japanese (ja)
Other versions
JP2009205918A (en
Inventor
謙太郎 中原
繁之 岩佐
貞彦 三浦
森岡  由紀子
雅博 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008046610A priority Critical patent/JP5228531B2/en
Publication of JP2009205918A publication Critical patent/JP2009205918A/en
Application granted granted Critical
Publication of JP5228531B2 publication Critical patent/JP5228531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power storage device capable of realizing at the same time an energy density and high output characteristics, low environmental load, and high safety. <P>SOLUTION: The power storage device consists of a positive electrode 1, a negative electrode 2, and a separator 4 including an electrolyte to separate these electrodes. The positive electrode 1 includes a nitroxyl compound which has a nitroxyl cation partial structure as shown in formula (1) in oxidation state and has a nitroxyl radical partial structure as shown in a formula (2) in reduction state, and an active carbon particle, and the negative electrode 2 includes a substance capable of carrying lithium ions reversibly, and the electrolyte is an aprotic organic solvent that includes lithium salt. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、正極、負極およびこれらの間に配置されたセパレータを備える蓄電デバイスに関する。   The present invention relates to an electricity storage device including a positive electrode, a negative electrode, and a separator disposed therebetween.

地球温暖化や環境問題が深刻化する中、ガソリン車に代わるクリーンな自動車として、電気自動車またはハイブリッド電気自動車の開発が盛んに行われている。このような用途に用いられる蓄電デバイスには、高いエネルギー密度と高い出力特性を両立することが求められると同時に、10年を超える耐久性、高い安全性などが要求される。   As global warming and environmental problems become more serious, electric vehicles or hybrid electric vehicles are being actively developed as clean vehicles to replace gasoline vehicles. Power storage devices used for such applications are required to achieve both high energy density and high output characteristics, and at the same time, are required to have durability exceeding 10 years, high safety, and the like.

高いエネルギー密度と高い出力密度を両立するためには、動作電圧を高めることが有効に働く。よってこれらの蓄電デバイスには、リチウムイオンを可逆的に担持可能な物質を含む負極と、リチウム塩を含む非プロトン性有機溶媒からなる電解液が用いられる。   In order to achieve both high energy density and high power density, it is effective to increase the operating voltage. Therefore, for these electricity storage devices, an electrolytic solution including a negative electrode containing a substance capable of reversibly carrying lithium ions and an aprotic organic solvent containing a lithium salt is used.

これら蓄電デバイスに用いられる代表的な正極材料としては、遷移金属酸化物が挙げられる。この蓄電デバイスは、リチウムイオン二次電池と呼ばれ、非常に高いエネルギー密度を持つことが特徴である。近年では出力特性も向上しており、高いエネルギー密度との両立が実現されている。しかしながら熱暴走による安全性低下の問題や資源不足による価格高騰の問題、環境負荷の問題等が残っており、自動車向けに広く実用化されるには至っていない。   As a typical positive electrode material used for these electricity storage devices, a transition metal oxide can be given. This power storage device is called a lithium ion secondary battery and is characterized by a very high energy density. In recent years, output characteristics have also been improved, and compatibility with high energy density has been realized. However, there are still problems such as a decrease in safety due to thermal runaway, a price increase due to resource shortage, a problem of environmental burden, and the like, and it has not been put into practical use for automobiles.

遷移金属酸化物に変わるもうひとつの正極材料として活性炭が挙げられる。正極に活性炭を用いるこれらの蓄電デバイスは、リチウムイオンキャパシタと呼ばれている。電気二重層による静電的な機構で電荷を蓄えるため、エネルギー密度は小さいものの出力密度が高く、サイクル安定性も高いといった特徴がある。遷移金属酸化物のような、資源や安全性の問題もない。しかしエネルギー密度があまりにも低過ぎるため、負極との容量バランスを取るのが難しく、負極に対して化学的方法または電気化学的方法でリチウムイオンをプレドープさせる技術が必要となる。(例えば、特許文献1参照)   Another positive electrode material that can be used as a transition metal oxide is activated carbon. These power storage devices using activated carbon for the positive electrode are called lithium ion capacitors. Since charges are stored by an electrostatic mechanism using an electric double layer, the energy density is small but the output density is high and the cycle stability is also high. There are no resource and safety issues like transition metal oxides. However, since the energy density is too low, it is difficult to balance the capacity with the negative electrode, and a technique for pre-doping lithium ions to the negative electrode by a chemical method or an electrochemical method is required. (For example, see Patent Document 1)

近年、正極集電体および負極集電体それぞれに対し、表裏面に貫通する孔を備えるとこで、比較的容易にプレドープできる手法が提案され、リチウムイオンキャパシタの実用性が大きく高まった。これは、リチウムイオンが電極集電体に遮断されることなく、該貫通孔を通じて電極の表裏間を移動できるためである。(例えば、特許文献2参照)   In recent years, a method of pre-doping relatively easily has been proposed by providing a hole penetrating the front and back surfaces for each of the positive electrode current collector and the negative electrode current collector, and the practicality of lithium ion capacitors has greatly increased. This is because lithium ions can move between the front and back of the electrode through the through-hole without being blocked by the electrode current collector. (For example, see Patent Document 2)

さらにもうひとつの正極材料として、酸化状態にオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとるニトロキシル化合物が提案されている。この蓄電デバイスは、有機ラジカル二次電池と称されており、リチウムイオン二次電池とリチウムイオンキャパシタの中間に位置する性能を有している。(例えば特許文献3参照)   As another positive electrode material, a nitroxyl compound that has an oxoammonium cation partial structure in an oxidized state and a nitroxyl radical partial structure in a reduced state has been proposed. This power storage device is called an organic radical secondary battery, and has a performance located between a lithium ion secondary battery and a lithium ion capacitor. (For example, see Patent Document 3)

しかしこの有機ラジカル二次電池は、ニトロキシル化合物自体の電子伝導性に乏しいため、高い出力密度を達成するためには電極中に大量の導電付与剤を混合しなければならないという問題点がある。電極中に大量の導電付与剤を混合すればエネルギー密度が低下してしまうこととなり、結果として高いエネルギー密度と高い出力密度とを両立することは困難であった。
特開2002−185565号公報 特開平2−295795号公報 特開2002−304996号公報 特開2005−228705号公報
However, this organic radical secondary battery has a problem that since a nitroxyl compound itself has poor electronic conductivity, a large amount of a conductive agent must be mixed in the electrode in order to achieve a high output density. If a large amount of a conductivity-imparting agent is mixed in the electrode, the energy density is lowered. As a result, it is difficult to achieve both a high energy density and a high output density.
JP 2002-185565 A Japanese Patent Laid-Open No. 2-29595 JP 2002-304996 A JP 2005-228705 A

本発明は、リチウムイオン二次電池、リチウムイオンキャパシタ、有機ラジカル二次電池といったようなリチウム塩を溶解させた非プロトン性有機溶媒電解液を備えた蓄電デバイスにおいて、高エネルギー密度と高出力特性、低環境負荷、高い安全性を同時に実現することができる蓄電デバイスを提供することを課題としている。   The present invention provides an energy storage device including an aprotic organic solvent electrolyte in which a lithium salt is dissolved, such as a lithium ion secondary battery, a lithium ion capacitor, and an organic radical secondary battery. It is an object to provide an electricity storage device that can simultaneously realize low environmental load and high safety.

本発明は、正極、負極およびこれらの間に配置された電解質を含むセパレータからなる蓄電デバイスであって、当該正極が酸化状態において式(I)で示されるニトロキシルカチオン部分構造を有し、還元状態において式(II)で示されるニトロキシルラジカル部分構造を有するニトロキシル高分子化合物と、活性炭粒子とを含み、当該負極がリチウムイオンを可逆的に担持可能な物質を含み、当該電解質がリチウム塩を含む非プロトン性有機溶媒であることを特徴とする蓄電デバイス。

Figure 0005228531
また、本発明は、正極、負極およびこれらの間に配置された電解質を含むセパレータからなる蓄電デバイスであって、
前記正極が酸化状態において式(I)で示されるニトロキシルカチオン部分構造を有し、還元状態において式(II)で示されニトロキシルラジカル部分構造を有するニトロキシル化合物と、活性炭粒子とを含み、
前記負極がリチウムイオンを可逆的に担持可能な物質を含み、
前記電解質がリチウム塩を含む非プロトン性有機溶媒であり、
Figure 0005228531
前記ニトロキシル化合物が、酸化状態において下記式(1)で示される2,2,6,6−テトラメチルピペリジノキシルカチオン、式(2)で示される2,2,5,5−テトラメチルピロリジノキシルカチオン、および式(3)で示される2,2,5,5−テトラメチルピロリノキシルカチオンからなる群より選ばれる少なくとも一つの構造を有することを特徴とする蓄電デバイス。
Figure 0005228531
The present invention is an electricity storage device comprising a positive electrode, a negative electrode, and a separator including an electrolyte disposed therebetween, wherein the positive electrode has a nitroxyl cation partial structure represented by formula (I) in an oxidized state, and is reduced A nitroxyl polymer compound having a nitroxyl radical partial structure represented by formula (II) in the state and activated carbon particles, the negative electrode includes a substance capable of reversibly supporting lithium ions, and the electrolyte includes a lithium salt. An electricity storage device comprising an aprotic organic solvent.
Figure 0005228531
Further, the present invention is an electricity storage device comprising a positive electrode, a negative electrode, and a separator including an electrolyte disposed therebetween,
The positive electrode has a nitroxyl cation partial structure represented by formula (I) in an oxidized state, and a nitroxyl compound having a nitroxyl radical partial structure represented by formula (II) in a reduced state, and activated carbon particles,
The negative electrode includes a substance capable of reversibly supporting lithium ions,
The electrolyte is an aprotic organic solvent containing a lithium salt;
Figure 0005228531
In the oxidized state, the nitroxyl compound is a 2,2,6,6-tetramethylpiperidinoxyl cation represented by the following formula (1), a 2,2,5,5-tetramethylpyrrole represented by the formula (2) A power storage device having at least one structure selected from the group consisting of a dinoxyl cation and a 2,2,5,5-tetramethylpyrrolinoxyl cation represented by formula (3).
Figure 0005228531

本発明によれば、高エネルギー密度と高出力特性、低環境負荷、高い安全性を同時に実現した蓄電デバイスを提供することができる。高いエネルギー密度と出力密度を両立するためには、蓄電デバイスの動作電圧を高めることが有効である。そのため本発明における蓄電デバイスでは、リチウムイオンを可逆的に担持可能な物質を含む負極と、リチウム塩を含む非プロトン性有機溶媒からなる電解液を用いている。   ADVANTAGE OF THE INVENTION According to this invention, the electrical storage device which implement | achieved the high energy density and the high output characteristic, the low environmental load, and high safety | security simultaneously can be provided. In order to achieve both high energy density and power density, it is effective to increase the operating voltage of the electricity storage device. Therefore, in the electricity storage device of the present invention, an electrolytic solution including a negative electrode containing a substance capable of reversibly supporting lithium ions and an aprotic organic solvent containing a lithium salt is used.

さらに本発明における蓄電デバイスでは、安全性や環境負荷の低減を考慮して、正極材料にニトロキシル化合物を用いている。さらに出力密度を高めるために導電付与剤ではなく、活性炭を混合していることを特徴としている。これにより高エネルギー密度と高出力特性、低環境負荷、高い安全性を同時に実現した蓄電デバイスを提供することができる。   Furthermore, in the electricity storage device according to the present invention, a nitroxyl compound is used as the positive electrode material in consideration of safety and reduction of environmental load. Further, in order to increase the output density, not the conductivity imparting agent but activated carbon is mixed. As a result, it is possible to provide a power storage device that simultaneously achieves high energy density, high output characteristics, low environmental load, and high safety.

本発明の蓄電デバイスによれば、高エネルギー密度と高出力特性、低環境負荷、高い安全性を同時に実現することができる。   According to the electricity storage device of the present invention, high energy density, high output characteristics, low environmental load, and high safety can be realized at the same time.

以下、本実施形態の蓄電デバイスについて、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, the electrical storage device of this embodiment is demonstrated using drawing. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

本実施形態における蓄電デバイスについて説明する。図1は蓄電デバイスの断面図である。   The electricity storage device in this embodiment will be described. FIG. 1 is a cross-sectional view of an electricity storage device.

本実施形態における蓄電デバイスの基本構成は、ニトロキシル化合物と活性炭の両方を同時に含む正極1と、その正極1に接続された正極集電体1Aと、正極集電体1Aに接続されエネルギーをセル外部に取り出す正極リード1Bと、リチウムイオンを可逆的に担持可能な物質を含む負極2と、その負極2に接続された負極集電体2Aと、負極集電体2Aに接続されエネルギーをセル外部に取り出す負極リード2Bと、負極2をプレドープするためのリチウム供給源3と、リチウム供給源3に接続されたリチウム供給源集電体3Aと、正極1と負極2との間に介在し電子を伝導させずイオンのみを伝導させるセパレータ4と、これらを封止する外装体5とからなるものである。   The basic configuration of the electricity storage device in the present embodiment is that a positive electrode 1 containing both a nitroxyl compound and activated carbon, a positive electrode current collector 1A connected to the positive electrode 1, and a positive electrode current collector 1A connected to energy outside the cell. A positive electrode lead 1B to be taken out, a negative electrode 2 containing a substance capable of reversibly carrying lithium ions, a negative electrode current collector 2A connected to the negative electrode 2, and a negative electrode current collector 2A connected to the energy outside the cell A negative electrode lead 2B to be taken out, a lithium supply source 3 for pre-doping the negative electrode 2, a lithium supply source current collector 3A connected to the lithium supply source 3, and the positive electrode 1 and the negative electrode 2 are interposed between them to conduct electrons It consists of the separator 4 which conducts only ions without conducting, and the exterior body 5 which seals them.

しかし本実施形態における蓄電デバイスの形状は特に制限されない。円筒型や角型など、用途に応じて適宜選択することができる。電極の層数も、単層でも複数層でも良い。また複数層ある場合の重ね方は、積層型でも巻回型でも良い。   However, the shape of the electricity storage device in the present embodiment is not particularly limited. A cylindrical shape, a square shape, or the like can be appropriately selected depending on the application. The number of electrode layers may be a single layer or a plurality of layers. Further, when there are a plurality of layers, the stacking method or the winding method may be used.

本実施形態における正極1にはニトロキシル化合物と活性炭が同時に含まれている。本実施形態におけるニトロキシル化合物とは、還元状態において式(I)で表わされるニトロキシドラジカル、酸化状態において式(II)で表わされるオキソアンモニウム(ニトロキシドカチオン)を部分構造として有する化合物のことである。

Figure 0005228531
The positive electrode 1 in this embodiment contains a nitroxyl compound and activated carbon at the same time. The nitroxyl compound in the present embodiment is a compound having, as partial structures, a nitroxide radical represented by formula (I) in the reduced state and an oxoammonium (nitroxide cation) represented by formula (II) in the oxidized state.
Figure 0005228531

前記ニトロキシル化合物は、長期安定性の観点から、酸化状態において、式(1)で示される2,2,6,6−テトラメチルピペリジノキシルカチオン、式(2)で示される2,2,5,5−テトラメチルピロリジノキシルカチオン、および式(3)で示される2,2,5,5−テトラメチルピロリノキシルカチオンからなる群より選ばれる1つのニトロキシル化合物であることが好ましい。

Figure 0005228531
From the viewpoint of long-term stability, the nitroxyl compound is 2,2,6,6-tetramethylpiperidinoxyl cation represented by the formula (1) and 2,2,6 represented by the formula (2) in an oxidized state. It is preferably one nitroxyl compound selected from the group consisting of a 5,5-tetramethylpyrrolidinoxyl cation and a 2,2,5,5-tetramethylpyrrolinoxyl cation represented by the formula (3).
Figure 0005228531

正極1中におけるニトロキシル化合物の主要な機能は、蓄電に寄与する活物質としての役割である。従って、正極1中に含まれるニトロキシル化合物の割合を増やせば増やすほどエネルギー密度が向上する。しかし、ニトロキシル化合物自体は導電性に乏しいため、正極1中に含まれるニトロキシル化合物の割合を増やせば増やすほど出力密度は低下してしまう。正極1中に含まれるニトロキシル化合物の割合は特に制限されない。正極1中に1重量%以上であれば効果があり、10重量%以上であれば十分に効果が見られる。さらに、できるだけ大きな蓄電作用を得たい場合には、30重量%以上、特に50重量%以上であることが好ましい。   The main function of the nitroxyl compound in the positive electrode 1 is a role as an active material contributing to power storage. Therefore, as the proportion of the nitroxyl compound contained in the positive electrode 1 is increased, the energy density is improved. However, since the nitroxyl compound itself has poor conductivity, the output density decreases as the ratio of the nitroxyl compound contained in the positive electrode 1 increases. The ratio of the nitroxyl compound contained in the positive electrode 1 is not particularly limited. If it is 1% by weight or more in the positive electrode 1, it is effective, and if it is 10% by weight or more, a sufficient effect is seen. Furthermore, when it is desired to obtain a power storage effect as large as possible, it is preferably 30% by weight or more, particularly 50% by weight or more.

本実施形態における活性炭とは、吸着性の強い、大部分が炭素質からなる非晶質の炭のことである。通常フェノール樹脂、石油ピッチ、石油コークス、ヤシガラ、又は石炭系コークスなどの原料を、窒素ガス、アルゴンガスなどの不活性ガス雰囲気下で焼成炭化し、得られた材料を水蒸気もしくはアルカリ活性化剤を用いて賦活処理する方法で得られる。本実施形態における活性炭の原料については特に制限されないが、十分な比表面積を得るためにフェノール樹脂系活性炭、石油ピッチ系活性炭、石油コークス系活性炭、又は石炭コークス系活性炭であることが好ましい。   The activated carbon in the present embodiment is amorphous charcoal having a strong adsorptivity and mostly composed of carbonaceous matter. Usually, raw materials such as phenol resin, petroleum pitch, petroleum coke, coconut husk, or coal-based coke are calcined in an inert gas atmosphere such as nitrogen gas or argon gas, and the resulting material is steamed or alkali activated. It is obtained by the method of using and activating. Although it does not restrict | limit especially about the raw material of the activated carbon in this embodiment, In order to obtain sufficient specific surface area, it is preferable that they are a phenol resin type activated carbon, a petroleum pitch type activated carbon, a petroleum coke type activated carbon, or a coal coke type activated carbon.

本実施形態における活性炭の粒径は特に制限されないが、通常、粉砕され微粉化されたものを用いる。例えば、その50%体積累積径(D50ともいう)が2μm以上であり、好ましくは2〜50μm、特に2〜20μmが最も好ましい。また、本実施形態における活性炭の平均細孔径は10nm以下であることが好ましい。
本実施形態において、平均粒径は、レーザー回折式粒度分布測定装置で測定した粒度分布のD50値である。
The particle diameter of the activated carbon in the present embodiment is not particularly limited, but usually, pulverized and pulverized powder is used. For example, the 50% volume cumulative diameter (also referred to as D50) is 2 μm or more, preferably 2 to 50 μm, and most preferably 2 to 20 μm. Moreover, it is preferable that the average pore diameter of the activated carbon in this embodiment is 10 nm or less.
In the present embodiment, the average particle size is D 50 value of the particle size distribution was measured with a laser diffraction type particle size distribution measuring apparatus.

本実施形態における活性炭が、正極活物質(ニトロキシルラジカル)の導電補助剤として用いられる場合は、副反応を抑制して十分な導電性を確保するために表面積の小さな活性炭(500〜1000m/g)を用いることが多い。しかしながら、本発明では表面積の大きな活性炭(1000m/g以上)を用いることで、蓄電デバイスの容量が向上する効果が得られることを見出した。その一方で、表面積が十分に大きくない(1500m/g以下)場合は、容量向上の効果が比較的小さいことをも見出した。 When the activated carbon in the present embodiment is used as a conductive auxiliary agent for the positive electrode active material (nitroxyl radical), activated carbon having a small surface area (500 to 1000 m 2 // in order to suppress side reactions and ensure sufficient conductivity. g) is often used. However, the present invention has found that the use of activated carbon having a large surface area (1000 m 2 / g or more) can improve the capacity of the electricity storage device. On the other hand, when the surface area is not sufficiently large (1500 m 2 / g or less), it has also been found that the effect of improving the capacity is relatively small.

また表面積が大き過ぎる(2500m/g)場合は、副反応が生じて性能が劣化したり、導電性が不十分で出力特性が低下することがある。 On the other hand, if the surface area is too large (2500 m 2 / g), side reactions may occur and the performance may be deteriorated, or the output characteristics may be deteriorated due to insufficient conductivity.

そのため、本実施形態における活性炭の比表面積は、1000m/g以上、好ましくは1000〜3000m/g、さらに好ましくは1500〜2500m/gである。 Therefore, the specific surface area of the activated carbon in the present embodiment, 1000 m 2 / g or more, preferably 1000~3000m 2 / g, more preferably 1500~2500m 2 / g.

正極1中における活性炭の主要な機能としては、容量に寄与する活物質としての役割とニトロキシル化合物に対して電子を供給する導電補助剤としての役割である。材料の種類にもよるが、活性炭の容量は、ニトロキシル化合物の容量に比べて小さい。2.5〜4.2Vの電圧範囲であれば、ニトロキシル化合物の1/2〜1/10程度である。従ってニトロキシル化合物に対する活性炭の割合を増やせば増やすほどエネルギー密度が低下するが、出力密度は向上する。   The main functions of the activated carbon in the positive electrode 1 are a role as an active material that contributes to capacity and a role as a conductive auxiliary agent that supplies electrons to the nitroxyl compound. Depending on the type of material, the capacity of the activated carbon is smaller than the capacity of the nitroxyl compound. In the voltage range of 2.5 to 4.2 V, it is about 1/2 to 1/10 of the nitroxyl compound. Therefore, as the ratio of the activated carbon to the nitroxyl compound is increased, the energy density is decreased, but the output density is improved.

正極1中に含まれる活性炭の割合は、正極1を100重量%とした場合、十分な容量を得るために10重量%以上であることが好ましい。一方、十分な量のニトロキシルラジカルを含有し内部抵抗を低下させるためには90重量%以下であることが好ましく、75重量%以下であることがより好ましい。   The proportion of the activated carbon contained in the positive electrode 1 is preferably 10% by weight or more in order to obtain a sufficient capacity when the positive electrode 1 is 100% by weight. On the other hand, in order to contain a sufficient amount of nitroxyl radicals and reduce the internal resistance, it is preferably 90% by weight or less, and more preferably 75% by weight or less.

したがって、本実施形態における正極1中に含まれる活性炭は、ニトロキシルラジカルの導電補助剤として働くと同時に、それ自体も活物質として動作する観点から、正極1中に10〜90重量%の範囲にあることが好ましく、10〜75重量%がより好ましい。   Therefore, the activated carbon contained in the positive electrode 1 in the present embodiment acts as a conductive auxiliary agent for the nitroxyl radical, and at the same time, from the viewpoint of operating as an active material, it is in the range of 10 to 90% by weight in the positive electrode 1. It is preferably 10 to 75% by weight.

本実施形態における正極1中には、さらに導電補助剤、バインダー等を含んでもよい。導電補助剤としては、カーボンブラック、アセチレンブラック、炭素繊維等の炭素材料、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子が挙げられる。また、バインダーとしてポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等の樹脂を挙げることができる。   The positive electrode 1 in this embodiment may further contain a conductive additive, a binder, and the like. Examples of the conductive auxiliary agent include carbon materials such as carbon black, acetylene black, and carbon fiber, and conductive polymers such as polyacetylene, polyphenylene, polyaniline, and polypyrrole. Examples of the binder include resins such as polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide.

正極集電体1Aの材質としては、アルミニウム、アルミニウム合金、ステンレス等を挙げることができる。形状としては、箔や平板、メッシュ状のものを用いることができる。特に負極2に対してリチウイオンをプレドープさせる場合には、表裏面を貫通する孔を備えたものが好ましく、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。   Examples of the material of the positive electrode current collector 1A include aluminum, an aluminum alloy, and stainless steel. As the shape, a foil, a flat plate, or a mesh can be used. In particular, when pre-doping lithium ions with respect to the negative electrode 2, those having holes penetrating the front and back surfaces are preferable, for example, expanded metal, punching metal, metal net, foam, or porous with through holes provided by etching. A foil etc. can be mentioned.

正極集電体1Aの貫通孔の形態、数等は、後述する電解液中のリチウムイオンが正極集電体1Aに遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように、適宜設定することができる。正極リード1Bの材質としては、アルミニウム、アルミニウム合金、ステンレス等を挙げることができる。形状としては、箔や平板、メッシュ状のものを用いることができる。   The shape, number, etc. of the through holes of the positive electrode current collector 1A are such that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the positive electrode current collector 1A. Therefore, it can be set appropriately so as to be easily closed. Examples of the material of the positive electrode lead 1B include aluminum, an aluminum alloy, and stainless steel. As the shape, a foil, a flat plate, or a mesh can be used.

本実施形態における負極2には、リチウムイオンを可逆的に担持可能な物質が含まれる。具体的にはグラファイト、ハードカーボン、活性炭等の炭素材料類、ポリアセン、ポリアセチレン、ポリフェニレン、ポリアニリン、ポリピロール等の導電性高分子類、リチウムアルミニウム合金等のリチウム合金類、チタン酸リチウム等のリチウム酸化物類、およびリチウム金属等が挙げられる。また本実施形態における負極2には、導電性付与剤やバインダーを含んでも良い。   The negative electrode 2 in the present embodiment includes a substance capable of reversibly supporting lithium ions. Specifically, carbon materials such as graphite, hard carbon and activated carbon, conductive polymers such as polyacene, polyacetylene, polyphenylene, polyaniline and polypyrrole, lithium alloys such as lithium aluminum alloy, lithium oxides such as lithium titanate And lithium metal. Further, the negative electrode 2 in the present embodiment may include a conductivity imparting agent or a binder.

導電付与剤としては、例えばカーボンブラック、アセチレンブラック、炭素繊維等の炭素材料、金属粉などが挙げられる。バインダーとしては、例えばポリフッ化ビニリデン、ポリテトラフルオロエチレン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド等が挙げられる。   Examples of the conductivity-imparting agent include carbon materials such as carbon black, acetylene black, and carbon fiber, and metal powder. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene copolymer rubber, polypropylene, polyethylene, and polyimide.

負極集電体2Aの材質としては、銅、ニッケル、ステンレス等を挙げることができる。形状としては、箔や平板、メッシュ状のものを用いることができる。特に負極2に対してリチウイオンをプレドープさせる場合には、表裏面を貫通する孔を備えたものが好ましく、例えばエキスパンドメタル、パンチングメタル、金属網、発泡体、あるいはエッチングにより貫通孔を付与した多孔質箔等を挙げることができる。   Examples of the material of the negative electrode current collector 2A include copper, nickel, and stainless steel. As the shape, a foil, a flat plate, or a mesh can be used. In particular, when pre-doping lithium ions with respect to the negative electrode 2, those having holes penetrating the front and back surfaces are preferable, for example, expanded metal, punching metal, metal net, foam, or porous with through holes provided by etching. A foil etc. can be mentioned.

負極集電体2Aの貫通孔の形態、数等は、後述する電解液中のリチウムイオンが負極集電体2Aに遮断されることなく電極の表裏間を移動できるように、また、導電性材料によって閉塞し易いように、適宜設定することができる。負極リード2Bの材質としては、銅、ニッケル、ステンレス等を挙げることができる。形状としては、箔や平板、メッシュ状のものを用いることができる。   The shape and number of through-holes of the negative electrode current collector 2A are such that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the negative electrode current collector 2A. Therefore, it can be set appropriately so as to be easily closed. Examples of the material of the negative electrode lead 2B include copper, nickel, and stainless steel. As the shape, a foil, a flat plate, or a mesh can be used.

本実施形態におけるリチウム供給源3は、負極2に対してリチウムイオンをプレドープするための供給源としての役割を果たす。材料としてはリチウム金属や、リチウムアルミニウム合金等が挙げられるが、特にリチウムであることが好ましい。正極1中に含まれるニトロキシル化合物の割合が高く、正極1の容量が十分に大きい場合は、特にプレドープ処理する必要がないため、リチウム供給源3およびリチウム供給源集電体3Aを取り除いても構わない。リチウム供給源集電体3Aの材質としては、銅、ニッケル、ステンレス等を挙げることができる。形状としては、箔や平板、メッシュ状のものを用いることができる。   The lithium supply source 3 in the present embodiment serves as a supply source for pre-doping lithium ions to the negative electrode 2. Examples of the material include lithium metal and lithium aluminum alloy, and lithium is particularly preferable. When the ratio of the nitroxyl compound contained in the positive electrode 1 is high and the capacity of the positive electrode 1 is sufficiently large, there is no need for pre-doping, so the lithium supply source 3 and the lithium supply source current collector 3A may be removed. Absent. Examples of the material of the lithium supply source current collector 3A include copper, nickel, and stainless steel. As the shape, a foil, a flat plate, or a mesh can be used.

本実施形態におけるセパレータ4は、正極1と負極2との間に介在し、電子を伝導させずイオンのみを伝導させる役割を果たす。本実施形態におけるセパレータ4については、特に限定されるものではなく、従来公知のものを用いることができる。例えばポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルム等が挙げられる。また本実施形態におけるセパレータ4には、リチウム塩を含む非プロトン性有機溶媒電解質が保持されイオンの伝導を担っている。リチウム塩を含む非プロトン性有機溶媒電解質としては、室温で10−5〜10−1S/cmのイオン伝導性を有していることが望ましい。 The separator 4 in this embodiment is interposed between the positive electrode 1 and the negative electrode 2 and plays a role of conducting only ions without conducting electrons. The separator 4 in the present embodiment is not particularly limited, and a conventionally known separator can be used. Examples thereof include polyolefins such as polypropylene and polyethylene, and porous films such as fluororesin. In the present embodiment, the separator 4 holds an aprotic organic solvent electrolyte containing a lithium salt and conducts ions. The aprotic organic solvent electrolyte containing a lithium salt desirably has an ionic conductivity of 10 −5 to 10 −1 S / cm at room temperature.

本実施形態におけるリチウム塩としては、例えばLiPF、LiClO、LiBF、LiSbF、LiN(CFSO、LiN(C25SO、LiB(C等が挙げられる。また本実施形態における非プロトン性有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のラクトン類、エトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、メチルテトラヒドロフラン等の環状エーテル類、1−エチル−3−メチルイミダゾリウムTFSI、N−ブチル−N−メチルピロリジニウムTFSIなどのイオン液体類等が挙げられる。これらの非プロトン性有機溶媒は、一種を単独で用いても二種以上を混合しても良い。非プロトン性有機溶媒に対するリチウム塩の濃度としては特に制限されないが、十分なイオン伝導率を示すという観点から、0.4〜1.5mol/Lの範囲にあることが望ましい。 Examples of the lithium salt in the present embodiment include LiPF 6 , LiClO 4 , LiBF 4 , LiSbF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB (C 2 O 4 ) 2. Etc. In addition, examples of the aprotic organic solvent in this embodiment include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), and diethyl carbonate. (DEC), chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, lactones such as γ-butyrolactone, Chain ethers such as ethoxyethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and methyltetrahydrofuran, 1-ethyl-3-methylimidazolium TFSI, N-butyl-N-methyl Ionic liquids and the like, such as pyrrolidinium TFSI and the like. These aprotic organic solvents may be used individually by 1 type, or may mix 2 or more types. Although it does not restrict | limit especially as a density | concentration of the lithium salt with respect to an aprotic organic solvent, From a viewpoint of showing sufficient ionic conductivity, it is desirable to exist in the range of 0.4-1.5 mol / L.

本実施形態における外装体5の材質は特に限定されず、従来公知の材料を用いるとこができる。例えば鉄、アルミニウム等の金属材料、プラスチック材料、ガラス材料あるいはそれらを積層した複合材料等を使用できる。しかし蓄電デバイスの小型化という観点から、アルミニウムとナイロン、ポリプロピレンなどの高分子フィルムとを積層させたラミネートフィルム外装体5であることが好ましい。   The material of the exterior body 5 in the present embodiment is not particularly limited, and a conventionally known material can be used. For example, a metal material such as iron or aluminum, a plastic material, a glass material, or a composite material obtained by laminating them can be used. However, from the viewpoint of miniaturization of the electricity storage device, the laminate film outer package 5 in which aluminum and a polymer film such as nylon or polypropylene are laminated is preferable.

(蓄電デバイスの作製例)
次に、本実施形態における蓄電デバイスの作製例について説明する。
(Example of manufacturing an electricity storage device)
Next, an example of manufacturing the electricity storage device in this embodiment will be described.

(ニトロキシル化合物の合成例)
還流管を付けた100mlナスフラスコ中に、2,2,6,6−テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN質量比=50/1)を加え、アルゴン雰囲気下75〜80℃で攪拌した。6時間反応後、室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)18g(収率90%)を得た。次に、得られたポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm−クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温にて攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm−クロロ安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させて、下記化学式(1)で示されるポリ(2,2,6,6−テトラメチルピペリジノキシラジカルメタクリレート)(PTMA)7.2gを得た(収率68.2%、茶褐色粉末)。得られた高分子の構造はIRで確認した。また、GPCにより測定した結果、重量平均分子量Mw=89000、分散度Mw/Mn=3.30という値が得られた。
(Synthesis example of nitroxyl compound)
In a 100 ml eggplant flask equipped with a reflux tube, 20 g (0.089 mol) of 2,2,6,6-tetramethylpiperidine methacrylate monomer was placed and dissolved in 80 ml of dry tetrahydrofuran. Thereto, 0.29 g (0.00187 mol) (monomer / AIBN mass ratio = 50/1) of azobisisobutyronitrile (AIBN) was added, and the mixture was stirred at 75 to 80 ° C. in an argon atmosphere. After reacting for 6 hours, it was allowed to cool to room temperature. The polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain 18 g (yield 90%) of poly (2,2,6,6-tetramethylpiperidine methacrylate). Next, 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry-treated dichloromethane. To this, 100 ml of a dichloromethane solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature. After further stirring for 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid was pulverized, and the resulting powder was washed with diethyl carbonate (DEC), dried under reduced pressure, and poly (2,2,6,6-tetramethylpiperidin represented by the following chemical formula (1). Noxy radical methacrylate) (PTMA) (7.2 g) was obtained (yield 68.2%, brown powder). The structure of the obtained polymer was confirmed by IR. Moreover, as a result of measuring by GPC, the value of weight average molecular weight Mw = 89000 and dispersion degree Mw / Mn = 3.30 was obtained.

Figure 0005228531
Figure 0005228531

(正極1の作製例)
フェノール樹脂を700℃にて2時間炭化処理し、次いで、800℃で3時間水蒸気賦活することで、比表面積2000m/gの活性炭を得た。当該活性炭1200mgと、微粉化した前記ニトロキシル化合物300mg、カーボンブラック1200mg、カルボキシメチルセルロース240mg、テフロン(R)微粉末60mg、水24gを良く混合し、正極1のスラリーを作製した。
(Preparation example of positive electrode 1)
The phenol resin was carbonized at 700 ° C. for 2 hours, and then activated by steam at 800 ° C. for 3 hours to obtain activated carbon having a specific surface area of 2000 m 2 / g. The activated carbon (1200 mg), the finely divided nitroxyl compound (300 mg), carbon black (1200 mg), carboxymethylcellulose (240 mg), Teflon (R) fine powder (60 mg), and water (24 g) were mixed well to prepare a slurry of the positive electrode 1.

厚み38ミクロンのエキスパンドメタルアルミニウム集電体にカーボン系導電塗料をコーティングし、乾燥することにより正極用集電体を得た。カーボン系導電塗料により、貫通孔はほぼ閉塞された。上記正極1のスラリーを当該正極集電体1A上に塗布し、水を十分に気化させた後、真空乾燥にて80℃で一晩保管し正極1を作製した。集電体を含む正極1全体の厚さは140ミクロンであった。   A 38-micron thick expanded metal aluminum current collector was coated with a carbon conductive paint and dried to obtain a positive electrode current collector. The through hole was almost blocked by the carbon-based conductive paint. The slurry of the positive electrode 1 was applied on the positive electrode current collector 1A and water was sufficiently vaporized, and then stored at 80 ° C. overnight by vacuum drying to produce the positive electrode 1. The total thickness of the positive electrode 1 including the current collector was 140 microns.

(負極2の作製例)
グラファイト粉末(粒径6ミクロン)13.5gと、ポリフッ化ビニリデン1.35g、カーボンブラック0.15g、N−メチルピロリドン溶媒30gを良く混合し、負極スラリーを作製した。カーボン系導電塗料でコートされた厚さ32μmのエキスパンドメタル銅箔両面に負極のスラリーを塗布し、真空乾燥させることにより負極2を作製した。集電体を含む負極2全体の厚みは90ミクロンであった。
(Example of production of negative electrode 2)
13.5 g of graphite powder (particle size 6 microns), 1.35 g of polyvinylidene fluoride, 0.15 g of carbon black, and 30 g of N-methylpyrrolidone solvent were mixed well to prepare a negative electrode slurry. A negative electrode slurry was applied to both surfaces of an expanded metal copper foil having a thickness of 32 μm coated with a carbon-based conductive paint and vacuum-dried to prepare negative electrode 2. The total thickness of the negative electrode 2 including the current collector was 90 microns.

(蓄電デバイスの作製例)
露点−60℃以下のドライルーム中において、正極1と負極2とをセパレータ4を介して順に重ねあわせ、電極積層体を作製した。積層体の最上部には、リチウム供給源3となるリチウム金属張り合わせ銅箔を挿入した。正極集電体1Aであるアルミ箔および正極リード1Bを超音波溶接し、さらに同様に負極集電体2Aである銅箔、リチウム供給源集電体3Aである銅箔、および負極リード2Bを溶接した。それらを厚み115ミクロンのアルミラミネートフィルムで覆い、リード部を含む3辺を先に熱融着した。次に、1mol/LのLiN(CSOを含む、EC/DEC=3/7の混合電解液をセル中に挿入し、電極中に良く含浸させた。最終的に減圧下にて最後の4辺目を熱融着し、蓄電デバイスを作製した。
(Example of electrical storage device production)
In a dry room having a dew point of −60 ° C. or lower, the positive electrode 1 and the negative electrode 2 were sequentially stacked with the separator 4 interposed therebetween to prepare an electrode laminate. A lithium metal-laminated copper foil serving as the lithium supply source 3 was inserted into the uppermost part of the laminate. The aluminum foil as the positive electrode current collector 1A and the positive electrode lead 1B are ultrasonically welded, and the copper foil as the negative electrode current collector 2A, the copper foil as the lithium source current collector 3A, and the negative electrode lead 2B are similarly welded. did. These were covered with an aluminum laminate film having a thickness of 115 microns, and the three sides including the lead portions were heat-sealed first. Next, a mixed electrolyte solution of EC / DEC = 3/7 containing 1 mol / L LiN (C 2 F 5 SO 2 ) 2 was inserted into the cell, and the electrode was well impregnated. Finally, the last four sides were thermally fused under reduced pressure to produce an electricity storage device.

<実施例1>
ニトロキシル化合物(PTMA)10wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)40wt%、導電付与剤40wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は55mAh、10mA/cmで放電したときの2秒後の電圧は3.40Vであった。
なお、活性炭の比表面積は、ガス吸着法により吸脱着等温線を測定し、BET法により求めた。
<Example 1>
A positive electrode 1 was prepared with a mixing ratio of 10 wt% of a nitroxyl compound (PTMA), 40 wt% of activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g), 40 wt% of a conductivity imparting agent, and 10 wt% of a binder (cellulose, Teflon). Therefore, a lithium storage source 3 was inserted to produce an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the initial capacity of the cell was 3.40 V after 2 seconds when discharged at 55 mAh and 10 mA / cm 2 .
In addition, the specific surface area of activated carbon measured the adsorption / desorption isotherm by the gas adsorption method, and calculated | required by BET method.

<実施例2>
ニトロキシル化合物(PTMA)10wt%、活性炭(ヤシガラ原料,比表面積800m/g)40wt%、導電付与剤40wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は38mAh、10mA/cmで放電したときの2秒後の電圧は3.43Vであった。
<Example 2>
For the pre-doping, the positive electrode 1 is prepared with a mixing ratio of 10 wt% of a nitroxyl compound (PTMA), 40 wt% of activated carbon (coconut shell raw material, specific surface area 800 m 2 / g), 40 wt% of a conductivity imparting agent, and 10 wt% of a binder (cellulose, Teflon). The lithium supply source 3 was inserted to produce an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the initial capacity of the cell was 3.43 V after 2 seconds when discharged at 38 mAh and 10 mA / cm 2 .

<実施例3>
ニトロキシル化合物(PTMA)10wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)75wt%、導電付与剤5wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は79mAh、10mA/cmで放電したときの2秒後の電圧は3.36Vであった。
<Example 3>
The positive electrode 1 was prepared by mixing a nitroxyl compound (PTMA) 10 wt%, activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g) 75 wt%, a conductivity imparting agent 5 wt%, and a binder (cellulose, Teflon) 10 wt%. Therefore, a lithium storage source 3 was inserted to produce an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 79 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.36 V.

<実施例4>
ニトロキシル化合物(PTMA)30wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)30wt%、導電付与剤30wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は118mAh、10mA/cmで放電したときの2秒後の電圧は3.32Vであった。
<Example 4>
The positive electrode 1 was prepared by mixing a nitroxyl compound (PTMA) 30 wt%, activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g) 30 wt%, a conductivity imparting agent 30 wt%, and a binder (cellulose, Teflon) 10 wt%. Therefore, a lithium storage source 3 was inserted to produce an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 118 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.32 V.

<実施例5>
ニトロキシル化合物(PTMA)50wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)30wt%、導電付与剤10wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は188mAh、10mA/cmで放電したときの2秒後の電圧は3.26Vであった。
<Example 5>
The positive electrode 1 was prepared by mixing a nitroxyl compound (PTMA) 50 wt%, activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g) 30 wt%, a conductivity imparting agent 10 wt%, and a binder (cellulose, Teflon) 10 wt%. Therefore, a lithium storage source 3 was inserted to produce an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the initial capacity of the cell was 188 mAh, 10 mA / cm 2 , and the voltage after 2 seconds was 3.26V.

<実施例6>
ニトロキシル化合物(PTMA)50wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)30wt%、導電付与剤10wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入しないで蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は157mAh、10mA/cmで放電したときの2秒後の電圧は3.19Vであった。
<Example 6>
The positive electrode 1 was prepared by mixing a nitroxyl compound (PTMA) 50 wt%, activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g) 30 wt%, a conductivity imparting agent 10 wt%, and a binder (cellulose, Teflon) 10 wt%. Therefore, an electricity storage device was produced without inserting the lithium supply source 3 for the purpose. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 157 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.19 V.

<実施例7>
ニトロキシル化合物(PTMA)70wt%、活性炭(フェノール樹脂原料,比表面積2000m/g)15wt%、導電付与剤10wt%、バインダ(セルロース,テフロン)5wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入しないで蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は192mAh、10mA/cmで放電したときの2秒後の電圧は3.08Vであった。
<Example 7>
The positive electrode 1 was prepared with a mixing ratio of 70% by weight of a nitroxyl compound (PTMA), 15% by weight of activated carbon (phenol resin raw material, specific surface area 2000 m 2 / g), 10% by weight of a conductivity imparting agent, and 5% by weight of a binder (cellulose, Teflon). Therefore, an electricity storage device was produced without inserting the lithium supply source 3 for the purpose. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 192 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.08 V.

<比較例1>
ニトロキシル化合物(PTMA)10wt%、導電付与剤80wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は27mAh、10mA/cmで放電したときの2秒後の電圧は3.41Vであった。
<Comparative Example 1>
A positive electrode 1 was prepared at a mixing ratio of 10 wt% of a nitroxyl compound (PTMA), 80 wt% of a conductivity imparting agent, and 10 wt% of a binder (cellulose, Teflon), and a lithium supply source 3 for pre-doping was inserted to manufacture a power storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 27 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.41 V.

<比較例2>
ニトロキシル化合物(PTMA)30wt%、導電付与剤60wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は104mAh、10mA/cmで放電したときの2秒後の電圧は3.36Vであった。
<Comparative example 2>
A positive electrode 1 was prepared with a mixing ratio of 30 wt% of a nitroxyl compound (PTMA), 60 wt% of a conductivity imparting agent, and 10 wt% of a binder (cellulose, Teflon), and a lithium supply source 3 for pre-doping was inserted to prepare an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 104 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.36 V.

<比較例3>
ニトロキシル化合物(PTMA)50wt%、導電付与剤40wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入して蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は162mAh、10mA/cmで放電したときの2秒後の電圧は3.30Vであった。
<Comparative Example 3>
A positive electrode 1 was prepared at a mixing ratio of 50 wt% of a nitroxyl compound (PTMA), 40 wt% of a conductivity imparting agent, and 10 wt% of a binder (cellulose, Teflon), and a lithium supply source 3 for pre-doping was inserted to manufacture an electricity storage device. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the initial capacity of the cell was 162 mAh, 10 mA / cm 2 , and the voltage after 2 seconds was 3.30 V.

<比較例4>
ニトロキシル化合物(PTMA)50wt%、導電付与剤40wt%、バインダ(セルロース,テフロン)10wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入しないで蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は140mAh、10mA/cmで放電したときの2秒後の電圧は3.25Vであった。
<Comparative example 4>
A positive electrode 1 was prepared with a mixing ratio of 50 wt% of a nitroxyl compound (PTMA), 40 wt% of a conductivity-imparting agent, and 10 wt% of a binder (cellulose, Teflon), and an electricity storage device was manufactured without inserting a lithium supply source 3 for pre-doping. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the cell had an initial capacity of 140 mAh and 10 mA / cm 2 , and the voltage after 2 seconds was 3.25 V.

<比較例5>
ニトロキシル化合物(PTMA)70wt%、導電付与剤25wt%、バインダ(セルロース,テフロン)5wt%の混合比で正極1を作製し、プレドープのためのリチウム供給源3を挿入しないで蓄電デバイスを作製した。正極1の厚みは、1cmあたり10mgの重さになるように調整した。デバイス作製後コンディショニング処理を行い、50mAの電流で4Vまで充電を行った。その後同じく50mAの電流で放電を行い3Vまでの容量を測定した。同時にデバイス充電後、電極1cmあたり10mAに相当する電流で放電を行い2秒後の電圧値を測定した。その結果、セルの初期容量は184mAh、10mA/cmで放電したときの2秒後の電圧は3.14Vであった。
<Comparative Example 5>
A positive electrode 1 was prepared with a mixing ratio of 70 wt% of a nitroxyl compound (PTMA), 25 wt% of a conductivity imparting agent, and 5 wt% of a binder (cellulose, Teflon), and an electricity storage device was manufactured without inserting the lithium supply source 3 for pre-doping. The thickness of the positive electrode 1 was adjusted to a weight of 10 mg per 1 cm 2 . After device fabrication, a conditioning process was performed and the battery was charged to 4 V with a current of 50 mA. Thereafter, discharging was performed at a current of 50 mA, and the capacity up to 3 V was measured. At the same time, after charging the device, discharging was performed at a current corresponding to 10 mA per 1 cm 2 of the electrode, and the voltage value after 2 seconds was measured. As a result, the initial capacity of the cell was 184 mAh and 10 seconds after discharge at 10 mA / cm 2 , the voltage after 2 seconds was 3.14V.

実施例1および比較例1で作製した蓄電デバイスの充放電曲線を図2に示す。ニトロキシル化合物による平坦部の容量は変化しないが、活性炭を加えることにより全体の容量が増加していることが分かる。   The charge / discharge curves of the electricity storage devices produced in Example 1 and Comparative Example 1 are shown in FIG. Although the capacity of the flat part by the nitroxyl compound does not change, it can be seen that the total capacity is increased by adding activated carbon.

実施例1および比較例1で作製した蓄電デバイスを、それぞれ1、2、3、5、10mA/cmで放電した場合の2秒後のセル電圧を図3に示す。電流を大きくすると、蓄電デバイスの直流抵抗によりセル電圧が低下する傾向が確認できる。しかし実施例1と比較例1との間に大きな差異はなく、この組成の場合、導電付与剤の一部を活性炭で置き換えても直流抵抗が上昇しないことが確認できた。 FIG. 3 shows the cell voltage after 2 seconds when the electricity storage devices produced in Example 1 and Comparative Example 1 were discharged at 1, 2 , 3, 5, 10 mA / cm 2 , respectively. When the current is increased, the cell voltage tends to decrease due to the DC resistance of the electricity storage device. However, there was no significant difference between Example 1 and Comparative Example 1. In this composition, it was confirmed that the DC resistance did not increase even when a part of the conductivity-imparting agent was replaced with activated carbon.

下記表1に、各実施例および比較例で用いた正極1の組成と、リチウム供給源3の有無、得られたセルの初期容量と10mA/cmで放電した際の2秒後電圧についてまとめる。
実施例1と比較例1とを比較すると、導電付与剤の一部を活性炭に置き換えることで、直流抵抗の上昇なしに、蓄電デバイスの容量を増加できることが分かった。さらに実施例1と実施例2を比較すると、活性炭の比表面積が大きなフェノール樹脂原料の活性炭の方が、比表面積の小さなヤシガラ活性炭よりも容量増加の効果が大きいことが分かった。
Table 1 below summarizes the composition of the positive electrode 1 used in each example and comparative example, the presence or absence of the lithium supply source 3, the initial capacity of the obtained cell, and the voltage after 2 seconds when discharged at 10 mA / cm 2. .
When Example 1 and Comparative Example 1 were compared, it was found that the capacity of the electricity storage device could be increased without increasing the direct current resistance by replacing part of the conductivity-imparting agent with activated carbon. Further, comparing Example 1 and Example 2, it was found that the activated carbon of the phenol resin raw material having a large specific surface area of the activated carbon had a larger capacity increasing effect than the coconut shell activated carbon having a small specific surface area.

実施例3の結果から、活性炭の割合を75wt%に上昇させると、容量の増加とともに直流抵抗がやや上昇することが分かった。実施例4、5および比較例4、5から、ニトロキシル化合物の比率が30wt%、50wt%の場合でも、活性炭を混合することで、直流抵抗の大幅な上昇なしに容量増加の効果が見られることが分かった。   From the results of Example 3, it was found that when the ratio of the activated carbon was increased to 75 wt%, the DC resistance slightly increased with the increase in capacity. From Examples 4 and 5 and Comparative Examples 4 and 5, even when the ratio of the nitroxyl compound is 30 wt% and 50 wt%, the effect of increasing the capacity can be seen without significant increase in DC resistance by mixing with activated carbon. I understood.

実施例6と比較例4とを比較することで、リチウム供給源3のない場合でも、活性炭を混合することで容量増加の効果が見られることが分かった。実施例7および比較例5の結果から、ニトロキシル化合物の割合が70wt%にまで高まると、活性炭を混合するとこによる容量増加の効果が小さくなることが分かった。   By comparing Example 6 and Comparative Example 4, it was found that even when there was no lithium supply source 3, the effect of increasing the capacity was seen by mixing activated carbon. From the results of Example 7 and Comparative Example 5, it was found that when the proportion of the nitroxyl compound was increased to 70 wt%, the effect of increasing the capacity due to mixing with activated carbon was reduced.

Figure 0005228531
Figure 0005228531
本発明は、以下の態様も取り得る。  The present invention can also take the following aspects.
[1]正極、負極およびこれらの間に配置された電解質を含むセパレータからなる蓄電デバイスであって、[1] An electricity storage device comprising a positive electrode, a negative electrode, and a separator including an electrolyte disposed therebetween,
前記正極が酸化状態において式(I)で示されるニトロキシルカチオン部分構造を有し、還元状態において式(II)で示されるニトロキシルラジカル部分構造を有するニトロキシル化合物と、活性炭粒子とを含み、  The positive electrode has a nitroxyl cation partial structure represented by formula (I) in an oxidized state, and a nitroxyl compound having a nitroxyl radical partial structure represented by formula (II) in a reduced state, and activated carbon particles,
前記負極がリチウムイオンを可逆的に担持可能な物質を含み、  The negative electrode includes a substance capable of reversibly supporting lithium ions,
前記電解質がリチウム塩を含む非プロトン性有機溶媒であることを特徴とする蓄電デバイス。  An electricity storage device, wherein the electrolyte is an aprotic organic solvent containing a lithium salt.
Figure 0005228531
Figure 0005228531
[2]前記ニトロキシル化合物が、酸化状態において下記式(1)で示される2,2,6,6−テトラメチルピペリジノキシルカチオン、式(2)で示される2,2,5,5−テトラメチルピロリジノキシルカチオン、および式(3)で示される2,2,5,5−テトラメチルピロリノキシルカチオンからなる群より選ばれる少なくとも一つの構造を有することを特徴とする上記[1]記載の蓄電デバイス。 [2] In the oxidized state, the nitroxyl compound is a 2,2,6,6-tetramethylpiperidinoxyl cation represented by the following formula (1), and 2,2,5,5- [1], which has at least one structure selected from the group consisting of a tetramethylpyrrolidinoxyl cation and a 2,2,5,5-tetramethylpyrrolinoxyl cation represented by the formula (3) The electricity storage device described.
Figure 0005228531
Figure 0005228531
[3]前記活性炭粒子の比表面積が、1000m[3] The specific surface area of the activated carbon particles is 1000 m. 2 /g以上であることを特徴とする上記[1]記載の蓄電デバイス。/ G or more, The electricity storage device as described in [1] above.
[4]前記活性炭粒子が、フェノール樹脂系活性炭、石油ピッチ系活性炭、石油コークス系活性炭、又は石炭コークス系活性炭であることを特徴とする上記[3]記載の蓄電デバイス。[4] The electricity storage device according to [3], wherein the activated carbon particles are phenol resin activated carbon, petroleum pitch activated carbon, petroleum coke activated carbon, or coal coke activated carbon.
[5]前記正極及び/又は前記負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、前記集電体は、前記負極とリチウムイオン供給源との電気化学的接触によってリチウムイオンが予めドーピングされていることを特徴とする上記[1]記載の蓄電デバイス。[5] The positive electrode and / or the negative electrode each include a current collector having a hole penetrating the front and back surfaces, and the current collector is a lithium ion by electrochemical contact between the negative electrode and a lithium ion supply source. The electricity storage device according to the above [1], wherein ions are previously doped.

本発明における蓄電デバイスは、高エネルギー密度と高い出力特性、低環境負荷、高い安全性を同時にできるため、電気自動車、ハイブリッド電気自動車などの駆動用または補助用蓄電源、または高い出力が求められる各種携帯電子機器の電源、ソーラーエネルギーや風力発電などの各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源などとして用いることができる   Since the power storage device of the present invention can simultaneously achieve high energy density and high output characteristics, low environmental load, and high safety, various types of storage power sources for driving or auxiliary use such as electric vehicles and hybrid electric vehicles, or high output are required. Can be used as a power source for portable electronic devices, a power storage device for various types of energy such as solar energy and wind power generation, or a storage power source for household appliances

実施の形態に挙げた蓄電デバイスの構成を示す断面図である。It is sectional drawing which shows the structure of the electrical storage device quoted in embodiment. 実施例1および比較例1で作製した蓄電デバイスの充放電曲線である。It is a charging / discharging curve of the electrical storage device produced in Example 1 and Comparative Example 1. FIG. 実施例1および比較例1で作製した蓄電デバイスにおけるセル電圧の放電電流密度依存性である。It is the discharge current density dependence of the cell voltage in the electrical storage device produced in Example 1 and Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 正極
1A 正極集電体
1B 正極リード
2 負極
2A 負極集電体
2B 負極リード
3 リチウム供給源
3A リチウム供給源集電体
4 セパレータ
5 外装体
1 Positive electrode
1A Positive electrode current collector
1B Positive lead
2 Negative electrode
2A Negative electrode current collector
2B Negative electrode lead
3 Lithium supply source
3A Lithium source collector
4 Separator
5 exterior body

Claims (5)

正極、負極およびこれらの間に配置された電解質を含むセパレータからなる蓄電デバイスであって、
前記正極が酸化状態において式(I)で示されるニトロキシルカチオン部分構造を有し、還元状態において式(II)で示されニトロキシルラジカル部分構造を有するニトロキシル高分子化合物と、活性炭粒子とを含み、
前記負極がリチウムイオンを可逆的に担持可能な物質を含み、
前記電解質がリチウム塩を含む非プロトン性有機溶媒であることを特徴とする蓄電デバイス。
Figure 0005228531
An electricity storage device comprising a positive electrode, a negative electrode, and a separator including an electrolyte disposed therebetween,
Wherein a nitroxyl cation partial structure positive electrode is represented by the formula (I) in the oxidation state, and nitroxyl polymer compound having a nitroxyl radical partial structure Ru represented by formula (II) in a reduced state, and an activated carbon particles Including
The negative electrode includes a substance capable of reversibly supporting lithium ions,
An electricity storage device, wherein the electrolyte is an aprotic organic solvent containing a lithium salt.
Figure 0005228531
正極、負極およびこれらの間に配置された電解質を含むセパレータからなる蓄電デバイスであって、
前記正極が酸化状態において式(I)で示されるニトロキシルカチオン部分構造を有し、還元状態において式(II)で示されるニトロキシルラジカル部分構造を有するニトロキシル化合物と、活性炭粒子とを含み、
前記負極がリチウムイオンを可逆的に担持可能な物質を含み、
前記電解質がリチウム塩を含む非プロトン性有機溶媒であり、
Figure 0005228531
前記ニトロキシル化合物が、酸化状態において下記式(1)で示される2,2,6,6−テトラメチルピペリジノキシルカチオン、式(2)で示される2,2,5,5−テトラメチルピロリジノキシルカチオン、および式(3)で示される2,2,5,5−テトラメチルピロリノキシルカチオンからなる群より選ばれる少なくとも一つの構造を有することを特徴とする蓄電デバイス。
Figure 0005228531
An electricity storage device comprising a positive electrode, a negative electrode, and a separator including an electrolyte disposed therebetween,
The positive electrode has a nitroxyl cation partial structure represented by formula (I) in an oxidized state, and a nitroxyl compound having a nitroxyl radical partial structure represented by formula (II) in a reduced state, and activated carbon particles,
The negative electrode includes a substance capable of reversibly supporting lithium ions,
The electrolyte is an aprotic organic solvent containing a lithium salt;
Figure 0005228531
In the oxidized state, the nitroxyl compound is a 2,2,6,6-tetramethylpiperidinoxyl cation represented by the following formula (1), a 2,2,5,5-tetramethylpyrrole represented by the formula (2) Gino hexyl cation, and a charge reservoir devices that characterized by having at least one structure selected from the group consisting of 2,2,5,5-tetramethyl-methylpyrrolidin Roh cyclohexyl cation represented by the formula (3).
Figure 0005228531
前記活性炭粒子の比表面積が、1000m/g以上であることを特徴とする請求項1または2記載の蓄電デバイス。 The specific surface area of the activated carbon particles, according to claim 1 or 2 electric storage device, wherein the at 1000 m 2 / g or more. 前記活性炭粒子が、フェノール樹脂系活性炭、石油ピッチ系活性炭、石油コークス系活性炭、又は石炭コークス系活性炭であることを特徴とする請求項3記載の蓄電デバイス。   4. The electricity storage device according to claim 3, wherein the activated carbon particles are phenol resin activated carbon, petroleum pitch activated carbon, petroleum coke activated carbon, or coal coke activated carbon. 前記正極及び/又は前記負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、前記集電体は、前記負極とリチウムイオン供給源との電気化学的接触によってリチウムイオンが予めドーピングされていることを特徴とする請求項1または2記載の蓄電デバイス。 Each of the positive electrode and / or the negative electrode includes a current collector having holes penetrating the front and back surfaces, and the current collector is preliminarily provided with lithium ions by electrochemical contact between the negative electrode and a lithium ion supply source. The electric storage device according to claim 1 or 2 , wherein the electric storage device is doped.
JP2008046610A 2008-02-27 2008-02-27 Electricity storage device Active JP5228531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008046610A JP5228531B2 (en) 2008-02-27 2008-02-27 Electricity storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008046610A JP5228531B2 (en) 2008-02-27 2008-02-27 Electricity storage device

Publications (2)

Publication Number Publication Date
JP2009205918A JP2009205918A (en) 2009-09-10
JP5228531B2 true JP5228531B2 (en) 2013-07-03

Family

ID=41147991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008046610A Active JP5228531B2 (en) 2008-02-27 2008-02-27 Electricity storage device

Country Status (1)

Country Link
JP (1) JP5228531B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120171561A1 (en) * 2009-09-18 2012-07-05 Nec Corporation Polymer radical material-activated carbon-conductive material composite, method for producing conductive material composite, and electricity storage device
KR101155915B1 (en) * 2010-09-13 2012-06-20 삼성에스디아이 주식회사 Lithium secondary battery including same
JPWO2014092128A1 (en) * 2012-12-14 2017-01-12 日本電気株式会社 Power storage device
JP6447050B2 (en) * 2013-11-22 2019-01-09 日本電気株式会社 Method for manufacturing power storage device
DE102014003300A1 (en) 2014-03-07 2015-09-10 Evonik Degussa Gmbh New tetracyanoanthraquinone dimethyne polymers and their use
DE102014004760A1 (en) 2014-03-28 2015-10-01 Evonik Degussa Gmbh New 9,10-bis (1,3-dithiol-2-ylidene) -9,10-dihydroanthracene polymers and their use
EP3135704A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3136410A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
KR102007112B1 (en) 2015-08-26 2019-08-02 에보니크 데구사 게엠베하 Use of Specific Polymers as Charge Storage
KR101989727B1 (en) 2015-08-26 2019-06-14 에보니크 데구사 게엠베하 Use of specific polymers as charge carriers
WO2017207325A1 (en) 2016-06-02 2017-12-07 Evonik Degussa Gmbh Method for producing an electrode material
TWI686415B (en) 2016-08-05 2020-03-01 德商贏創運營有限公司 Use of thianthrene-containing polymers as charge storage means
EP3279223A1 (en) 2016-08-05 2018-02-07 Evonik Degussa GmbH Use of polymers containing thianthrene as charge storage
EP3510061B1 (en) 2016-09-06 2020-04-15 Evonik Operations GmbH Method for improved oxidation of secondary amine groups
DE102017005924A1 (en) 2017-06-23 2018-12-27 Friedrich-Schiller-Universität Jena Use of benzotriazinyl-containing polymers as charge storage
CN109950059A (en) 2017-12-20 2019-06-28 株式会社理光 Active material, electrode and charge storage element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553619B2 (en) * 2003-04-03 2010-09-29 パナソニック株式会社 Method for producing electrode for electrochemical device
JP4632020B2 (en) * 2004-01-23 2011-02-16 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP2006338963A (en) * 2005-05-31 2006-12-14 Fuji Heavy Ind Ltd Lithium ion capacitor

Also Published As

Publication number Publication date
JP2009205918A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP5228531B2 (en) Electricity storage device
JP5516578B2 (en) Power storage device
JP4731967B2 (en) Lithium ion capacitor
JP4705566B2 (en) Electrode material and manufacturing method thereof
US8142930B2 (en) Negative electrode active material for charging device
WO2013073526A1 (en) Electrode for electricity storage devices, electricity storage device, and method for producing electrode for electricity storage devices
JP2004221523A (en) Electrochemical capacitor and hybrid power source constituted of it
US20110043968A1 (en) Hybrid super capacitor
JP2009026480A (en) Power storage device
JP2007280803A (en) Hybrid laminated electrode and hybrid secondary power source using the same
WO2013014830A1 (en) Lithium-ion secondary cell
JP2009231234A (en) Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device
JP2009123385A (en) Power storage device
JP2007266064A (en) Electric double layer capacitor
JP2007180431A (en) Lithium ion capacitor
JP2019091615A (en) Nonaqueous electrolyte secondary battery
JP2006286926A (en) Lithium ion capacitor
JP2018504767A (en) Lithium secondary battery with improved output characteristics
JP2009188141A (en) Electric power storage device
JP4731974B2 (en) Lithium ion capacitor
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP2012028366A (en) Power storage device
JP2007180429A (en) Lithium ion capacitor
JPH09293533A (en) Nonaqueous electrolyte secondary battery
JP2010027547A (en) Separator for electrochemical element and lithium-ion battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150