JP6248947B2 - Electrode material and secondary battery - Google Patents

Electrode material and secondary battery Download PDF

Info

Publication number
JP6248947B2
JP6248947B2 JP2014558580A JP2014558580A JP6248947B2 JP 6248947 B2 JP6248947 B2 JP 6248947B2 JP 2014558580 A JP2014558580 A JP 2014558580A JP 2014558580 A JP2014558580 A JP 2014558580A JP 6248947 B2 JP6248947 B2 JP 6248947B2
Authority
JP
Japan
Prior art keywords
metal oxide
polymer
conductive material
radical
polymer radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014558580A
Other languages
Japanese (ja)
Other versions
JPWO2014115737A1 (en
Inventor
岩佐 繁之
繁之 岩佐
基陽 安井
基陽 安井
教徳 西
教徳 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2014115737A1 publication Critical patent/JPWO2014115737A1/en
Application granted granted Critical
Publication of JP6248947B2 publication Critical patent/JP6248947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、電極活物質としてラジカル化合物を用いた二次電池に関する。   The present invention relates to a secondary battery using a radical compound as an electrode active material.

近年、通信システムの発展に伴い、ノート型パソコン、携帯電話、スマートフォンなどの携帯電子機器が急激に普及してきた。携帯電子機器は、高機能化が進む一方で、機能や形状などの多様化も進んでいる。そこで、その電源である二次電池に対しても、高エネルギー密度、高出力密度、小型、軽量などの様々な要求が高まっている。   In recent years, with the development of communication systems, portable electronic devices such as notebook computers, mobile phones, and smartphones have rapidly spread. While mobile electronic devices are becoming more sophisticated, functions and shapes are also diversifying. Therefore, various demands such as a high energy density, a high output density, a small size, and a light weight are increasing for the secondary battery as the power source.

そこで、軽量でエネルギー密度の大きな二次電池を得る目的で、電極活物質に硫黄化合物や有機化合物を用いた二次電池が開発されてきた。特許文献1及び特許文献2には、ジスルフィド結合を有する有機化合物を正極に用いた二次電池が開示されている。これらの二次電池は、ジスルフィド結合の生成、解離を伴う電気化学的な酸化還元反応を利用したものである。特許文献1および2に記載された二次電池は、硫黄や炭素といった比重の小さな元素を主成分とする電極材料から構成されており、高エネルギー密度の二次電池という点において一定の効果を奏している。   Therefore, secondary batteries using sulfur compounds or organic compounds as electrode active materials have been developed for the purpose of obtaining lightweight secondary batteries with high energy density. Patent Document 1 and Patent Document 2 disclose secondary batteries using an organic compound having a disulfide bond as a positive electrode. These secondary batteries utilize an electrochemical redox reaction involving generation and dissociation of disulfide bonds. The secondary batteries described in Patent Documents 1 and 2 are made of an electrode material mainly composed of an element having a small specific gravity such as sulfur or carbon, and have a certain effect in terms of a secondary battery having a high energy density. ing.

しかしながら、特許文献1及び2の二次電池では、解離したジスルフィド結合が再度、結合する効率が小さいことや電極中の活物質の電解液への拡散のため、安定な充放電サイクルを行うことができない場合があった。そのため、場合によっては、充放電サイクルを重ねると、容量が低下しやすいという欠点があった。   However, in the secondary batteries of Patent Documents 1 and 2, it is possible to perform a stable charge / discharge cycle because the dissociated disulfide bond is low in the efficiency of binding again and the active material in the electrode diffuses into the electrolyte. There were cases where it was not possible. Therefore, depending on the case, there is a drawback that the capacity tends to decrease when the charge and discharge cycles are repeated.

また、有機化合物を利用した二次電池として、導電性高分子を電極材料に用いた二次電池が提案されている。この二次電池は、導電性高分子に対する電解質イオンのドープ、脱ドープ反応を利用したものである。ドープ反応とは、導電性高分子の酸化もしくは還元によって生ずる荷電ラジカルを、対イオンによって安定化させる反応のことである。特許文献3には、このような導電性高分子を正極もしくは負極の材料とした二次電池が開示されている。   As secondary batteries using organic compounds, secondary batteries using conductive polymers as electrode materials have been proposed. This secondary battery utilizes electrolyte ion doping and dedoping reactions with respect to a conductive polymer. The dope reaction is a reaction in which a charged radical generated by oxidation or reduction of a conductive polymer is stabilized by a counter ion. Patent Document 3 discloses a secondary battery using such a conductive polymer as a positive electrode or negative electrode material.

特許文献3の二次電池は、電極材料が炭素や窒素といった比重の小さな元素のみから構成されたものであり、高容量の二次電池として期待されていた。しかしながら、導電性高分子には、酸化還元によって生じる荷電ラジカルがπ電子共役系の広い範囲に亘って非局在化し、それらが静電反発やラジカルの消失をもたらす相互作用をする、という特性がある。このことは発生する荷電ラジカル、すなわちドープ濃度に限界をもたらすものであり、二次電池の容量を制限するものであった。例えば、ポリアニリンを正極に用いた二次電池のドープ率は50%以下、ポリアセチレンの場合は7%である、と報告されている。導電性高分子を電極材料とする二次電池では軽量化という点では一定の効果を奏しているものの、大きなエネルギー密度を持つ二次電池は得られていなかった。   In the secondary battery of Patent Document 3, the electrode material is composed only of an element having a small specific gravity such as carbon or nitrogen, and is expected as a high-capacity secondary battery. However, conductive polymers have the property that charged radicals generated by redox are delocalized over a wide range of π-electron conjugated systems and interact with each other, resulting in electrostatic repulsion and radical disappearance. is there. This brings a limit to the generated charged radicals, that is, the dope concentration, and limits the capacity of the secondary battery. For example, it has been reported that the doping rate of a secondary battery using polyaniline as a positive electrode is 50% or less, and 7% in the case of polyacetylene. Although a secondary battery using a conductive polymer as an electrode material has a certain effect in terms of weight reduction, a secondary battery having a large energy density has not been obtained.

一方、有機化合物を電極用の活物質として用いた二次電池として、ラジカル化合物の酸化還元反応を用いたものが提案されている。この二次電池は、有機ラジカル電池と呼ばれている。特許文献4は、ニトロキシルラジカル化合物、アリールオキシラジカル化合物および特定のアミノトリアジン構造を有するポリマーなどの有機ラジカル化合物を電極用の活物質として開示し、この有機ラジカル化合物を正極または負極の材料として用いた二次電池が開示されている。   On the other hand, as a secondary battery using an organic compound as an active material for an electrode, a battery using a redox reaction of a radical compound has been proposed. This secondary battery is called an organic radical battery. Patent Document 4 discloses an organic radical compound such as a nitroxyl radical compound, an aryloxy radical compound, and a polymer having a specific aminotriazine structure as an active material for an electrode, and uses the organic radical compound as a material for a positive electrode or a negative electrode. A secondary battery is disclosed.

特許文献5には、ニトロキシル化合物の中でも、特に環状ニトロキシル構造を有する化合物を電極活物質として用いた二次電池が開示されている。環状ニトロキシル構造は、安定したp型酸化還元を示すことが知られている。電極用の活物質として用いられるポリラジカル化合物には、2,2,6,6−テトラメチルピペリジン−1−オキシル(TEMPO)を有するポリ(2,2,6,6−テトラメチルピペリジン−1−オキシルメタクリレート)(PTMA)などのニトロキシルラジカル化合物が知られている。ニトロキシルラジカル化合物の酸化還元反応では、酸化状態においてオキソアンモニウムカチオン部分構造をとり、還元状態においてニトロキシルラジカル部分構造をとり、その2つの状態間で電子の授受が行わる。この電極反応は比較的速く反応が進むため、ニトロキシルラジカル化合物を電極に用いた二次電池は大きな電流での放電が可能である。   Patent Document 5 discloses a secondary battery using a compound having a cyclic nitroxyl structure as an electrode active material among nitroxyl compounds. Cyclic nitroxyl structures are known to exhibit stable p-type redox. The polyradical compound used as an active material for electrodes includes poly (2,2,6,6-tetramethylpiperidine-1- having 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Nitroxyl radical compounds such as oxyl methacrylate (PTMA) are known. In the oxidation-reduction reaction of a nitroxyl radical compound, an oxoammonium cation partial structure is taken in the oxidation state, a nitroxyl radical partial structure is taken in the reduction state, and electrons are transferred between the two states. Since this electrode reaction proceeds relatively quickly, a secondary battery using a nitroxyl radical compound as an electrode can be discharged with a large current.

特許文献6には、ニトロキシル化合物と導電材料の複合体を電極に用いた有機ラジカル電池が開示されている。例えば、炭素を導電材料に用いた場合、電極における炭素の分散性が良くなる。このため、電極抵抗が低減される。これにより、より高出力な二次電池が得られている。   Patent Document 6 discloses an organic radical battery using a composite of a nitroxyl compound and a conductive material as an electrode. For example, when carbon is used for the conductive material, the dispersibility of carbon in the electrode is improved. For this reason, electrode resistance is reduced. Thereby, a secondary battery with higher output is obtained.

米国特許第4833048号明細書US Pat. No. 4,833,048 特許第2715778号明細書Japanese Patent No. 2715778 米国特許第4442187号明細書U.S. Pat. No. 4,442,187 特開2002−151084公報JP 2002-151084 A 特開2002−304996号公報JP 2002-304996 A 特開2009−230951号公報JP 2009-230951 A

有機ラジカル電池は、大きな電流での放電が可能な電池、すなわち高出力放電が可能な電池である。しかし、Liイオン電池と比較し、エネルギー密度が小さな電池である。携帯電子機器用Liイオン電池のエネルギー密度は体積あたり500Wh/L以上といわれているが、有機ラジカル電池の場合、100Wh/L以下とLiイオン電池に比べて小さい。これは、有機ラジカル電池の電極活物質としての容量密度がLiイオン電池に比べて小さいこと、また理論上必要となる電解液量が、有機ラジカル電池ではLiイオン電池に比べかなり多くなることに由来する。   An organic radical battery is a battery capable of discharging with a large current, that is, a battery capable of high output discharge. However, the battery has a lower energy density than the Li ion battery. The energy density of a Li-ion battery for portable electronic devices is said to be 500 Wh / L or more per volume, but in the case of an organic radical battery, it is 100 Wh / L or less, which is smaller than that of a Li-ion battery. This is because the capacity density as an electrode active material of an organic radical battery is smaller than that of a Li ion battery, and the amount of electrolyte required in theory is considerably larger in an organic radical battery than in a Li ion battery. To do.

有機ラジカル電池の電極活物質の容量密度は、代表的な電極活物質であるポリ(2,2,6,6−テトラメチルピペリジン−1−オキシルメタクリレート)(PTMA)では重量あたり111mAh/gである。一方Liイオン電池の代表的な電極活物質であるLiCoOの理論容量密度は140mAh/gと有機ラジカル電池の電極活物質と比べて大きい。有機ラジカル電池では、Liイオン電池比べ容量密度の小さな電極活物質が主に用いられている。これはLiイオン電池に比べエネルギー密度が小さい一因となっている。The capacity density of the electrode active material of the organic radical battery is 111 mAh / g per weight in poly (2,2,6,6-tetramethylpiperidine-1-oxyl methacrylate) (PTMA) which is a typical electrode active material. . On the other hand, the theoretical capacity density of LiCoO 2 , which is a typical electrode active material for Li-ion batteries, is 140 mAh / g, which is larger than the electrode active material for organic radical batteries. In organic radical batteries, electrode active materials having a smaller capacity density than Li-ion batteries are mainly used. This contributes to a lower energy density than Li-ion batteries.

また、PTMAを用いた有機ラジカル電池では、酸化還元の形態は、中性ラジカルとカチオン間で行うp型酸化還元である。この場合、充電の進行とともに電解質塩のアニオンがラジカル化合物にドープされるため、電解液中のアニオン濃度は減少することとなる。また、逆に、放電時には、ラジカル化合物からの脱ドープにより電解液中のアニオン濃度が増加する。このため、p型酸化還元の場合は、ドーパントとなるアニオンを電解液中に蓄えておく必要があり、多量の電解液が必要となる。この結果として、高いドープ率で酸化還元を行ったとしても、電解液が大量に用いられるため電池の重量が重くなり、結果としてエネルギー密度は低くなる。Liイオン電池の場合、充放電反応に伴いリチウムイオンは正極と負極間を往復する形態(いわゆる、ロッキングチェア型)であるため、充放電の深度にかかわらず電解液濃度は一定となる。Liイオン電池に必要な電解液は、少量(電極間を満たす量)となる。有機ラジカル電池では、Liイオン電池に比べ電解液を多く用いる必要がある。これはLiイオン電池に比べエネルギー密度が小さい一因となっている。   In an organic radical battery using PTMA, the form of redox is p-type redox performed between a neutral radical and a cation. In this case, since the anion of the electrolyte salt is doped into the radical compound as the charging proceeds, the anion concentration in the electrolytic solution decreases. Conversely, during discharge, the anion concentration in the electrolyte increases due to dedoping from the radical compound. For this reason, in the case of p-type redox, it is necessary to store an anion serving as a dopant in the electrolytic solution, and a large amount of electrolytic solution is required. As a result, even when oxidation / reduction is performed at a high doping rate, the battery is heavier due to the large amount of electrolyte used, resulting in a lower energy density. In the case of a Li-ion battery, since lithium ions reciprocate between the positive electrode and the negative electrode (so-called rocking chair type) in accordance with the charge / discharge reaction, the electrolyte concentration is constant regardless of the depth of charge / discharge. The electrolyte required for the Li-ion battery is a small amount (amount that fills between the electrodes). In organic radical batteries, it is necessary to use more electrolytic solution than Li-ion batteries. This contributes to a lower energy density than Li-ion batteries.

また、有機ラジカル電池において、電極活物質は概して導電性が低いため、電極活物質と導電材料を混合するだけでは、電極の抵抗が大きくなり、大きな電流での放電ができない。すなわち、出力性能の低下の原因となっている。   In an organic radical battery, since the electrode active material generally has low conductivity, simply mixing the electrode active material and the conductive material increases the resistance of the electrode and cannot be discharged with a large current. That is, the output performance is reduced.

本発明は、有機ラジカル電池のエネルギー密度が小さいという課題、および電極の形態において電極活物質と導電材料を混合するだけでは抵抗が大きくなるという課題を解決し、より大きなエネルギー密度の、また、大きな電流での放電が可能な二次電池を提供することを目的とする。   The present invention solves the problem that the energy density of the organic radical battery is low and the problem that the resistance increases only by mixing the electrode active material and the conductive material in the form of the electrode. An object of the present invention is to provide a secondary battery capable of discharging with current.

本発明の一態様は、Li金属酸化物及び導電性材料が、還元状態においてラジカル部分構造をとる高分子ラジカル材料の内部に取り込まれて複合化していることを特徴とする、高分子ラジカル材料・Li金属酸化物・導電性材料複合体に関する。   One aspect of the present invention is a polymer radical material characterized in that a Li metal oxide and a conductive material are incorporated into a polymer radical material having a radical partial structure in a reduced state and are combined. The present invention relates to a Li metal oxide / conductive material composite.

本発明の一態様は、還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を、前記高分子ラジカル材料、前記Li金属酸化物、及び前記導電性材料が溶解又は膨潤しない溶液に滴下又は注いで、前記Li金属酸化物と前記導電性材料とが前記高分子ラジカル材料の内部に取り込まれた沈殿物として得られた高分子ラジカル材料・Li金属酸化物・導電性材料複合体に関する。   In one embodiment of the present invention, a raw material solution in which a polymer radical material having a radical partial structure in a reduced state is dissolved or swollen and in which a Li metal oxide and a conductive material are dispersed or dissolved is used as the polymer radical. A precipitate in which the Li metal oxide and the conductive material are taken into the polymer radical material by dropping or pouring the material, the Li metal oxide, and a solution in which the conductive material does not dissolve or swell The polymer radical material / Li metal oxide / conductive material composite obtained as above.

本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体によれば、より大きなエネルギー密度の、また、大きな電流での放電が可能な二次電池が製造できる。   According to the polymer radical material / Li metal oxide / conductive material composite of the present invention, a secondary battery having a larger energy density and capable of discharging with a large current can be produced.

本発明の実施形態によるラミネート型二次電池の斜視図である1 is a perspective view of a laminated secondary battery according to an embodiment of the present invention. 本発明の実施形態によるラミネート型二次電池の断面図である。1 is a cross-sectional view of a laminated secondary battery according to an embodiment of the present invention.

以下、本発明につきさらに詳しく説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。   Hereinafter, the present invention will be described in more detail, but the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the gist of the present invention.

[高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法]
本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法は、還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を、高分子ラジカル材料、Li金属酸化物、及び導電性材料が溶解又は膨潤しない溶液に滴下又は注いで、高分子ラジカル材料、Li金属酸化物、及び導電性材料からなる沈殿物を生成する方法である。
[Production Method of Polymer Radical Material / Li Metal Oxide / Conductive Material Composite]
In the method for producing a polymer radical material / Li metal oxide / conductive material composite of the present invention, a polymer radical material having a radical partial structure in a reduced state is dissolved or swollen, and a Li metal oxide and a conductive material are obtained. The raw material solution in which the material is dispersed or dissolved is dropped or poured into a polymer radical material, Li metal oxide, and a solution in which the conductive material does not dissolve or swell, and the polymer radical material, Li metal oxide, and conductive This is a method for producing a precipitate made of a functional material.

本発明においては、高分子ラジカル材料、Li金属酸化物及び導電性材料を用いた複合体において、本発明に係る上記方法により、高分子ラジカル材料、Li金属酸化物及び導電性材料を均一に分布させることができるようになる。そのため、得られる高分子ラジカル材料・Li金属酸化物・導電性材料複合体に良好な電子伝導性をもたせることができる。この結果、高分子ラジカル材料・Li金属酸化物・導電性材料複合体により製造した電極では、高分子ラジカル材料のラジカル部位の酸化還元に関与できる割合が高くなる。   In the present invention, the polymer radical material, the Li metal oxide and the conductive material are uniformly distributed in the composite using the polymer radical material, the Li metal oxide and the conductive material by the above method according to the present invention. To be able to. Therefore, the obtained polymer radical material / Li metal oxide / conductive material composite can have good electron conductivity. As a result, in the electrode manufactured using the polymer radical material / Li metal oxide / conductive material composite, the ratio that can participate in the redox of the radical site of the polymer radical material is increased.

それゆえ、高分子ラジカル材料・Li金属酸化物・導電性材料複合体により製造した電極は、高分子ラジカル材料、Li金属酸化物、導電性材料を単に混合して得られた電極に比べ放電容量が大きくなる。また、高分子ラジカル材料・Li金属酸化物・導電性材料複合体を用いた電極では、高分子ラジカル材料の酸化還元に伴う電子の受け渡しが導電性材料を通じてスムーズとなっているため、大きな電流での充放電が可能となる。また、数秒レベルで大きな電流を流すことが可能となる。   Therefore, the electrode manufactured by the polymer radical material / Li metal oxide / conductive material composite has a discharge capacity compared to the electrode obtained by simply mixing the polymer radical material, Li metal oxide and conductive material. Becomes larger. In addition, in an electrode using a polymer radical material / Li metal oxide / conductive material composite, the transfer of electrons accompanying the oxidation / reduction of the polymer radical material is smooth through the conductive material. Can be charged and discharged. In addition, a large current can flow at a level of several seconds.

以下、各構成要素について説明する。   Hereinafter, each component will be described.

(高分子ラジカル材料)
先ず、高分子ラジカル材料について説明する。高分子ラジカル材料としては、二次電池の電極材料として利用可能な材料であって、還元状態においてラジカル部分構造をとる材料を用いることができる。より詳しくは、下記反応式(A)に示すように、酸化状態において化学式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において化学式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル高分子化合物を好ましく用いることができる。
(Polymer radical material)
First, the polymer radical material will be described. As the polymer radical material, a material that can be used as an electrode material of a secondary battery and that has a radical partial structure in a reduced state can be used. More specifically, as shown in the following reaction formula (A), the nitroxyl cation partial structure represented by the chemical formula (1) is taken in the oxidized state, and the nitroxyl radical partial structure represented by the chemical formula (2) is taken in the reduced state. Nitroxyl polymer compounds can be preferably used.

Figure 0006248947
なお、反応式(A)は正極の電極反応を表しており、こうした反応を伴う高分子ラジカル材料は、電子の蓄積と放出を行う二次電池用材料として機能させることができる。反応式(A)に示す酸化還元反応は、有機化合物の構造変化を伴わない反応機構であるため、反応速度が大きく、この高分子ラジカル材料を電極材料として二次電池を構成すれば、一度に大きな電流を流すことが可能となる。
Figure 0006248947
The reaction formula (A) represents the electrode reaction of the positive electrode, and the polymer radical material accompanied with such a reaction can function as a secondary battery material for accumulating and releasing electrons. The oxidation-reduction reaction shown in the reaction formula (A) is a reaction mechanism that does not involve a change in the structure of the organic compound. Therefore, the reaction rate is high. A large current can flow.

本発明において、ニトロキシル高分子化合物は、還元状態において化学式(3)で示される環状ニトロキシル構造を含む高分子化合物となっていることが好ましい。   In the present invention, the nitroxyl polymer compound is preferably a polymer compound containing a cyclic nitroxyl structure represented by the chemical formula (3) in the reduced state.

Figure 0006248947
化学式(3)において、R〜Rはそれぞれ独立にアルキル基を表し、それぞれ独立に直鎖状のアルキル基が好ましい。また、ラジカルの安定性の観点から、R〜Rはそれぞれ独立に炭素数1〜4のアルキル基が好ましく、特にメチル基が好ましい。
Figure 0006248947
In the chemical formula (3), R 1 to R 4 each independently represent an alkyl group, and each independently preferably a linear alkyl group. From the viewpoint of radical stability, R 1 to R 4 are each independently preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group.

Xは、化学式(3)が5〜7員環を形成するような2価の基を表す。ただし、Xの少なくとも一部は、ポリマーの主鎖の一部を構成している。こうしたXの構造は、特に制限されることはないが、水素、炭素、酸素、窒素、及び硫黄からなる群より選ばれる元素から構成されることが好ましい。   X represents a divalent group such that chemical formula (3) forms a 5- to 7-membered ring. However, at least a part of X constitutes a part of the main chain of the polymer. The structure of X is not particularly limited, but is preferably composed of an element selected from the group consisting of hydrogen, carbon, oxygen, nitrogen, and sulfur.

Xとしては、化学式(3)が5〜7員環を形成するような2価の基を表し、特に制限はないが、具体的には、−CHCH−、−CHCHCH−、−CHCHCHCH−、−CH=CH−、−CH=CHCH−、−CH=CHCHCH−、−CHCH=CHCH−が挙げられ、その中で、隣接しない−CH−は、−O−、−NH−又は−S−によって置き換えられていてもよく、−CH=は、−N=によって置き換えられていてもよい。また、環を構成する原子に結合した水素原子は、アルキル基、ハロゲン原子、=O、エーテル基、エステル基、シアノ基、アミド基等により置換されていてもよい。X represents a divalent group in which the chemical formula (3) forms a 5- to 7-membered ring, and is not particularly limited. Specifically, —CH 2 CH 2 —, —CH 2 CH 2 CH 2- , —CH 2 CH 2 CH 2 CH 2 —, —CH═CH—, —CH═CHCH 2 —, —CH═CHCH 2 CH 2 —, —CH 2 CH═CHCH 2 — And non-adjacent —CH 2 — may be replaced by —O—, —NH— or —S—, and —CH═ may be replaced by —N═. The hydrogen atom bonded to the atoms constituting the ring may be substituted with an alkyl group, a halogen atom, ═O, an ether group, an ester group, a cyano group, an amide group, or the like.

なかでも、特に好ましい環状ニトロキシル構造は、還元状態において、化学式(6)で示される2,2,6,6−テトラメチルピペリジノキシルラジカル、化学式(7)で示される2,2,5,5−テトラメチルピロリジノキシルラジカル、及び化学式(8)で示される2,2,5,5−テトラメチルピロリノキシルラジカルからなる群より選ばれるものである。なお、化学式(6)〜(8)中、R〜Rは前記化学式(3)と同じである。Among these, a particularly preferred cyclic nitroxyl structure is a 2,2,6,6-tetramethylpiperidinoxyl radical represented by the chemical formula (6), 2,2,5, represented by the chemical formula (7) in the reduced state. It is selected from the group consisting of a 5-tetramethylpyrrolinoxyl radical and a 2,2,5,5-tetramethylpyrrolinoxyl radical represented by the chemical formula (8). In the chemical formulas (6) to (8), R 1 to R 4 are the same as those in the chemical formula (3).

Figure 0006248947
ただし、上記の化学式(3)で示される環状ニトロキシル構造は、側鎖もしくは主鎖の一部としてポリマーの一部を構成している。すなわち、Xの少なくとも一部は、ポリマーの主鎖の一部を構成しており、環状構造を形成する元素に結合する少なくとも1つの水素を取った構造としてポリマーの側鎖もしくは主鎖の一部に存在している。合成等の容易さから側鎖に存在している方が好ましい。側鎖に存在するときは、下記化学式(9)で示される残基のように、化学式(3)で示される環状ニトロキシル構造の基X中の環員を構成する−CH−、−CH=又は−NH−から水素を取った残基X’によって主鎖ポリマーに結合している。
Figure 0006248947
However, the cyclic nitroxyl structure represented by the above chemical formula (3) constitutes a part of the polymer as a part of the side chain or main chain. That is, at least a part of X constitutes a part of the main chain of the polymer, and a side chain or a part of the main chain of the polymer as a structure in which at least one hydrogen bonded to the element forming the cyclic structure is removed. Exists. It is preferable that it exists in the side chain from the viewpoint of ease of synthesis. When present in the side chain, like the residue represented by the following chemical formula (9), —CH 2 —, —CH═ constituting the ring member in the group X of the cyclic nitroxyl structure represented by the chemical formula (3) Alternatively, it is bonded to the main chain polymer by a residue X ′ obtained by removing hydrogen from —NH—.

Figure 0006248947
化学式(9)中、R〜Rは前記化学式(3)と同じであり、X’は前記化学式(3)のXから水素を取った残基を表したものである。このとき用いられる主鎖ポリマーの構造としては特に制限はなく、どのようなものであっても、化学式(9)で示される残基が側鎖に存在していればよい。具体的には、次に挙げるポリマーに、化学式(9)で示される残基が付加したもの、又はポリマーの一部の原子又は基が、化学式(9)で示される残基によって置換されたものを挙げることができる。いずれの場合も、化学式(9)で示される残基が直接ではなく、適当な2価の基を中間に介して結合していてもよい。
Figure 0006248947
In the chemical formula (9), R 1 to R 4 are the same as those in the chemical formula (3), and X ′ represents a residue obtained by removing hydrogen from X in the chemical formula (3). There is no restriction | limiting in particular as a structure of the main chain polymer used at this time, Whatever is necessary, the residue shown by Chemical formula (9) should just exist in a side chain. Specifically, a polymer represented by the following chemical formula (9) is added to the following polymer, or a part of the polymer atom or group is substituted by a residue represented by the chemical formula (9) Can be mentioned. In any case, the residue represented by the chemical formula (9) may be bonded via an appropriate divalent group in the middle instead of directly.

主鎖ポリマーの構造としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリデセン、ポリドデセン、ポリヘプテン、ポリイソブテン、ポリオクタデセン等のポリアルキレン系ポリマー;ポリブタジエン、ポリクロロプレン、ポリイソプレン、ポリイソブテン等のジエン系ポリマー;ポリ(メタ)アクリル酸;ポリ(メタ)アクリロニトリル;ポリ(メタ)アクリルアミド、ポリメチル(メタ)アクリルアミド、ポリジメチル(メタ)アクリルアミド、ポリイソプロピル(メタ)アクリルアミド等のポリ(メタ)アクリルアミド類ポリマー;ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート類;ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー;ポリスチレン、ポリブロモスチレン、ポリクロロスチレン、ポリメチルスチレン等のポリスチレン系ポリマー;ポリビニルアセテート、ポリビニルアルコール、ポリ塩化ビニル、ポリビニルメチルエーテル、ポリビニルカルバゾール、ポリビニルピリジン、ポリビニルピロリドン等のビニル系ポリマー;ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブテンオキサイド、ポリオキシメチレン、ポリアセトアルデヒド、ポリメチルビニルエーテル、ポリプロピルビニルエーテル、ポリブチルビニルエーテル、ポリベンジルビニルエーテル等のポリエーテル系ポリマー;ポリメチレンスルフィド、ポリエチレンスルフィド、ポリエチレンジスルフィド、ポリプロピレンスルフィド、ポリフェニレンスルフィド、ポリエチレンテトラフルフィド、ポリエチレントリメチレンスルフィド等のポリスルフィド系ポリマー;ポリエチレンテレフタレート、ポリエチレンアジペート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリエチレンパラフェニレンジアセテート、ポリエチレンイソプロピリデンジベンゾエート等のポリエステル類;ポリトリメチレンエチレンウレタン等のポリウレタン類;ポリエーテルケトン、ポリアリルエーテルケトン等のポリケトン系ポリマー;ポリオキシイソフタロイル等のポリ無水物系ポリマー;ポリエチレンアミン、ポリヘキサメチレンアミン、ポリエチレントリメチレンアミン等のポリアミン系ポリマー;ナイロン、ポリグリシン、ポリアラニン等のポリアミド系ポリマー;ポリアセチルイミノエチレン、ポリベンゾイルイミノエチレン等のポリイミン系ポリマー;ポリエステルイミド、ポリエーテルイミド、ポリベンズイミド、ポリピロメルイミド等のポリイミド系ポリマー;ポリアリレン、ポリアリレンアルキレン、ポリアリレンアルケニレン、ポリフェノール、フェノール樹脂、セルロース、ポリベンゾイミダゾール、ポリベンゾチアゾール、ポリベンゾキサジン、ポリベンゾキサゾール、オリカルボラン、ポリジベンゾフラン、ポリオキソイソインドリン、ポリフランテトラカルボキシル酸ジイミド、ポリオキサジアゾール、ポリオキシンドール、ポリフタラジン、ポリフタライド、ポリシアヌレート、ポリイソシアヌレート、ポリピペラジン、ポリピペリジン、ポリピラジノキノキサン、ポリピラゾール、ポリピリダジン、ポリピリジン、ポリピロメリチミン、ポリキノン、ポリピロリジン、ポリキノキサリン、ポリトリアジン、ポリトリアゾール等のポリアロマティック系ポリマー;ポリジシロキサン、ポリジメチルシロキサン等のシロキサン系ポリマー;ポリシラン系ポリマー;ポリシラザン系ポリマー;ポリホスファゼン系ポリマー;ポリチアジル系ポリマー;ポリアセチレン、ポリピロール、ポリアニリン等の共役系ポリマーを挙げることができる。なお、(メタ)アクリルとはメタクリル又はアクリルを意味する。   Examples of the structure of the main chain polymer include polyalkylene polymers such as polyethylene, polypropylene, polybutene, polydecene, polydodecene, polyheptene, polyisobutene, and polyoctadecene; diene polymers such as polybutadiene, polychloroprene, polyisoprene, and polyisobutene; (Meth) acrylic acid; poly (meth) acrylonitrile; poly (meth) acrylamide polymers such as poly (meth) acrylamide, polymethyl (meth) acrylamide, polydimethyl (meth) acrylamide, polyisopropyl (meth) acrylamide; polymethyl (meta ) Polyalkyl (meth) acrylates such as acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate; polyvinylidene fluoride, polytetraph Fluoropolymers such as oloethylene; polystyrene polymers such as polystyrene, polybromostyrene, polychlorostyrene, and polymethylstyrene; polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride, polyvinyl methyl ether, polyvinyl carbazole, polyvinyl pyridine, polyvinyl pyrrolidone, etc. Vinyl polymers: Polyethylene oxide, polypropylene oxide, polybutene oxide, polyoxymethylene, polyacetaldehyde, polymethyl vinyl ether, polypropyl vinyl ether, polybutyl vinyl ether, polybenzyl vinyl ether, and other polyether polymers; polymethylene sulfide, polyethylene sulfide, polyethylene Disulfide, polypropylene sulfide, polypheny Polysulfide polymers such as polyethylene sulfide, polyethylene tetrafluoride, polyethylene trimethylene sulfide; polyesters such as polyethylene terephthalate, polyethylene adipate, polyethylene isophthalate, polyethylene naphthalate, polyethylene paraphenylene diacetate, polyethylene isopropylidene dibenzoate; Polyurethanes such as methylene ethylene urethane; polyketone polymers such as polyether ketone and polyallyl ether ketone; polyanhydride polymers such as polyoxyisophthaloyl; polyamines such as polyethylene amine, polyhexamethylene amine and polyethylene trimethylene amine -Based polymers; polyamide polymers such as nylon, polyglycine, and polyalanine; polyacetylene Polyimine polymers such as minoethylene and polybenzoyliminoethylene; Polyimide polymers such as polyesterimide, polyetherimide, polybenzimide, and polypyromerimide; polyarylene, polyarylene alkylene, polyarylene alkenylene, polyphenol, phenol resin, Cellulose, polybenzimidazole, polybenzothiazole, polybenzoxazine, polybenzoxazole, oricalborane, polydibenzofuran, polyoxoisoindoline, polyfurantetracarboxylic acid diimide, polyoxadiazole, polyoxindole, polyphthalazine, polyphthalide, Polycyanurate, polyisocyanurate, polypiperazine, polypiperidine, polypyrazinoquinoxane, polypyrazole, polypyridazi , Polypyridine, polypyromellitimin, polyquinone, polypyrrolidine, polyquinoxaline, polytriazine, polytriazole and other polyaromatic polymers; polydisiloxane, polydimethylsiloxane and other siloxane polymers; polysilane polymers; polysilazane polymers; poly Examples thereof include phosphazene polymers; polythiazyl polymers; conjugated polymers such as polyacetylene, polypyrrole, and polyaniline. In addition, (meth) acryl means methacryl or acrylic.

この中で、電気化学的な耐性に優れている点で、ポリアルキレン系ポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリルアミド類ポリマー、ポリアルキル(メタ)アクリレート類、ポリスチレン系ポリマーを主鎖構造として有することが好ましい。主鎖とは、高分子化合物中で、最も炭素数の多い炭素鎖のことである。この中でも、還元状態で下記化学式(10)で示される単位を含むことができるように、ポリマーが選ばれることが好ましい。   Of these, polyalkylene polymers, poly (meth) acrylic acid, poly (meth) acrylamide polymers, polyalkyl (meth) acrylates, and polystyrene polymers are the main chains because of their excellent electrochemical resistance. It is preferable to have as a structure. The main chain is a carbon chain having the largest number of carbon atoms in the polymer compound. Among these, it is preferable that a polymer is selected so that the unit shown by following Chemical formula (10) can be included in a reduced state.

Figure 0006248947
ここで、化学式(10)中、R〜Rは前記化学式(3)と同じであり、X’は前記化学式(9)と同じである。Rは、水素又はメチル基である。Yは特に限定されないが、−CO−、−COO−、−CONR−、−O−、−S−、置換基を有していてもよい炭素数1〜18のアルキレン基、置換基を有していてもよい炭素数1〜18のアリーレン基、及びこれらの基の2つ以上を結合させた2価の基を挙げることができる。Rは、炭素数1〜18のアルキル基を表す。化学式(10)で示される単位で、特に好ましいものは、下記化学式(11)〜(13)で示される単位である。
Figure 0006248947
Here, in the chemical formula (10), R 1 to R 4 are the same as the chemical formula (3), and X ′ is the same as the chemical formula (9). R 5 is hydrogen or a methyl group. Y is not particularly limited, but has —CO—, —COO—, —CONR 6 —, —O—, —S—, an optionally substituted alkylene group having 1 to 18 carbon atoms, and a substituent. And an arylene group having 1 to 18 carbon atoms which may be used, and a divalent group formed by bonding two or more of these groups. R 6 represents an alkyl group having 1 to 18 carbon atoms. Among the units represented by the chemical formula (10), particularly preferred are the units represented by the following chemical formulas (11) to (13).

Figure 0006248947
化学式(11)〜(13)において、R〜Rは前記化学式(3)と同じであり、Yは上記化学式(10)と同じであるが特に−COO−、−O−及び−CONR−のいずれかが好ましい。
Figure 0006248947
In the chemical formulas (11) to (13), R 1 to R 4 are the same as the chemical formula (3), and Y is the same as the chemical formula (10), but in particular —COO—, —O—, and —CONR 6. -Is preferred.

本発明において、化学式(9)で示される残基が、側鎖のすべてに存在しなくてもよい。例えば、ポリマーを構成する単位のすべてが化学式(10)で示される単位であっても、又は一部が化学式(10)で示される単位であってもいずれでもよい。ポリマー中にどの程度含まれるかは、目的、ポリマーの構造、製造方法により異なるが、わずかでも存在していればよく、通常1質量%以上、特に10質量%以上が好ましい。ポリマーの合成に特に制限が無く、またできるだけ大きな蓄電作用を得たい場合には、50質量%以上、特に80質量%以上が好ましい。   In the present invention, the residue represented by the chemical formula (9) may not be present in all of the side chains. For example, all of the units constituting the polymer may be units represented by the chemical formula (10), or some of them may be units represented by the chemical formula (10). The amount contained in the polymer varies depending on the purpose, the structure of the polymer, and the production method, but it may be present even in a slight amount. There is no particular restriction on the synthesis of the polymer, and when it is desired to obtain as large a power storage effect as possible, it is preferably 50% by mass or more, particularly 80% by mass or more.

以下に、本発明で好ましく用いられるニトロキシル高分子が有する単位の例として、下記化学式(4)及び/又は(5)の化学構造で表される高分子化合物、又はその化学構造を繰り返し単位として含む共重合体を挙げることができる。なお、化学式(4)、(5)中、R〜Rは前記化学式(3)と同じであり、Rは、水素又はメチル基である。Hereinafter, examples of units possessed by the nitroxyl polymer preferably used in the present invention include a polymer compound represented by the chemical structure of the following chemical formula (4) and / or (5), or a chemical structure thereof as a repeating unit. Mention may be made of copolymers. In the chemical formulas (4) and (5), R 1 to R 4 are the same as those in the chemical formula (3), and R 5 is hydrogen or a methyl group.

Figure 0006248947
Figure 0006248947

本発明におけるニトロキシル高分子の分子量は特に制限はないが、二次電池を構成した際にその電解質に溶けないだけの分子量を有していることが好ましく、これは電解質中の有機溶媒の種類との組み合わせにより異なる。一般には重量平均分子量1,000以上であり、好ましくは10,000以上、特に好ましくは20,000以上であり、また、5,000,000以下、好ましくは500,000以下である。また、化学式(9)で示される残基を含むポリマーは、架橋していてもよく、それにより電解質に対する耐久性を向上させることができる。   The molecular weight of the nitroxyl polymer in the present invention is not particularly limited, but preferably has a molecular weight that does not dissolve in the electrolyte when a secondary battery is constructed. It depends on the combination. In general, the weight average molecular weight is 1,000 or more, preferably 10,000 or more, particularly preferably 20,000 or more, and 5,000,000 or less, preferably 500,000 or less. Moreover, the polymer containing the residue represented by the chemical formula (9) may be cross-linked, thereby improving the durability against the electrolyte.

また、ニトロキシル高分子化合物は、単独で用いることができるが、二種類以上を混合してもよい。   The nitroxyl polymer compound can be used alone, but two or more kinds may be mixed.

(Li金属酸化物)
本発明で用いられるLi金属酸化物としては、Liイオン電池に用いられている電極活物質を用いることができる。例えば、LiMnO、LiMn(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;LiCoO、LiNiO等の層状構造を有するLi遷移金属複合酸化物;Li(0<y<2);LiFePO等のオリビン系材料が挙げられる。また、これらの化合物の一部を他元素で置換した材料も用いることができ、例えば、スピネル構造を有するマンガン酸リチウム中のMnの一部を他の遷移金属で置換した材料、例えばLiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn1.5−zTi(0<z<1.5);層状構造を有するLi遷移金属複合酸化物の遷移金属の一部を他元素で置換した材料、例えばLiNi0.5Mn0.5、LiNi0.33Mn0.33Co0.33、LiNi0.8Co0.2、LiNiAl1−x(0<x<1);LiMPO(MはFe、Mn、Ni、Coで表される少なくとも1種である。)で表されるオリビン系材料等が挙げられる。これらは、例えばLi過剰組成など非化学量論組成であっても良い。これらの中でも特に、LiFePO、マンガン酸リチウム、LiCoOを用いることが好ましい。本発明では、これらを2種以上組み合わせて使用することもできる。
(Li metal oxide)
As the Li metal oxide used in the present invention, an electrode active material used in a Li ion battery can be used. For example, lithium manganate having a layered structure such as LiMnO 2 or Li x Mn 2 O 4 (0 <x <2) or a spinel structure; Li transition metal composite oxide having a layered structure such as LiCoO 2 or LiNiO 2 ; Li Examples include y V 2 O 5 (0 <y <2); olivine-based materials such as LiFePO 4 . A material obtained by substituting a part of these compounds with another element can also be used. For example, a material obtained by substituting a part of Mn in lithium manganate having a spinel structure with another transition metal, such as LiNi 0. 5 Mn 1.5 O 4 , LiCr 0.5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 1.5-z Ti z O 4 (0 < z <1.5); a material obtained by substituting a part of the transition metal of the Li transition metal composite oxide having a layered structure with another element, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Mn 0. 33 Co 0.33 O 2 , LiNi 0.8 Co 0.2 O 2 , LiNi x Al 1-x O 2 (0 <x <1); LiMPO 4 (M is represented by Fe, Mn, Ni, Co) At least one Olivine materials represented by.) And the like. These may be non-stoichiometric compositions such as Li-rich compositions. Among these, it is particularly preferable to use LiFePO 4 , lithium manganate, and LiCoO 2 . In this invention, these can also be used in combination of 2 or more types.

(導電性材料)
次に、導電性材料について説明する。導電性材料としては、上記高分子ラジカル材料の内部に取り込まれることによって、その複合体に良好な電子伝導性を発現できる導電性を有する微粒子状材料、粉体状材料、ファイバー状材料、チューブ状材料であれば種々の導電性材料を用いることができる。例えば、炭素材料、導電性無機材料、導電性高分子材料等を挙げることができる。なかでも、炭素材料が好ましく、具体的には、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、メソフェーズピッチ炭素繊維、及びカーボンナノチューブからなる群から選ばれる少なくとも1つであることが好ましい。これら、導電性材料は、本発明の要旨の範囲内において任意の割合で2種以上を混合して用いてもよい。
(Conductive material)
Next, the conductive material will be described. As the conductive material, fine particles, powders, fibers, tubes, etc. having conductivity that can be incorporated into the polymer radical material to develop good electronic conductivity in the composite. Various conductive materials can be used as long as they are materials. For example, a carbon material, a conductive inorganic material, a conductive polymer material, and the like can be given. Among these, a carbon material is preferable, and specifically, at least one selected from the group consisting of natural graphite, artificial graphite, carbon black, vapor-grown carbon fiber, mesophase pitch carbon fiber, and carbon nanotube is preferable. . These conductive materials may be used in a mixture of two or more at any ratio within the scope of the gist of the present invention.

導電性材料の大きさは特に限定されないが、均一分散の観点からは細かいほど好ましく、例えば微粒子である場合における粒径としては、一次粒子の平均粒子径で、500nm以下が好ましく、ファイバー状やチューブ状材料である場合における直径としては、500nm以下、長さとしては5nm以上、50μm以下が好ましい。なお、ここでの平均粒径や各寸法は、電子顕微鏡にける観測で得られる平均値、又はレーザー回折式粒度分布測定装置で測定した粒度分布のD50値粒度分布系により測定された値である。   The size of the conductive material is not particularly limited, but it is preferably as fine as possible from the viewpoint of uniform dispersion. For example, the particle size in the case of fine particles is preferably an average particle size of primary particles of 500 nm or less, and may be a fiber or tube In the case of the material, the diameter is preferably 500 nm or less, and the length is preferably 5 nm or more and 50 μm or less. Here, the average particle diameter and each dimension are average values obtained by observation in an electron microscope, or values measured by a D50 value particle size distribution system of particle size distribution measured by a laser diffraction particle size distribution measuring device. .

こうした導電性材料は、後述の製造方法の欄でも説明するように、原料溶液を構成する溶媒には溶解してもしなくてもよいが、その原料溶液内の高分子ラジカル材料、Li金属酸化物、及び導電性材料を沈殿物として生成するための溶液には、これらすべての材料が溶解も膨潤もしない性質をもつことが必要である。なお、通常、Li金属酸化物、導電性のよい炭素材料、無機材料は原料溶液にも沈殿物を生成するための溶液にも溶解せず、分散するものがほとんどである。   Such a conductive material may or may not be dissolved in the solvent constituting the raw material solution, as will be described later in the section of the manufacturing method. However, the polymer radical material, Li metal oxide in the raw material solution may be used. The solution for producing the conductive material as a precipitate needs to have a property that all these materials do not dissolve or swell. Usually, Li metal oxides, carbon materials with good conductivity, and inorganic materials are not dissolved in the raw material solution or the solution for generating a precipitate, but are mostly dispersed.

(製造方法)
高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法は、還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を、高分子ラジカル材料、Li金属酸化物及び導電性材料が溶解又は膨潤しない溶液に滴下又は注いで、高分子ラジカル材料、Li金属酸化物及び導電性材料からなる沈殿物を生成させる方法である。
(Production method)
In the production method of the polymer radical material / Li metal oxide / conductive material composite, the polymer radical material having a radical partial structure in the reduced state is dissolved or swollen and the Li metal oxide and the conductive material are dispersed. Alternatively, the dissolved raw material solution is dropped or poured into a solution in which the polymer radical material, Li metal oxide and conductive material do not dissolve or swell, and the precipitate is composed of the polymer radical material, Li metal oxide and conductive material. This is a method for generating a product.

高分子ラジカル材料とLi金属酸化物と導電性材料は上述したとおりであるので、以下においては、それ以外の構成について説明する。   Since the polymer radical material, the Li metal oxide, and the conductive material are as described above, other configurations will be described below.

高分子ラジカル材料・Li金属酸化物・導電性材料複合体の原料溶液を構成する溶媒は、上述した高分子ラジカル材料を溶解又は膨潤することができる溶媒であることが必要である。通常、Li金属酸化物や導電性のよい炭素材料や無機材料は、溶媒に不溶性のものが多いため、その溶媒は、必ずしもLi金属酸化物や導電性材料を溶解させてもさせなくてもよいが、分散させる必要がある。このような溶媒としては具体的には、N−メチルピロリドン、テトラヒドロフラン、トルエン、キシレン等を挙げることができる。これらの中でも、N−メチルピロリドンが好ましい。   The solvent constituting the raw material solution of the polymer radical material / Li metal oxide / conductive material composite needs to be a solvent capable of dissolving or swelling the polymer radical material described above. Usually, Li metal oxide and carbon materials and inorganic materials with good conductivity are often insoluble in a solvent, and therefore the solvent does not necessarily have to dissolve Li metal oxide or conductive material. However, it is necessary to disperse. Specific examples of such a solvent include N-methylpyrrolidone, tetrahydrofuran, toluene, xylene and the like. Among these, N-methylpyrrolidone is preferable.

原料溶液の調製は、通常、先ず、高分子ラジカル材料を溶解又は膨潤可能な溶媒中に、高分子ラジカル材料を入れて溶解または膨潤させる。そこに、Li金属酸化物及び導電性材料を加えて撹拌する。   In the preparation of the raw material solution, usually, the polymer radical material is first dissolved and swollen in a solvent capable of dissolving or swelling the polymer radical material. There, Li metal oxide and a conductive material are added and stirred.

加える導電性材料の量としては、電子伝導性等を考慮して調整されるが、高分子ラジカル材料を100重量部としたとき、通常、5重量部以上200重量部以下、好ましくは7重量部以上100重量部以下、さらに好ましくは10重量部以上50重量部以下の範囲で配合する。この配合量とすれば、得られた電極の導電性を十分なものとしやすくなるとともに、高分子ラジカル材料の量が相対的に少なくなるということがなくなり、電池の容量も確保しやすくなる。   The amount of the conductive material to be added is adjusted in consideration of electronic conductivity and the like, but usually 5 parts by weight or more and 200 parts by weight or less, preferably 7 parts by weight when the polymer radical material is 100 parts by weight. More than 100 parts by weight and more preferably 10 parts by weight or more and 50 parts by weight or less. With this blending amount, the conductivity of the obtained electrode is easily made sufficient, the amount of the polymer radical material is not relatively reduced, and the battery capacity is easily secured.

加えるLi金属酸化物の量としては、高分子ラジカル材料を100重量部としたとき、通常、1重量部以上500重量部以下、好ましくは3重量部以上300重量部以下、さらに好ましくは5重量部以上200重量部以下の範囲で配合する。この配合量とすれば、十分な電極活物質の重量あたりの容量密度と電池容量を得やすくなる。   The amount of Li metal oxide to be added is usually 1 part by weight or more and 500 parts by weight or less, preferably 3 parts by weight or more and 300 parts by weight or less, more preferably 5 parts by weight, when the polymer radical material is 100 parts by weight. It mix | blends in the range below 200 weight part or less. With this blending amount, it becomes easy to obtain a sufficient capacity density and battery capacity per weight of the electrode active material.

なお、本発明において、高分子ラジカル材料の「溶解」とは、文字通り溶解する場合のほか、溶媒中に流動性をもって相溶している態様も含むものとし、また、「膨潤」とは、一般的な溶解とはいえなくても溶媒と作用していわゆる膨潤状態となり、導電性材料と共に混合することによって高分子ラジカル材料内に導電性材料を均一に分散させる程度になっている態様を含むものとする。また、導電性材料の「分散」とは、例えば炭素材料のように不溶性材料が溶媒中に分散した態様を含むものとし、導電性材料の「溶解」とは、文字通り溶解する場合のほか、溶媒に相溶した態様を含むものとする。   In the present invention, the term “dissolving” of the polymer radical material includes not only literally dissolving, but also includes a mode in which the polymer radical material is compatible with fluidity, and “swelling” is a general term. Even if it is not solubilized, it includes a mode in which the conductive material becomes a so-called swollen state by being mixed with the conductive material, and is mixed with the conductive material so that the conductive material is uniformly dispersed in the polymer radical material. In addition, the “dispersion” of the conductive material includes, for example, a mode in which an insoluble material is dispersed in a solvent such as a carbon material, and the “dissolution” of the conductive material is literally dissolved in the solvent. It is intended to include compatible aspects.

高分子ラジカル材料、Li金属酸化物及び導電性材料を混合するのに用いる機器としては、ホモジナイザー等の攪拌/混合装置を使用できる。こうした機器を用いて混合することにより、高分子ラジカル材料が溶解又は膨潤した溶液に導電性材料を均一に分散したスラリー状の原料溶液が得られる。   A stirring / mixing device such as a homogenizer can be used as an apparatus used to mix the polymer radical material, the Li metal oxide, and the conductive material. By mixing using such an apparatus, a slurry-like raw material solution in which the conductive material is uniformly dispersed in the solution in which the polymer radical material is dissolved or swollen is obtained.

こうして得られた原料溶液を、高分子ラジカル材料とLi金属酸化物と導電性材料が溶解または膨潤しない溶媒(貧溶媒)に、少しずつ滴下するか、または注ぐ。こうすることにより、高分子ラジカル材料、Li金属酸化物及び導電性材料を同時に沈殿させることができる。高分子ラジカル材料とLi金属酸化物と導電性材料が溶解または膨潤しない溶媒(貧溶媒)としては、メタノール、エタノール、ジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、ヘキサン、ヘプタン等を挙げることができる。これらの中でも、メタノールが好ましい。   The raw material solution thus obtained is dropped or poured little by little into a solvent (poor solvent) in which the polymer radical material, the Li metal oxide, and the conductive material do not dissolve or swell. By doing so, the polymer radical material, the Li metal oxide and the conductive material can be precipitated simultaneously. Examples of the solvent (poor solvent) in which the polymer radical material, the Li metal oxide, and the conductive material do not dissolve or swell include methanol, ethanol, dimethyl ether, ethyl methyl ether, diethyl ether, hexane, heptane, and the like. Among these, methanol is preferable.

貧溶媒は、主に高分子ラジカル材料との関係で選択され、本発明では主にメタノール等を好ましく用いるが、貧溶媒として作用すれば他の溶媒であっても構わない。なお、Li金属酸化物や導電性材料は、一般的に有機溶媒には解けにくいのであまり考慮されないが、Li金属酸化物や導電性材料が溶解したり膨潤したりすることのない溶媒であることが必要である。   The poor solvent is selected mainly in relation to the polymer radical material, and in the present invention, mainly methanol or the like is preferably used, but other solvents may be used as long as they function as a poor solvent. Li metal oxides and conductive materials are generally difficult to dissolve in organic solvents, so they are not considered much. However, Li metal oxides and conductive materials are solvents that do not dissolve or swell. is necessary.

こうした貧溶媒中に原料溶液を少しずつ滴下もしくは注いで沈殿物を生成することになるが、そうした滴下や注ぎの態様(滴下量や滴下速度等)は、生じる沈殿物の特性や形態に応じて調整される。特に本発明では、Li金属酸化物及び導電性材料が高分子ラジカル材料の内部に均一に分散した態様で取り込まれた沈殿物として得られることが望ましいので、そうした態様になるように、滴下または注ぐことが望ましい。   A raw material solution is dropped or poured little by little in such a poor solvent to produce a precipitate, but the manner of dripping or pouring (the amount of dripping, the dropping speed, etc.) depends on the characteristics and form of the resulting precipitate. Adjusted. In particular, in the present invention, it is desirable that the Li metal oxide and the conductive material be obtained as a precipitate taken in a state in which the Li metal oxide and the conductive material are uniformly dispersed inside the polymer radical material. It is desirable.

得られた沈殿物を濾過などにより回収し、これを乾燥させることにより、高分子ラジカル材料・Li金属酸化物・導電性材料複合体を得る。得られた高分子ラジカル材料・Li金属酸化物・導電性材料複合体は粉砕などにより微粉化してもよい。   The obtained precipitate is collected by filtration or the like and dried to obtain a polymer radical material / Li metal oxide / conductive material composite. The obtained polymer radical material / Li metal oxide / conductive material composite may be pulverized by pulverization or the like.

以上説明したように、本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法によれば、高分子ラジカル材料にLi金属酸化物及び導電性材料を均一に分散することができる。こうした製造方法によって得られた複合体では、Li金属酸化物や導電性材料が高分子ラジカル材料の内部に取り込まれた沈殿物として得られるので、複合体に良好な電子伝導性をもたせることができる。   As described above, according to the method for producing a polymer radical material / Li metal oxide / conductive material composite of the present invention, the Li metal oxide and the conductive material are uniformly dispersed in the polymer radical material. Can do. In the composite obtained by such a manufacturing method, the Li metal oxide or the conductive material is obtained as a precipitate taken into the polymer radical material, so that the composite can have good electronic conductivity. .

[二次電池]
本発明の二次電池は、本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体を電極材料として用いる。本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体を用いた電極を用いて構成される二次電池は、高分子ラジカル材料、Li金属酸化物、導電性材料を単に混合して得た電極を用いて構成される二次電池に比べ放電容量が大きくなり、数秒レベルで大きな電流を流すことが可能となる。
[Secondary battery]
The secondary battery of the present invention uses the polymer radical material / Li metal oxide / conductive material composite of the present invention as an electrode material. The secondary battery constructed using the electrode using the polymer radical material / Li metal oxide / conductive material composite of the present invention is simply a mixture of polymer radical material, Li metal oxide and conductive material. The discharge capacity is larger than that of a secondary battery configured using the electrode obtained in this manner, and a large current can be passed at a level of several seconds.

本発明の二次電池の好ましい態様においては、高分子ラジカル材料・Li金属酸化物・導電性材料複合体を用いた電極が正極である。   In a preferred embodiment of the secondary battery of the present invention, the electrode using the polymer radical material / Li metal oxide / conductive material composite is the positive electrode.

また、本発明の二次電池の好ましい態様においては、高分子ラジカル材料・Li金属酸化物・導電性材料複合体を用いた電極が正極であり、負極にリチウムイオンを可逆的に担持可能な物質を含み、電解質にリチウム塩を含む非プロトン性有機溶媒を用いる。   In a preferred embodiment of the secondary battery of the present invention, the electrode using the polymer radical material / Li metal oxide / conductive material composite is a positive electrode, and the negative electrode is capable of reversibly carrying lithium ions. And an aprotic organic solvent containing a lithium salt is used for the electrolyte.

また、本発明の二次電池の好ましい態様においては、リチウムイオン供給源をさらに備え、正極及び/又は負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、前記負極と前記リチウムイオン供給源との電気化学的接触によって前記負極にリチウムイオンがあらかじめドーピングされている。   Moreover, in a preferable aspect of the secondary battery of the present invention, the battery further includes a lithium ion supply source, and the positive electrode and / or the negative electrode each include a current collector having holes penetrating the front and back surfaces, and the negative electrode and the negative electrode The negative electrode is pre-doped with lithium ions by electrochemical contact with a lithium ion source.

本発明において、二次電池の形状は特に限定されず、従来公知のものを用いることができる。二次電池の形状としては、電極積層体、あるいは巻回体を金属ケース、樹脂ケース、あるいはアルミニウム箔などの金属箔と合成樹脂フィルムからなるラミネートフィルム等によって封止したもの等が挙げられ、円筒型、角型、コイン型、およびシート型等で作製されるが、本発明はこれらに限定されるものではない。   In the present invention, the shape of the secondary battery is not particularly limited, and a conventionally known battery can be used. Examples of the shape of the secondary battery include an electrode laminate or a wound body sealed with a metal case, a resin case, or a laminate film made of a metal foil such as an aluminum foil and a synthetic resin film, etc. A mold, a square, a coin, a sheet, and the like are manufactured, but the present invention is not limited to these.

(二次電池の製造方法)
二次電池の製造方法としては特に限定されず、材料に応じて適宜選択した方法を用いることができる。例えば、電極活物質、導電付与剤などに溶剤を加えスラリー状にして電極集電体に塗布し、加熱もしくは常温で溶剤を揮発させることにより電極を作製し、さらにこの電極を対極、セパレータを挟んで積層または巻回して外装体で包み、電解液を注入して封止するといった方法である。スラリー化のための溶剤としては、テトラヒドロフラン、ジエチルエーテル、エチレングリコールジメチルエーテル、ジオキサンなどのエーテル系溶媒;N、N−ジメチルホルムアミド、N−メチルピロリドン等のアミン系溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒;クロロホルム、ジクロロメタン、ジクロロエタン、トリクロロエタン、四塩化炭素等のハロゲン化炭化水素系溶媒;アセトン、メチルエチルケトンなどのアルキルケトン系溶媒;メタノール、エタノール、イソプロピルアルコールなどのアルコール系溶媒;ジメチルスルホキシド、水等が挙げられる。また、電極の作製法としては、電極活物質、導電付与剤などを乾式で混練した後、薄膜化し電極集電体上に積層する方法もある。電極の作製において、特に有機物の電極活物質、導電付与剤などに溶剤を加えスラリー状にして電極集電体に塗布し、加熱もしくは常温で溶剤を揮発させる方法の場合、電極の剥がれ、ひび割れ等が発生しやすい。本発明の高分子ラジカル材料・Li金属酸化物・導電性材料複合体を用い、好ましくは40μm以上300μm以下の厚さの電極を作製した場合、電極の剥がれ、ひび割れ等が発生しにくい、均一な電極が作製できるといった特徴を有している。
(Method for manufacturing secondary battery)
The method for producing the secondary battery is not particularly limited, and a method appropriately selected according to the material can be used. For example, a solvent is added to an electrode active material, a conductivity-imparting agent, etc. to form a slurry, which is applied to an electrode current collector, and the electrode is produced by heating or volatilizing the solvent at room temperature, and this electrode is sandwiched between a counter electrode and a separator. And then wrapped or wrapped in an outer package, and an electrolyte solution is injected and sealed. Solvents for slurrying include ether solvents such as tetrahydrofuran, diethyl ether, ethylene glycol dimethyl ether and dioxane; amine solvents such as N, N-dimethylformamide and N-methylpyrrolidone; aromatics such as benzene, toluene and xylene. Aliphatic hydrocarbon solvents such as hexane and heptane; halogenated hydrocarbon solvents such as chloroform, dichloromethane, dichloroethane, trichloroethane, and carbon tetrachloride; alkyl ketone solvents such as acetone and methyl ethyl ketone; methanol, Examples include alcohol solvents such as ethanol and isopropyl alcohol; dimethyl sulfoxide, water and the like. In addition, as a method for manufacturing an electrode, there is a method in which an electrode active material, a conductivity-imparting agent, and the like are kneaded in a dry method and then thinned and laminated on an electrode current collector. In the production of electrodes, in particular, in the case of a method in which a solvent is added to an organic electrode active material, a conductivity imparting agent, etc. and applied to an electrode current collector, and the solvent is volatilized by heating or at room temperature, peeling of the electrode, cracking, etc. Is likely to occur. When the polymer radical material / Li metal oxide / conductive material composite of the present invention is used, and an electrode having a thickness of preferably 40 μm or more and 300 μm or less is produced, the electrode is not easily peeled off or cracked, and is uniform. It has the feature that an electrode can be manufactured.

二次電池を製造する際には、電極活物質として上で説明した高分子ラジカル材料のラジカル状態であるポリラジカル化合物そのものを用いて二次電池を製造する場合と、電極反応によって本発明のポリラジカル化合物に変化する重合体を用いて二次電池を製造する場合とがある。このような電極反応によって上記ポリラジカル化合物に変化する重合体の例としては、上記ポリラジカル化合物を還元したアニオン体とリチウムイオンやナトリウムイオンといった電解質カチオンとからなるリチウム塩やナトリウム塩、あるいは、上記ポリラジカル化合物を酸化したカチオン体とPF やBF といった電解質アニオンとからなる塩などが挙げられる。When manufacturing a secondary battery, the secondary battery is manufactured using the radical radical of the polymer radical material described above as the electrode active material, and the electrode of the present invention can be used to produce the secondary battery. In some cases, a secondary battery is manufactured using a polymer that changes to a radical compound. Examples of the polymer that changes to the polyradical compound by such an electrode reaction include a lithium salt or sodium salt composed of an anion body obtained by reducing the polyradical compound and an electrolyte cation such as lithium ion or sodium ion, or the above-mentioned polyradical compound and a cation body oxidized PF 6 - or BF 4 -, etc. salt comprising the electrolyte anions such like.

本発明において、電極からのリードの取り出し、外装等のその他の製造条件は二次電池の製造方法として従来公知の方法を用いることができる。   In the present invention, a conventionally known method can be used as a method for manufacturing a secondary battery for other manufacturing conditions such as taking out a lead from an electrode and packaging.

図1に本実施形態によるラミネート型二次電池の一例の斜視図を示し、図2に断面図を示す。これらの図に示されるように、二次電池107は、正極101、この正極に対向する負極102、正極と負極との間に挟まれたセパレータ105を含む積層構造を有し、この積層構造は外装用フィルム106で覆われ、外装用フィルム106の外部へ、電極リード104が引き出されている。この二次電池内へは電解液が注入されている。以下に、二次電池の構成部材と製造方法についてさらに詳細に説明する。   FIG. 1 shows a perspective view of an example of a laminated secondary battery according to the present embodiment, and FIG. 2 shows a cross-sectional view. As shown in these drawings, the secondary battery 107 has a laminated structure including a positive electrode 101, a negative electrode 102 facing the positive electrode, and a separator 105 sandwiched between the positive electrode and the negative electrode. Covered with the exterior film 106, the electrode lead 104 is drawn out of the exterior film 106. An electrolytic solution is injected into the secondary battery. Below, the structural member and manufacturing method of a secondary battery are demonstrated in detail.

(正極)
正極101は、高分子ラジカル材料・Li金属酸化物・導電性材料複合体を含み、必要に応じてさらに導電性付与剤、結着剤を含み、一方の集電体103上に形成されている。
(Positive electrode)
The positive electrode 101 includes a polymer radical material / Li metal oxide / conductive material composite, and further includes a conductivity imparting agent and a binder as necessary, and is formed on one current collector 103. .

(負極)
負極102は、負極活物質を含み、必要に応じてさらに導電性付与剤、結着剤を含み、他方の集電体103上に形成されている。
(Negative electrode)
The negative electrode 102 includes a negative electrode active material, and further includes a conductivity imparting agent and a binder as necessary, and is formed on the other current collector 103.

本発明の二次電池の負極活物質としては、リチウム二次電池の負極活物質として用いることができるものであれば特に限定されるものではなく、例えば、従来より負極活物質として用いられている黒鉛、非晶質炭素、リチウム金属、チタン酸リチウム、酸化チタン、シリコンおよびその酸化物や合金、ゲルマニウムおよびその合金、スズおよびその酸化物や合金などが例示される。またこの他にも、リチウムを電気化学的に挿入、脱離する物質であれば、制限なく用いることができる。また、これらの負極活物質は、単独、もしくは組み合わせて使用できる。   The negative electrode active material of the secondary battery of the present invention is not particularly limited as long as it can be used as the negative electrode active material of a lithium secondary battery. For example, it has been conventionally used as a negative electrode active material. Examples include graphite, amorphous carbon, lithium metal, lithium titanate, titanium oxide, silicon and its oxides and alloys, germanium and its alloys, tin and its oxides and alloys. In addition, any substance that electrochemically inserts and desorbs lithium can be used without limitation. These negative electrode active materials can be used alone or in combination.

(セパレータ)
正極101と負極102との間には、これらを絶縁分離する絶縁性の多孔質セパレータ105が設けられる。セパレータ105としては、ポリエチレン、ポリプロピレン等からなる多孔質樹脂フィルム、セルロース膜、不繊布等を用いることができる。
(Separator)
An insulating porous separator 105 is provided between the positive electrode 101 and the negative electrode 102 to insulate and separate them. As the separator 105, a porous resin film made of polyethylene, polypropylene, or the like, a cellulose film, a non-woven cloth, or the like can be used.

(電解液)
電解液は、正極と負極との間で荷電担体の輸送を行うものであり、正極101、負極102及びセパレータ105に含浸している。電解液としては、20℃で10−5〜10−1S/cmのイオン伝導性を有しているものを用いることができ、電解質塩を有機溶媒に溶解した非水電解液を用いることができる。電解液の溶媒としては、非プロトン性有機溶媒を用いることができる。
(Electrolyte)
The electrolytic solution transports charge carriers between the positive electrode and the negative electrode, and is impregnated in the positive electrode 101, the negative electrode 102, and the separator 105. As the electrolytic solution, one having an ion conductivity of 10 −5 to 10 −1 S / cm at 20 ° C. can be used, and a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent is used. it can. As the solvent for the electrolytic solution, an aprotic organic solvent can be used.

電解質塩としては、例えばLiPF、LiClO、LiBF、LiCFSO、LiN(CFSO(以下「LiTFSI」)、LiN(CSO(以下「LiBETI」)、Li(CFSOC、Li(CSOC等の通常の電解質材料を用いることができる。Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 (hereinafter “LiTFSI”), LiN (C 2 F 5 SO 2 ) 2 (hereinafter “LiBETI”). ), Li (CF 3 SO 2 ) 3 C, Li (C 2 F 5 SO 2 ) 3 C, or other ordinary electrolyte materials can be used.

有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン等のγ−ラクトン類;テトラヒドロフラン、ジオキソラン等の環状エーテル類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド類が挙げられる。他の有機溶媒としては、環状カーボネート及び鎖状カーボネートの少なくとも一方を混合することが好ましい。   Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; γ-lactones such as γ-butyrolactone; cyclics such as tetrahydrofuran and dioxolane. Ethers; amides such as dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like. As another organic solvent, it is preferable to mix at least one of a cyclic carbonate and a chain carbonate.

(集電体)
本発明のリチウム二次電池の集電体としては、リチウムと合金化しない金属から形成されていれば特に限定されず、例えば従来より正極集電体として用いられているアルミニウム、負極集電体として用いられる銅およびその合金、ニッケルなどが挙げられる。
(Current collector)
The current collector of the lithium secondary battery of the present invention is not particularly limited as long as it is formed from a metal that does not alloy with lithium. For example, aluminum that has been conventionally used as a positive electrode current collector, and a negative electrode current collector Examples include copper and alloys thereof, nickel, and the like.

(外装用フィルム)
外装用フィルム106としてはアルミラミネートフィルム等を用いることができる。外装用フィルム以外の外装体としては、金属ケースや樹脂ケースが挙げられる。二次電池の外形としては、円筒型、角型、コイン型、シート型が挙げられる。
(Exterior film)
As the exterior film 106, an aluminum laminate film or the like can be used. Examples of the exterior body other than the exterior film include a metal case and a resin case. Examples of the outer shape of the secondary battery include a cylindrical shape, a square shape, a coin shape, and a sheet shape.

(二次電池の作製例)
正極101を外装用フィルム106上に置き、セパレータ105を挟んで負極102と重ね合わせることで電極積層体を得る。得られた電極積層体を外装用フィルム106で覆い、電極リード部を含む3辺を熱融着する。これに電解液を注入し、真空含浸させる。十分に含浸させて電極及びセパレータ105の空隙を電解液で埋めた後、残りの4辺目を熱融着することにより、ラミネート型の二次電池107を得る。
(Example of secondary battery production)
The positive electrode 101 is placed on the exterior film 106 and overlapped with the negative electrode 102 with the separator 105 interposed therebetween to obtain an electrode laminate. The obtained electrode laminate is covered with an exterior film 106, and three sides including the electrode lead portion are heat-sealed. An electrolyte is injected into this and vacuum impregnated. After sufficiently impregnating and filling the gap between the electrode and the separator 105 with the electrolytic solution, the remaining fourth side is heat-sealed to obtain a laminated secondary battery 107.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
<高分子ラジカル材料・Li金属酸化物・炭素材料複合体の作製>
〜Rがメチル基である上記化学式(4)のニトロキシル高分子化合物(重量平均分子量:28000、理論容量密度111mAh/g)10.0gをN−メチルピロリドン150mlに溶解した。ここにオリビン型リン酸鉄リチウム(LiFePO、理論容量密度155mAh/g)10.0g、炭素材料(昭和電工製、商品名:VGCF−H)2.8g、を加え、ホモジナイザーにて攪拌し、炭素材料が均一に分散しているスラリーを得た。
Example 1
<Production of polymer radical material / Li metal oxide / carbon material composite>
10.0 g of the nitroxyl polymer compound of the above chemical formula (4) (weight average molecular weight: 28000, theoretical capacity density 111 mAh / g) in which R 1 to R 5 are methyl groups was dissolved in 150 ml of N-methylpyrrolidone. To this was added olivine-type lithium iron phosphate (LiFePO 4 , theoretical capacity density 155 mAh / g) 10.0 g and carbon material (product name: VGCF-H) 2.8 g, and the mixture was stirred with a homogenizer. A slurry in which the carbon material was uniformly dispersed was obtained.

次いで、このスラリーをメタノール1Lに撹拌しながら少しずつ加えることにより、ニトロキシル高分子化合物・Li金属酸化物・炭素材料複合体を沈殿させた。沈殿物をろ過し、さらに減圧乾燥機にて60℃で8時間の真空乾燥を行い、ニトロキシル高分子化合物・Li金属酸化物・炭素材料複合体の固形物を得た。これを乳鉢ですりつぶし、粉末状とした。   Next, this slurry was gradually added to 1 L of methanol with stirring to precipitate a nitroxyl polymer compound / Li metal oxide / carbon material composite. The precipitate was filtered, and further vacuum-dried at 60 ° C. for 8 hours with a vacuum drier to obtain a solid of a nitroxyl polymer compound / Li metal oxide / carbon material composite. This was ground in a mortar to make a powder.

<二次電池の作製>
上記のようにして得たニトロキシル高分子化合物・オリビン型リン酸鉄リチウム・炭素材料複合体9.5g、カルボキシメチルセルロース(CMC)400mg、ポリテトラフルオロエチレン(PTFE)100mg、水30mlをホモジナイザーにて攪拌し、均一なペーストを調製した。このスラリーを正極集電体であるアルミ箔上に塗布し、さらに100℃で10分間乾燥し、130μmの厚さを持つ電極を得た。これを22×24mmの長方形に切り抜き正極として用いた。
<Production of secondary battery>
9.5 g of the nitroxyl polymer compound / olivine-type lithium iron phosphate / carbon material composite obtained as described above, 400 mg of carboxymethyl cellulose (CMC), 100 mg of polytetrafluoroethylene (PTFE), and 30 ml of water were stirred with a homogenizer. To prepare a uniform paste. This slurry was applied on an aluminum foil as a positive electrode current collector, and further dried at 100 ° C. for 10 minutes to obtain an electrode having a thickness of 130 μm. This was cut into a 22 × 24 mm rectangle and used as the positive electrode.

露点−50℃以下のドライルーム中において、上記の方法で作製した正極と、金属リチウム箔を張り合わせた銅箔(負極、22×24mm)を、セパレータを介して順に重ねあわせ、電極積層体を製造した。正極集電体であるアルミ箔に正極リードを超音波溶接し、同様に負極集電体である銅箔に負極リードを溶接した。それらを厚み100μmのアルミラミネートフィルム(外装体)で覆い、リード部を含む3辺を先に熱融着した。次に、1mol/LのLiPFを含む、エチレンカーボネート(EC)/ジエチルカーボネート(DEC)(EC/EDC=3/7)の混合電解液を注入し、電極中に含浸させた。最終的に減圧下にて最後の4辺目を熱融着し、二次電池(図1に示す二次電池107と同形態のもの)を作製した。In a dry room with a dew point of −50 ° C. or lower, the positive electrode prepared by the above method and a copper foil (negative electrode, 22 × 24 mm) laminated with a metal lithium foil are sequentially stacked via a separator to produce an electrode laminate. did. The positive electrode lead was ultrasonically welded to the aluminum foil as the positive electrode current collector, and the negative electrode lead was similarly welded to the copper foil as the negative electrode current collector. They were covered with an aluminum laminate film (exterior body) having a thickness of 100 μm, and three sides including the lead portion were heat-sealed first. Next, a mixed electrolyte solution of ethylene carbonate (EC) / diethyl carbonate (DEC) (EC / EDC = 3/7) containing 1 mol / L LiPF 6 was injected and impregnated in the electrode. Finally, the last four sides were thermally fused under reduced pressure to produce a secondary battery (the same type as the secondary battery 107 shown in FIG. 1).

<放電試験>
二次電池作製後、20℃にて0.5mAの定電流で4.0Vまで充電を行い、その後2.5Vまで放電を行った。その後再び0.5mAで4.2Vまで充電を行った後、0.5mAで2.5Vまで放電し、このときの電池容量を測定した。電池容量は2.4mAhであった。このときの電極活物質(ニトロキシル高分子化合物+LiFePO)重量あたりの容量密度は、120mAh/gとなった。
<Discharge test>
After producing the secondary battery, the battery was charged to 4.0 V at a constant current of 0.5 mA at 20 ° C., and then discharged to 2.5 V. Thereafter, the battery was charged again to 4.2 V at 0.5 mA, and then discharged to 2.5 V at 0.5 mA, and the battery capacity at this time was measured. The battery capacity was 2.4 mAh. The capacity density per weight of the electrode active material (nitroxyl polymer compound + LiFePO 4 ) at this time was 120 mAh / g.

つづいて20℃にて、0.5mAの定電流で電圧が4.0Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4.0Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、1000mAと変えながら行った。放電終止電圧と測定電流を掛け合わせることで出力を求めた。各放電電流時の出力の中で最も値が大きいものを最大出力とした。最大出力は837mWであった。   Subsequently, the battery was charged at 20 ° C. with a constant current of 0.5 mA until the voltage became 4.0 V, and then discharged at 10 mA for 1 second. The battery was charged again at a constant current of 0.5 mA until the voltage reached 4.0 V, and then discharged at 20 mA for 1 second. This charging / discharging was repeated while changing the discharge current to 30, 40, ..., 1000 mA. The output was obtained by multiplying the discharge end voltage and the measured current. The largest output among the outputs at each discharge current was defined as the maximum output. The maximum output was 837 mW.

(実施例2)
<高分子ラジカル材料・Li金属酸化物・炭素材料複合体の作製>
〜Rがメチル基である上記化学式(5)のニトロキシル高分子化合物(重量平均分子量:12000、理論容量密度134mAh/g)を用いること以外、実施例1と同様の方法で高分子ラジカル材料・Li金属酸化物・炭素材料複合体を作製した。
(Example 2)
<Production of polymer radical material / Li metal oxide / carbon material composite>
A polymer radical in the same manner as in Example 1 except that a nitroxyl polymer compound of the above chemical formula (5) (weight average molecular weight: 12000, theoretical capacity density 134 mAh / g) in which R 1 to R 5 are methyl groups is used. A material / Li metal oxide / carbon material composite was prepared.

<二次電池の作製>
上記のようにして得たニトロキシル高分子化合物・オリビン型リン酸鉄リチウム・炭素材料複合体を用いて実施例1と同様に二次電池を作製した。
<Production of secondary battery>
A secondary battery was fabricated in the same manner as in Example 1 using the nitroxyl polymer compound / olivine-type lithium iron phosphate / carbon material composite obtained as described above.

<放電試験>
二次電池作製後、20℃にて0.5mAの定電流で4.0Vまで充電を行い、その後2.5Vまで放電を行った。その後再び0.5mAで4.2Vまで充電を行った後、0.5mAで2.5Vまで放電し、このときの電池容量を測定した。電池容量は2.7mAhであった。このときの電極活物質(ニトロキシル高分子化合物+LiFePO)重量あたりの容量密度は、138mAh/gとなった。
<Discharge test>
After producing the secondary battery, the battery was charged to 4.0 V at a constant current of 0.5 mA at 20 ° C., and then discharged to 2.5 V. Thereafter, the battery was charged again to 4.2 V at 0.5 mA, and then discharged to 2.5 V at 0.5 mA, and the battery capacity at this time was measured. The battery capacity was 2.7 mAh. The capacity density per weight of the electrode active material (nitroxyl polymer compound + LiFePO 4 ) at this time was 138 mAh / g.

つづいて20℃にて、0.5mAの定電流で電圧が4.0Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4.0Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、1000mAと変えながら行った。放電終止電圧と測定電流を掛け合わせることで出力を求めた。各放電電流時の出力の中で最も値が大きいものを最大出力とした。最大出力は1046mWであった。   Subsequently, the battery was charged at 20 ° C. with a constant current of 0.5 mA until the voltage became 4.0 V, and then discharged at 10 mA for 1 second. The battery was charged again at a constant current of 0.5 mA until the voltage reached 4.0 V, and then discharged at 20 mA for 1 second. This charging / discharging was repeated while changing the discharge current to 30, 40, ..., 1000 mA. The output was obtained by multiplying the discharge end voltage and the measured current. The largest output among the outputs at each discharge current was defined as the maximum output. The maximum output was 1046 mW.

(比較例1)
<二次電池の作製>
〜Rがメチル基である上記化学式(4)のニトロキシル高分子化合物(重量平均分子量:28000)17.9g、炭素材料(昭和電工製、商品名:VGCF−H)2.5g、CMC400mg、PTFE100mg、水30mlをホモジナイザーにて攪拌し、均一なペーストを調製した。このスラリーを正極集電体であるアルミ箔上に塗布し、さらに100℃で10分間乾燥し、130μmの厚さを持つ正極を形成した。上記製造した正極を用いたこと以外は、実施例1と同様な構成および方法で二次電池を作製した。
(Comparative Example 1)
<Production of secondary battery>
17.9 g of nitroxyl polymer compound (weight average molecular weight: 28000) of the above chemical formula (4), wherein R 1 to R 5 are methyl groups, carbon material (trade name: VGCF-H, manufactured by Showa Denko), CMC 400 mg Then, 100 mg of PTFE and 30 ml of water were stirred with a homogenizer to prepare a uniform paste. This slurry was applied onto an aluminum foil as a positive electrode current collector, and further dried at 100 ° C. for 10 minutes to form a positive electrode having a thickness of 130 μm. A secondary battery was fabricated by the same configuration and method as in Example 1 except that the manufactured positive electrode was used.

<放電試験>
二次電池作製後、20℃にて0.5mAの定電流で4.0Vまで充電を行い、その後2.5Vまで放電を行った。その後再び0.5mAで4.2Vまで充電を行った後、0.5mAで2.5Vまで放電し、このときの電池容量を測定した。電池容量は2.7mAhであった。このときの電極活物質(ニトロキシル高分子化合物)重量あたりの容量密度は、90mAh/gとなった。
<Discharge test>
After producing the secondary battery, the battery was charged to 4.0 V at a constant current of 0.5 mA at 20 ° C., and then discharged to 2.5 V. Thereafter, the battery was charged again to 4.2 V at 0.5 mA, and then discharged to 2.5 V at 0.5 mA, and the battery capacity at this time was measured. The battery capacity was 2.7 mAh. The capacity density per weight of the electrode active material (nitroxyl polymer compound) at this time was 90 mAh / g.

つづいて20℃にて、0.5mAの定電流で電圧が4.0Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、1000mAと変えながら行った。放電終止電圧と測定電流を掛け合わせることで出力を求めた。各放電電流時の出力の中で最も値が大きいものを最大出力とした。最大出力は280mWであった。   Subsequently, the battery was charged at 20 ° C. with a constant current of 0.5 mA until the voltage became 4.0 V, and then discharged at 10 mA for 1 second. The battery was charged again at a constant current of 0.5 mA until the voltage reached 4 V, and then discharged at 20 mA for 1 second. This charging / discharging was repeated while changing the discharge current to 30, 40, ..., 1000 mA. The output was obtained by multiplying the discharge end voltage and the measured current. The largest output among the outputs at each discharge current was defined as the maximum output. The maximum output was 280 mW.

(比較例2)
<二次電池の作製>
〜Rがメチル基である上記化学式(4)のニトロキシル高分子化合物(重量平均分子量:28000)8.95g、オリビン型リン酸鉄リチウム8.95g、炭素材料(昭和電工製、商品名:VGCF−H)2.5g、CMC400mg、PTFE100mg、水30mlをホモジナイザーにて攪拌し、均一なペーストを調製した。このスラリーを正極集電体であるアルミ箔上に塗布し、さらに100℃で10分間乾燥し、130μmの厚さを持つ正極を形成した。上記製造した正極を用いたこと以外は、実施例1と同様な構成および方法で二次電池を作製した。
(Comparative Example 2)
<Production of secondary battery>
8. 95 g of the nitroxyl polymer compound (weight average molecular weight: 28000) of the above chemical formula (4) in which R 1 to R 5 are methyl groups, 8.95 g of olivine type lithium iron phosphate, carbon material (trade name, manufactured by Showa Denko) : VGCF-H) 2.5 g, CMC 400 mg, PTFE 100 mg, and water 30 ml were stirred with a homogenizer to prepare a uniform paste. This slurry was applied onto an aluminum foil as a positive electrode current collector, and further dried at 100 ° C. for 10 minutes to form a positive electrode having a thickness of 130 μm. A secondary battery was fabricated by the same configuration and method as in Example 1 except that the manufactured positive electrode was used.

<放電試験>
二次電池作製後、20℃にて0.5mAの定電流で4.0Vまで充電を行い、その後2.5Vまで放電を行った。その後再び0.5mAで4.2Vまで充電を行った後、0.5mAで2.5Vまで放電し、このときの電池容量を測定した。電池容量は2.7mAhであった。このときの電極活物質(ニトロキシル高分子化合物+LiFePO)重量あたりの容量密度は、56mAh/gとなった。
<Discharge test>
After producing the secondary battery, the battery was charged to 4.0 V at a constant current of 0.5 mA at 20 ° C., and then discharged to 2.5 V. Thereafter, the battery was charged again to 4.2 V at 0.5 mA, and then discharged to 2.5 V at 0.5 mA, and the battery capacity at this time was measured. The battery capacity was 2.7 mAh. The capacity density per weight of the electrode active material (nitroxyl polymer compound + LiFePO 4 ) at this time was 56 mAh / g.

つづいて20℃にて、0.5mAの定電流で電圧が4.0Vになるまで充電した後、10mAで1秒間放電した。再度、0.5mAの定電流で電圧が4.0Vになるまで充電した後、20mAで1秒間放電した。この充電・放電の繰り返しを、放電電流を30、40、・・・、1000mAと変えながら行った。放電終止電圧と測定電流を掛け合わせることで出力を求めた。各放電電流時の出力の中で最も値が大きいものを最大出力とした。最大出力は314mWであった。   Subsequently, the battery was charged at 20 ° C. with a constant current of 0.5 mA until the voltage became 4.0 V, and then discharged at 10 mA for 1 second. The battery was charged again at a constant current of 0.5 mA until the voltage reached 4.0 V, and then discharged at 20 mA for 1 second. This charging / discharging was repeated while changing the discharge current to 30, 40, ..., 1000 mA. The output was obtained by multiplying the discharge end voltage and the measured current. The largest output among the outputs at each discharge current was defined as the maximum output. The maximum output was 314 mW.

放電試験の結果を表1に示す。   The results of the discharge test are shown in Table 1.

Figure 0006248947
Figure 0006248947

実施例1および2では、比較例と比べて、容量密度、最大出力ともに優れた。これは、ニトロキシル高分子化合物、リン酸鉄リチウム及び導電性材料を複合化することによりニトロキシル高分子化合物、リン酸鉄リチウム、導電性材料が正極内に均一に分散され、良好な電子導電性が得られ、また、より速い反応が可能になり大きな電流での放電が可能となったためと考えられる。   In Examples 1 and 2, both the capacity density and the maximum output were excellent as compared with the comparative example. This is because the nitroxyl polymer compound, lithium iron phosphate, and the conductive material are uniformly dispersed in the positive electrode by compounding the nitroxyl polymer compound, lithium iron phosphate and the conductive material, and good electronic conductivity is obtained. This is considered to be due to the fact that a faster reaction was possible and discharge with a large current was possible.

本出願の主要な発明は、特許請求の範囲に記載のとおりであるが、その他に、以下の事項も開示している。   The main invention of the present application is as described in the scope of claims, but the following matters are also disclosed.

(付記1)還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を調製し、前記原料溶液を、前記高分子ラジカル材料、前記Li金属酸化物、及び前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記高分子ラジカル材料、前記Li金属酸化物、及び前記導電性材料からなる沈殿物を生成することを特徴とする高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。   (Appendix 1) A raw material solution in which a polymer radical material having a radical partial structure in a reduced state is dissolved or swollen and a Li metal oxide and a conductive material are dispersed or dissolved is prepared. Precipitation comprising the polymer radical material, the Li metal oxide, and the conductive material by dropping or pouring the polymer radical material, the Li metal oxide, and the conductive material into a solution that does not dissolve or swell. A method for producing a polymer radical material / Li metal oxide / conductive material composite characterized in that a product is produced.

(付記2)前記高分子ラジカル材料が、酸化状態において下記化学式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記化学式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル高分子化合物である、付記1に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。   (Supplementary Note 2) The polymer radical material has a nitroxyl cation partial structure represented by the following chemical formula (1) in the oxidized state and a nitroxyl radical partial structure represented by the following chemical formula (2) in the reduced state. The method for producing a polymer radical material / Li metal oxide / conductive material composite according to Appendix 1, which is a molecular compound.

Figure 0006248947
Figure 0006248947

(付記3)前記ニトロキシル高分子化合物が、還元状態において下記化学式(3)で示される環状ニトロキシル構造を含む高分子化合物である、付記2に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。   (Appendix 3) The polymer radical material, Li metal oxide, and conductivity according to Appendix 2, wherein the nitroxyl polymer compound is a polymer compound containing a cyclic nitroxyl structure represented by the following chemical formula (3) in a reduced state: A method for producing a material composite.

Figure 0006248947
(化学式(3)中、R1〜R4はそれぞれ独立にアルキル基を表し、Xは化学式(3)が5〜7員環を形成するような2価の基を表す。ただし、Xの少なくとも一部は、ポリマーの主鎖の一部を構成している。)
Figure 0006248947
(In the chemical formula (3), R 1 to R 4 each independently represents an alkyl group, and X represents a divalent group such that the chemical formula (3) forms a 5- to 7-membered ring, provided that at least X Some constitute part of the main chain of the polymer.)

(付記4)前記高分子ラジカル材料が、下記化学式(4)及び/又は(5)の化学構造で表される高分子化合物、又はこの化学構造を繰り返し単位として含む共重合体である、付記3に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。   (Additional remark 4) The said high molecular radical material is the high molecular compound represented by the chemical structure of following Chemical formula (4) and / or (5), or a copolymer containing this chemical structure as a repeating unit. A method for producing a polymer radical material / Li metal oxide / conductive material composite described in 1.

Figure 0006248947
(化学式(4)及び(5)中、R〜Rはそれぞれ独立にアルキル基を表し、Rは水素又はメチル基を表す。)
Figure 0006248947
(In chemical formulas (4) and (5), R 1 to R 4 each independently represents an alkyl group, and R 5 represents hydrogen or a methyl group.)

(付記5)還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を、前記高分子ラジカル材料、前記Li金属酸化物、及び前記導電性材料が溶解又は膨潤しない溶液に滴下又は注いで、前記Li金属酸化物と前記導電性材料とが前記高分子ラジカル材料の内部に取り込まれた沈殿物として得られた高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   (Supplementary Note 5) A raw material solution in which a polymer radical material having a radical partial structure in a reduced state is dissolved or swollen and Li metal oxide and a conductive material are dispersed or dissolved is used as the polymer radical material, The Li metal oxide and the conductive material are dropped or poured into a solution that does not dissolve or swell, and the Li metal oxide and the conductive material are obtained as a precipitate taken into the polymer radical material. Polymer radical material / Li metal oxide / conductive material composite.

(付記6)前記高分子ラジカル材料が、酸化状態において下記化学式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記化学式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル高分子化合物である、付記5に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   (Appendix 6) The high molecular radical material has a nitroxyl cation partial structure represented by the following chemical formula (1) in the oxidized state and a nitroxyl radical partial structure represented by the following chemical formula (2) in the reduced state. The polymer radical material / Li metal oxide / conductive material composite according to Appendix 5, which is a molecular compound.

Figure 0006248947
Figure 0006248947

(付記7)前記ニトロキシル高分子化合物が、還元状態において下記化学式(3)で示される環状ニトロキシル構造を含む高分子化合物である、付記6に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   (Appendix 7) The polymer radical material, Li metal oxide, and conductivity according to appendix 6, wherein the nitroxyl polymer compound is a polymer compound containing a cyclic nitroxyl structure represented by the following chemical formula (3) in a reduced state: Material composite.

Figure 0006248947
(化学式(3)中、R〜Rはそれぞれ独立にアルキル基を表し、Xは化学式(3)が5〜7員環を形成するような2価の基を表す。ただし、Xの少なくとも一部は、ポリマーの主鎖の一部を構成している。)
Figure 0006248947
(In the chemical formula (3), R 1 to R 4 each independently represents an alkyl group, and X represents a divalent group such that the chemical formula (3) forms a 5- to 7-membered ring. Some constitute part of the main chain of the polymer.)

(付記8)前記高分子ラジカル材料が、下記化学式(4)及び/又は(5)の化学構造で表される高分子化合物、又はこの化学構造を繰り返し単位として含む共重合体である、付記7に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   (Additional remark 8) The said high molecular radical material is the high molecular compound represented by the following chemical formula (4) and / or the chemical structure of (5), or a copolymer containing this chemical structure as a repeating unit. Polymer radical material / Li metal oxide / conductive material composite as described in 1.

Figure 0006248947
(化学式(4)及び(5)中、R〜Rはそれぞれ独立にアルキル基を表し、Rは水素又はメチル基を表す。)
Figure 0006248947
(In chemical formulas (4) and (5), R 1 to R 4 each independently represents an alkyl group, and R 5 represents hydrogen or a methyl group.)

(付記9)前記導電性材料が、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、メソフェーズピッチ炭素繊維、及びカーボンナノチューブからなる群から選ばれる少なくとも1つである、付記5〜8のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   (Supplementary note 9) The supplementary notes 5 to 8, wherein the conductive material is at least one selected from the group consisting of natural graphite, artificial graphite, carbon black, vapor-grown carbon fiber, mesophase pitch carbon fiber, and carbon nanotube. The polymer radical material / Li metal oxide / conductive material composite according to any one of the above items.

(付記10)前記Li金属酸化物がLiMnO、LiMn(0<x<2)、LiCoO、LiNiO、Li(0<y<2)、LiFePO、LiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn0.5、LiNi0.33Mn0.33Co0.33、LiNi0.8Co0.2、LiNi0.5Mn1.5−zTi(0<z<1.5)およびLiNiAl1−x(0<x<1)からなる群から選ばれる少なくとも1つである、付記5〜9のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。(Supplementary Note 10) The Li metal oxide LiMnO 2, Li x Mn 2 O 4 (0 <x <2), LiCoO 2, LiNiO 2, Li y V 2 O 5 (0 <y <2), LiFePO 4, LiNi 0.5 Mn 1.5 O 4 , LiCr 0.5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0. 33 Mn 0.33 Co 0.33 O 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Mn 1.5-z Ti z O 4 (0 <z <1.5) and LiNi x Al The polymer radical material / Li metal oxide / conductive material composite according to any one of appendices 5 to 9, which is at least one selected from the group consisting of 1-xO 2 (0 <x <1) body.

(付記11)付記5〜10のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体を電極材料として用いることを特徴とする二次電池。   (Appendix 11) A secondary battery using the polymer radical material / Li metal oxide / conductive material composite according to any one of appendices 5 to 10 as an electrode material.

(付記12)前記電極が正極である、付記11に記載の二次電池。   (Additional remark 12) The secondary battery of Additional remark 11 whose said electrode is a positive electrode.

(付記13)前記電極が正極であり、負極にリチウムイオンを可逆的に担持可能な物質を含み、電解質にリチウム塩を含む非プロトン性有機溶媒を用いる、付記12に記載の二次電池。   (Supplementary note 13) The secondary battery according to supplementary note 12, wherein the electrode is a positive electrode, and the negative electrode includes a substance capable of reversibly supporting lithium ions, and the electrolyte uses an aprotic organic solvent including a lithium salt.

(付記14)リチウムイオン供給源をさらに備え、前記正極及び/又は前記負極が、それぞれ表裏面を貫通する孔を有する集電体を備えており、前記負極と前記リチウムイオン供給源との電気化学的接触によって前記負極にリチウムイオンがあらかじめドーピングされている、付記13に記載の二次電池。   (Additional remark 14) The lithium ion supply source is further provided, The said positive electrode and / or the said negative electrode are each equipped with the electrical power collector which has the hole which penetrates front and back, respectively, Electrochemistry of the said negative electrode and the said lithium ion supply source The secondary battery according to appendix 13, wherein the negative electrode is previously doped with lithium ions by mechanical contact.

本発明における二次電池は、高エネルギー密度と高い出力特性を同時にできるため、高いエネルギー密度が求められるノート型パソコン、携帯電話、スマートフォンなど各種携帯電子機器の電源、電気自動車、また高い出力が求められるハイブリッド電気自動車等の駆動用又は補助用蓄電源、ソーラーエネルギーや風力発電などの各種エネルギーの蓄電装置等に用いることができる。   Since the secondary battery in the present invention can simultaneously achieve high energy density and high output characteristics, power sources for various portable electronic devices such as notebook PCs, mobile phones, and smartphones that require high energy density, electric vehicles, and high output are required. It can be used for a drive or auxiliary storage power source of a hybrid electric vehicle or the like, a power storage device for various energy such as solar energy and wind power generation.

101 正極
102 負極
103 集電体
104 電極リード
105 セパレータ
106 外装用フィルム
107 ラミネート型二次電池
DESCRIPTION OF SYMBOLS 101 Positive electrode 102 Negative electrode 103 Current collector 104 Electrode lead 105 Separator 106 Exterior film 107 Laminate type secondary battery

Claims (10)

Li金属酸化物及び導電性材料が、還元状態においてラジカル部分構造をとる高分子ラジカル材料の内部において分散していることを特徴とする、高分子ラジカル材料・Li金属酸化物・導電性材料複合体。 Li metal oxides and conductive material, characterized in that it is Oite dispersed within the polymer radical material take radical partial structure in the reduced state, polymeric radical material, Li metal oxides, electrically conductive material Complex. 前記Li金属酸化物及び前記導電性材料が、前記高分子ラジカル材料の内部において均一に分散している、請求項1に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   The polymer radical material / Li metal oxide / conductive material composite according to claim 1, wherein the Li metal oxide and the conductive material are uniformly dispersed inside the polymer radical material. 前記高分子ラジカル材料が、酸化状態において下記化学式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記化学式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル高分子化合物である、請求項1または2に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。
Figure 0006248947
The polymer radical material is a nitroxyl polymer compound having a nitroxyl cation partial structure represented by the following chemical formula (1) in an oxidized state and a nitroxyl radical partial structure represented by the following chemical formula (2) in a reduced state. The polymer radical material / Li metal oxide / conductive material composite according to claim 1 or 2.
Figure 0006248947
前記高分子ラジカル材料が、下記化学式(4)及び/又は(5)の化学構造で表される高分子化合物、又はこの化学構造を繰り返し単位として含む共重合体である、請求項3に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。
Figure 0006248947
Figure 0006248947
(化学式(4)及び(5)中、R〜Rはそれぞれ独立にアルキル基を表し、Rは水素又はメチル基を表す。)
4. The polymer radical material according to claim 3, wherein the polymer radical material is a polymer compound represented by a chemical structure represented by the following chemical formula (4) and / or (5), or a copolymer containing the chemical structure as a repeating unit. Polymer radical material / Li metal oxide / conductive material composite.
Figure 0006248947
Figure 0006248947
(In chemical formulas (4) and (5), R 1 to R 4 each independently represents an alkyl group, and R 5 represents hydrogen or a methyl group.)
前記導電性材料が、天然黒鉛、人造黒鉛、カーボンブラック、気相成長炭素繊維、メソフェーズピッチ炭素繊維、及びカーボンナノチューブからなる群から選ばれる少なくとも1つである、請求項1〜4のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。   The conductive material is at least one selected from the group consisting of natural graphite, artificial graphite, carbon black, vapor-grown carbon fiber, mesophase pitch carbon fiber, and carbon nanotube. The polymer radical material / Li metal oxide / conductive material composite according to the item. 前記Li金属酸化物がLiMnO、LiMn(0<x<2)、LiCoO、LiNiO、Li(0<y<2)、LiFePO、LiNi0.5Mn1.5、LiCr0.5Mn1.5、LiCo0.5Mn1.5、LiCoMnO、LiNi0.5Mn0.5、LiNi0.33Mn0,33Co0.33、LiNi0.8Co0.2、LiNi0.5Mn1.5−zTi(0<z<1.5)およびLiNiAl1−x(0<x<1)からなる群から選ばれる少なくとも1つである、請求項1〜5のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体。 The Li metal oxide is LiMnO 2, Li x Mn 2 O 4 (0 <x <2), LiCoO 2, LiNiO 2, Li y V 2 O 5 (0 <y <2), LiFePO 4, LiNi 0.5 Mn 1.5 O 4 , LiCr 0.5 Mn 1.5 O 4 , LiCo 0.5 Mn 1.5 O 4 , LiCoMnO 4 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.33 Mn 0, 33 Co 0.33 O 2 , LiNi 0.8 Co 0.2 O 2 , LiNi 0.5 Mn 1.5-z Ti z O 4 (0 <z <1.5) and LiNi x Al 1-x O 2. The polymer radical material / Li metal oxide / conductive material composite according to claim 1, which is at least one selected from the group consisting of 2 (0 <x <1). 請求項1〜6のいずれか1項に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体を電極材料として用いることを特徴とする二次電池。   A secondary battery using the polymer radical material / Li metal oxide / conductive material composite according to claim 1 as an electrode material. 前記電極が正極である、請求項7に記載の二次電池。   The secondary battery according to claim 7, wherein the electrode is a positive electrode. 還元状態においてラジカル部分構造をとる高分子ラジカル材料が溶解又は膨潤しており且つLi金属酸化物及び導電性材料が分散又は溶解している原料溶液を調製し、
前記原料溶液を、前記高分子ラジカル材料、前記Li金属酸化物及び前記導電性材料が溶解又は膨潤しない溶液に滴下又は注ぐことにより、前記高分子ラジカル材料、前記Li金属酸化物及び前記導電性材料からなる沈殿物を生成することを特徴とする高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。
Preparing a raw material solution in which a polymer radical material having a radical partial structure in a reduced state is dissolved or swollen and in which a Li metal oxide and a conductive material are dispersed or dissolved;
The polymer radical material, the Li metal oxide, and the conductive material are dropped or poured into the solution in which the polymer radical material, the Li metal oxide, and the conductive material do not dissolve or swell. A method for producing a polymer radical material / Li metal oxide / conductive material composite, characterized in that a precipitate comprising:
前記高分子ラジカル材料が、酸化状態において下記化学式(1)で示されるニトロキシルカチオン部分構造をとり、還元状態において下記化学式(2)で示されるニトロキシルラジカル部分構造をとるニトロキシル高分子化合物であることを特徴とする、請求項9に記載の高分子ラジカル材料・Li金属酸化物・導電性材料複合体の製造方法。
Figure 0006248947
The polymer radical material is a nitroxyl polymer compound having a nitroxyl cation partial structure represented by the following chemical formula (1) in an oxidized state and a nitroxyl radical partial structure represented by the following chemical formula (2) in a reduced state. The method for producing a polymer radical material / Li metal oxide / conductive material composite according to claim 9.
Figure 0006248947
JP2014558580A 2013-01-22 2014-01-21 Electrode material and secondary battery Active JP6248947B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013009602 2013-01-22
JP2013009602 2013-01-22
PCT/JP2014/051151 WO2014115737A1 (en) 2013-01-22 2014-01-21 Electrode material and secondary cell

Publications (2)

Publication Number Publication Date
JPWO2014115737A1 JPWO2014115737A1 (en) 2017-01-26
JP6248947B2 true JP6248947B2 (en) 2017-12-20

Family

ID=51227528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558580A Active JP6248947B2 (en) 2013-01-22 2014-01-21 Electrode material and secondary battery

Country Status (2)

Country Link
JP (1) JP6248947B2 (en)
WO (1) WO2014115737A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6895085B2 (en) * 2015-03-16 2021-06-30 日本電気株式会社 Power storage device
US20190386309A1 (en) * 2017-01-20 2019-12-19 Nec Corporation Electrode and secondary battery using radical polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884021B2 (en) * 2006-02-09 2012-02-22 株式会社デンソー Method for manufacturing electrode for secondary battery
US8475956B2 (en) * 2007-01-25 2013-07-02 Nec Corporation Polyradical compound-conductive material composite, method for producing the same, and battery using the same
JP5146049B2 (en) * 2008-03-27 2013-02-20 日本電気株式会社 Electricity storage device
JP2009277432A (en) * 2008-05-13 2009-11-26 Denso Corp Electrode for secondary battery, manufacturing method thereof, and secondary battery
US20120171561A1 (en) * 2009-09-18 2012-07-05 Nec Corporation Polymer radical material-activated carbon-conductive material composite, method for producing conductive material composite, and electricity storage device

Also Published As

Publication number Publication date
WO2014115737A1 (en) 2014-07-31
JPWO2014115737A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6421804B2 (en) Electrode active material and secondary battery
US11784305B2 (en) Negative electrode including silicon nanoparticles having a carbon coating thereon
JP5849701B2 (en) Polymer radical material / activated carbon / conductive material composite for power storage device electrode, method for producing polymer radical material / activated carbon / conductive material composite for power storage device electrode, and power storage device
JP5332251B2 (en) Polymer radical material / conductive material composite, method for producing the same, and power storage device
JP5429596B2 (en) Secondary battery and manufacturing method thereof
JP4637293B2 (en) Carbon ink for secondary battery and conductive auxiliary layer thereof
JP5549516B2 (en) Secondary battery and electrolyte and membrane used therefor
JP5359278B2 (en) Electrode forming slurry and battery
WO2010140512A1 (en) Electricity storage device
JPWO2009145225A1 (en) Secondary battery, method for producing the same, and ink for electrode formation
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
JP7092037B2 (en) Electrodes and secondary batteries using radical polymers
JP6248947B2 (en) Electrode material and secondary battery
JP7115318B2 (en) Electrodes and secondary batteries using radical polymers
WO2014157059A1 (en) Electrode for power storage device and power storage device using same
WO2020017630A1 (en) Secondary battery using radical polymer in electrode
WO2024181064A1 (en) Binder for lithium-ion secondary batteries, negative electrode for lithium-ion secondary batteries, and lithium-ion secondary battery
WO2014092128A1 (en) Electric storage device
JP6268708B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery
Rathinasamy et al. Electrochemical benefits of conductive polymers as a cathode material in LFP battery technology
JP2015060636A (en) Secondary battery
JP2014143020A (en) Positive electrode for lithium secondary battery and lithium secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6248947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150