JPWO2014092128A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JPWO2014092128A1
JPWO2014092128A1 JP2014552071A JP2014552071A JPWO2014092128A1 JP WO2014092128 A1 JPWO2014092128 A1 JP WO2014092128A1 JP 2014552071 A JP2014552071 A JP 2014552071A JP 2014552071 A JP2014552071 A JP 2014552071A JP WO2014092128 A1 JPWO2014092128 A1 JP WO2014092128A1
Authority
JP
Japan
Prior art keywords
conductive material
nitroxyl
compound
storage device
nitroxyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014552071A
Other languages
Japanese (ja)
Inventor
基陽 安井
基陽 安井
岩佐 繁之
繁之 岩佐
教徳 西
教徳 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2014092128A1 publication Critical patent/JPWO2014092128A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

酸化状態において下記式(1)で示されるニトロキシルラジカルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を含む正極と、リチウムイオンを可逆的に挿入・脱離可能な炭素材料を含む負極と、リチウム塩と非プロトン性有機溶媒とを含む電解液を有し、前記正極がリチウム化合物を含有し、かつ、前記ニトロキシル化合物は、ニトロキシル化合物が溶解又は膨潤しかつ導電性材料が分散又は溶解している原料溶液を、前記ニトロキシル化合物と前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記導電性材料が前記ニトロキシル化合物の内部に取り込まれた沈殿物として得られることにより、導電性材料と複合化されていることを特徴とする蓄電デバイスが開示される。本発明によれば高出力な蓄電デバイスが提供される。A positive electrode containing a nitroxyl compound having a nitroxyl radical cation partial structure represented by the following formula (1) in an oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in a reduced state; A negative electrode containing a carbon material that can be inserted and removed, and an electrolytic solution containing a lithium salt and an aprotic organic solvent, the positive electrode contains a lithium compound, and the nitroxyl compound is a nitroxyl compound. By dropping or pouring a raw material solution in which the conductive material is dissolved or swelled and in which the conductive material is dispersed or dissolved into a solution in which the nitroxyl compound and the conductive material are not dissolved or swelled, the conductive material is contained inside the nitroxyl compound. By being obtained as a precipitate taken in, it is combined with a conductive material. Power storage device is disclosed. According to the present invention, a high-output power storage device is provided.

Description

本発明は、ニトロキシル化合物を含む正極と、リチウムイオンを可逆的に挿入・脱離可能な材料を含む負極と、リチウム塩を溶解させた非プロトン性有機溶媒を含む電解液を備えた蓄電デバイスに関する。   The present invention relates to an electricity storage device including a positive electrode including a nitroxyl compound, a negative electrode including a material capable of reversibly inserting and removing lithium ions, and an electrolytic solution including an aprotic organic solvent in which a lithium salt is dissolved. .

近年、ノート型パソコンや携帯電話などの携帯電子機器は、通信機能をはじめ、動画再生機能やカメラ機能など多機能化している。このような携帯電子機器に用いられる蓄電デバイスには高いエネルギー密度、高い出力特性、高い安全性、及び高いサイクル安定性が求められる。   In recent years, portable electronic devices such as notebook computers and mobile phones have become multifunctional, including communication functions, video playback functions, and camera functions. A power storage device used in such portable electronic devices is required to have high energy density, high output characteristics, high safety, and high cycle stability.

高出力かつ高いサイクル安定性を有する蓄電デバイスとして、リチウムイオンキャパシタが知られている。電気二重層による静電的な機構で電荷を蓄えるため、エネルギー密度は小さいものの高出力であり、サイクル安定性も高いといった特徴がある。特許文献1には、エネルギー密度を増やすために負極に対して、化学的方法により、あらかじめリチウムイオンを蓄えておくことが提案されている。しかしながら、それでも十分なエネルギー密度を得られていない。   A lithium ion capacitor is known as an electricity storage device having high output and high cycle stability. Since electric charges are stored by an electrostatic mechanism using an electric double layer, the energy density is small but the output is high and the cycle stability is also high. Patent Document 1 proposes storing lithium ions in advance by a chemical method for the negative electrode in order to increase the energy density. However, a sufficient energy density is still not obtained.

特許文献2には、高出力な蓄電デバイスとして、ニトロキシル化合物を正極中に含有した蓄電デバイスが提案されている(以下、この蓄電デバイスを「有機ラジカル電池」と呼ぶ)。このニトロキシル化合物は、酸化状態においてオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとり、その2つの状態間で電子の授受が行われ、この反応が正極の電極反応として用いられる。この電極反応は比較的速く反応が進むため、高出力な電池を得ることができ、また、熱暴走といった問題もなく安全な電池である。さらに、十分なエネルギー密度とサイクル安定性を得るため、また、さらなる高出力化のために、負極にあらかじめリチウムイオンを蓄えることが検討されている。例えば、特許文献3にはリチウムイオンをあらかじめ負極に蓄える方法として、負極とリチウム金属箔を電気的に接触させる方法が提案されている。   Patent Document 2 proposes a power storage device containing a nitroxyl compound in a positive electrode as a high power power storage device (hereinafter, this power storage device is referred to as an “organic radical battery”). This nitroxyl compound takes an oxoammonium cation partial structure in an oxidized state, takes a nitroxyl radical partial structure in a reduced state, and transfers electrons between the two states, and this reaction is used as an electrode reaction of a positive electrode. . Since this electrode reaction proceeds relatively quickly, a high output battery can be obtained, and the battery is safe without problems such as thermal runaway. Furthermore, in order to obtain sufficient energy density and cycle stability and to further increase the output, it has been studied to store lithium ions in the negative electrode in advance. For example, Patent Document 3 proposes a method of electrically contacting a negative electrode and a lithium metal foil as a method of storing lithium ions in the negative electrode in advance.

一方、特許文献4には、電気化学的酸化反応及び還元反応の少なくとも一方の過程でラジカル化合物を生成する有機化合物を活物質として含む粒子を有する電池が記載され、上記粒子が、上記有機化合物と電子伝導性の導電性物質とが一体化した粒子であることが記載されている。また、特許文献5には、導電材含有ラジカル材料を使用した、ニトロキシラジカル化合物を電極中に含有する蓄電デバイスが記載されている。   On the other hand, Patent Document 4 describes a battery having particles containing, as an active material, an organic compound that generates a radical compound in at least one of an electrochemical oxidation reaction and a reduction reaction. It is described that the particles are integrated with an electron conductive material. Patent Document 5 describes an electricity storage device using a conductive material-containing radical material and containing a nitroxy radical compound in an electrode.

特開平8−107048号公報Japanese Patent Laid-Open No. 8-1007048 特開2002−304996号公報JP 2002-304996 A 国際公開第2010/140512号International Publication No. 2010/140512 特開2002−298850号公報JP 2002-298850 A 特開2007−213992号公報JP 2007-213992 A

負極にリチウムイオンを蓄えさせる方法として、特許文献3に記載されるように、蓄電デバイス内で負極とリチウム金属箔を電気的に接触させることにより行う方法を用いた場合、リチウム金属箔を使用することによりコストが高くなり、さらに、負極にリチウムイオンを蓄えた後にリチウム金属が残存した場合に安全性が問題となる。また、特許文献4に記載の電池では、負極からリチウムイオンが放出され、電池の出力低下が生じるものと考えられる。また、特許文献5に記載の導電材含有ラジカル材料の製造方法では、ラジカル材料を合成した直後の液相において導電材を混合する必要がある。   As a method for storing lithium ions in the negative electrode, as described in Patent Document 3, a lithium metal foil is used when a method in which the negative electrode is electrically contacted with the lithium metal foil in an electricity storage device is used. As a result, the cost becomes high, and safety becomes a problem when lithium metal remains after lithium ions are stored in the negative electrode. Further, in the battery described in Patent Document 4, it is considered that lithium ions are released from the negative electrode, and the output of the battery is reduced. Moreover, in the manufacturing method of the electrically conductive material containing radical material of patent document 5, it is necessary to mix an electrically conductive material in the liquid phase immediately after synthesize | combining radical material.

本発明は、安価であり、安全であり、かつ、十分な量のリチウムイオンを負極にあらかじめ蓄えさせることで高出力な蓄電デバイスを提供する。   The present invention provides an electricity storage device that is inexpensive, safe, and has a high output by storing a sufficient amount of lithium ions in a negative electrode in advance.

本発明の一態様は、酸化状態において下記式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとり、二つの状態間で電子の授受を行う下記反応式(A)で示される反応を行うニトロキシル化合物を含む正極と、負極と、電解質塩および有機溶媒とを含む電解液とを有し、前記正極がリチウムイオン供給源としてマンガン酸リチウム、リン酸鉄リチウム又は硫化リチウムを含有し、かつ、前記ニトロキシル化合物が、導電性材料とニトロキシル化合物・導電性材料複合体を形成していることを特徴とする蓄電デバイスに関する。   One embodiment of the present invention takes a nitroxyl cation partial structure represented by the following formula (1) in the oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in the reduced state, and between the two states It has a positive electrode containing a nitroxyl compound that performs the reaction shown in the following reaction formula (A) for transferring and receiving electrons, an negative electrode, and an electrolytic solution containing an electrolyte salt and an organic solvent, and the positive electrode serves as a lithium ion supply source. The present invention relates to an electricity storage device comprising lithium manganate, lithium iron phosphate or lithium sulfide, wherein the nitroxyl compound forms a conductive material and a nitroxyl compound / conductive material composite.

Figure 2014092128
Figure 2014092128

本発明の実施形態によれば、安価であり、安全であり、かつ高出力な蓄電デバイスを提供することができる。   According to the embodiment of the present invention, it is possible to provide an electricity storage device that is inexpensive, safe, and has high output.

本発明の実施形態によるラミネート型蓄電デバイスの斜視図である1 is a perspective view of a laminate type electricity storage device according to an embodiment of the present invention. 本発明の実施形態によるラミネート型蓄電デバイスの断面図である。It is sectional drawing of the lamination type electrical storage device by embodiment of this invention.

次に、本発明の好適な実施形態について説明する。   Next, a preferred embodiment of the present invention will be described.

本発明の実施形態による蓄電デバイスは、上記ニトロキシル化合物を正極活物質として含む正極と、負極と、電解質塩および有機溶媒を含む電解液とを有する。前記正極にはリチウムイオン供給源としてマンガン酸リチウム等のリチウム化合物を添加する。前記ニトロキシル化合物が溶解又は膨潤しかつ前記導電性材料が分散又は溶解している原料溶液を、前記ニトロキシル化合物と前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記導電性材料が前記ニトロキシル化合物の内部に取り込まれた沈殿物として得られることにより、前記ニトロキシル化合物が前記導電性材料と複合化されていることが好ましい。負極は、リチウムイオンを可逆的に吸蔵放出可能な材料を負極活物質として含むことができ、電解質塩としてリチウム塩を用いることができ、有機溶媒として非プロトン性溶媒を用いることができる。   An electricity storage device according to an embodiment of the present invention includes a positive electrode including the nitroxyl compound as a positive electrode active material, a negative electrode, and an electrolytic solution including an electrolyte salt and an organic solvent. A lithium compound such as lithium manganate is added to the positive electrode as a lithium ion supply source. By dropping or pouring a raw material solution in which the nitroxyl compound is dissolved or swollen and the conductive material is dispersed or dissolved into a solution in which the nitroxyl compound and the conductive material are not dissolved or swollen, the conductive material is It is preferable that the nitroxyl compound is combined with the conductive material by being obtained as a precipitate taken into the nitroxyl compound. The negative electrode can include a material capable of reversibly occluding and releasing lithium ions as a negative electrode active material, a lithium salt can be used as an electrolyte salt, and an aprotic solvent can be used as an organic solvent.

本発明の技術では、電池構成に金属リチウムを使用する代わりに正極中にリチウム化合物を添加することで、安価に蓄電デバイスを作製することができ、かつ、金属リチウムの残存は生じ得ず、安全性を確保できる。   In the technology of the present invention, an energy storage device can be produced at low cost by adding a lithium compound in the positive electrode instead of using metal lithium in the battery configuration, and the remaining of metal lithium cannot occur. Can be secured.

また、ニトロキシル化合物と導電性材料を単に混合する代わりに、ニトロキシル化合物の内部に導電性材料を取り込ませることにより、出力特性を向上させることができる。これは、ニトロキシル化合物と導電性材料を複合化することで、マンガン酸リチウム、リン酸鉄リチウム又は硫化リチウム等によるリチウムイオンの再ドープを抑制し、炭素負極からリチウムイオンの放出を抑制する効果があるものと考えられる。これにより、十分な量のリチウムイオンが負極にあらかじめ蓄えられた状態で蓄電デバイスの充放電を行うことができる。   Further, instead of simply mixing the nitroxyl compound and the conductive material, the output characteristics can be improved by incorporating the conductive material into the nitroxyl compound. This is a composite of a nitroxyl compound and a conductive material that suppresses re-doping of lithium ions by lithium manganate, lithium iron phosphate, lithium sulfide, etc., and suppresses the release of lithium ions from the carbon anode. It is thought that there is. Thereby, charging and discharging of the electricity storage device can be performed in a state where a sufficient amount of lithium ions is stored in advance in the negative electrode.

本実施形態による蓄電デバイスは、電気化学的に蓄えられたエネルギーを電力の形で取り出すことができるものであり、一次電池、二次電池、キャパシタやコンデンサ等の電気容量デバイス等に適用できる。   The electricity storage device according to the present embodiment can extract electrochemically stored energy in the form of electric power, and can be applied to an electric capacity device such as a primary battery, a secondary battery, a capacitor and a capacitor.

まず、電極の作製に用いる材料について説明する。   First, materials used for manufacturing the electrode will be described.

[1]電極の材料
[1−1]正極活物質
本発明の実施形態による蓄電デバイスにおける正極活物質としては、酸化状態において式(1)で示されるニトロキシルカチオン部分構造(N−オキソ−アンモニウムカチオン部分構造)をとり、還元状態において式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を用いる。このニトロキシル化合物は、これらの2つの状態間で電子の授受を行う反応式(A)で示される酸化還元反応を行うことができる。本実施形態による蓄電デバイスは、この酸化還元反応を正極の電極反応として用いる。
[1] Electrode Material [1-1] Positive Electrode Active Material As the positive electrode active material in the electricity storage device according to the embodiment of the present invention, the nitroxyl cation partial structure (N-oxo-ammonium represented by the formula (1) in the oxidized state is used. A nitroxyl compound having a cation partial structure) and a nitroxyl radical partial structure represented by the formula (2) in a reduced state is used. This nitroxyl compound can perform an oxidation-reduction reaction represented by the reaction formula (A) in which electrons are transferred between these two states. The electricity storage device according to the present embodiment uses this oxidation-reduction reaction as the electrode reaction of the positive electrode.

Figure 2014092128
このニトロキシル化合物の構造としては特に限定されないが、電解液に対する溶解性の観点から、ニトロキシル高分子化合物であることが好ましい。
Figure 2014092128
The structure of the nitroxyl compound is not particularly limited, but is preferably a nitroxyl polymer compound from the viewpoint of solubility in the electrolytic solution.

このニトロキシル高分子化合物としては、酸化状態において下記式(Ia)で示される環状ニトロキシル構造を側鎖に含むポリマーであることが好ましい。   The nitroxyl polymer compound is preferably a polymer containing a cyclic nitroxyl structure represented by the following formula (Ia) in the side chain in an oxidized state.

Figure 2014092128
(式中、R〜Rはそれぞれ独立に炭素数1〜4のアルキル基を表し、Xは5〜7員環を形成する2価の基を表す。但し、Xがポリマーの側鎖の一部を構成することにより、式(Ia)で示される環状ニトロキシル構造がポリマーの一部となっている。)
Figure 2014092128
(In the formula, R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, and X represents a divalent group forming a 5- to 7-membered ring, provided that X represents a side chain of the polymer. (By constituting a part, the cyclic nitroxyl structure represented by the formula (Ia) becomes a part of the polymer.)

〜Rは、それぞれ独立に炭素数1〜4のアルキル基を表し、エチル基、メチル基が好ましく、ラジカルの安定性の点でメチル基が特に好ましい。R 1 to R 4 each independently represents an alkyl group having 1 to 4 carbon atoms, preferably an ethyl group or a methyl group, and particularly preferably a methyl group in terms of radical stability.

Xは、具体的には、−CHCH−、−CHCHCH−、−CHCHCHCH−、−CH=CH−、−CH=CHCH−、−CH=CHCHCH−、−CHCH=CHCH−が挙げられ、その中で、隣接しない−CH−は、−O−、−NH−または−S−によって置き換えられていてもよく、−CH=は−N=によって置き換えられていてもよい。また、環を構成する原子に結合した水素原子は、アルキル基、ハロゲン原子、=O、エーテル基、エステル基、シアノ基、アミド基等により置換されていてもよい。X is specifically, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH 2 CH 2 CH 2 CH 2 -, - CH = CH -, - CH = CHCH 2 -, - CH ═CHCH 2 CH 2 —, —CH 2 CH═CHCH 2 —, in which non-adjacent —CH 2 — may be replaced by —O—, —NH— or —S—, -CH = may be replaced by -N =. The hydrogen atom bonded to the atoms constituting the ring may be substituted with an alkyl group, a halogen atom, ═O, an ether group, an ester group, a cyano group, an amide group, or the like.

特に、好ましい環状ニトロキシル構造は、2,2,6,6−テトラメチルピペリジノキシルラジカル(又はカチオン)、2,2,5,5−テトラメチルピロリジノキシルラジカル(又はカチオン)、2,2,5,5−テトラメチルピロリノキシルラジカル(カチオン)から選ばれるものであり、2,2,6,6−テトラメチルピペリジノキシルラジカル(又はカチオン)、2,2,5,5−テトラメチルピロリジノキシルラジカル(又はカチオン)がより好ましい。   Particularly preferred cyclic nitroxyl structures are 2,2,6,6-tetramethylpiperidinoxyl radical (or cation), 2,2,5,5-tetramethylpyrrolidinoxyl radical (or cation), 2,2 , 5,5-tetramethylpyrrolinoxyl radical (cation), 2,2,6,6-tetramethylpiperidinoxyl radical (or cation), 2,2,5,5-tetra A methylpyrrolidinoxyl radical (or cation) is more preferred.

式(Ia)で示される環状ニトロキシル構造は、式(Ib)に示すように、X中の環員を構成する−CH−、−CH=または−NH−から水素を取った残基X’によってポリマーに結合することができる。The cyclic nitroxyl structure represented by the formula (Ia) is, as shown in the formula (Ib), a residue X ′ obtained by removing hydrogen from —CH 2 —, —CH═ or —NH— constituting the ring member in X. Can be attached to the polymer.

Figure 2014092128
ニトロキシル高分子化合物の主鎖として用いられるポリマーとしては特に制限はなく、式(Ia)で示される環状ニトロキシル構造が側鎖に存在できるものであればよい。
Figure 2014092128
The polymer used as the main chain of the nitroxyl polymer compound is not particularly limited as long as the cyclic nitroxyl structure represented by the formula (Ia) can be present in the side chain.

ニトロキシル高分子化合物は、通常のポリマーに、式(Ib)の基が付加したもの、またはポリマーの一部の原子または基が式(Ib)の基によって置換されたものを挙げることができる。式(Ib)の環状構造を構成する原子が直接ではなく、適当な2価の基を中間に介してポリマー(主鎖)に結合していてもよい。例えば、X’とポリマーの主鎖の原子とが、エステル結合(−COO−)やエーテル結合(−O−)等の2価基を介して結合することができる。   Examples of the nitroxyl polymer compound include those obtained by adding a group of the formula (Ib) to a normal polymer, or those obtained by substituting some atoms or groups of the polymer with a group of the formula (Ib). The atoms constituting the cyclic structure of the formula (Ib) may be bonded to the polymer (main chain) via an appropriate divalent group in the middle instead of directly. For example, X ′ and the main chain atom of the polymer can be bonded via a divalent group such as an ester bond (—COO—) or an ether bond (—O—).

ニトロキシル高分子化合物の主鎖として用いられるポリマーとしては、電気化学的な耐性に優れている点で、ポリエチレン、ポリプロピレン等のポリアルキレン系ポリマー;ポリ(メタ)アクリル酸;ポリ(メタ)アクリルアミド系ポリマー、ポリ(メタ)アクリレート系ポリマー、ポリスチレン系ポリマーが好ましい。   As the polymer used as the main chain of the nitroxyl polymer compound, polyalkylene polymers such as polyethylene and polypropylene; poly (meth) acrylic acid; poly (meth) acrylamide polymers are excellent in electrochemical resistance. Poly (meth) acrylate polymers and polystyrene polymers are preferred.

このようなニトロキシル高分子化合物のなかでも、特に安定性の高い、下記式(3)〜(7)のいずれかで示されるものが好ましい。   Among such nitroxyl polymer compounds, those having high stability and those represented by any of the following formulas (3) to (7) are preferable.

Figure 2014092128
(式中、nは1以上の整数である。)
Figure 2014092128
(In the formula, n is an integer of 1 or more.)

式(3)〜(5)に示したニトロキシル高分子化合物は、2,2,6,6−テトラメチルピペリジノキシルラジカル(又はカチオン)を側鎖に有し、式(6)、(7)に示したニトロキシル高分子化合物は、2,2,5,5−テトラメチルピロリジノキシルラジカル(又はカチオン)を側鎖に有する高分子化合物である。これらのニトロキシル高分子化合物は、高分子の側鎖に立体障害性の安定ラジカルを持つ化合物である。   The nitroxyl polymer compound represented by the formulas (3) to (5) has a 2,2,6,6-tetramethylpiperidinoxyl radical (or cation) in the side chain, and the formulas (6), (7 The nitroxyl polymer compound shown in (2) is a polymer compound having a 2,2,5,5-tetramethylpyrrolidinoxyl radical (or cation) in the side chain. These nitroxyl polymer compounds are compounds having a sterically hindered stable radical in the side chain of the polymer.

ニトロキシル高分子化合物の分子量は、電解液に対する溶解性の観点から、1000以上であることが好ましく、さらには10000以上であることがより好ましい。分子量は大きいほうが好ましいが、平均分子量が500万以下のものを用いることができる。ニトロキシル高分子化合物の骨格構造としては、鎖状、分岐状、網目状のいずれでもよく、架橋剤で架橋した構造でもよい。   The molecular weight of the nitroxyl polymer compound is preferably 1000 or more, and more preferably 10,000 or more, from the viewpoint of solubility in the electrolytic solution. A higher molecular weight is preferred, but one having an average molecular weight of 5 million or less can be used. The skeleton structure of the nitroxyl polymer compound may be any of a chain, a branch, and a network, and may be a structure crosslinked with a crosslinking agent.

また、ニトロキシル高分子化合物は、単独で用いることができるが、二種類以上を混合して用いてもよい。   Moreover, although a nitroxyl polymer compound can be used independently, you may mix and use 2 or more types.

ニトロキシル高分子化合物の添加効果を十分に得る点から、正極活物質中のニトロキシル高分子化合物の含有量は、50質量%以上が好ましく、80質量%以上がより好ましい。   In view of sufficiently obtaining the effect of adding the nitroxyl polymer compound, the content of the nitroxyl polymer compound in the positive electrode active material is preferably 50% by mass or more, and more preferably 80% by mass or more.

[1−2]導電性材料
導電性材料としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、カーボンナノチューブ等の炭素繊維および活性炭等の炭素材料、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
[1-2] Conductive Material Examples of the conductive material include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as carbon nanotubes, and carbon materials such as activated carbon, polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. The conductive polymer is mentioned.

[1−3]ニトロキシル化合物・導電性材料複合体
本発明の実施形態における正極においては、正極活物質であるニトロキシル化合物と導電性材料が複合体を形成している。以下に、ニトロキシル化合物と導電性材料を主要の原材料とした本発明に係るニトロキシル化合物・導電性材料複合体の製造方法について説明する。
[1-3] Nitroxyl Compound / Conductive Material Complex In the positive electrode according to the embodiment of the present invention, the nitroxyl compound that is the positive electrode active material and the conductive material form a complex. Below, the manufacturing method of the nitroxyl compound and the electroconductive material composite based on this invention which used the nitroxyl compound and the electroconductive material as main raw materials is demonstrated.

本発明のニトロキシル化合物・導電性材料複合体の製造方法は、還元状態においてラジカル部分構造をとるニトロキシル化合物が溶解又は膨潤し且つ導電性材料が分散又は溶解している原料溶液を、そのニトロキシル化合物と導電性材料が溶解又は膨潤しない溶液に滴下又は注いでニトロキシル化合物と導電性材料とからなる沈殿物を生成させる方法である。ニトロキシル化合物と導電性材料は上述したとおりであるので、以下においては、それ以外の構成について説明する。   In the method for producing a nitroxyl compound / conductive material composite of the present invention, a raw material solution in which a nitroxyl compound having a radical partial structure in a reduced state is dissolved or swollen and a conductive material is dispersed or dissolved is used as the nitroxyl compound. In this method, a precipitate composed of a nitroxyl compound and a conductive material is generated by dropping or pouring into a solution in which the conductive material does not dissolve or swell. Since the nitroxyl compound and the conductive material are as described above, other configurations will be described below.

原料溶液を構成する溶媒は、上述したニトロキシル化合物を溶解又は膨潤することができる溶媒であることが必要である。炭素材料や無機材料は、通常、不溶性のものが多いため、その溶媒は、必ずしも導電性材料を溶解させなくてもよいが、分散させる必要がある。このような溶媒の例として、具体的には、N−メチルピロリドン、テトラヒドロフラン、トルエン、キシレン等を挙げることができる。これらの中でも、N−メチルピロリドンが好ましい。   The solvent constituting the raw material solution needs to be a solvent capable of dissolving or swelling the nitroxyl compound described above. Since many carbon materials and inorganic materials are usually insoluble, the solvent does not necessarily dissolve the conductive material, but it must be dispersed. Specific examples of such a solvent include N-methylpyrrolidone, tetrahydrofuran, toluene, xylene and the like. Among these, N-methylpyrrolidone is preferable.

原料溶液の調製は、先ず、高分子ラジカル材料を溶解又は膨潤可能な溶媒中に、高分子ラジカル材料を入れて溶解する。そこに、導電性材料を加えて撹拌する。加える導電性材料の量は、電子伝導性等を考慮して調整されるが、ニトロキシル化合物を100重量部としたとき、1重量部以上200重量部以下の範囲で配合することが好ましく、より好ましくは1重量部以上100重量部以下、さらに好ましくは1重量部以上40重量部以下である。この配合量は、ニトロキシル化合物の種類や導電性材料の種類によって異なるが、導電性材料の量が少ない場合は、得られた電極の導電性が不十分となり、また、多すぎる場合は、ニトロキシル化合物の量が相対的に少なくなるために得られた電池の容量が小さくなる。   In preparing the raw material solution, first, the polymer radical material is dissolved in a solvent capable of dissolving or swelling the polymer radical material. There, a conductive material is added and stirred. The amount of the conductive material to be added is adjusted in consideration of electronic conductivity and the like. However, when the nitroxyl compound is 100 parts by weight, it is preferably blended in the range of 1 part by weight to 200 parts by weight. Is 1 to 100 parts by weight, more preferably 1 to 40 parts by weight. This blending amount varies depending on the type of nitroxyl compound and the type of conductive material, but when the amount of conductive material is small, the conductivity of the obtained electrode becomes insufficient, and when too large, the nitroxyl compound Since the amount of the battery becomes relatively small, the capacity of the obtained battery becomes small.

なお、本願において、ニトロキシル化合物の「溶解」とは、文字通り溶解する場合のほか、溶媒中に流動性をもって相溶している態様も含むものとし、また、「膨潤」とは、一般的な溶解とは言えなくても溶媒と作用していわゆる膨潤状態となり、導電性材料と共に混合することによってニトロキシル化合物内に導電性材料を均一に分散させる程度になっている態様を含むものとする。また、導電性材料の「分散」とは、例えば炭素材料のように不溶性材料が溶媒中に分散した態様を含むものとし、導電性材料の「溶解」とは、文字通り溶解する場合のほか、溶媒に相溶した態様を含むものとする。   In the present application, “dissolution” of a nitroxyl compound includes not only literally dissolution, but also includes an aspect in which it is compatible with fluidity in a solvent, and “swelling” refers to general dissolution. In other words, it includes a mode in which a so-called swollen state is produced by acting with a solvent, and the conductive material is uniformly dispersed in the nitroxyl compound by mixing with the conductive material. In addition, the “dispersion” of the conductive material includes, for example, a mode in which an insoluble material is dispersed in a solvent such as a carbon material, and the “dissolution” of the conductive material is literally dissolved in the solvent. It is intended to include compatible aspects.

ニトロキシル化合物と導電性材料とを混合するのに用いる機器としては、ホモジナイザーなどの攪拌/混合装置を使用できる。こうした機器を用いて混合することにより、ニトロキシル化合物が溶解又は膨潤した溶液に導電性材料が均一に分散したスラリー状の原料溶液が得られる。   As a device used for mixing the nitroxyl compound and the conductive material, a stirring / mixing device such as a homogenizer can be used. By mixing using such an apparatus, a slurry-like raw material solution in which the conductive material is uniformly dispersed in the solution in which the nitroxyl compound is dissolved or swollen is obtained.

こうして得られた原料溶液を、ニトロキシル化合物と導電性材料が溶解又は膨潤しない溶媒(貧溶媒)に、少しずつ滴下するか、または注ぐ。こうすることにより、ニトロキシル化合物と導電性材料を同時に沈殿させることができる。ニトロキシル化合物と導電性材料が溶解又は膨潤しない溶媒(貧溶媒)としては、メタノール、エタノール、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ヘキサン、ヘプタン等を挙げることができる。これらの中でも、メタノールが好ましい。   The raw material solution thus obtained is dropped or poured little by little into a solvent (poor solvent) in which the nitroxyl compound and the conductive material do not dissolve or swell. By doing so, the nitroxyl compound and the conductive material can be precipitated simultaneously. Examples of the solvent (poor solvent) in which the nitroxyl compound and the conductive material do not dissolve or swell include methanol, ethanol, dimethyl ether, ethyl methyl ether, diethyl ether, hexane, heptane and the like. Among these, methanol is preferable.

貧溶媒は、主にニトロキシル化合物との関係で選択され、本発明の実施形態では主にメタノール等を好ましく用いるが、貧溶媒として作用すれば他の溶媒であっても構わない。なお、導電性材料は、一般的に有機溶媒には解けにくいのであまり考慮されないが、導電性材料が溶解したり膨潤したりすることのない溶媒であることが必要である。   The poor solvent is selected mainly in relation to the nitroxyl compound, and in the embodiment of the present invention, mainly methanol or the like is preferably used, but other solvents may be used as long as they function as a poor solvent. Note that the conductive material is generally not easily considered because it is difficult to dissolve in an organic solvent, but the conductive material needs to be a solvent that does not dissolve or swell.

こうした貧溶媒中に原料溶液を少しずつ滴下し、または注いで沈殿物を生成することになるが、そうした滴下や注ぎの態様(滴下量や滴下速度等)は、生じる沈殿物の特性や形態に応じて調整される。特に本発明では、導電性材料がニトロキシル化合物の内部に均一に分散した態様で取り込まれた沈殿物として得られることが望ましいので、そうした態様になるように滴下する、または注ぐことが望ましい。   The raw material solution is dripped little by little into such a poor solvent, or a precipitate is produced by pouring, but the manner of dripping or pouring (the amount of dripping or the dropping speed, etc.) depends on the characteristics and form of the resulting precipitate. Adjusted accordingly. In particular, in the present invention, since it is desirable that the conductive material is obtained as a precipitate taken in a state of being uniformly dispersed inside the nitroxyl compound, it is desirable to drop or pour in such a manner.

得られた沈殿物を濾過などにより回収し、これを乾燥させることにより、ニトロキシル化合物・導電性材料複合体を得る。得られたニトロキシル化合物・導電性材料複合体は、粉砕などにより微粉化してもよい。   The obtained precipitate is collected by filtration or the like and dried to obtain a nitroxyl compound / conductive material composite. The obtained nitroxyl compound / conductive material composite may be pulverized by pulverization or the like.

以上説明したように、本発明のニトロキシル化合物・導電性材料複合体の製造方法によれば、ニトロキシル化合物に導電性材料を均一分散することができ、こうした製造方法によって得られたニトロキシル化合物・導電性材料複合体は、導電性材料がニトロキシル化合物の内部に取り込まれた沈殿物として得られるので、得られたニトロキシル化合物・導電性材料複合体に良好な電子伝導性をもたせることができる。その結果、ニトロキシル化合物の酸化還元に伴う電子の受け渡しが導電性材料を通じてスムーズとなり、大きな電流での充放電が可能となる。また、得られたニトロキシル化合物・導電性材料複合体は、充放電反応に寄与できるラジカルサイトの割合も高くなることから、大きな電流で放電させても電圧の低下が少ない蓄電デバイス用の電極材料として好ましく用いることができる。   As described above, according to the method for producing a nitroxyl compound / conductive material composite of the present invention, a conductive material can be uniformly dispersed in a nitroxyl compound, and the nitroxyl compound / conductive material obtained by such a production method can be dispersed. Since the material composite is obtained as a precipitate in which the conductive material is taken into the interior of the nitroxyl compound, the obtained nitroxyl compound / conductive material composite can have good electronic conductivity. As a result, the transfer of electrons accompanying the oxidation / reduction of the nitroxyl compound becomes smooth through the conductive material, and charging / discharging with a large current becomes possible. The resulting nitroxyl compound / conductive material composite also has a high proportion of radical sites that can contribute to the charge / discharge reaction, so that it can be used as an electrode material for power storage devices with little decrease in voltage even when discharged with a large current. It can be preferably used.

[1−4]リチウムイオン供給源
負極にリチウムイオンをドープするためにリチウムイオン供給源を用いることが出来る。リチウムイオン供給源としてはLiMn(xは、0<x<2)、LiMnO(xは、0<x≦1)等のマンガン酸リチウム、LiFePO(リン酸鉄リチウム)、LiS(硫化リチウム)、LiCoO(xは、0<x≦1)、LiNiO(xは、0<x≦1)、LiFeO(xは、0<x≦1)、Li(xは、0<x<2)等のリチウム金属酸化物が挙げられ、各々にLi、Mg、Al、またはCo、Ti、Nb、Cr等の遷移金属を添加または置換した材料等であってもよく、またこれらのリチウム化合物を単独で用いるばかりでなく、これらを複数種類混合して用いることができる。このなかでも、マンガン酸リチウム、リン酸鉄リチウム、硫化リチウムが好適に用いられる。使用するリチウム化合物の重量は、正極活物質の重量の、0.5%以上80%以下、より好ましくは1%以上40%以下、さらに好ましくは1%以上20%以下である。
[1-4] Lithium ion source A lithium ion source can be used to dope the negative electrode with lithium ions. As (the x, 0 <x <2) Li X Mn 2 O 4 lithium ion source, Li X MnO 2 (x is, 0 <x ≦ 1) lithium manganate such as, LiFePO 4 (lithium iron phosphate ), Li 2 S (lithium sulfide), Li X CoO 2 (x is 0 <x ≦ 1), Li X NiO 2 (x is 0 <x ≦ 1), Li X FeO 2 (x is 0 < x ≦ 1), lithium metal oxides such as Li x V 2 O 5 (x is 0 <x <2), etc., and transitions such as Li, Mg, Al, or Co, Ti, Nb, Cr, etc. A material to which a metal is added or substituted may be used. Not only these lithium compounds are used alone, but also a mixture of a plurality of them can be used. Among these, lithium manganate, lithium iron phosphate, and lithium sulfide are preferably used. The weight of the lithium compound used is 0.5% or more and 80% or less, more preferably 1% or more and 40% or less, and further preferably 1% or more and 20% or less of the weight of the positive electrode active material.

[1−5]負極活物質
本実施形態による蓄電デバイスにおける負極活物質としては、リチウムイオンを可逆的に吸蔵放出可能な材料(リチウムイオンを充電時に吸蔵し、放電時に放出できる材料)を用いることができる。このような負極活物質としては、金属酸化物、グラファイト等の炭素材料等を用いることができる。これらの材料の形状としては特に限定されるものではなく、例えば、薄膜状のもの、粉末を固めたもの、繊維状のもの、フレーク状のものが挙げられる。また、これらの負極活物質は、単独で、または組み合わせて使用できる。
[1-5] Negative Electrode Active Material As the negative electrode active material in the electricity storage device according to the present embodiment, a material capable of reversibly occluding and releasing lithium ions (a material capable of occluding and releasing lithium ions during charging and discharging during discharging) is used. Can do. As such a negative electrode active material, carbon materials such as metal oxides and graphite can be used. The shape of these materials is not particularly limited, and examples thereof include a thin film, a powdered product, a fiber, and a flake. Moreover, these negative electrode active materials can be used alone or in combination.

[1−6]導電性付与剤
正極および負極を形成する際に、インピーダンスを低下させる目的で、さらに導電性付与剤を添加してもよい。導電性付与剤としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、カーボンナノチューブ等の炭素繊維および活性炭等の炭素材料、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリアセン等の導電性高分子が挙げられる。
[1-6] Conductivity imparting agent When forming the positive electrode and the negative electrode, a conductivity imparting agent may be further added for the purpose of reducing impedance. Examples of the conductivity imparting agent include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as carbon nanotubes, carbon materials such as activated carbon, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyacene. It is done.

[1−7]結着剤
正極および負極を形成する際に、結着剤を用いることもできる。結着剤を用いることにより、活物質同士、活物質と導電性付与剤との間、活物質や導電付与剤と集電体との間の結びつきを強めることができる。このような結着剤としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン−ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、部分カルボキシ化セルロース、各種ポリウレタン等の樹脂バインダーが挙げられる。
[1-7] Binder A binder can also be used when forming the positive electrode and the negative electrode. By using the binder, it is possible to strengthen the connection between the active materials, between the active material and the conductivity imparting agent, and between the active material or the conductivity imparting agent and the current collector. Examples of such a binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, Examples thereof include resin binders such as polypropylene, polyethylene, polyimide, partially carboxylated cellulose, and various polyurethanes.

[1−8]集電体
正極活物質又は負極活物質を含む電極材料は、集電体上に設けることができる。集電体としては、ニッケル、アルミニウム、銅、アルミニウム合金、ステンレス、炭素等からなる箔、シート、平板等を用いることができる。
[1-8] Current Collector An electrode material containing a positive electrode active material or a negative electrode active material can be provided on the current collector. As the current collector, a foil, sheet, flat plate or the like made of nickel, aluminum, copper, aluminum alloy, stainless steel, carbon, or the like can be used.

[2]蓄電デバイスの基本構造、構成部材および蓄電デバイスの製造方法
図1に本実施形態によるラミネート型蓄電デバイスの一例の斜視図を示し、図2に断面図を示す。これらの図に示されるように、蓄電デバイス107は、正極101、この正極に対向する負極102、正極と負極との間に挟まれたセパレータ105を含む積層構造を有し、この積層構造は外装用フィルム106で覆われ、外装用フィルム106の外部へ、電極リード104が引き出されている。この蓄電デバイス内へは電解液が注入されている。以下に、蓄電デバイスの構成部材と製造方法についてさらに詳細に説明する。
[2] Basic structure of power storage device, constituent member, and method for manufacturing power storage device FIG. 1 is a perspective view of an example of a laminate type power storage device according to the present embodiment, and FIG. As shown in these drawings, the electricity storage device 107 has a laminated structure including a positive electrode 101, a negative electrode 102 facing the positive electrode, and a separator 105 sandwiched between the positive electrode and the negative electrode. The electrode lead 104 is drawn out to the outside of the exterior film 106. An electrolytic solution is injected into the electricity storage device. Below, the structural member and manufacturing method of an electrical storage device are demonstrated in detail.

[2−1]正極
正極101は、正極活物質、リチウムイオン供給源を含み、必要に応じてさらに導電性付与剤、結着剤を含み、一方の集電体103上に形成されている。本実施形態の正極活物質は導電性材料と複合化されている。
[2-1] Positive Electrode The positive electrode 101 includes a positive electrode active material and a lithium ion supply source, and further includes a conductivity imparting agent and a binder as necessary, and is formed on one current collector 103. The positive electrode active material of this embodiment is combined with a conductive material.

[2−2]負極
負極102は、負極活物質を含み、必要に応じてさらに導電性付与剤、結着剤を含み、他方の集電体103上に形成されている。
[2-2] Negative Electrode The negative electrode 102 includes a negative electrode active material, and further includes a conductivity imparting agent and a binder as necessary, and is formed on the other current collector 103.

[2−3]セパレータ
正極101と負極102との間には、これらを絶縁分離する絶縁性の多孔質セパレータ105が設けられる。セパレータ105としては、ポリエチレン、ポリプロピレン等からなる多孔質樹脂フィルム、セルロース膜、不繊布等を用いることができる。
[2-3] Separator An insulating porous separator 105 is provided between the positive electrode 101 and the negative electrode 102 to insulate and separate them. As the separator 105, a porous resin film made of polyethylene, polypropylene, or the like, a cellulose film, a non-woven cloth, or the like can be used.

[2−4]電解液
電解液は、正極と負極との間で荷電担体の輸送を行うものであり、正極101、負極102及びセパレータ105に含浸している。電解液としては、20℃で10−5〜10−1S/cmのイオン伝導性を有しているものを用いることができ、電解質塩を有機溶媒に溶解した非水電解液を用いることができる。電解液の溶媒としては、非プロトン性有機溶媒を用いることができる。
[2-4] Electrolytic Solution The electrolytic solution transports the charge carrier between the positive electrode and the negative electrode, and is impregnated in the positive electrode 101, the negative electrode 102, and the separator 105. As the electrolytic solution, one having an ion conductivity of 10 −5 to 10 −1 S / cm at 20 ° C. can be used, and a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent is used. it can. As the solvent for the electrolytic solution, an aprotic organic solvent can be used.

電解質塩としては、例えばLiPF、LiClO、LiBF、LiCFSO、LiN(CFSO(以下「LiTFSI」)、LiN(CSO(以下「LiBETI」)、Li(CFSOC、Li(CSOC等の通常の電解質材料を用いることができる。Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 (hereinafter “LiTFSI”), LiN (C 2 F 5 SO 2 ) 2 (hereinafter “LiBETI”). ), Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or other ordinary electrolyte materials can be used.

有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン等のγ−ラクトン類;テトラヒドロフラン、ジオキソラン等の環状エーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類が挙げられる。他の有機溶媒としては、環状カーボネート及び鎖状カーボネートの少なくとも一方を混合することが好ましい。   Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; γ-lactones such as γ-butyrolactone; cyclics such as tetrahydrofuran and dioxolane. Ethers; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like. As another organic solvent, it is preferable to mix at least one of a cyclic carbonate and a chain carbonate.

[2−5]外装用フィルム
外装用フィルム106としてはアルミラミネートフィルム等を用いることができる。外装用フィルム以外の外装体としては、金属ケースや樹脂ケースが挙げられる。蓄電デバイスの外形としては、円筒型、角型、コイン型、シート型が挙げられる。
[2-5] Exterior Film An aluminum laminate film or the like can be used as the exterior film 106. Examples of the exterior body other than the exterior film include a metal case and a resin case. Examples of the outer shape of the electricity storage device include a cylindrical shape, a square shape, a coin shape, and a sheet shape.

[2−6]蓄電デバイスの作製例
正極101を外装用フィルム106上に置き、セパレータ105を挟んで負極102と重ね合わせることで電極積層体が得られる。得られた電極積層体を外装用フィルム106で覆い、電極リード部を含む3辺を熱融着する。これに電解液を注入し、真空含浸させる。十分に含浸させて電極及びセパレータ105の空隙を電解液で埋めた後、残りの4辺目を減圧下にて熱融着することにより、ラミネート型の蓄電デバイス107が得られる。
[2-6] Production Example of Electricity Storage Device The electrode laminate is obtained by placing the positive electrode 101 on the exterior film 106 and overlapping the negative electrode 102 with the separator 105 interposed therebetween. The obtained electrode laminate is covered with an exterior film 106, and three sides including the electrode lead portion are heat-sealed. An electrolyte is injected into this and vacuum impregnated. After sufficiently impregnating and filling the gap between the electrode and the separator 105 with the electrolytic solution, the remaining four sides are heat-sealed under reduced pressure, whereby a laminate-type power storage device 107 is obtained.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(PTMAの合成)
本実施例で用いたニトロキシル高分子であるポリ(2,2,6,6−テトラメチルピペリジノキシルメタクリレート(PTMA)は、特開2009−238612号公報に記載の方法に従って合成した。
(Synthesis of PTMA)
Poly (2,2,6,6-tetramethylpiperidinoxyl methacrylate (PTMA), which is a nitroxyl polymer used in this example, was synthesized according to the method described in JP-A-2009-238612.

すなわち、下記記載に従って合成した。   That is, it synthesize | combined according to the following description.

還流管を付けた100mlナスフラスコ中に、2,2,6,6−テトラメチルピペリジンメタクリレートモノマー20g(0.089mol)を入れ、乾燥テトラヒドロフラン80mlに溶解させた。そこへ、アゾビスイソブチロニトリル(AIBN)0.29g(0.00187mol)(モノマー/AIBN=50/1)を加え、アルゴン雰囲気下75〜80℃で攪拌した。6時間反応後、室温まで放冷した。へキサン中でポリマーを析出させて濾別し、減圧乾燥してポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)を得た。次に、得られたポリ(2,2,6,6−テトラメチルピペリジンメタクリレート)10gを乾操ジクロロメタン100mlに溶解させた。ここへm−クロロ過安息香酸15.2g(0.088mol)のジクロロメタン溶液100mlを室温にて攪拌しながら1時間かけて滴下した。さらに6時間攪拌後、沈殿したm−クロロ安息香酸を濾別して除き、濾液を炭酸ナトリウム水溶液および水で洗浄後、ジクロロメタンを留去した。残った固形分を粉砕し、得られた粉末をジエチルカーボネート(DEC)で洗浄し、減圧下乾燥させて、ポリ(2,2,6,6−テトラメチルピペリジノキシルメタクリレート)(PTMA)を得た。   In a 100 ml eggplant flask equipped with a reflux tube, 20 g (0.089 mol) of 2,2,6,6-tetramethylpiperidine methacrylate monomer was placed and dissolved in 80 ml of dry tetrahydrofuran. Thereto was added 0.29 g (0.00187 mol) of azobisisobutyronitrile (AIBN) (monomer / AIBN = 50/1), and the mixture was stirred at 75 to 80 ° C. in an argon atmosphere. After reacting for 6 hours, it was allowed to cool to room temperature. The polymer was precipitated in hexane, separated by filtration, and dried under reduced pressure to obtain poly (2,2,6,6-tetramethylpiperidine methacrylate). Next, 10 g of the obtained poly (2,2,6,6-tetramethylpiperidine methacrylate) was dissolved in 100 ml of dry-treated dichloromethane. To this, 100 ml of a dichloromethane solution of 15.2 g (0.088 mol) of m-chloroperbenzoic acid was added dropwise over 1 hour with stirring at room temperature. After further stirring for 6 hours, the precipitated m-chlorobenzoic acid was removed by filtration, and the filtrate was washed with an aqueous sodium carbonate solution and water, and then dichloromethane was distilled off. The remaining solid was pulverized, and the resulting powder was washed with diethyl carbonate (DEC) and dried under reduced pressure to obtain poly (2,2,6,6-tetramethylpiperidinoxyl methacrylate) (PTMA). Obtained.

(負極の作製)
グラファイト粉末(粒径6μm)13.5g、ポリフッ化ビニリデン1.35g、カーボンブラック0.15g、及びN−メチルピロリドン30gを混合し、ホモジェナイザーで撹拌し、均一なスラリーを調製した。
(Preparation of negative electrode)
13.5 g of graphite powder (particle size 6 μm), 1.35 g of polyvinylidene fluoride, 0.15 g of carbon black, and 30 g of N-methylpyrrolidone were mixed and stirred with a homogenizer to prepare a uniform slurry.

このスラリーを集電体である銅メッシュ上に塗布し、次いで120℃で5分間乾燥した。さらにロールプレス機により厚さを調整した。これを22×24mmの長方形に切り抜き、ニッケル電極リードを超音波圧着した。得られた負極の厚さは50〜60μmであった。   This slurry was applied onto a copper mesh as a current collector, and then dried at 120 ° C. for 5 minutes. Furthermore, the thickness was adjusted with a roll press. This was cut into a 22 × 24 mm rectangle, and a nickel electrode lead was ultrasonically bonded. The thickness of the obtained negative electrode was 50 to 60 μm.

(実施例1)
正極活物質としてPTMA2.1gをN−メチルピロリドン12mlに溶解した。ここに導電性材料として炭素材料(昭和電工製、商品名:VGCF−H/気相法により合成された高結晶性のカーボンナノファイバー、繊維径150nm、繊維長10〜20μm、アスペクト比10〜500)0.42gを加え、ホモジナイザーにて攪拌し、正極活物質が溶解したN−メチルピロリドンに導電性材料が均一に分散しているスラリーを得た。このスラリーをメタノール1Lに撹拌しながら少しずつ加えることにより、ニトロキシル化合物・炭素材料複合体を沈殿させた。沈殿物をろ過し、さらに減圧乾燥機にて60℃で8時間の真空乾燥を行い、ニトロキシル化合物・炭素材料複合体の固形物を得た。これを乳鉢ですりつぶし、粉末状とした。
Example 1
As a positive electrode active material, 2.1 g of PTMA was dissolved in 12 ml of N-methylpyrrolidone. Here, a carbon material (manufactured by Showa Denko, trade name: VGCF-H / highly crystalline carbon nanofiber synthesized by vapor phase method, fiber diameter 150 nm, fiber length 10 to 20 μm, aspect ratio 10 to 500 as a conductive material here. 0.42 g was added and stirred with a homogenizer to obtain a slurry in which the conductive material was uniformly dispersed in N-methylpyrrolidone in which the positive electrode active material was dissolved. By adding this slurry to 1 L of methanol little by little while stirring, the nitroxyl compound / carbon material composite was precipitated. The precipitate was filtered, and further vacuum-dried at 60 ° C. for 8 hours with a vacuum dryer to obtain a solid of a nitroxyl compound / carbon material composite. This was ground in a mortar to make a powder.

次に、ニトロキシル化合物・炭素材料複合体2.1g、リチウムイオン供給源としてマンガン酸リチウム0.2g、導電付与剤としてアセチレンブラック0.2g、結着剤としてカルボキシメチルセルロース(CMC)0.24g及びポリテトラフルオロエチレン(PTFE)0.03g、並びに水15mlを混合し、ホモジェナイザーで撹拌し、均一なスラリーを調製した。   Next, 2.1 g of a nitroxyl compound / carbon material composite, 0.2 g of lithium manganate as a lithium ion source, 0.2 g of acetylene black as a conductivity-imparting agent, 0.24 g of carboxymethyl cellulose (CMC) as a binder, and poly 0.03 g of tetrafluoroethylene (PTFE) and 15 ml of water were mixed and stirred with a homogenizer to prepare a uniform slurry.

このスラリーを集電体であるアルミ箔上に塗布し、次いで80℃で5分間乾燥した。さらにロールプレス機により厚さを調整した。これを22×24mmの長方形に切り抜き、アルミ電極リードを超音波圧着した。得られた正極の厚さは140〜150μmであった。   This slurry was applied on an aluminum foil as a current collector, and then dried at 80 ° C. for 5 minutes. Furthermore, the thickness was adjusted with a roll press. This was cut into a 22 × 24 mm rectangle, and an aluminum electrode lead was ultrasonically bonded. The thickness of the obtained positive electrode was 140 to 150 μm.

正極と負極の間にポリプロピレン多孔質フィルムセパレータを挟み、電極積層体を得た。電極積層体をアルミラミネートで覆い、電極リード部を含む3辺を熱融着した。これに濃度1mol/LのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=30/70(v/v)の混合電解液を注入し、電極中によく含浸させた。残りの4辺目を減圧下にて熱融着させることでラミネート型の蓄電デバイスを作製した。A polypropylene porous film separator was sandwiched between the positive electrode and the negative electrode to obtain an electrode laminate. The electrode laminate was covered with aluminum laminate and three sides including the electrode lead portion were heat-sealed. A mixed electrolytic solution of ethylene carbonate / diethyl carbonate = 30/70 (v / v) containing a 1 mol / L LiPF 6 supporting salt was injected into this, and the electrode was well impregnated. The remaining four sides were thermally fused under reduced pressure to produce a laminate type electricity storage device.

蓄電デバイス作製後、0.1mAの定電流で電圧が4.6Vになるまで電流を流し、その後、0.5mAの定電流で電圧が3Vになるまで電流を流すことで、蓄電デバイスの使用前に負極にリチウムイオンをあらかじめ蓄えさせた。   After the electricity storage device is manufactured, the current is supplied until the voltage reaches 4.6 V at a constant current of 0.1 mA, and then the current is supplied until the voltage reaches 3 V at a constant current of 0.5 mA. Lithium ions were previously stored in the negative electrode.

(実施例2)
スラリー中にリチウムイオン供給源としてリン酸鉄リチウム0.2gを使用したこと以外は、実施例1と同様にして蓄電デバイスを作製した。
(Example 2)
An electricity storage device was produced in the same manner as in Example 1 except that 0.2 g of lithium iron phosphate was used as the lithium ion supply source in the slurry.

蓄電デバイス作製後、0.1mAの定電流で電圧が4.0Vになるまで電流を流し、その後、0.5mAの定電流で電圧が3Vになるまで電流を流すことで、蓄電デバイスの使用前に負極にリチウムイオンをあらかじめ蓄えさせた。   After the electricity storage device is manufactured, the current is supplied until the voltage reaches 4.0 V at a constant current of 0.1 mA, and then the current is supplied until the voltage reaches 3 V at a constant current of 0.5 mA. Lithium ions were previously stored in the negative electrode.

(比較例1)
PTMA1.75g、リチウムイオン供給源としてマンガン酸リチウム0.2g、導電付与剤としてVGCF−H0.35g及びアセチレンブラック0.2g、結着剤としてカルボキシメチルセルロース(CMC)0.24g及びポリテトラフルオロエチレン(PTFE)0.03g、並びに水15mlを混合し、ホモジェナイザーで撹拌し、均一なスラリーを調製した。
(Comparative Example 1)
1.75 g of PTMA, 0.2 g of lithium manganate as a lithium ion source, 0.35 g of VGCF-H and 0.2 g of acetylene black as a conductivity-imparting agent, 0.24 g of carboxymethyl cellulose (CMC) and polytetrafluoroethylene ( PTFE) 0.03 g and water 15 ml were mixed and stirred with a homogenizer to prepare a uniform slurry.

このスラリーを集電体であるアルミ箔上に塗布し、次いで80℃で5分間乾燥した。さらにロールプレス機により厚さを調整した。これを22×24mmの長方形に切り抜き、アルミ電極リードを超音波圧着した。得られた正極の厚さは140〜150μmであった。   This slurry was applied on an aluminum foil as a current collector, and then dried at 80 ° C. for 5 minutes. Furthermore, the thickness was adjusted with a roll press. This was cut into a 22 × 24 mm rectangle, and an aluminum electrode lead was ultrasonically bonded. The thickness of the obtained positive electrode was 140 to 150 μm.

正極と負極の間にポリプロピレン多孔質フィルムセパレータを挟み、電極積層体を得た。電極積層体をアルミラミネートで覆い、電極リード部を含む3辺を熱融着した。これに濃度1mol/LのLiPF支持塩を含むエチレンカーボネート/ジエチルカーボネート=30/70(v/v)の混合電解液を注入し、電極中によく含浸させた。残りの4辺目を減圧下にて熱融着させることでラミネート型の蓄電デバイスを作製した。A polypropylene porous film separator was sandwiched between the positive electrode and the negative electrode to obtain an electrode laminate. The electrode laminate was covered with aluminum laminate and three sides including the electrode lead portion were heat-sealed. A mixed electrolytic solution of ethylene carbonate / diethyl carbonate = 30/70 (v / v) containing a 1 mol / L LiPF 6 supporting salt was injected into this, and the electrode was well impregnated. The remaining four sides were thermally fused under reduced pressure to produce a laminate type electricity storage device.

蓄電デバイス作製後、0.1mAの定電流で電圧が4.6Vになるまで電流を流し、その後、0.5mAの定電流で電圧が3Vになるまで電流を流すことで、蓄電デバイスの使用前に負極にリチウムイオンをあらかじめ蓄えさせた。   After the electricity storage device is manufactured, the current is supplied until the voltage reaches 4.6 V at a constant current of 0.1 mA, and then the current is supplied until the voltage reaches 3 V at a constant current of 0.5 mA. Lithium ions were previously stored in the negative electrode.

(比較例2)
スラリー中にリチウムイオン供給源としてリン酸鉄リチウム0.2gを使用したこと以外は、比較例1と同様にして蓄電デバイスを作製した。
(Comparative Example 2)
An electricity storage device was produced in the same manner as in Comparative Example 1 except that 0.2 g of lithium iron phosphate was used as a lithium ion supply source in the slurry.

蓄電デバイス作製後、0.1mAの定電流で電圧が4.0Vになるまで電流を流し、その後、0.5mAの定電流で電圧が3Vになるまで電流を流すことで、蓄電デバイスの使用前に負極にリチウムイオンをあらかじめ蓄えさせた。   After the electricity storage device is manufactured, the current is supplied until the voltage reaches 4.0 V at a constant current of 0.1 mA, and then the current is supplied until the voltage reaches 3 V at a constant current of 0.5 mA. Lithium ions were previously stored in the negative electrode.

(放電測定とその結果)
実施例1、2及び比較例1、2の蓄電デバイスを、20℃にて、0.5mAの定電流で電圧が4Vになるまで充電した後、10mAの定電流で3Vになるまで放電した。放電中における蓄電デバイスの平均電圧を求めた。
(Discharge measurement and results)
The power storage devices of Examples 1 and 2 and Comparative Examples 1 and 2 were charged at 20 ° C. with a constant current of 0.5 mA until the voltage reached 4 V, and then discharged with a constant current of 10 mA until 3 V was reached. The average voltage of the electricity storage device during discharge was determined.

表1に平均電圧の結果を示す。実施例1、実施例2、比較例1、比較例2の平均電圧は、3.43V、3.42V、3.30V、3.34Vであった。これは、ニトロキシル化合物と導電性材料を複合化することで、マンガン酸リチウム又はリン酸鉄リチウムによるリチウムイオンの再ドープを抑制し、炭素負極からリチウムイオンの放出を抑制し、その結果、実施例1、2では比較例1、2に比べて、負極中により多くのリチウムイオンが蓄えられた状態で充放電ができたためと考えられる。   Table 1 shows the average voltage results. The average voltages of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were 3.43V, 3.42V, 3.30V, and 3.34V. This is a composite of a nitroxyl compound and a conductive material, which suppresses re-doping of lithium ions by lithium manganate or lithium iron phosphate and suppresses release of lithium ions from the carbon negative electrode. 1 and 2 are considered to be because charging and discharging were possible in a state where more lithium ions were stored in the negative electrode than in Comparative Examples 1 and 2.

Figure 2014092128
Figure 2014092128

(出力測定とその結果)
実施例1、2及び比較例1、2の蓄電デバイスを、20℃にて、0.5mAの定電流で電圧が4Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、1000mAと変えながら行った。放電終止電圧と測定電流を掛け合わせることで出力を求めた。各放電電流時の出力の中で最も値が大きいものを最大出力とした。
(Output measurement and results)
The power storage devices of Examples 1 and 2 and Comparative Examples 1 and 2 were charged at 20 ° C. with a constant current of 0.5 mA until the voltage reached 4 V, and then discharged at 10 mA for 1 second. The battery was charged again at a constant current of 0.5 mA until the voltage reached 4 V, and then discharged at 20 mA for 1 second. This charging / discharging was repeated while changing the discharge current to 30, 40, ..., 1000 mA. The output was obtained by multiplying the discharge end voltage and the measured current. The largest output among the outputs at each discharge current was defined as the maximum output.

表2に最大出力の結果を示す。実施例1、実施例2、比較例1、比較例2の最大出力はそれぞれ、157mW/cm、179mW/cm、43mW/cm、78mW/cmであった。このように、ニトロキシル化合物を導電性材料と複合化させることで出力特性が改善された。放電測定の結果と同様に、実施例1、2では比較例1、2に比べて、負極中により多くのリチウムイオンが蓄えられた状態で充放電ができたためと考えられる。Table 2 shows the maximum output results. The maximum outputs of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were 157 mW / cm 2 , 179 mW / cm 2 , 43 mW / cm 2 , and 78 mW / cm 2 , respectively. Thus, the output characteristics were improved by combining the nitroxyl compound with the conductive material. Similar to the results of the discharge measurement, in Examples 1 and 2, compared to Comparative Examples 1 and 2, it is considered that charging and discharging were performed in a state where more lithium ions were stored in the negative electrode.

Figure 2014092128
Figure 2014092128

本発明の実施形態によれば、十分な出力をもつ蓄電デバイスを提供することができる。そのため、本発明の実施形態による蓄電デバイスは、電気自動車、ハイブリッド電気自動車などの駆動用又は補助用の蓄電源、各種携帯電子機器の電源、ソーラーエネルギーや風力発電等の各種エネルギーの蓄電装置、あるいは家庭用電気器具の蓄電源等に適用できる。   According to the embodiment of the present invention, an electricity storage device having a sufficient output can be provided. Therefore, the power storage device according to the embodiment of the present invention is a power storage device for driving or auxiliary such as an electric vehicle or a hybrid electric vehicle, a power source for various portable electronic devices, a power storage device for various energy such as solar energy or wind power generation, or It can be applied to a storage power source for household appliances.

101 正極
102 負極
103 集電体
104 電極リード
105 セパレータ
106 外装用フィルム
107 ラミネート型蓄電デバイス
DESCRIPTION OF SYMBOLS 101 Positive electrode 102 Negative electrode 103 Current collector 104 Electrode lead 105 Separator 106 Exterior film 107 Laminate type electricity storage device

Claims (7)

酸化状態において下記式(1)で示されるニトロキシルラジカルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物を含む正極と、リチウムイオンを可逆的に挿入・脱離可能な炭素材料を含む負極と、リチウム塩と非プロトン性有機溶媒とを含む電解液を有し、前記正極がリチウム化合物を含有し、かつ、前記ニトロキシル化合物が導電性材料とニトロキシル化合物・導電性材料複合体を形成していることを特徴とする蓄電デバイス。
Figure 2014092128
A positive electrode containing a nitroxyl compound having a nitroxyl radical cation partial structure represented by the following formula (1) in an oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in a reduced state; A negative electrode containing a carbon material that can be inserted and removed, an electrolyte solution containing a lithium salt and an aprotic organic solvent, the positive electrode contains a lithium compound, and the nitroxyl compound is a conductive material. An electricity storage device comprising a nitroxyl compound / conductive material composite.
Figure 2014092128
前記ニトロキシル化合物・導電性材料複合体は、ニトロキシル化合物が溶解又は膨潤しかつ導電性材料が分散又は溶解している原料溶液を、前記ニトロキシル化合物と前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記導電性材料が前記ニトロキシル化合物の内部に取り込まれた沈殿物として得られることにより、前記ニトロキシル化合物が前記導電性材料と複合化されていることを特徴とする、請求項1に記載の蓄電デバイス。   The nitroxyl compound / conductive material complex is prepared by dropping a raw material solution in which a nitroxyl compound is dissolved or swollen and a conductive material is dispersed or dissolved into a solution in which the nitroxyl compound and the conductive material are not dissolved or swollen. The nitroxyl compound is combined with the conductive material by pouring to obtain the conductive material as a precipitate taken into the nitroxyl compound. The electricity storage device described. 前記正極が、前記ニトロキシル化合物・導電性材料複合体とリチウム化合物の混合体を含むことを特徴とする、請求項1又は2に記載の蓄電デバイス。   The power storage device according to claim 1, wherein the positive electrode includes a mixture of the nitroxyl compound / conductive material composite and a lithium compound. 前記リチウム化合物がマンガン酸リチウム、リン酸鉄リチウム又は硫化リチウムであることを特徴とする請求項1から3のいずれか1項に記載の蓄電デバイス。   The power storage device according to any one of claims 1 to 3, wherein the lithium compound is lithium manganate, lithium iron phosphate, or lithium sulfide. 前記リチウム化合物の重量が正極活物質の重量の1%以上、20%以下であることを特徴とする請求項1から4のいずれか1項に記載の蓄電デバイス。   5. The electricity storage device according to claim 1, wherein a weight of the lithium compound is 1% or more and 20% or less of a weight of the positive electrode active material. 前記ニトロキシル化合物の内部に取り込まれた前記導電性材料の重量が、前記ニトロキシル化合物を100重量部としたとき1重量部以上、200重量部以下であることを特徴とする請求項1から5のいずれか1項に記載の蓄電デバイス。   The weight of the conductive material taken into the nitroxyl compound is 1 part by weight or more and 200 parts by weight or less when the nitroxyl compound is 100 parts by weight. The electricity storage device according to claim 1. 酸化状態において下記式(1)で示されるニトロキシルラジカルカチオン部分構造をとり、還元状態において下記式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル化合物が溶解又は膨潤しかつ導電性材料が分散又は溶解している原料溶液を、前記ニトロキシル化合物と前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記導電性材料が前記ニトロキシル化合物の内部に取り込まれた沈殿物として得られることにより、前記ニトロキシル化合物が前記導電性材料と複合化されているニトロキシル化合物・導電性材料複合体と、リチウム化合物とを混合することを特徴とする電極の製造方法。
Figure 2014092128
A nitroxyl compound having a nitroxyl radical cation partial structure represented by the following formula (1) in the oxidized state and a nitroxyl radical partial structure represented by the following formula (2) in the reduced state is dissolved or swelled, and the conductive material is By dropping or pouring the dispersed or dissolved raw material solution into a solution in which the nitroxyl compound and the conductive material do not dissolve or swell, the conductive material is obtained as a precipitate taken into the nitroxyl compound. Thus, the nitroxyl compound / conductive material composite in which the nitroxyl compound is combined with the conductive material is mixed with the lithium compound.
Figure 2014092128
JP2014552071A 2012-12-14 2013-12-11 Power storage device Pending JPWO2014092128A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012273602 2012-12-14
JP2012273602 2012-12-14
PCT/JP2013/083234 WO2014092128A1 (en) 2012-12-14 2013-12-11 Electric storage device

Publications (1)

Publication Number Publication Date
JPWO2014092128A1 true JPWO2014092128A1 (en) 2017-01-12

Family

ID=50934412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014552071A Pending JPWO2014092128A1 (en) 2012-12-14 2013-12-11 Power storage device

Country Status (2)

Country Link
JP (1) JPWO2014092128A1 (en)
WO (1) WO2014092128A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3107614A1 (en) * 2020-02-21 2021-08-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for preparing a particulate composite material for an organic electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632020B2 (en) * 2004-01-23 2011-02-16 日本電気株式会社 Non-aqueous electrolyte secondary battery
JP4884021B2 (en) * 2006-02-09 2012-02-22 株式会社デンソー Method for manufacturing electrode for secondary battery
JP5228531B2 (en) * 2008-02-27 2013-07-03 日本電気株式会社 Electricity storage device
JP5146049B2 (en) * 2008-03-27 2013-02-20 日本電気株式会社 Electricity storage device
JP5390131B2 (en) * 2008-06-26 2014-01-15 株式会社デンソー Non-aqueous electrolyte secondary battery electrode binder, non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery using the binder
US20120171561A1 (en) * 2009-09-18 2012-07-05 Nec Corporation Polymer radical material-activated carbon-conductive material composite, method for producing conductive material composite, and electricity storage device

Also Published As

Publication number Publication date
WO2014092128A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP5516578B2 (en) Power storage device
JP5076560B2 (en) Electricity storage device
JP5146049B2 (en) Electricity storage device
JP5332251B2 (en) Polymer radical material / conductive material composite, method for producing the same, and power storage device
JP5625151B2 (en) Compound having a radical, polymer, and electricity storage device using the polymer
JP2012221575A (en) Radical compound, method for producing the same, and secondary battery
WO2014092016A1 (en) Electric storage device
JP7092037B2 (en) Electrodes and secondary batteries using radical polymers
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
JP6895085B2 (en) Power storage device
WO2014006973A1 (en) Electrode for electricity storage devices, electricity storage device using same, and method for producing same
WO2014092128A1 (en) Electric storage device
JP6248947B2 (en) Electrode material and secondary battery
JP2014072129A (en) Electrode for power storage device and power storage device using the same
JP6447050B2 (en) Method for manufacturing power storage device
WO2020017630A1 (en) Secondary battery using radical polymer in electrode
WO2014157059A1 (en) Electrode for power storage device and power storage device using same
JP2011029136A (en) Electrode for secondary battery, secondary battery, and manufacturing method of electrode for secondary battery
WO2014136729A1 (en) Electricity storage device
WO2013114785A1 (en) Electricity storage device
WO2020158555A1 (en) Secondary battery which uses radical polymer for electrode
JP5034147B2 (en) Secondary battery
JP2015060636A (en) Secondary battery