WO2013014830A1 - Lithium-ion secondary cell - Google Patents

Lithium-ion secondary cell Download PDF

Info

Publication number
WO2013014830A1
WO2013014830A1 PCT/JP2012/002666 JP2012002666W WO2013014830A1 WO 2013014830 A1 WO2013014830 A1 WO 2013014830A1 JP 2012002666 W JP2012002666 W JP 2012002666W WO 2013014830 A1 WO2013014830 A1 WO 2013014830A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
negative electrode
lithium
active material
ion secondary
Prior art date
Application number
PCT/JP2012/002666
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 夏井
昌洋 木下
名倉 健祐
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013014830A1 publication Critical patent/WO2013014830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery provided with a nonaqueous electrolyte.
  • the lithium ion secondary battery has a high capacity and a high energy density, and can be easily reduced in size and weight. For this reason, lithium ion secondary batteries are used as power sources for portable small electronic devices such as mobile phones, personal digital assistants (PDAs), notebook personal computers, video cameras, and portable game machines. .
  • portable small electronic devices such as mobile phones, personal digital assistants (PDAs), notebook personal computers, video cameras, and portable game machines. .
  • a lithium ion secondary battery generally includes a positive electrode containing a lithium cobalt composite oxide as a positive electrode active material, a negative electrode containing a carbon material as a negative electrode active material, and a polyolefin porous membrane (separator).
  • Patent Document 1 discloses that the discharge capacity of a battery is improved by using a positive electrode active material containing a different element.
  • Patent Document 2 discloses a lithium ion secondary battery using lithium titanate as a negative electrode active material for the purpose of suppressing a decrease in battery capacity due to metal elution.
  • Patent Document 3 uses a negative electrode material in which a carbon material layer is provided on a negative electrode and a lithium titanate layer is provided on the surface for the purpose of obtaining a high-capacity and long-life lithium ion secondary battery.
  • a lithium ion secondary battery is disclosed.
  • lithium titanate when used for the negative electrode, the redox potential (oxidation-reduction potential) of lithium titanate is high, so that a film is not sufficiently formed on the negative electrode surface, and the nonaqueous electrolyte decomposes during the charge / discharge cycle. As a result, gas is generated and cycle characteristics deteriorate. Furthermore, since lithium titanate has a low theoretical capacity, the capacity of the battery itself is reduced.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve battery capacity and cycle characteristics in a lithium ion secondary battery cycled at a high charge voltage.
  • the present inventors have formed a carbon material layer on the negative electrode and a carbon material layer thereon when a lithium ion secondary battery using a positive electrode material containing a different element as the positive electrode is cycled at a high charge voltage. It has been found that the use of a structure in which a plurality of layers including a lithium titanate layer is used can reduce the redox potential of lithium titanate and improve the capacity and cycle characteristics of the lithium ion secondary battery.
  • a lithium ion secondary battery includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and a positive electrode and a negative electrode.
  • a lithium ion secondary battery comprising a provided separator and a nonaqueous electrolyte, wherein the positive electrode active material layer has a lithium nickel composite oxide containing a different element, such as tungsten, niobium, It is at least one different element selected from the group consisting of boron, zirconium, and vanadium, and the negative electrode active material layer includes a first layer formed on the surface of the negative electrode current collector, and the first layer A second layer formed on the surface, the first layer includes a carbon material, the second layer includes lithium titanate and a conductive material, and has a thickness of the first layer. 1% or more and 25% or less in thickness, included in the second layer That the amount of the conductive material is less than 3 parts by mass with respect to lithium titanate of 100 parts by weight.
  • the positive electrode active material layer has a lithium nickel composite oxide containing a different element, such as tungsten, niobium, It is at least one different element selected from the group consisting of boron, zircon
  • the dissimilar elements can be deposited in the second layer, and the decomposition of the nonaqueous electrolyte can be suppressed. As a result, even if the battery is charged at a high voltage, the capacity of the battery A lithium ion secondary battery having excellent cycle characteristics can be obtained.
  • the lithium ion secondary battery according to the present invention can suppress the decomposition of the non-aqueous electrolyte during charging and discharging even when charged at a high voltage, and can improve the capacity and cycle characteristics of the battery.
  • FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a negative electrode of a lithium ion secondary battery according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery according to this embodiment.
  • a lithium ion secondary battery 20 includes a positive electrode 21, a negative electrode 22, and a microporous separator 23 interposed between the positive electrode 21 and the negative electrode 22.
  • the electrode group 24 is provided.
  • a positive-side insulating plate 25 is formed at one end of the electrode group 24 in the winding axis direction, and a negative-side insulating plate 26 is formed at the other end.
  • the electrode group 24 is housed together with a nonaqueous electrolyte in a battery case 27 that also serves as a negative electrode terminal.
  • the battery case 27 is sealed with a sealing plate 28.
  • the battery case 27 is electrically connected to the negative electrode 22 via the negative electrode lead 29, and the positive terminal 30 of the sealing plate 28 is electrically connected to the positive electrode 21 via the positive electrode lead 31.
  • the positive electrode used in this embodiment includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector, and the positive electrode active material layer includes a different element.
  • a positive electrode current collector that is usually used for a positive electrode of a lithium ion secondary battery can be used.
  • a positive electrode current collector that is usually used for a positive electrode of a lithium ion secondary battery can be used.
  • aluminum, an aluminum alloy, or the like can be used in the form of a foil, a film, a film, a sheet, or the like.
  • the thickness of the positive electrode current collector is about 1 ⁇ m to 500 ⁇ m, and can be appropriately set according to the capacity and size of the lithium ion secondary battery.
  • the positive electrode active material layer was prepared, for example, by mixing a lithium nickel composite oxide containing different elements, a binder, a dispersant, and an additive such as a conductive material as necessary to prepare a positive electrode mixture slurry. Thereafter, the obtained positive electrode mixture slurry can be formed on the surface of the positive electrode current collector by drying and rolling.
  • the different element is a compound containing at least one different element selected from the group consisting of tungsten, niobium, boron, zirconium and vanadium, for example.
  • a binder usually used for a lithium ion secondary battery can be used without any particular limitation.
  • Polyolefin resins such as polyethylene and polypropylene are used. These can be used individually by 1 type and can also be used in combination of 2 or more type.
  • a conductive material usually used for a lithium ion secondary battery can be used without any particular limitation.
  • carbon blacks such as graphite, acetylene black, ketjen black, furnace black, lamp black and thermal black, carbon fiber, and metal fiber are used.
  • the first method there is a method of attaching a different element to the surface of the lithium nickel composite oxide.
  • an ethoxide compound containing a different element is dissolved in a solvent such as ethanol to prepare a solution containing the different element.
  • a solvent such as ethanol
  • the lithium nickel composite oxide is dispersed in the solution containing the different elements, and the solvent is completely removed by heating.
  • the lithium nickel composite oxide containing a different element is obtained by heat-treating the obtained mixture of the different element and the lithium nickel composite oxide.
  • the heat treatment at this time is preferably performed at about 300 ° C. to 700 ° C. for about 12 hours to 24 hours.
  • the second method there is a method in which a raw material mixture of a lithium nickel composite oxide such as a lithium compound and a nickel compound and a heterogeneous compound are mixed and baked to add them internally.
  • lithium nickel composite oxide As the raw material mixture of the lithium nickel composite oxide, various raw materials conventionally used in the production of lithium nickel composite oxides can be used without any particular limitation. Specifically, lithium hydroxide, lithium carbonate, or the like is used for the lithium compound, and nickel hydroxide, nickel oxide, or the like is used for the nickel compound. Various oxides, carbonate nitrates, hydroxides, and the like are used as the different element compound.
  • dry mixing For the mixing of the raw material mixture and the different element compound, either dry mixing or wet mixing may be used, but dry mixing is preferable in terms of simplicity.
  • a ball mill or the like As the mixing apparatus, a ball mill or the like can be used.
  • the resulting mixture of the raw material mixture and the heterogeneous element compound is baked in an air atmosphere to obtain a lithium nickel composite oxide in which the heterogeneous element is internally added.
  • the firing at this time is preferably performed at about 600 ° C. to 900 ° C. for about 12 hours to 24 hours.
  • FIG. 2 is a cross-sectional view schematically showing the negative electrode of the lithium ion secondary battery according to this embodiment.
  • the negative electrode used in the present embodiment includes a negative electrode current collector 10, a first layer 11 having a carbon material formed on the surface of the negative electrode current collector 10 as an active material, and And a negative electrode active material layer 13 formed of a second layer 12 using lithium titanate formed as an active material on the surface of the first layer 11.
  • a material mixture slurry is prepared by mixing a carbon material, a binder, a dispersion medium and, if necessary, an additive such as a conductive material to prepare a material mixture slurry. Is applied to the surface of the negative electrode current collector 10, dried and rolled. Thereby, the first layer 11 is formed. Thereafter, a lithium titanate slurry prepared by mixing lithium titanate, a binder, a dispersion medium, and an additive such as a conductive material is applied to the surface of the first layer 11, dried and rolled. Thereby, the second layer 12 is formed, and the negative electrode active material layer 13 composed of the first layer 11 and the second layer 12 is formed.
  • a material mixture slurry obtained in the same manner as in the first method is applied to the surface of the negative electrode current collector 10.
  • a lithium titanate slurry prepared in the same manner as in the first method is applied on the applied material mixture slurry, and two layers are simultaneously dried and rolled.
  • the first layer 11 and the second layer 12 are formed on the surface of the negative electrode current collector 10, thereby forming the negative electrode active material layer 13 made of them.
  • a current collector usually used for a negative electrode of a lithium ion secondary battery can be used without any particular limitation. Specifically, stainless steel, nickel, copper, or the like can be used in the form of a foil, a film, a film, a sheet, or the like.
  • the thickness of the negative electrode current collector 10 is in the range of about 1 ⁇ m to 500 ⁇ m, and can be appropriately set according to the capacity and size of the lithium ion secondary battery.
  • a carbon material capable of occluding and releasing lithium which is usually used in a lithium ion secondary battery, can be used without any particular limitation. Specifically, carbon materials such as graphite and amorphous carbon can be used.
  • binder those usually used for the negative electrode of a lithium ion secondary battery can be used without any particular limitation.
  • polyolefins such as polyethylene and polypropylene, styrene-butadiene rubber (SBR) and modified products thereof are used. These can be used individually by 1 type and can also be used in combination of 2 or more type.
  • the same materials as those exemplified as the conductive material used for the positive electrode active material layer can be used.
  • Lithium titanate is obtained by mixing a lithium compound and a titanium compound and then firing, for example, lithium titanate having a chemical formula of Li 3 + 3x Ti 6-3x-y M y O 12 , where x And y represent a molar ratio, and 0 ⁇ x ⁇ 1/3 and 0 ⁇ y ⁇ 0.25.
  • M includes at least one selected from the group consisting of Fe, Al, Ca, Co, B, Cr, Ni, Mg, Zr, Ga, V, Mn, and Zn.
  • the lithium compound lithium hydroxide, lithium carbonate or the like can be used, and as the titanium compound, titanium oxide or the like can be used.
  • the amount of the conductive material contained in the second layer 12 exceeds 3 parts by mass with respect to 100 parts by mass of the lithium titanate, the electrolytic solution cannot be sufficiently suppressed and the cycle characteristics tend to be deteriorated. Therefore, it is preferably 3 parts by mass or less, and more preferably 3 parts by mass.
  • the thickness of the second layer 12 is less than 1% with respect to the thickness of the first layer 11, the total amount of the dissimilar elements contained in the positive electrode active material eluted and deposited on the negative electrode is lithium titanate. More than the amount that can be deposited on the second layer 12 it contains. For this reason, there exists a tendency for cycling characteristics to fall, without suppressing decomposition
  • the thickness of the second layer 12 exceeds 25% with respect to the thickness of the first layer 11, the influence of lithium titanate having a low theoretical capacity becomes remarkable, and the capacity of the battery decreases. Tend. Therefore, the thickness of the second layer 12 is preferably 1% or more and 25% or less with respect to the thickness of the first layer 11.
  • the mixture density of the first layer 11 When the mixture density of the first layer 11 is less than 1.4 g / ml, the energy density per unit area tends to decrease. On the other hand, when the mixture density of the first layer 11 exceeds 2.8 g / ml, the penetration of the nonaqueous electrolyte into the first layer 11 becomes insufficient, and the battery characteristics tend to be deteriorated. For this reason, it is preferable that the mixture density of the 1st layer 11 is 1.4 g / ml or more and 2.8 g / ml or less.
  • the mixture density of the second layer 12 is less than 1.3 g / ml, the energy density per unit area tends to decrease.
  • the mixture density of the second layer 12 exceeds 1.8 g / ml, the penetration of the nonaqueous electrolyte into the second layer 12 becomes insufficient, and the battery characteristics tend to deteriorate.
  • the mixture density of the 2nd layer 12 is 1.3 g / ml or more and 1.8 g / ml or less.
  • BET specific surface area of lithium titanate is less than 2 m 2 / g, the rate characteristics tend to be reduced.
  • the BET specific surface area exceeds 8 m 2 / g, it is necessary to increase the addition amount of the conductive material and the binder. Yes, the energy density per unit area tends to decrease. Therefore, BET specific surface area of the lithium titanate is preferably less than 2m 2 / g or more 8m 2 / g.
  • the average particle size of lithium titanate is less than 0.5 ⁇ m, the surface area of the active material is increased, so it is necessary to increase the addition amount of the conductive material and the binder, and the energy density tends to decrease, On the other hand, when the average particle size exceeds 10 ⁇ m, the rate characteristics tend to be lowered. For this reason, it is preferable that the average particle diameter of lithium titanate is 0.5 micrometer or more and 10 micrometers or less.
  • the cycle characteristics are improved by setting the oil absorption of lithium titanate to 20 g / 100 g or less.
  • the rate characteristics are improved when the oil absorption is 50 g / 100 g or more. Therefore, the oil absorption of lithium titanate is 20 g / 100 g or more. It is preferable that it is 50 g / 100 g or less.
  • the nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
  • non-aqueous solvent various non-aqueous solvents that are usually used for non-aqueous electrolytes of lithium ion secondary batteries can be used.
  • cyclic carbonate solvents such as ethylene carbonate, propylene carbonate and butylene carbonate
  • chain carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate, tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane, etc.
  • Cyclic ether solvents chain ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane, cyclic ester solvents such as ⁇ -butyrolactone, chain ester solvents such as methyl acetate, and fluoroethylene carbonate, fluoro
  • fluoro A fluorinated solvent that is at least one selected from the group consisting of methyl propionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate can be used.
  • the nonaqueous electrolyte according to the present embodiment includes a fluorinated solvent that is at least one selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate. Is preferred. In this way, a good film can be formed on the negative electrode surface.
  • the constituent elements such as the positive electrode 21, the negative electrode 22, and the separator other than the nonaqueous electrolyte described above are not particularly limited, and a configuration that is normally used as a lithium ion secondary battery can be used as appropriate. .
  • a wound-type cylindrical battery is illustrated as a specific embodiment of the lithium ion secondary battery, but the shape of the lithium ion secondary battery is not limited to this.
  • the lithium ion secondary battery can be appropriately selected not only in a cylindrical shape but also in a coin shape, a square shape, a sheet shape, a button shape, a flat shape, a stacked shape, and the like in accordance with its application.
  • a prismatic lithium ion secondary battery was manufactured according to the method described below, and an initial discharge capacity and cycle characteristic evaluation test was performed on the lithium ion secondary battery.
  • Example 1 (1) Production of Lithium Nickel Composite Oxide (Positive Electrode Active Material) Containing Different Elements
  • tungsten ethoxide was dissolved in dehydrated ethanol.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA
  • NCA Lithium nickel composite oxide
  • the obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere to obtain a lithium nickel composite oxide (W—NCA) containing a tungsten compound as a positive electrode active material.
  • the tungsten compound contained 0.5 mol% with respect to the lithium nickel composite oxide.
  • the obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m. Then, the lithium titanate slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 180 ⁇ m.
  • Example 2 In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained.
  • the obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m.
  • the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 190 ⁇ m.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 3 In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained.
  • the obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m.
  • the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 162 ⁇ m.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 4 In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 2 parts by mass of a conductive material, and 100 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass, the solid content of PVDF is 8 parts by mass) are mixed. Thus, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 5 In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 1 part by mass of conductive material, and 112.5 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 9 parts by mass) are mixed. As a result, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 6 First, niobium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (Nb—) which is a positive electrode active material containing 0.5 mol% of a niobium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA
  • Example 7 First, boron ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (B--) which is a positive electrode active material containing 0.5 mol% of a boron compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA
  • Example 8 zirconium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (Zr—), which is a positive electrode active material containing 0.5 mol% of a zirconium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
  • Lithium nickel composite oxide LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA
  • Example 9 First, vanadium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere to obtain a lithium nickel composite oxide (V ⁇ ) that is a positive electrode active material containing 0.5 mol% of a vanadium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
  • V ⁇ lithium nickel composite oxide
  • Example 10 First, EC and EMC were mixed at a volume ratio of 1: 3 to obtain a non-aqueous solvent.
  • a nonaqueous electrolyte (E / E) was obtained by dissolving LiPF 6 in the obtained nonaqueous solvent so as to have a concentration of 1.0 mol / l.
  • a lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used.
  • Example 1 In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m. Thereafter, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 220 ⁇ m. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 2 In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 161 ⁇ m. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 3 In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 5 parts by mass of a conductive material, and 40 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 5 parts by mass) are mixed. Thus, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m.
  • Example 2 A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 4 In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate and 80 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 10 parts by mass) are mixed with the lithium titanate mixture slurry. Got. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to a total thickness of 160 ⁇ m. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 180 ⁇ m. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 5 A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Except for this, a lithium ion secondary battery was fabricated in the same manner as in Example 1.
  • Example 6 (Comparative Example 6) In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to obtain a negative electrode having a total thickness of 180 ⁇ m equipped with a negative electrode active material layer. . A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 7 In the same manner as in Example 1, a lithium titanate mixture slurry was obtained. The obtained lithium titanate mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to obtain a negative electrode having a total thickness of 180 ⁇ m equipped with a negative electrode active material layer. It was. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
  • Example 8 A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Further, an artificial graphite mixture slurry was obtained in the same manner as in Example 1. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to obtain a negative electrode having a total thickness of 180 ⁇ m equipped with a negative electrode active material layer. . A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used and the positive electrode active material was used.
  • Example 9 A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Moreover, it carried out similarly to Example 1, and obtained the lithium titanate mixture slurry. The obtained lithium titanate mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m, dried and rolled to obtain a negative electrode having a total thickness of 180 ⁇ m equipped with a negative electrode active material layer. It was. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used and the positive electrode active material was used.
  • the battery of Example 1 had good initial discharge capacity. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a tungsten compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed.
  • Example 1 the capacity retention rate after 100 cycles was good.
  • the artificial graphite layer as the first layer and the lithium titanate layer as the second layer thinner than the first layer are provided on the negative electrode, thereby reducing the redox potential of the lithium titanate. This is considered to be because gas generation due to decomposition of the nonaqueous electrolyte containing the fluorinated solvent was suppressed by forming a good film of fluoroethylene carbonate on the negative electrode surface.
  • the amount of the conductive material contained in the second layer is 3 parts by mass with respect to 100 parts by mass of lithium titanate, so that the decomposition of the nonaqueous electrolyte can be suppressed and the cycle characteristics are improved.
  • the battery of Example 2 had good initial discharge capacity as in Example 1. This is considered to be the same reason as in the first embodiment. However, the initial discharge capacity is smaller than that of Example 1, and this is considered to be because the influence on the capacity reduction of the battery becomes remarkable because the thickness of the second layer is increased. Further, similarly to Example 1, the capacity retention rate after 100 cycles was good.
  • the battery of Example 3 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment.
  • the capacity retention rate after 100 cycles is a low value. This is because the thickness of the second layer is relatively small, so that the different element contained in the positive electrode active material is eluted and the total amount of the different element metal deposited on the negative electrode can be deposited on the lithium titanate. This is considered to be because the decomposition of the nonaqueous electrolyte could not be suppressed and the cycle characteristics deteriorated.
  • Example 4 the battery of Example 4 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment. However, compared with Example 1, the initial discharge capacity was a low value. This is probably because the amount of the conductive material contained in the second layer was smaller than that in Example 1, and therefore sufficient battery characteristics could not be expressed as compared with Example 1.
  • Example 1 the battery of Example 5 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment. However, the initial discharge capacity was lower than in Examples 1 and 4. This is probably because the amount of the conductive material contained in the second layer was smaller than those in Examples 1 and 4, and therefore, sufficient battery characteristics could not be expressed as compared with Examples 1 and 4.
  • the battery of Example 6 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a niobium compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 6 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
  • the battery of Example 7 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a boron compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 7 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
  • the battery of Example 8 exhibited a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a zirconium compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 8 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
  • the battery of Example 9 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a vanadium compound as a different element for the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 9 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
  • Example 10 Although the battery of Example 10 had good battery characteristics, the initial discharge capacity and the capacity retention rate after 100 cycles were low as compared with the battery of Example 1. From this result, it is considered that the inclusion of FEC in the non-aqueous electrolyte facilitates the formation of a good film on the negative electrode surface and improves battery characteristics.
  • the battery of Comparative Example 1 had a lower initial discharge capacity than the batteries of Examples 1-9. This is because the lithium titanate battery having a low theoretical capacity is obtained because the thickness of the second layer using lithium titanate as the active material is greater than 25% of the thickness of the first layer using artificial graphite as the active material. This is thought to be due to the remarkable impact on the capacity reduction.
  • the battery of Comparative Example 2 showed a lower capacity retention rate after 100 cycles than the batteries of Examples 1 to 9. This is because when the thickness of the second layer is less than 1% with respect to the first layer, the different elements contained in the positive electrode active material are eluted and the total amount deposited on the negative electrode is deposited on lithium titanate. This is considered to be due to the fact that the decomposition of the non-aqueous electrolyte could not be suppressed and the cycle characteristics deteriorated.
  • the battery of Comparative Example 3 had a lower capacity retention rate after 100 cycles than the batteries of Examples 1-9. This is presumably because the amount of the conductive material contained in the second layer was 5 parts by mass with respect to 100 parts by mass of lithium titanate, and the decomposition of the nonaqueous electrolyte could not be suppressed.
  • the battery of Comparative Example 4 had a significantly lower initial discharge capacity than the batteries of Examples 1-9. This is presumably because the conductivity of the second layer was insufficient because the conductive material was not added to the second layer, and electrode activity did not appear.
  • the battery of Comparative Example 5 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is considered to be due to the use of a positive electrode active material that does not contain different elements.
  • the battery of Comparative Example 6 had a lower capacity retention rate after 100 cycles than the batteries of Examples 1-9. This is thought to be due to the fact that, since the negative electrode did not contain lithium titanate, the dissimilar elements contained in the eluted positive electrode were deposited on the negative electrode surface, so that the decomposition of the nonaqueous electrolyte was not suppressed and the cycle characteristics were reduced. It is done.
  • the battery of Comparative Example 7 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is because the capacity of the battery was reduced because a single layer of lithium titanate having a low theoretical capacity was used for the negative electrode. Furthermore, since the redox potential of lithium titanate is high, the formation of a coating on the surface of lithium titanate is insufficient, and the generation of gas due to the decomposition of the nonaqueous electrolyte containing the fluorinated solvent cannot be suppressed, resulting in reduced cycle characteristics. It is thought that.
  • the battery of Comparative Example 8 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is because the use of a positive electrode active material not containing a different element and the absence of lithium titanate in the negative electrode did not cause the precipitation of a different element on the negative electrode surface, and the decomposition of the non-aqueous electrolyte was not suppressed. This is thought to be due to the deterioration of the characteristics.
  • the battery of Comparative Example 9 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is due to the use of a positive electrode active material that does not contain foreign elements, and because the redox potential of lithium titanate is high, the formation of a film on the surface of lithium titanate is insufficient, and a non-fluorinated solvent is contained. It is considered that gas generation due to decomposition of the water electrolyte could not be suppressed and cycle characteristics were deteriorated.
  • the lithium ion secondary battery of the present invention has a large discharge capacity even when charged at a high voltage, can suppress the decomposition of the nonaqueous electrolyte during the charge / discharge cycle, and has good cycle characteristics. Therefore, the lithium ion secondary battery of the present invention is useful as a power source for various portable electronic devices such as mobile phones, PDAs, notebook personal computers, digital cameras, and portable game machines. Further, it can be applied to the use of a driving power source for an electric vehicle, a hybrid vehicle and the like.
  • Negative electrode collector 11 1st layer 12 2nd layer 13 Negative electrode active material layer 20 Lithium ion secondary battery 21 Positive electrode 22 Negative electrode 23 Separator 24 Electrode group 25 Positive electrode side insulating plate 26 Negative electrode side insulating plate 27 Battery case 28 Sealing Plate 29 Negative electrode lead 30 Positive electrode terminal 31 Positive electrode lead

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

A lithium-ion secondary cell provided with: a positive electrode including a positive electrode current collector and a positive electrode active material layer; and a negative electrode (22) including a negative electrode current collector (10) and a negative electrode active material layer (13). The positive electrode active material layer has a lithium-nickel composite oxide including a different element, and the different element is at least one different element selected from the group consisting of W, Nb, B, Zr, and V. The negative electrode active material layer (13) includes a first layer (11) and a second layer (12) sequentially formed on the surface of the negative electrode current collector (10). The first layer (11) includes a carbon material. The second layer (12) includes lithium titanate and an electroconductive material, and has a thickness equal to 1% to 25% of the thickness of the first layer (11). The amount of the electroconductive material is equal to or less than 3 parts by mass with respect to 100 parts by mass of lithium titanate.

Description

リチウムイオン二次電池Lithium ion secondary battery
 本発明は、非水電解質を備えたリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery provided with a nonaqueous electrolyte.
 リチウムイオン二次電池は、高容量で且つ高エネルギー密度を有し、小型化及び軽量化が容易である。このため、リチウムイオン二次電池は、例えば携帯電話、携帯情報端末(personal digital assistant:PDA)、ノート型パーソナルコンピュータ、ビデオカメラ及び携帯ゲーム機等の携帯用小型電子機器の電源として用いられている。 The lithium ion secondary battery has a high capacity and a high energy density, and can be easily reduced in size and weight. For this reason, lithium ion secondary batteries are used as power sources for portable small electronic devices such as mobile phones, personal digital assistants (PDAs), notebook personal computers, video cameras, and portable game machines. .
 リチウムイオン二次電池は、一般に正極活物質としてリチウムコバルト複合酸化物を含有する正極、負極活物質として炭素材料を含有する負極、及びポリオレフィン製多孔質膜(セパレータ)を備えている。機器の小型化及び軽量化に伴い、リチウムイオン二次電池の更なる高エネルギー密度化に対する需要が強まっている。従来の電池設計では、容量が頭打ちになりつつあり、リチウムイオン二次電池の長寿命・高出力・高充電電圧化に向けた研究が広く行われている。 A lithium ion secondary battery generally includes a positive electrode containing a lithium cobalt composite oxide as a positive electrode active material, a negative electrode containing a carbon material as a negative electrode active material, and a polyolefin porous membrane (separator). With the downsizing and weight reduction of equipment, there is an increasing demand for further increase in energy density of lithium ion secondary batteries. In the conventional battery design, the capacity is approaching the limit, and research for long life, high output, and high charge voltage of lithium ion secondary batteries has been widely conducted.
 例えば、特許文献1には、異種元素を含む正極活物質を用いることにより、電池の放電容量が向上することが開示されている。 For example, Patent Document 1 discloses that the discharge capacity of a battery is improved by using a positive electrode active material containing a different element.
 また、特許文献2には、金属溶出による電池容量の低下を抑制することを目的として、負極活物質にチタン酸リチウムを用いたリチウムイオン二次電池が開示されている。 Patent Document 2 discloses a lithium ion secondary battery using lithium titanate as a negative electrode active material for the purpose of suppressing a decrease in battery capacity due to metal elution.
 また、特許文献3には、高容量で且つ長寿命のリチウムイオン二次電池を得ることを目的として、負極に炭素材料層とその表面にチタン酸リチウム層とが設けられた負極材料が用いられたリチウムイオン二次電池が開示されている。 Patent Document 3 uses a negative electrode material in which a carbon material layer is provided on a negative electrode and a lithium titanate layer is provided on the surface for the purpose of obtaining a high-capacity and long-life lithium ion secondary battery. A lithium ion secondary battery is disclosed.
特開2006-185794号公報JP 2006-185794 A 特開平6-275263号公報JP-A-6-275263 特表2010-537389号公報Special Table 2010-537389
 しかしながら、リチウムイオン二次電池に異種元素を含む正極活物質を用いると、炭素材料を負極に用いた場合、正極に含まれる異種元素が溶出し、その異種元素金属が負極表面に析出することにより、内部短絡を引き起こし、サイクル特性が低下する問題が生じる。 However, when a positive electrode active material containing a different element is used in a lithium ion secondary battery, when the carbon material is used for the negative electrode, the different element contained in the positive electrode is eluted, and the different element metal is deposited on the negative electrode surface. This causes an internal short circuit and a problem that the cycle characteristics deteriorate.
 一方、負極にチタン酸リチウムを用いた場合、チタン酸リチウムのレドックス電位(酸化還元電位)が高いため、負極表面に被膜が十分に形成されず、充放電サイクル中に非水電解質が分解することによりガスが発生し、サイクル特性が低下する。さらに、チタン酸リチウムは、理論容量が低いため、電池の容量自体が低下してしまう。 On the other hand, when lithium titanate is used for the negative electrode, the redox potential (oxidation-reduction potential) of lithium titanate is high, so that a film is not sufficiently formed on the negative electrode surface, and the nonaqueous electrolyte decomposes during the charge / discharge cycle. As a result, gas is generated and cycle characteristics deteriorate. Furthermore, since lithium titanate has a low theoretical capacity, the capacity of the battery itself is reduced.
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、高充電電圧でサイクルさせたリチウムイオン二次電池において、電池の容量とサイクル特性とを向上させることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to improve battery capacity and cycle characteristics in a lithium ion secondary battery cycled at a high charge voltage.
 そこで、本発明者らは、鋭意検討の結果、正極に異種元素を含む正極材料を用いたリチウムイオン二次電池を高充電電圧でサイクルさせた場合、負極に炭素材料層とその上に形成されたチタン酸リチウム層との複数層が設けられた構成を用いることによりチタン酸リチウムのレドックス電位を低くすることができ、リチウムイオン二次電池の容量とサイクル特性が向上することを見出した。 Therefore, as a result of intensive studies, the present inventors have formed a carbon material layer on the negative electrode and a carbon material layer thereon when a lithium ion secondary battery using a positive electrode material containing a different element as the positive electrode is cycled at a high charge voltage. It has been found that the use of a structure in which a plurality of layers including a lithium titanate layer is used can reduce the redox potential of lithium titanate and improve the capacity and cycle characteristics of the lithium ion secondary battery.
 さらに、チタン酸リチウム層の厚みと、導電材量とを最適化することにより、チタン酸リチウム層に異種元素を析出させて、非水電解質の分解を抑制することができ、その結果、サイクル特性が向上することを見出した。 Furthermore, by optimizing the thickness of the lithium titanate layer and the amount of conductive material, different elements can be deposited on the lithium titanate layer and decomposition of the nonaqueous electrolyte can be suppressed, resulting in cycle characteristics. Found to improve.
 具体的に、本発明に係るリチウムイオン二次電池は、正極集電体及び正極活物質層を含む正極と、負極集電体及び負極活物質層を含む負極と、正極と負極との間に設けられたセパレータと、非水電解質とを備えているリチウムイオン二次電池であって、正極活物質層は、異種元素を含むリチウムニッケル複合酸化物を有し、異種元素は、タングステン、ニオブ、ホウ素、ジルコニウム、及びバナジウムからなる群より選択される少なくとも一種の異種元素であり、負極活物質層は、負極集電体の表面上に形成された第1の層と、該第1の層の表面上に形成された第2の層とを含み、第1の層は、炭素材料を含み、第2の層は、チタン酸リチウム及び導電材を含み、且つ、第1の層の厚さの1%以上25%以下の厚さを有し、第2の層に含まれる導電材の量は、100質量部のチタン酸リチウムに対して3質量部以下である。 Specifically, a lithium ion secondary battery according to the present invention includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and a positive electrode and a negative electrode. A lithium ion secondary battery comprising a provided separator and a nonaqueous electrolyte, wherein the positive electrode active material layer has a lithium nickel composite oxide containing a different element, such as tungsten, niobium, It is at least one different element selected from the group consisting of boron, zirconium, and vanadium, and the negative electrode active material layer includes a first layer formed on the surface of the negative electrode current collector, and the first layer A second layer formed on the surface, the first layer includes a carbon material, the second layer includes lithium titanate and a conductive material, and has a thickness of the first layer. 1% or more and 25% or less in thickness, included in the second layer That the amount of the conductive material is less than 3 parts by mass with respect to lithium titanate of 100 parts by weight.
 本発明に係るリチウムイオン二次電池によると、第2の層に異種元素を析出させ、非水電解質の分解を抑制することができ、その結果、電池を高電圧充電しても、電池の容量とサイクル特性が優れているリチウムイオン二次電池を得ることができる。 According to the lithium ion secondary battery according to the present invention, the dissimilar elements can be deposited in the second layer, and the decomposition of the nonaqueous electrolyte can be suppressed. As a result, even if the battery is charged at a high voltage, the capacity of the battery A lithium ion secondary battery having excellent cycle characteristics can be obtained.
 本発明に係るリチウムイオン二次電池によると、高電圧充電しても、充放電時における非水電解質の分解を抑制することができ、電池の容量とサイクル特性とを向上できる。 The lithium ion secondary battery according to the present invention can suppress the decomposition of the non-aqueous electrolyte during charging and discharging even when charged at a high voltage, and can improve the capacity and cycle characteristics of the battery.
図1は、本発明の一実施形態に係るリチウムイオン二次電池を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery according to an embodiment of the present invention. 図2は、本発明の一実施形態に係るリチウムイオン二次電池の負極を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a negative electrode of a lithium ion secondary battery according to an embodiment of the present invention.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention.
 まず、本実施形態に係るリチウムイオン二次電池について図1を参照しながら説明する。図1は、本実施形態に係るリチウムイオン二次電池を模式的に示す断面図である。 First, the lithium ion secondary battery according to this embodiment will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a lithium ion secondary battery according to this embodiment.
 図1に示すように、本実施形態に係るリチウムイオン二次電池20は、正極21と、負極22と、正極21及び負極22の間に介在された微多孔性のセパレータ23とが捲回された電極群24を備えている。電極群24の捲回軸方向における一方の端部には、正極側絶縁板25が形成されており、他方の端部には負極側絶縁板26が形成されている。電極群24は、負極端子を兼ねた電池ケース27内に、非水電解質と共に収容されている。電池ケース27は封口板28によって密封されている。電池ケース27は、負極リード29を介して負極22と電気的に接続しており、封口板28の正極端子30は、正極リード31を介して正極21と電気的に接続している。 As shown in FIG. 1, a lithium ion secondary battery 20 according to this embodiment includes a positive electrode 21, a negative electrode 22, and a microporous separator 23 interposed between the positive electrode 21 and the negative electrode 22. The electrode group 24 is provided. A positive-side insulating plate 25 is formed at one end of the electrode group 24 in the winding axis direction, and a negative-side insulating plate 26 is formed at the other end. The electrode group 24 is housed together with a nonaqueous electrolyte in a battery case 27 that also serves as a negative electrode terminal. The battery case 27 is sealed with a sealing plate 28. The battery case 27 is electrically connected to the negative electrode 22 via the negative electrode lead 29, and the positive terminal 30 of the sealing plate 28 is electrically connected to the positive electrode 21 via the positive electrode lead 31.
 次に、本発明の一実施形態に係るリチウムイオン二次電池の正極について説明する。 Next, the positive electrode of the lithium ion secondary battery according to one embodiment of the present invention will be described.
 本実施形態に用いられる正極は、正極集電体と、該正極集電体の表面に形成された正極活物質層とを備え、正極活物質層は異種元素を含むことを特徴とする。 The positive electrode used in this embodiment includes a positive electrode current collector and a positive electrode active material layer formed on the surface of the positive electrode current collector, and the positive electrode active material layer includes a different element.
 本実施形態の正極集電体には、リチウムイオン二次電池の正極に通常用いられる正極集電体を用いることができる。例えば、アルミニウム又はアルミニウム合金等を、箔、膜、フィルム又はシート等の形態で用いることができる。正極集電体の厚みは、1μm~500μm程度であり、リチウムイオン二次電池の容量及びサイズ等に応じて、適宜設定することができる。 As the positive electrode current collector of this embodiment, a positive electrode current collector that is usually used for a positive electrode of a lithium ion secondary battery can be used. For example, aluminum, an aluminum alloy, or the like can be used in the form of a foil, a film, a film, a sheet, or the like. The thickness of the positive electrode current collector is about 1 μm to 500 μm, and can be appropriately set according to the capacity and size of the lithium ion secondary battery.
 正極活物質層は、例えば異種元素を含むリチウムニッケル複合酸化物と、結着剤と、分散剤と、必要に応じて導電材等の添加物とを混合して、正極合剤スラリーを調製した後、得られた正極合剤スラリーを正極集電体の表面に塗布して、乾燥及び圧延することにより形成され得る。 The positive electrode active material layer was prepared, for example, by mixing a lithium nickel composite oxide containing different elements, a binder, a dispersant, and an additive such as a conductive material as necessary to prepare a positive electrode mixture slurry. Thereafter, the obtained positive electrode mixture slurry can be formed on the surface of the positive electrode current collector by drying and rolling.
 異種元素は、例えばタングステン、ニオブ、ホウ素、ジルコニウム及びバナジウムからなる群より選択される少なくとも一種の異種元素を含む化合物である。 The different element is a compound containing at least one different element selected from the group consisting of tungsten, niobium, boron, zirconium and vanadium, for example.
 結着剤には、リチウムイオン二次電池に通常用いられる結着剤を特に限定することなく用いることができる。例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン及びその変性体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体等の含フッ化ポリマー、スチレン-ブタジエンゴム等のゴム、並びにポリエチレン及びポリプロピレン等のポリオレフィン系樹脂が用いられる。これらは一種を単独で用いることができ、二種以上を組み合わせて用いることもできる。 As the binder, a binder usually used for a lithium ion secondary battery can be used without any particular limitation. For example, polytetrafluoroethylene, polyvinylidene fluoride and modified products thereof, fluorinated polymers such as tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and rubbers such as styrene-butadiene rubber Polyolefin resins such as polyethylene and polypropylene are used. These can be used individually by 1 type and can also be used in combination of 2 or more type.
 導電材には、リチウムイオン二次電池に通常用いられる導電材を特に限定することなく用いることができる。例えば、黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラック及びサーマルブラック等のカーボンブラック類、炭素繊維、並びに金属繊維等が用いられる。 As the conductive material, a conductive material usually used for a lithium ion secondary battery can be used without any particular limitation. For example, carbon blacks such as graphite, acetylene black, ketjen black, furnace black, lamp black and thermal black, carbon fiber, and metal fiber are used.
 以下に、正極活物質層に異種元素を導入する方法について説明する。 Hereinafter, a method for introducing a different element into the positive electrode active material layer will be described.
 第一の方法としては、リチウムニッケル複合酸化物の表面に、異種元素を付着させる方法が挙げられる。 As the first method, there is a method of attaching a different element to the surface of the lithium nickel composite oxide.
 例えば、まず異種元素を含むエトキシド化合物をエタノール等の溶媒に溶解させることにより、異種元素含む溶液を調製する。続いて、リチウムニッケル複合酸化物を前記の異種元素を含む溶液に分散させ、加温することにより完全に溶媒を除去する。その後、得られた異種元素とリチウムニッケル複合酸化物との混合物を加熱処理することにより、異種元素を含むリチウムニッケル複合酸化物が得られる。このときの加熱処理は、約300℃~700℃で12時間~24時間程度行うことが好ましい。 For example, first, an ethoxide compound containing a different element is dissolved in a solvent such as ethanol to prepare a solution containing the different element. Subsequently, the lithium nickel composite oxide is dispersed in the solution containing the different elements, and the solvent is completely removed by heating. Then, the lithium nickel composite oxide containing a different element is obtained by heat-treating the obtained mixture of the different element and the lithium nickel composite oxide. The heat treatment at this time is preferably performed at about 300 ° C. to 700 ° C. for about 12 hours to 24 hours.
 第二の方法としては、リチウム化合物及びニッケル化合物等のリチウムニッケル複合酸化物の原料混合物と、異種元素化合物を混合し、焼成することにより、内添する方法が挙げられる。 As the second method, there is a method in which a raw material mixture of a lithium nickel composite oxide such as a lithium compound and a nickel compound and a heterogeneous compound are mixed and baked to add them internally.
 リチウムニッケル複合酸化物の原料混合物は、従来からリチウムニッケル複合酸化物の製造に通常用いられている各種原料が特に限定されず用いられ得る。具体的に、リチウム化合物には、水酸化リチウム及び炭酸リチウム等が用いられ、ニッケル化合物には、水酸化ニッケル及び酸化ニッケル等が用いられる。異種元素化合物には、各種酸化物、炭酸塩硝酸塩及び水酸化物等が用いられる。 As the raw material mixture of the lithium nickel composite oxide, various raw materials conventionally used in the production of lithium nickel composite oxides can be used without any particular limitation. Specifically, lithium hydroxide, lithium carbonate, or the like is used for the lithium compound, and nickel hydroxide, nickel oxide, or the like is used for the nickel compound. Various oxides, carbonate nitrates, hydroxides, and the like are used as the different element compound.
 上記の原料混合物と異種元素化合物との混合は、乾式混合及び湿式混合のいずれを用いてもよいが、簡便性の点では乾式混合が好ましい。混合装置は、ボールミル等が用いられ得る。 For the mixing of the raw material mixture and the different element compound, either dry mixing or wet mixing may be used, but dry mixing is preferable in terms of simplicity. As the mixing apparatus, a ball mill or the like can be used.
 得られた原料混合物と異種元素化合物との混合物を、大気雰囲気で焼成することにより、異種元素が内添されたリチウムニッケル複合酸化物が得られる。このときの焼成は、約600℃~900℃で12時間~24時間程度行うことが好ましい。 The resulting mixture of the raw material mixture and the heterogeneous element compound is baked in an air atmosphere to obtain a lithium nickel composite oxide in which the heterogeneous element is internally added. The firing at this time is preferably performed at about 600 ° C. to 900 ° C. for about 12 hours to 24 hours.
 次に、本発明の一実施形態に係るリチウムイオン二次電池の負極について図2を参照しながら説明する。図2は、本実施形態に係るリチウムイオン二次電池の負極を模式的に示す断面図である。 Next, the negative electrode of the lithium ion secondary battery according to one embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view schematically showing the negative electrode of the lithium ion secondary battery according to this embodiment.
 図2に示すように、本実施形態に用いられる負極は、負極集電体10と、該負極集電体10の表面上に形成された炭素材料を活物質とする第1の層11、及び該第1の層11の表面上に形成されたチタン酸リチウムを活物質とする第2の層12からなる負極活物質層13とを備えていることを特徴とする。 As shown in FIG. 2, the negative electrode used in the present embodiment includes a negative electrode current collector 10, a first layer 11 having a carbon material formed on the surface of the negative electrode current collector 10 as an active material, and And a negative electrode active material layer 13 formed of a second layer 12 using lithium titanate formed as an active material on the surface of the first layer 11.
 このような負極の製造方法について、以下に説明する。 A method for manufacturing such a negative electrode will be described below.
 第一の方法としては、まず、炭素材料と結着剤と分散媒と必要に応じて導電材等の添加剤とを混合して材料合剤スラリーを調製した後、得られた材料合剤スラリーを負極集電体10の表面に塗布し、乾燥及び圧延する。これにより、第1の層11が形成される。その後、チタン酸リチウム、結着剤、分散媒及び導電材等の添加剤とを混合して調製したチタン酸リチウムスラリーを、第1の層11の表面に塗布し、乾燥及び圧延する。これにより、第2の層12が形成され、第1の層11及び第2の層12からなる負極活物質層13が形成される。 As a first method, first, a material mixture slurry is prepared by mixing a carbon material, a binder, a dispersion medium and, if necessary, an additive such as a conductive material to prepare a material mixture slurry. Is applied to the surface of the negative electrode current collector 10, dried and rolled. Thereby, the first layer 11 is formed. Thereafter, a lithium titanate slurry prepared by mixing lithium titanate, a binder, a dispersion medium, and an additive such as a conductive material is applied to the surface of the first layer 11, dried and rolled. Thereby, the second layer 12 is formed, and the negative electrode active material layer 13 composed of the first layer 11 and the second layer 12 is formed.
 第二の方法としては、まず、第一の方法と同様にして得られた材料合剤スラリーを負極集電体10の表面に塗布する。その後、塗布された材料合剤スラリーの上に、第一の方法と同様に調製したチタン酸リチウムスラリーを塗布し、二層同時に乾燥及び圧延する。これにより負極集電体10の表面に、第1の層11及び第2の層12が共に形成されることによって、それらからなる負極活物質層13が形成される。 As the second method, first, a material mixture slurry obtained in the same manner as in the first method is applied to the surface of the negative electrode current collector 10. Thereafter, a lithium titanate slurry prepared in the same manner as in the first method is applied on the applied material mixture slurry, and two layers are simultaneously dried and rolled. As a result, the first layer 11 and the second layer 12 are formed on the surface of the negative electrode current collector 10, thereby forming the negative electrode active material layer 13 made of them.
 負極集電体10には、リチウムイオン二次電池の負極に通常用いられる集電体が特に限定されることなく用いられ得る。具体的に、ステンレス綱、ニッケル又は銅等を、箔、膜、フィルム又はシート等の形態で用いることができる。また、負極集電体10の厚みは、1μm~500μm程度の範囲であり、リチウムイオン二次電池の容量及びサイズ等に従って適宜設定することができる。 As the negative electrode current collector 10, a current collector usually used for a negative electrode of a lithium ion secondary battery can be used without any particular limitation. Specifically, stainless steel, nickel, copper, or the like can be used in the form of a foil, a film, a film, a sheet, or the like. The thickness of the negative electrode current collector 10 is in the range of about 1 μm to 500 μm, and can be appropriately set according to the capacity and size of the lithium ion secondary battery.
 炭素材料には、リチウムイオン二次電池に通常用いられるリチウムの吸蔵及び放出が可能な炭素材料が、特に限定されることなく用いられ得る。具体的に、グラファイト及び非晶質カーボン等の炭素材料が用いられ得る。 As the carbon material, a carbon material capable of occluding and releasing lithium, which is usually used in a lithium ion secondary battery, can be used without any particular limitation. Specifically, carbon materials such as graphite and amorphous carbon can be used.
 結着剤には、リチウムイオン二次電池の負極に通常用いられるものが特に限定されることなく用いられ得る。具体的に、ポリエチレン及びポリプロピレン等のポリオレフィン、並びにスチレン-ブタジエンゴム(SBR)及びその変性体等が用いられる。これらは、1種を単独で用いることができ、2種以上を組み合わせて用いることもできる。 As the binder, those usually used for the negative electrode of a lithium ion secondary battery can be used without any particular limitation. Specifically, polyolefins such as polyethylene and polypropylene, styrene-butadiene rubber (SBR) and modified products thereof are used. These can be used individually by 1 type and can also be used in combination of 2 or more type.
 導電材には、正極活物質層に用いる導電材として例示したものと同様のものを用いることができる。 As the conductive material, the same materials as those exemplified as the conductive material used for the positive electrode active material layer can be used.
 チタン酸リチウムは、リチウム化合物とチタン化合物とを混合した後、焼成することによって得られる、例えば化学式がLi3+3xTi6-3x-y12であるチタン酸リチウムであり、ここで、xとyとはモル比を表し、0≦x≦1/3、0≦y≦0.25である。また、Mは、Fe、Al、Ca、Co、B、Cr、Ni、Mg、Zr、Ga、V、Mn及びZnからなる群より選択される少なくとも一つを含む。リチウム化合物としては、水酸化リチウム及び炭酸リチウム等が用いられ、チタン化合物としては、酸化チタン等が用いられ得る。 Lithium titanate is obtained by mixing a lithium compound and a titanium compound and then firing, for example, lithium titanate having a chemical formula of Li 3 + 3x Ti 6-3x-y M y O 12 , where x And y represent a molar ratio, and 0 ≦ x ≦ 1/3 and 0 ≦ y ≦ 0.25. M includes at least one selected from the group consisting of Fe, Al, Ca, Co, B, Cr, Ni, Mg, Zr, Ga, V, Mn, and Zn. As the lithium compound, lithium hydroxide, lithium carbonate or the like can be used, and as the titanium compound, titanium oxide or the like can be used.
 第2の層12に含まれる導電材の量は、チタン酸リチウム100質量部に対して、3質量部を超えると電解液の抑制が十分に行えずにサイクル特性が低下してしまう傾向があるため、3質量部以下であることが好ましく、3質量部であることがより好ましい。 When the amount of the conductive material contained in the second layer 12 exceeds 3 parts by mass with respect to 100 parts by mass of the lithium titanate, the electrolytic solution cannot be sufficiently suppressed and the cycle characteristics tend to be deteriorated. Therefore, it is preferably 3 parts by mass or less, and more preferably 3 parts by mass.
 第2の層12の厚さが第1の層11の厚さに対して1%未満である場合、正極活物質に含まれる異種元素が溶出して負極に析出する総量が、チタン酸リチウムを含む第2の層12に析出させることができる量よりも多くなる。このため、非水電解質の分解が抑制できずにサイクル特性が低下してしまう傾向がある。一方、第2の層12の厚さが第1の層11の厚さに対して25%を超える場合、理論容量の低いチタン酸リチウムの影響が顕著になり、電池の容量が低下してしまう傾向がある。このため、第2の層12の厚さは、第1の層11の厚さに対して、1%以上25%以下であることが好ましい。 When the thickness of the second layer 12 is less than 1% with respect to the thickness of the first layer 11, the total amount of the dissimilar elements contained in the positive electrode active material eluted and deposited on the negative electrode is lithium titanate. More than the amount that can be deposited on the second layer 12 it contains. For this reason, there exists a tendency for cycling characteristics to fall, without suppressing decomposition | disassembly of nonaqueous electrolyte. On the other hand, when the thickness of the second layer 12 exceeds 25% with respect to the thickness of the first layer 11, the influence of lithium titanate having a low theoretical capacity becomes remarkable, and the capacity of the battery decreases. Tend. Therefore, the thickness of the second layer 12 is preferably 1% or more and 25% or less with respect to the thickness of the first layer 11.
 第1の層11の合剤密度が1.4g/ml未満の場合、単位面積当たりのエネルギー密度が低下する傾向がある。一方、第1の層11の合剤密度が2.8g/mlを超える場合、第1の層11への非水電解質のしみ込みが不十分となり、電池特性が低下してしまう傾向がある。このため、第1の層11の合剤密度は、1.4g/ml以上2.8g/ml以下であることが好ましい。 When the mixture density of the first layer 11 is less than 1.4 g / ml, the energy density per unit area tends to decrease. On the other hand, when the mixture density of the first layer 11 exceeds 2.8 g / ml, the penetration of the nonaqueous electrolyte into the first layer 11 becomes insufficient, and the battery characteristics tend to be deteriorated. For this reason, it is preferable that the mixture density of the 1st layer 11 is 1.4 g / ml or more and 2.8 g / ml or less.
 また、第2の層12の合剤密度が1.3g/ml未満の場合、単位面積当たりのエネルギー密度が低下する傾向がある。一方、第2の層12の合剤密度が1.8g/mlを超える場合、第2の層12への非水電解質のしみ込みが不十分となり、電池特性が低下してしまう傾向がある。このため、第2の層12の合剤密度は、1.3g/ml以上1.8g/ml以下であることが好ましい。 Moreover, when the mixture density of the second layer 12 is less than 1.3 g / ml, the energy density per unit area tends to decrease. On the other hand, when the mixture density of the second layer 12 exceeds 1.8 g / ml, the penetration of the nonaqueous electrolyte into the second layer 12 becomes insufficient, and the battery characteristics tend to deteriorate. For this reason, it is preferable that the mixture density of the 2nd layer 12 is 1.3 g / ml or more and 1.8 g / ml or less.
 チタン酸リチウムのBET比表面積が2m/g未満の場合、レート特性が低下してしまう傾向があり、一方、8m/gを超える場合、導電材及び結着剤の添加量を増やす必要があり、単位面積当たりのエネルギー密度が低下してしまう傾向がある。このため、チタン酸リチウムのBET比表面積は、2m/g以上8m/g未満であることが好ましい。 When the BET specific surface area of lithium titanate is less than 2 m 2 / g, the rate characteristics tend to be reduced. On the other hand, when the BET specific surface area exceeds 8 m 2 / g, it is necessary to increase the addition amount of the conductive material and the binder. Yes, the energy density per unit area tends to decrease. Therefore, BET specific surface area of the lithium titanate is preferably less than 2m 2 / g or more 8m 2 / g.
 また、チタン酸リチウムの平均粒径が0.5μm未満の場合、活物質の表面積が大きくなるため、導電材及び結着剤の添加量を増やす必要があり、エネルギー密度が低下する傾向があり、一方、平均粒径が10μmを超えるとレート特性が低下する傾向がある。このため、チタン酸リチウムの平均粒径は、0.5μm以上10μm以下であることが好ましい。 In addition, when the average particle size of lithium titanate is less than 0.5 μm, the surface area of the active material is increased, so it is necessary to increase the addition amount of the conductive material and the binder, and the energy density tends to decrease, On the other hand, when the average particle size exceeds 10 μm, the rate characteristics tend to be lowered. For this reason, it is preferable that the average particle diameter of lithium titanate is 0.5 micrometer or more and 10 micrometers or less.
 また、チタン酸リチウムの吸油量を20g/100g以下にすることにより、サイクル特性は向上するが、50g/100g以上にするとレート特性が向上するため、チタン酸リチウムの吸油量は、20g/100g以上50g/100g以下であることが好ましい。 In addition, the cycle characteristics are improved by setting the oil absorption of lithium titanate to 20 g / 100 g or less. However, the rate characteristics are improved when the oil absorption is 50 g / 100 g or more. Therefore, the oil absorption of lithium titanate is 20 g / 100 g or more. It is preferable that it is 50 g / 100 g or less.
 本実施形態において、非水電解質は、非水溶媒と、該非水溶媒に溶解されるリチウム塩とを含む。 In this embodiment, the nonaqueous electrolyte includes a nonaqueous solvent and a lithium salt dissolved in the nonaqueous solvent.
 非水溶媒としては、リチウムイオン二次電池の非水電解質に通常用いられる各種の非水溶媒を用いることができる。具体的に、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネート等の環状炭酸エステル溶媒、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネート等の鎖状炭酸エステル溶媒、テトラヒドロフラン、1,4-ジオキサン及び1,3-ジオキソラン等の環状エーテル溶媒、1,2-ジメトキシエタン及び1,2-ジエトキシエタン等の鎖状エーテル溶媒、γ-ブチロラクトン等の環状エステル溶媒、酢酸メチル等の鎖状エステル溶媒、並びにフルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート及びフルオロジメチレンカーボネートからなる群より選択される少なくとも一種であるフッ化溶媒を用いることができる。 As the non-aqueous solvent, various non-aqueous solvents that are usually used for non-aqueous electrolytes of lithium ion secondary batteries can be used. Specifically, cyclic carbonate solvents such as ethylene carbonate, propylene carbonate and butylene carbonate, chain carbonate solvents such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate, tetrahydrofuran, 1,4-dioxane and 1,3-dioxolane, etc. Cyclic ether solvents, chain ether solvents such as 1,2-dimethoxyethane and 1,2-diethoxyethane, cyclic ester solvents such as γ-butyrolactone, chain ester solvents such as methyl acetate, and fluoroethylene carbonate, fluoro A fluorinated solvent that is at least one selected from the group consisting of methyl propionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate can be used.
 特に、本実施形態に係る非水電解質は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート及びフルオロジメチレンカーボネートからなる群より選択される少なくとも一種であるフッ化溶媒を含むことが好ましい。このようにすると、負極表面に良好な被膜を形成することができる。 In particular, the nonaqueous electrolyte according to the present embodiment includes a fluorinated solvent that is at least one selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate. Is preferred. In this way, a good film can be formed on the negative electrode surface.
 本実施形態において、上記で示した正極21、負極22及び非水電解質以外のセパレータ等の構成要素は、特に限定されることなく、リチウムイオン二次電池として通常用いられる構成を適宜用いることができる。 In the present embodiment, the constituent elements such as the positive electrode 21, the negative electrode 22, and the separator other than the nonaqueous electrolyte described above are not particularly limited, and a configuration that is normally used as a lithium ion secondary battery can be used as appropriate. .
 上記の説明では、リチウムイオン二次電池の具体的な実施形態として、捲回式の円筒型電池を例示したが、リチウムイオン二次電池の形状はこれに限定されない。リチウムイオン二次電池は、その用途等に合わせて、円筒型だけでなく、コイン型、角形、シート型、ボタン型、扁平型及び積層型等の形状を適宜選択することができる。 In the above description, a wound-type cylindrical battery is illustrated as a specific embodiment of the lithium ion secondary battery, but the shape of the lithium ion secondary battery is not limited to this. The lithium ion secondary battery can be appropriately selected not only in a cylindrical shape but also in a coin shape, a square shape, a sheet shape, a button shape, a flat shape, a stacked shape, and the like in accordance with its application.
 本実施例では、以下に示す方法に従って角形のリチウムイオン二次電池を製造し、そのリチウムイオン二次電池に対して初期放電容量及びサイクル特性の評価試験を行った。 In this example, a prismatic lithium ion secondary battery was manufactured according to the method described below, and an initial discharge capacity and cycle characteristic evaluation test was performed on the lithium ion secondary battery.
 (実施例1)
 (1)異種元素を含むリチウムニッケル複合酸化物(正極活物質)の作製
 まず、タングステンエトキシドを、脱水エタノール中に溶解した。得られた溶液中にリチウムニッケル複合酸化物(LiNi0.8Co0.16Al0.04:NCA)を分散させた。次に、撹拌しながら過熱することにより、溶媒を完全に除去した。得られた混合物を、大気雰囲気中において300℃で12時間焼成することにより、正極活物質として、タングステン化合物を含むリチウムニッケル複合酸化物(W-NCA)を得た。タングステン化合物は、リチウムニッケル複合酸化物に対して0.5モル%含んでいた。
Example 1
(1) Production of Lithium Nickel Composite Oxide (Positive Electrode Active Material) Containing Different Elements First, tungsten ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere to obtain a lithium nickel composite oxide (W—NCA) containing a tungsten compound as a positive electrode active material. The tungsten compound contained 0.5 mol% with respect to the lithium nickel composite oxide.
 (2)正極の作製
 上記の通りに得られた正極活物質粒子90質量部と、導電材3質量部と、ポリフッ化ビニリデン(PVDF)の2-メチルピロリドン(NMP)溶液87.5質量部(PVDFの濃度が8質量%、PVDFの固形分が7質量部)とを混合することにより正極合剤スラリーを得た。得られた正極合剤スラリーを厚みが10μmのアルミニウム箔からなる正極集電体の両面に塗布し、乾燥及び圧延することにより、正極活物質層を備えた総厚が140μmの正極を得た。
(2) Production of positive electrode 90 parts by mass of positive electrode active material particles obtained as described above, 3 parts by mass of a conductive material, and 87.5 parts by mass of a 2-methylpyrrolidone (NMP) solution of polyvinylidene fluoride (PVDF) ( A positive electrode mixture slurry was obtained by mixing a PVDF concentration of 8% by mass and a solid content of PVDF of 7 parts by mass. The obtained positive electrode mixture slurry was applied to both sides of a positive electrode current collector made of an aluminum foil having a thickness of 10 μm, dried and rolled to obtain a positive electrode having a positive electrode active material layer and a total thickness of 140 μm.
 (3)負極の作製
 人造黒鉛(C)粉末93.5質量部と、変性スチレンブタジエンゴム12.5質量部(固形分が40質量部)と、カルボキシメチルセルロースナトリウム1.5質量部とを混合することにより、人造黒鉛合剤スラリーを得た。次に、チタン酸リチウム(LiTi12:LTO)90質量部と、導電材3質量部と、PVDFのNMP溶液50質量部(PVDFの濃度が8質量部%、PVDFの固形分が4質量部)とを混合することにより、チタン酸リチウム合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウムスラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が180μmの負極を得た。
(3) Production of negative electrode 93.5 parts by mass of artificial graphite (C) powder, 12.5 parts by mass of modified styrene butadiene rubber (solid content is 40 parts by mass), and 1.5 parts by mass of sodium carboxymethylcellulose are mixed. As a result, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate (Li 4 Ti 5 O 12 : LTO), 3 parts by mass of a conductive material, 50 parts by mass of an NMP solution of PVDF (the concentration of PVDF is 8 parts by mass, the solid content of PVDF is 4 parts by mass) was mixed to obtain a lithium titanate mixture slurry. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 180 μm.
 (4)非水電解質の調製
 フルオロエチレンカーボネート(FEC)と、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)とを1:1:6の体積比で混合して非水溶媒を得た。このようにして得られた非水溶媒にLiPFを、濃度が1.0mol/lになるように溶解して非水電解質(F/E/E)を得た。
(4) Preparation of nonaqueous electrolyte Fluoroethylene carbonate (FEC), ethylene carbonate (EC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 1: 6 to obtain a nonaqueous solvent. LiPF 6 was dissolved in the non-aqueous solvent thus obtained so as to have a concentration of 1.0 mol / l to obtain a non-aqueous electrolyte (F / E / E).
 (5)リチウムイオン二次電池の作製
 正極と、負極と、正極及び負極の間に介在された微多孔性セパレータ(ポリエチレンとポリプロピレンとの複合フィルム、セルガード株式会社製の品番「2300」、厚さ25μm)とからなる積層体を捲回することにより電極群を得た。また、正極集電体の一部にアルミニウム製の正極リードを溶接し、負極集電体の一部にニッケル製の負極リードを溶接した。このような電極群を、直径が18mmで、高さが65mmである有底略円筒状の電池ケースに収容した。その後、電池ケース内に5.2mlの非水電解質を注液した。
(5) Production of lithium ion secondary battery Positive electrode, negative electrode, microporous separator interposed between positive electrode and negative electrode (composite film of polyethylene and polypropylene, product number “2300” manufactured by Celgard Co., Ltd., thickness An electrode group was obtained by winding a laminate composed of 25 μm). Further, a positive electrode lead made of aluminum was welded to a part of the positive electrode current collector, and a negative electrode lead made of nickel was welded to a part of the negative electrode current collector. Such an electrode group was accommodated in a battery case having a bottomed substantially cylindrical shape having a diameter of 18 mm and a height of 65 mm. Thereafter, 5.2 ml of nonaqueous electrolyte was injected into the battery case.
 (実施例2)
 実施例1と同様にして、人造黒鉛合剤スラリーとチタン酸リチウム合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が190μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 2)
In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 190 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (実施例3)
 実施例1と同様にして、人造黒鉛合剤スラリーとチタン酸リチウム合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が162μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 3)
In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 162 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (実施例4)
 実施例1と同様にして、人造黒鉛合剤スラリーを得た。次に、90質量部のチタン酸リチウムと、2質量部の導電材と、100質量部のPVDFのNMP溶液(PVDFの濃度が8質量%、PVDFの固形分8質量部)とを混合することにより、チタン酸リチウム合剤スラリーを得た。人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 4)
In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 2 parts by mass of a conductive material, and 100 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass, the solid content of PVDF is 8 parts by mass) are mixed. Thus, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 180 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (実施例5)
 実施例1と同様にして、人造黒鉛合剤スラリーを得た。次に、90質量部のチタン酸リチウムと、1質量部の導電材と、112.5質量部のPVDFのNMP溶液(PVDFの濃度が8質量%、PVDFの固形分9質量部)とを混合することにより、チタン酸リチウム合剤スラリーを得た。人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 5)
In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 1 part by mass of conductive material, and 112.5 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 9 parts by mass) are mixed. As a result, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 180 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (実施例6)
 まず、ニオブエトキシドを脱水エタノール中に溶解した。得られた溶液中にリチウムニッケル複合酸化物(LiNi0.8Co0.16Al0.04:NCA)を分散させた。次に、その溶液を撹拌しながら過熱することにより、溶媒を完全に除去した。得られた混合物を、大気雰囲気において300℃で12時間焼成することにより、リチウムニッケル複合酸化物に対して、ニオブ化合物を0.5モル%含む正極活物質であるリチウムニッケル複合酸化物(Nb-NCA)を得た。得られた正極活物質を用いたこと以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 6)
First, niobium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (Nb—) which is a positive electrode active material containing 0.5 mol% of a niobium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
 (実施例7)
 まず、ホウ素エトキシドを脱水エタノール中に溶解した。得られた溶液中にリチウムニッケル複合酸化物(LiNi0.8Co0.16Al0.04:NCA)を分散させた。次に、その溶液を撹拌しながら過熱することにより、溶媒を完全に除去した。得られた混合物を、大気雰囲気において300℃で12時間焼成することにより、リチウムニッケル複合酸化物に対して、ホウ素化合物を0.5モル%含む正極活物質であるリチウムニッケル複合酸化物(B-NCA)を得た。得られた正極活物質を用いたこと以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 7)
First, boron ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (B--) which is a positive electrode active material containing 0.5 mol% of a boron compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
 (実施例8)
 まず、ジルコニウムエトキシドを脱水エタノール中に溶解した。得られた溶液中にリチウムニッケル複合酸化物(LiNi0.8Co0.16Al0.04:NCA)を分散させた。次に、その溶液を撹拌しながら過熱することにより、溶媒を完全に除去した。得られた混合物を、大気雰囲気において300℃で12時間焼成することにより、リチウムニッケル複合酸化物に対して、ジルコニウム化合物を0.5モル%含む正極活物質であるリチウムニッケル複合酸化物(Zr-NCA)を得た。得られた正極活物質を用いたこと以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 8)
First, zirconium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere, whereby a lithium nickel composite oxide (Zr—), which is a positive electrode active material containing 0.5 mol% of a zirconium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
 (実施例9)
 まず、バナジウムエトキシドを脱水エタノール中に溶解した。得られた溶液中にリチウムニッケル複合酸化物(LiNi0.8Co0.16Al0.04:NCA)を分散させた。次に、その溶液を撹拌しながら過熱することにより、溶媒を完全に除去した。得られた混合物を、大気雰囲気において300℃で12時間焼成することにより、リチウムニッケル複合酸化物に対して、バナジウム化合物を0.5モル%含む正極活物質であるリチウムニッケル複合酸化物(V-NCA)を得た。得られた正極活物質を用いたこと以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
Example 9
First, vanadium ethoxide was dissolved in dehydrated ethanol. Lithium nickel composite oxide (LiNi 0.8 Co 0.16 Al 0.04 O 2 : NCA) was dispersed in the obtained solution. Next, the solvent was completely removed by heating the solution with stirring. The obtained mixture was baked at 300 ° C. for 12 hours in an air atmosphere to obtain a lithium nickel composite oxide (V−) that is a positive electrode active material containing 0.5 mol% of a vanadium compound with respect to the lithium nickel composite oxide. NCA). A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained positive electrode active material was used.
 (実施例10)
 まず、ECとEMCとを1:3の体積比で混合して非水溶媒を得た。得られた非水溶媒に、LiPFを濃度が1.0mol/lになるように溶解させることによって非水電解質(E/E)を得た。得られた非水電解質を用いたこと以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 10)
First, EC and EMC were mixed at a volume ratio of 1: 3 to obtain a non-aqueous solvent. A nonaqueous electrolyte (E / E) was obtained by dissolving LiPF 6 in the obtained nonaqueous solvent so as to have a concentration of 1.0 mol / l. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the obtained nonaqueous electrolyte was used.
 (比較例1)
 実施例1と同様にして、人造黒鉛合剤スラリーとチタン酸リチウム合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が220μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 1)
In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Thereafter, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer and a total thickness of 220 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例2)
 実施例1と同様にして、人造黒鉛合剤スラリーとチタン酸リチウム合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が161μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 2)
In the same manner as in Example 1, an artificial graphite mixture slurry and a lithium titanate mixture slurry were obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 161 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例3)
 実施例1と同様にして、人造黒鉛合剤スラリーを得た。次に、90質量部のチタン酸リチウムと、5質量部の導電材と、40質量部のPVDFのNMP溶液(PVDFの濃度が8質量%、PVDFの固形分5質量部)とを混合することにより、チタン酸リチウム合剤スラリーを得た。人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 3)
In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate, 5 parts by mass of a conductive material, and 40 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 5 parts by mass) are mixed. Thus, a lithium titanate mixture slurry was obtained. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 180 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例4)
 実施例1と同様にして、人造黒鉛合剤スラリーを得た。次に、90質量部のチタン酸リチウムと、80質量部のPVDFのNMP溶液(PVDFの濃度が8質量%、PVDFの固形分10質量部)とを混合することにより、チタン酸リチウム合剤スラリーを得た。人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延して、総厚を160μmとした。その後、チタン酸リチウム合剤スラリーを、人造黒鉛層の上に塗布し、乾燥及び圧延することにより、負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 4)
In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. Next, 90 parts by mass of lithium titanate and 80 parts by mass of PVDF NMP solution (the concentration of PVDF is 8% by mass and the solid content of PVDF is 10 parts by mass) are mixed with the lithium titanate mixture slurry. Got. The artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to a total thickness of 160 μm. Then, the lithium titanate mixture slurry was applied on the artificial graphite layer, dried and rolled to obtain a negative electrode having a negative electrode active material layer with a total thickness of 180 μm. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例5)
 正極活物質としてタングステン化合物を含まないリチウムニッケル複合酸化物を用いた。これ以外は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 5)
A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Except for this, a lithium ion secondary battery was fabricated in the same manner as in Example 1.
 (比較例6)
 実施例1と同様にして、人造黒鉛合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延することにより負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 6)
In the same manner as in Example 1, an artificial graphite mixture slurry was obtained. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to obtain a negative electrode having a total thickness of 180 μm equipped with a negative electrode active material layer. . A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例7)
 実施例1と同様にして、チタン酸リチウム合剤スラリーを得た。得られたチタン酸リチウム合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延することにより負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 7)
In the same manner as in Example 1, a lithium titanate mixture slurry was obtained. The obtained lithium titanate mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to obtain a negative electrode having a total thickness of 180 μm equipped with a negative electrode active material layer. It was. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used.
 (比較例8)
 正極活物質にタングステン化合物を含まないリチウムニッケル複合酸化物を用いた。また、実施例1と同様にして、人造黒鉛合剤スラリーを得た。得られた人造黒鉛合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延することにより負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと、及び上記の正極活物質を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 8)
A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Further, an artificial graphite mixture slurry was obtained in the same manner as in Example 1. The obtained artificial graphite mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to obtain a negative electrode having a total thickness of 180 μm equipped with a negative electrode active material layer. . A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used and the positive electrode active material was used.
 (比較例9)
 正極活物質にタングステン化合物を含まないリチウムニッケル複合酸化物を用いた。また、実施例1と同様にして、チタン酸リチウム合剤スラリーを得た。得られたチタン酸リチウム合剤スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に塗布し、乾燥及び圧延することにより負極活物質層を備えた総厚が180μmの負極を得た。このようにして得られた負極を用いたこと、及び上記の正極活物質を用いたこと以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Comparative Example 9)
A lithium nickel composite oxide containing no tungsten compound was used as the positive electrode active material. Moreover, it carried out similarly to Example 1, and obtained the lithium titanate mixture slurry. The obtained lithium titanate mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having a thickness of 10 μm, dried and rolled to obtain a negative electrode having a total thickness of 180 μm equipped with a negative electrode active material layer. It was. A lithium ion secondary battery was produced in the same manner as in Example 1 except that the negative electrode thus obtained was used and the positive electrode active material was used.
 (電池の評価)
 上記の通りに得られたリチウムイオン二次電池のそれぞれの初期放電容量及びサイクル特性を以下の方法に従って評価した。
(Battery evaluation)
The initial discharge capacity and cycle characteristics of each lithium ion secondary battery obtained as described above were evaluated according to the following methods.
 <初期放電容量>
 リチウムイオン二次電池を充電終止電圧を4.4Vに設定して、1Cのレートで充電させた後、放電終止電圧を2.5Vに設定して、0.2Cのレートで放電させた。このとき得られた放電容量を初期放電容量とした。
<Initial discharge capacity>
The lithium ion secondary battery was charged at a charge end voltage of 4.4 V and charged at a rate of 1 C, and then the discharge end voltage was set at 2.5 V and discharged at a rate of 0.2 C. The discharge capacity obtained at this time was defined as the initial discharge capacity.
 <サイクル特性>
 リチウムイオン二次電池に対して、下記の条件による充放電サイクルを繰り返した。充放電時の環境温度は25℃に設定した。最初に最大電流値を2.5Aとして、電圧が4.4Vになるまで定電流充電をした後、電流値が50mAに低下するまで4.2Vで定電圧充電を行った。次に、放電終止電圧を2.5Vとして、0.2Cのレートで定電流放電を行った。充電と放電との間の休止時間は30分間とした。この充放電サイクルを1サイクルとして、充放電を100サイクル繰り返した。上記充放電サイクルにおける1サイクル目の放電容量を100%とみなし、100サイクルを経過したときの放電容量を容量維持率として百分率で表すことにより、サイクル特性を評価した。その結果を表1に示す。
<Cycle characteristics>
The charge / discharge cycle under the following conditions was repeated for the lithium ion secondary battery. The environmental temperature at the time of charging / discharging was set to 25 degreeC. First, the maximum current value was set to 2.5 A, and constant current charging was performed until the voltage reached 4.4 V, and then constant voltage charging was performed at 4.2 V until the current value decreased to 50 mA. Next, a constant current discharge was performed at a rate of 0.2 C at a discharge end voltage of 2.5V. The pause time between charging and discharging was 30 minutes. This charging / discharging cycle was made into 1 cycle, and charging / discharging was repeated 100 cycles. The cycle capacity was evaluated by regarding the discharge capacity at the first cycle in the charge / discharge cycle as 100% and expressing the discharge capacity as a percentage of capacity retention when 100 cycles passed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の電池は初期放電容量が良好であった。これは、異種元素としてタングステン化合物を含むリチウムニッケル複合酸化物を正極活物質に用いたことにより、正極活物質の表面が改質され、放電容量が良好な値を示したためである。さらに、負極のチタン酸リチウムを活物質とする第2の層の厚みを人造黒鉛を活物質とする第1の層に対して、13.3%としたことにより、理論容量が小さいチタン酸リチウムの電池容量の低下への影響を抑えることができたためであると考えられる。 As shown in Table 1, the battery of Example 1 had good initial discharge capacity. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a tungsten compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed.
 さらに、実施例1は、100サイクル後の容量維持率が良好であった。これは、負極に上記の通り、第1の層として人造黒鉛層と、第1の層よりも薄い第2の層としてチタン酸リチウム層とを設けたことにより、チタン酸リチウムのレドックス電位を低くすることができ、負極表面でのフルオロエチレンカーボネートによる良好な被膜が形成されたことにより、フッ化溶媒を含む非水電解質の分解によるガス発生が抑制されたことによると考えられる。さらに、第2の層に含まれる導電材量を、チタン酸リチウム100質量部に対して、3質量部としたことにより、非水電解質の分解が抑制できてサイクル特性が向上したと考えられる。 Furthermore, in Example 1, the capacity retention rate after 100 cycles was good. As described above, the artificial graphite layer as the first layer and the lithium titanate layer as the second layer thinner than the first layer are provided on the negative electrode, thereby reducing the redox potential of the lithium titanate. This is considered to be because gas generation due to decomposition of the nonaqueous electrolyte containing the fluorinated solvent was suppressed by forming a good film of fluoroethylene carbonate on the negative electrode surface. Furthermore, it is considered that the amount of the conductive material contained in the second layer is 3 parts by mass with respect to 100 parts by mass of lithium titanate, so that the decomposition of the nonaqueous electrolyte can be suppressed and the cycle characteristics are improved.
 実施例2の電池は、実施例1と同様に初期放電容量が良好であった。これは、実施例1と同様の理由であると考えられる。但し、実施例1と比較して初期放電容量が小さくなっており、これは、第2の層の厚みを大きくしたため、電池の容量低下への影響が顕著となったためと考えられる。また、実施例1と同様に、100サイクル後の容量維持率が良好であった。 The battery of Example 2 had good initial discharge capacity as in Example 1. This is considered to be the same reason as in the first embodiment. However, the initial discharge capacity is smaller than that of Example 1, and this is considered to be because the influence on the capacity reduction of the battery becomes remarkable because the thickness of the second layer is increased. Further, similarly to Example 1, the capacity retention rate after 100 cycles was good.
 実施例3の電池は、実施例1と同様に初期放電容量、及び100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。但し、実施例1と比較して、100サイクル後の容量維持率は低い値となっている。これは、第2の層の厚みが比較的に小さいため、正極活物質に含まれる異種元素が溶出して、異種元素金属が負極に析出する総量が、チタン酸リチウムに析出させることができる量よりも多くなり、非水電解質の分解が抑制できず、サイクル特性が低下したことによると考えられる。 As with Example 1, the battery of Example 3 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment. However, compared with Example 1, the capacity retention rate after 100 cycles is a low value. This is because the thickness of the second layer is relatively small, so that the different element contained in the positive electrode active material is eluted and the total amount of the different element metal deposited on the negative electrode can be deposited on the lithium titanate. This is considered to be because the decomposition of the nonaqueous electrolyte could not be suppressed and the cycle characteristics deteriorated.
 実施例4の電池は、実施例1と同様に初期放電容量、及び100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。但し、実施例1と比較して、初期放電容量は低い値であった。これは、第2の層に含まれる導電材の量が実施例1よりも少なかったため、実施例1と比較して十分な電池特性を発現することができなかったためと考えられる。 As with Example 1, the battery of Example 4 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment. However, compared with Example 1, the initial discharge capacity was a low value. This is probably because the amount of the conductive material contained in the second layer was smaller than that in Example 1, and therefore sufficient battery characteristics could not be expressed as compared with Example 1.
 実施例5の電池は、実施例1と同様に初期放電容量、及び100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。但し、実施例1及び4よりも初期放電容量は、低い値であった。これは、第2の層に含まれる導電材の量が実施例1及び4よりも少なかったため、実施例1及び4と比較して十分な電池特性を発現することができなかったためと考えられる。 As in Example 1, the battery of Example 5 had good initial discharge capacity and capacity retention after 100 cycles. This is considered to be the same reason as in the first embodiment. However, the initial discharge capacity was lower than in Examples 1 and 4. This is probably because the amount of the conductive material contained in the second layer was smaller than those in Examples 1 and 4, and therefore, sufficient battery characteristics could not be expressed as compared with Examples 1 and 4.
 実施例6の電池は、実施例1と同等の良好な初期放電容量を示した。これは、異種元素としてニオブ化合物を含むリチウムニッケル複合酸化物を正極活物質に用いたことにより、正極活物質の表面が改質され、放電容量が良好な値を示したためである。さらに、負極のチタン酸リチウムを活物質とする第2の層の厚みを人造黒鉛を活物質とする第1の層に対して、13.3%としたことにより、理論容量が小さいチタン酸リチウムの電池容量の低下への影響を抑えることができたためであると考えられる。さらに、実施例6の電池は、実施例1と同様に100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。 The battery of Example 6 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a niobium compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 6 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
 実施例7の電池は、実施例1と同等の良好な初期放電容量を示した。これは、異種元素としてホウ素化合物を含むリチウムニッケル複合酸化物を正極活物質に用いたことにより、正極活物質の表面が改質され、放電容量が良好な値を示したためである。さらに、負極のチタン酸リチウムを活物質とする第2の層の厚みを人造黒鉛を活物質とする第1の層に対して、13.3%としたことにより、理論容量が小さいチタン酸リチウムの電池容量の低下への影響を抑えることができたためであると考えられる。さらに、実施例7の電池は、実施例1と同様に100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。 The battery of Example 7 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a boron compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 7 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
 実施例8の電池は、実施例1と同等の良好な初期放電容量を示した。これは、異種元素としてジルコニウム化合物を含むリチウムニッケル複合酸化物を正極活物質に用いたことにより、正極活物質の表面が改質され、放電容量が良好な値を示したためである。さらに、負極のチタン酸リチウムを活物質とする第2の層の厚みを人造黒鉛を活物質とする第1の層に対して、13.3%としたことにより、理論容量が小さいチタン酸リチウムの電池容量の低下への影響を抑えることができたためであると考えられる。さらに、実施例8の電池は、実施例1と同様に100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。 The battery of Example 8 exhibited a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a zirconium compound as a different element as the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 8 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
 実施例9の電池は、実施例1と同等の良好な初期放電容量を示した。これは、異種元素としてバナジウム化合物を含むリチウムニッケル複合酸化物を正極活物質に用いたことにより、正極活物質の表面が改質され、放電容量が良好な値を示したためである。さらに、負極のチタン酸リチウムを活物質とする第2の層の厚みを人造黒鉛を活物質とする第1の層に対して、13.3%としたことにより、理論容量が小さいチタン酸リチウムの電池容量の低下への影響を抑えることができたためであると考えられる。さらに、実施例9の電池は、実施例1と同様に100サイクル後の容量維持率が良好であった。これは、実施例1と同様の理由であると考えられる。 The battery of Example 9 showed a good initial discharge capacity equivalent to that of Example 1. This is because the surface of the positive electrode active material was modified by using a lithium nickel composite oxide containing a vanadium compound as a different element for the positive electrode active material, and the discharge capacity showed a good value. Furthermore, the thickness of the second layer using lithium titanate of the negative electrode as the active material is 13.3% with respect to the first layer using artificial graphite as the active material, so that lithium titanate having a small theoretical capacity is obtained. This is considered to be because the influence on the decrease in the battery capacity was suppressed. Further, the battery of Example 9 had a good capacity retention rate after 100 cycles as in Example 1. This is considered to be the same reason as in the first embodiment.
 実施例10の電池は、良好な電池特性が得られているものの、実施例1の電池と比較して、初期放電容量及び100サイクル後の容量維持率は低かった。この結果から、非水電解質にFECを含むことにより、負極表面に良好な被膜が形成されやすくなり、電池特性が向上すると考えられる。 Although the battery of Example 10 had good battery characteristics, the initial discharge capacity and the capacity retention rate after 100 cycles were low as compared with the battery of Example 1. From this result, it is considered that the inclusion of FEC in the non-aqueous electrolyte facilitates the formation of a good film on the negative electrode surface and improves battery characteristics.
 比較例1の電池は、実施例1~9の電池と比較して、初期放電容量が低かった。これは、チタン酸リチウムを活物質とする第2の層の厚みを、人造黒鉛を活物質とする第1の層に対して、25%よりも厚くしたため、理論容量が低いチタン酸リチウムの電池容量の低下への影響が顕著に現れたことによると考えられる。 The battery of Comparative Example 1 had a lower initial discharge capacity than the batteries of Examples 1-9. This is because the lithium titanate battery having a low theoretical capacity is obtained because the thickness of the second layer using lithium titanate as the active material is greater than 25% of the thickness of the first layer using artificial graphite as the active material. This is thought to be due to the remarkable impact on the capacity reduction.
 一方、比較例2の電池は、実施例1~9の電池と比較して、100サイクル後の容量維持率は低い値を示した。これは、第2の層の厚みを第1の層に対して1%未満としたことにより、正極活物質に含まれる異種元素が溶出し、負極に析出する総量がチタン酸リチウムに析出させることができる量よりも多くなり、非水電解質の分解が抑制できずサイクル特性が低下したことによると考えられる。 On the other hand, the battery of Comparative Example 2 showed a lower capacity retention rate after 100 cycles than the batteries of Examples 1 to 9. This is because when the thickness of the second layer is less than 1% with respect to the first layer, the different elements contained in the positive electrode active material are eluted and the total amount deposited on the negative electrode is deposited on lithium titanate. This is considered to be due to the fact that the decomposition of the non-aqueous electrolyte could not be suppressed and the cycle characteristics deteriorated.
 比較例3の電池は、実施例1~9の電池と比較して、100サイクル後の容量維持率が低かった。これは、第2の層に含まれる導電材の量が、チタン酸リチウム100質量部に対して5質量部であり、非水電解質の分解が抑制できなかったためであると考えられる。 The battery of Comparative Example 3 had a lower capacity retention rate after 100 cycles than the batteries of Examples 1-9. This is presumably because the amount of the conductive material contained in the second layer was 5 parts by mass with respect to 100 parts by mass of lithium titanate, and the decomposition of the nonaqueous electrolyte could not be suppressed.
 比較例4の電池は、実施例1~9の電池と比較して、初期放電容量が顕著に低かった。これは、第2の層に導電材を加えなかったことにより、第2の層の導電性が不十分であり、電極活性が現れなかったことによると考えられる。 The battery of Comparative Example 4 had a significantly lower initial discharge capacity than the batteries of Examples 1-9. This is presumably because the conductivity of the second layer was insufficient because the conductive material was not added to the second layer, and electrode activity did not appear.
 比較例5の電池は、実施例1~9の電池と比較して、初期放電容量及び100サイクル後の容量維持率が共に低かった。これは、異種元素を含まない正極活物質を用いたためであると考えられる。 The battery of Comparative Example 5 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is considered to be due to the use of a positive electrode active material that does not contain different elements.
 比較例6の電池は、実施例1~9の電池と比較して、100サイクル後の容量維持率が低かった。これは、負極にチタン酸リチウムを含まなかったことにより、溶出した正極に含まれる異種元素が負極表面に析出することで非水電解質の分解が抑制されず、サイクル特性が低下したことによると考えられる。 The battery of Comparative Example 6 had a lower capacity retention rate after 100 cycles than the batteries of Examples 1-9. This is thought to be due to the fact that, since the negative electrode did not contain lithium titanate, the dissimilar elements contained in the eluted positive electrode were deposited on the negative electrode surface, so that the decomposition of the nonaqueous electrolyte was not suppressed and the cycle characteristics were reduced. It is done.
 比較例7の電池は、実施例1~9の電池と比較して、初期放電容量及び100サイクル後の容量維持率が低かった。これは、負極に理論容量が低いチタン酸リチウムの単層を用いたため、電池の容量が低下したためである。さらに、チタン酸リチウムのレドックス電位が高いため、チタン酸リチウムの表面における被膜の形成が不十分であり、フッ化溶媒を含む非水電解質の分解によるガスの発生が抑制できずサイクル特性が低下したことによると考えられる。 The battery of Comparative Example 7 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is because the capacity of the battery was reduced because a single layer of lithium titanate having a low theoretical capacity was used for the negative electrode. Furthermore, since the redox potential of lithium titanate is high, the formation of a coating on the surface of lithium titanate is insufficient, and the generation of gas due to the decomposition of the nonaqueous electrolyte containing the fluorinated solvent cannot be suppressed, resulting in reduced cycle characteristics. It is thought that.
 比較例8の電池は、実施例1~9の電池と比較して、初期放電容量及び100サイクル後の容量維持率が低かった。これは、異種元素を含まない正極活物質を用いたこと、及び負極にチタン酸リチウムを含まなかったことにより、負極表面における異種元素の析出がなく、非水電解質の分解が抑制されず、サイクル特性が低下したことによると考えられる。 The battery of Comparative Example 8 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is because the use of a positive electrode active material not containing a different element and the absence of lithium titanate in the negative electrode did not cause the precipitation of a different element on the negative electrode surface, and the decomposition of the non-aqueous electrolyte was not suppressed. This is thought to be due to the deterioration of the characteristics.
 比較例9の電池は、実施例1~9の電池と比較して、初期放電容量及び100サイクル後の容量維持率が低かった。これは、異種元素を含まない正極活物質を用いたことによること、及びチタン酸リチウムのレドックス電位が高いため、チタン酸リチウムの表面における被膜の形成が不十分であり、フッ化溶媒を含む非水電解質の分解によるガスの発生が抑制できず、サイクル特性が低下したことによると考えられる。 The battery of Comparative Example 9 had lower initial discharge capacity and capacity retention after 100 cycles than the batteries of Examples 1-9. This is due to the use of a positive electrode active material that does not contain foreign elements, and because the redox potential of lithium titanate is high, the formation of a film on the surface of lithium titanate is insufficient, and a non-fluorinated solvent is contained. It is considered that gas generation due to decomposition of the water electrolyte could not be suppressed and cycle characteristics were deteriorated.
 本発明のリチウムイオン二次電池は、高電圧で充電した場合であっても放電容量が大きく、充放電サイクル中における非水電解質の分解を抑制することができ、サイクル特性が良好である。このため、本発明のリチウムイオン二次電池は、携帯電話、PDA、ノート型パーソナルコンピュータ、デジタルカメラ及び携帯ゲーム機等の各種携帯用電子機器の電源として有用である。また、電気自動車、ハイブリッド自動車等の駆動用電源の用途にも応用することができる。 The lithium ion secondary battery of the present invention has a large discharge capacity even when charged at a high voltage, can suppress the decomposition of the nonaqueous electrolyte during the charge / discharge cycle, and has good cycle characteristics. Therefore, the lithium ion secondary battery of the present invention is useful as a power source for various portable electronic devices such as mobile phones, PDAs, notebook personal computers, digital cameras, and portable game machines. Further, it can be applied to the use of a driving power source for an electric vehicle, a hybrid vehicle and the like.
10 負極集電体
11 第1の層
12 第2の層
13 負極活物質層
20 リチウムイオン二次電池
21 正極
22 負極
23 セパレータ
24 電極群
25 正極側絶縁板
26 負極側絶縁板
27 電池ケース
28 封口板
29 負極リード
30 正極端子
31 正極リード
DESCRIPTION OF SYMBOLS 10 Negative electrode collector 11 1st layer 12 2nd layer 13 Negative electrode active material layer 20 Lithium ion secondary battery 21 Positive electrode 22 Negative electrode 23 Separator 24 Electrode group 25 Positive electrode side insulating plate 26 Negative electrode side insulating plate 27 Battery case 28 Sealing Plate 29 Negative electrode lead 30 Positive electrode terminal 31 Positive electrode lead

Claims (7)

  1.  正極集電体及び正極活物質層を含む正極と、負極集電体及び負極活物質層を含む負極と、前記正極と前記負極との間に設けられたセパレータと、非水電解質とを備えているリチウムイオン二次電池であって、
     前記正極活物質層は、異種元素を含むリチウムニッケル複合酸化物を有し、
     前記異種元素は、タングステン、ニオブ、ホウ素、ジルコニウム及びバナジウムからなる群より選択される少なくとも一種の異種元素であり、
     前記負極活物質層は、前記負極集電体の表面上に形成された第1の層と、該第1の層の表面上に形成された第2の層とを含み、
     前記第1の層は、炭素材料を含み、
     前記第2の層は、チタン酸リチウム及び導電材を含み、且つ、前記第1の層の厚さの1%以上25%以下の厚さを有し、
     前記第2の層に含まれる導電材の量は、100質量部の前記チタン酸リチウムに対して3質量部以下であるリチウムイオン二次電池。
    A positive electrode including a positive electrode current collector and a positive electrode active material layer; a negative electrode including a negative electrode current collector and a negative electrode active material layer; a separator provided between the positive electrode and the negative electrode; and a nonaqueous electrolyte. A lithium ion secondary battery,
    The positive electrode active material layer has a lithium nickel composite oxide containing a different element,
    The different element is at least one different element selected from the group consisting of tungsten, niobium, boron, zirconium and vanadium,
    The negative electrode active material layer includes a first layer formed on the surface of the negative electrode current collector, and a second layer formed on the surface of the first layer;
    The first layer includes a carbon material;
    The second layer includes lithium titanate and a conductive material, and has a thickness of 1% to 25% of the thickness of the first layer;
    The amount of the conductive material contained in the second layer is 3 parts by mass or less with respect to 100 parts by mass of the lithium titanate.
  2.  請求項1において、
     前記第1の層の合剤密度は、1.4g/ml以上2.8g/ml以下であるリチウムイオン二次電池。
    In claim 1,
    The lithium ion secondary battery in which the mixture density of the first layer is 1.4 g / ml or more and 2.8 g / ml or less.
  3.  請求項1又は2において、
     前記第2の層の合剤密度は、1.3g/ml以上1.8g/ml以下であるリチウムイオン二次電池。
    In claim 1 or 2,
    The lithium ion secondary battery in which the mixture density of the second layer is 1.3 g / ml or more and 1.8 g / ml or less.
  4.  請求項1~3のいずれか1項において、
     前記チタン酸リチウムのBET比表面積は、2m/g以上8m/g以下であるリチウムイオン二次電池。
    In any one of claims 1 to 3,
    The lithium titanate has a BET specific surface area of 2 m 2 / g or more and 8 m 2 / g or less.
  5.  請求項1~4のいずれか1項において、
     前記チタン酸リチウムの平均粒径は、0.5μm以上10μm以下であるリチウムイオン二次電池。
    In any one of claims 1 to 4,
    The lithium ion secondary battery has an average particle size of the lithium titanate of 0.5 μm or more and 10 μm or less.
  6.  請求項1~5のいずれか1項において、
     前記チタン酸リチウムの吸油量は、20g/100g以上50g/100g以下であるリチウムイオン二次電池。
    In any one of claims 1 to 5,
    The lithium ion secondary battery, wherein the lithium titanate has an oil absorption of 20 g / 100 g or more and 50 g / 100 g or less.
  7.  請求項1~6のいずれか1項において、
     前記非水電解質は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート及びフルオロジメチレンカーボネートからなる群より選択される少なくとも一種であるフッ化溶媒を含むリチウムイオン二次電池。
    In any one of claims 1 to 6,
    The non-aqueous electrolyte is a lithium ion secondary battery including a fluorinated solvent that is at least one selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
PCT/JP2012/002666 2011-07-26 2012-04-18 Lithium-ion secondary cell WO2013014830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011162740A JP2014194842A (en) 2011-07-26 2011-07-26 Lithium ion secondary battery
JP2011-162740 2011-07-26

Publications (1)

Publication Number Publication Date
WO2013014830A1 true WO2013014830A1 (en) 2013-01-31

Family

ID=47600708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002666 WO2013014830A1 (en) 2011-07-26 2012-04-18 Lithium-ion secondary cell

Country Status (2)

Country Link
JP (1) JP2014194842A (en)
WO (1) WO2013014830A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053236A (en) * 2013-09-09 2015-03-19 国立大学法人名古屋大学 Method of manufacturing electrode body, and electrode body
EP2945211A3 (en) * 2014-05-15 2016-02-24 Saft Groupe S.A. Lithium titanate oxide as negative electrode in li-ion cells
CN107251303A (en) * 2015-02-27 2017-10-13 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
CN108604708A (en) * 2016-02-29 2018-09-28 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
CN112670517A (en) * 2019-10-15 2021-04-16 本田技研工业株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN112689915A (en) * 2019-07-26 2021-04-20 株式会社Lg化学 Secondary battery positive electrode having improved thermal stability and method for manufacturing the same
CN112952051A (en) * 2019-12-11 2021-06-11 广州汽车集团股份有限公司 Negative pole piece, preparation method of negative pole piece, lithium ion hard-package battery cell, lithium ion battery package and application of lithium ion hard-package battery cell
CN113130841A (en) * 2019-12-31 2021-07-16 荣盛盟固利新能源科技有限公司 Lithium ion battery pole piece, preparation method thereof and lithium ion battery
FR3117683A1 (en) * 2020-10-08 2022-06-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING MEANS TO ENSURE THE SAFETY OF THE CELL IN THE EVENT OF SHORT-CIRCUIT
CN114792808A (en) * 2021-01-25 2022-07-26 华为技术有限公司 Negative plate of lithium ion battery, lithium ion battery and electronic equipment
CN115053369A (en) * 2021-12-29 2022-09-13 宁德新能源科技有限公司 Electrochemical device and electronic device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067522A1 (en) * 2014-10-28 2016-05-06 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2023127294A1 (en) * 2021-12-28 2023-07-06 パナソニックIpマネジメント株式会社 Positive electrode for secondary battery, and method for producing positive electrode active material for secondary battery
WO2023127297A1 (en) * 2021-12-28 2023-07-06 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries and method for producing positive electrode active material for secondary batteries

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2008305746A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Lithium ion cell
JP2009525568A (en) * 2006-02-01 2009-07-09 イドロ−ケベック Multilayer material, method for making it, and use as electrode
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
JP2010097756A (en) * 2008-10-15 2010-04-30 Sony Corp Secondary battery
JP2010192230A (en) * 2009-02-18 2010-09-02 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery
JP2010537389A (en) * 2008-02-22 2010-12-02 ビーワイディー カンパニー リミテッド Battery negative electrode and lithium ion battery using the same
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2002358954A (en) * 2001-03-27 2002-12-13 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2009525568A (en) * 2006-02-01 2009-07-09 イドロ−ケベック Multilayer material, method for making it, and use as electrode
JP2008305746A (en) * 2007-06-11 2008-12-18 Toyota Motor Corp Lithium ion cell
JP2010537389A (en) * 2008-02-22 2010-12-02 ビーワイディー カンパニー リミテッド Battery negative electrode and lithium ion battery using the same
JP2010073686A (en) * 2008-08-19 2010-04-02 Hitachi Maxell Ltd Electrode for electrochemical element and nonaqueous secondary battery
JP2010097756A (en) * 2008-10-15 2010-04-30 Sony Corp Secondary battery
JP2010192230A (en) * 2009-02-18 2010-09-02 Murata Mfg Co Ltd Nonaqueous electrolyte secondary battery
WO2011033707A1 (en) * 2009-09-18 2011-03-24 パナソニック株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053236A (en) * 2013-09-09 2015-03-19 国立大学法人名古屋大学 Method of manufacturing electrode body, and electrode body
EP2945211A3 (en) * 2014-05-15 2016-02-24 Saft Groupe S.A. Lithium titanate oxide as negative electrode in li-ion cells
CN107251303A (en) * 2015-02-27 2017-10-13 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery
CN108604708A (en) * 2016-02-29 2018-09-28 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
CN112689915B (en) * 2019-07-26 2024-02-27 株式会社Lg新能源 Secondary battery positive electrode with improved thermal stability and method for manufacturing same
CN112689915A (en) * 2019-07-26 2021-04-20 株式会社Lg化学 Secondary battery positive electrode having improved thermal stability and method for manufacturing the same
CN112670517A (en) * 2019-10-15 2021-04-16 本田技研工业株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN112952051A (en) * 2019-12-11 2021-06-11 广州汽车集团股份有限公司 Negative pole piece, preparation method of negative pole piece, lithium ion hard-package battery cell, lithium ion battery package and application of lithium ion hard-package battery cell
CN113130841A (en) * 2019-12-31 2021-07-16 荣盛盟固利新能源科技有限公司 Lithium ion battery pole piece, preparation method thereof and lithium ion battery
FR3117683A1 (en) * 2020-10-08 2022-06-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROCHEMICAL CELL FOR LITHIUM BATTERY COMPRISING MEANS TO ENSURE THE SAFETY OF THE CELL IN THE EVENT OF SHORT-CIRCUIT
CN114792808A (en) * 2021-01-25 2022-07-26 华为技术有限公司 Negative plate of lithium ion battery, lithium ion battery and electronic equipment
WO2022156459A1 (en) * 2021-01-25 2022-07-28 华为技术有限公司 Negative electrode sheet of lithium ion battery, lithium ion battery and electronic device
CN115053369A (en) * 2021-12-29 2022-09-13 宁德新能源科技有限公司 Electrochemical device and electronic device

Also Published As

Publication number Publication date
JP2014194842A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
WO2013014830A1 (en) Lithium-ion secondary cell
JP5121614B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP5319312B2 (en) Negative electrode active material for batteries, non-aqueous electrolyte battery and battery pack
JP2013137947A (en) Lithium ion secondary battery and method of manufacturing cathode active material for lithium ion secondary battery
JP6219302B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
US20080213670A1 (en) Non-aqueous electrolyte secondary battery
WO2013099278A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
US20190044179A1 (en) Nonaqueous electrolyte secondary battery
JP7289058B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10340521B2 (en) Non-aqueous electrolyte secondary battery
JP5665828B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP6591404B2 (en) Negative electrode for secondary battery containing additive for improving low temperature characteristics and secondary battery containing the same
JP5813336B2 (en) Nonaqueous electrolyte secondary battery
WO2016002158A1 (en) Positive electrode active material for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP2009205918A (en) Power storage device
JP2019522882A (en) Positive electrode active material for secondary battery, method for producing the same, and lithium secondary battery including the same
JP2009193924A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
CN111656578B (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US20150064577A1 (en) Lithium ion secondary battery and method for manufacturing the same
KR20160001651A (en) Lithium secondary battery
JPWO2019026630A1 (en) Non-aqueous electrolyte secondary battery
JP6294219B2 (en) Method for producing lithium cobalt composite oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP