JP4705404B2 - Lithium ion capacitor - Google Patents

Lithium ion capacitor Download PDF

Info

Publication number
JP4705404B2
JP4705404B2 JP2005125707A JP2005125707A JP4705404B2 JP 4705404 B2 JP4705404 B2 JP 4705404B2 JP 2005125707 A JP2005125707 A JP 2005125707A JP 2005125707 A JP2005125707 A JP 2005125707A JP 4705404 B2 JP4705404 B2 JP 4705404B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
lithium
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005125707A
Other languages
Japanese (ja)
Other versions
JP2006303330A (en
Inventor
健治 小島
博基 田口
勉 藤井
信雄 安東
信一 田▼さき▲
恒平 松井
充朗 白髪
満 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2005125707A priority Critical patent/JP4705404B2/en
Publication of JP2006303330A publication Critical patent/JP2006303330A/en
Application granted granted Critical
Publication of JP4705404B2 publication Critical patent/JP4705404B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、正極、負極、及び電解質としてリチウム塩の非プロトン性有機溶媒電解質溶液を備えたリチウムイオンキャパシタに関する。   The present invention relates to a lithium ion capacitor including a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolyte.

近年、グラファイト等の炭素材料を負極に用い、正極にLiCoO等のリチウム含有金属酸化物を用いた所謂リチウムイオン二次電池は高容量であり有力な蓄電装置として、主にノート型パソコンや携帯電話の主電源として実用化されている。リチウムイオン二次電池は、電池組立後、充電することにより正極のリチウム含有金属酸化物から負極にリチウムイオンを供給し、更に放電では負極のリチウムイオンを正極に戻すという、いわゆるロッキングチェア型電池であり、高電圧及び高容量、高安全性を有することを特長としている。 In recent years, a so-called lithium ion secondary battery using a carbon material such as graphite as a negative electrode and a lithium-containing metal oxide such as LiCoO 2 as a positive electrode has a high capacity and is an effective power storage device. It has been put to practical use as the main power source for telephones. The lithium ion secondary battery is a so-called rocking chair type battery in which lithium ions are supplied to the negative electrode from the lithium-containing metal oxide of the positive electrode by charging after the battery is assembled, and the lithium ion of the negative electrode is returned to the positive electrode in the discharge. It is characterized by high voltage, high capacity, and high safety.

一方、環境問題がクローズアップされる中、ガソリン車にかわる電気自動車用又はハイブリッド自動車用の蓄電装置(メイン電源と補助電源)の開発が盛んに行われ、また、自動車用の蓄電装置として、これまでは鉛電池が使用されてきた。しかし、車載用の電気設備や機器の充実により、エネルギー密度、出力密度の点から新しい蓄電装置が求められるようになってきている。   On the other hand, while environmental problems have been highlighted, the development of power storage devices (main power and auxiliary power) for electric vehicles or hybrid vehicles replacing gasoline vehicles has been actively carried out. Until now, lead batteries have been used. However, with the enhancement of in-vehicle electrical equipment and equipment, new power storage devices are being demanded in terms of energy density and output density.

かかる新しい蓄電装置としては、上記のリチウムイオン二次電池や電気二重層キャパシタが注目されている。しかし、リチウムイオン二次電池はエネルギー密度が高いものの出力特性、安全性やサイクル寿命には問題を残している。一方、電気二重層キャパシタは、ICやLSIのメモリーバックアップ用電源として利用されているが、一充電当たりの放電容量は電池に比べて小さい。しかし、瞬時の充放電特性に優れ、数万サイクル以上の充放電にも耐えるという、リチウムイオン二次電池にはない高い出力特性とメンテナンスフリー性を備えている。   As such a new power storage device, the above lithium ion secondary battery and electric double layer capacitor have attracted attention. However, although the lithium ion secondary battery has a high energy density, there are still problems in output characteristics, safety and cycle life. On the other hand, electric double layer capacitors are used as memory backup power sources for ICs and LSIs, but their discharge capacity per charge is smaller than batteries. However, it has excellent output characteristics and maintenance-free characteristics that are excellent in instantaneous charge / discharge characteristics and withstands charge / discharge of tens of thousands of cycles or more, which is not possible with lithium ion secondary batteries.

電気二重層キャパシタはこうした利点を有してはいるが、従来の一般的な電気二重層キャパシタのエネルギー密度は3〜4Wh/l程度で、リチウムイオン二次電池に比べて二桁程度小さい。電気自動車用を考えた場合、実用化には6〜10Wh/l、普及させるには20Wh/lのエネルギー密度が必要であるといわれている。   Although the electric double layer capacitor has such advantages, the energy density of the conventional general electric double layer capacitor is about 3 to 4 Wh / l, which is about two orders of magnitude smaller than that of the lithium ion secondary battery. When considering the use for electric vehicles, it is said that an energy density of 6 to 10 Wh / l is required for practical use and 20 Wh / l is necessary for spreading.

こうした高エネルギー密度、高出力特性を要する用途に対応する蓄電装置として、近年、リチウムイオン二次電池と電気二重層キャパシタの蓄電原理を組み合わせた、ハイブリットキャパシタとも呼ばれる蓄電装置が注目されている。そのうちの一つに、リチウムイオンを吸蔵、脱離しうる負極をリチウム金属と接触させて、予め化学的方法又は電気化学的方法でリチウムイオンを吸蔵、担持(以下、ドーピングともいう)させて負極電位を下げることにより、エネルギー密度を大幅に大きくすることを意図したキャパシタが提案されている。(特許文献1〜特許文献4参照)   In recent years, a power storage device called a hybrid capacitor, which combines the power storage principles of a lithium ion secondary battery and an electric double layer capacitor, has attracted attention as a power storage device corresponding to applications requiring such high energy density and high output characteristics. One of them is that a negative electrode capable of occluding and desorbing lithium ions is brought into contact with lithium metal, and lithium ions are occluded and supported (hereinafter also referred to as doping) by a chemical method or an electrochemical method in advance. Capacitors intended to significantly increase the energy density by lowering the value have been proposed. (See Patent Document 1 to Patent Document 4)

この種のハイブリッドキャパシタでは、高性能は期待されるものの、負極にリチウムイオンをドーピングさせる場合に、全負極に対して金属リチウムを貼り付けることを必要とすることや、あるいはセル内の一部に局所的にリチウム金属を配置させ負極と接触させることも可能であるが、ドーピングに極めて長時間を要することや負極全体に対する均一性のあるドーピングに問題を有し、特に、電極を捲回した円筒型装置や、複数枚の電極を積層した角型電池のような大型の高容量セルでは実用化は困難とされていた。しかし、この問題は、セルを構成する、負極集電体及び正極集電体の表裏に貫通する孔を設け、この貫通孔を通じてリチウムイオンが移動できる結果、セルの端部に位置する負極に対してリチウム金属を電気化学的に接触させるだけで、リチウム金属と接触していないセル中の全負極にリチウムイオンが吸蔵、ドーピングできることの発明により、一挙に解決するに至った(特許文献5参照)。   Although this type of hybrid capacitor is expected to have high performance, when lithium ions are doped into the negative electrode, it is necessary to attach metallic lithium to all the negative electrodes, or to a part of the cell. Although it is possible to place lithium metal locally and contact with the negative electrode, there is a problem in doping that takes a very long time and uniform doping with respect to the whole negative electrode. It has been considered difficult to put into practical use in large-sized high-capacity cells such as a type device or a square battery in which a plurality of electrodes are laminated. However, this problem is caused by providing holes through the front and back of the negative electrode current collector and positive electrode current collector that constitute the cell, and lithium ions can move through the through holes, so that the negative electrode located at the end of the cell Thus, the present invention was able to solve all at once by the invention that lithium ions can be occluded and doped in all the negative electrodes in the cell not in contact with lithium metal only by electrochemically contacting lithium metal (see Patent Document 5). .

かくして、電極を捲回した円筒型装置や、複数枚の電極を積層した角型電池のような大型のセルでも、装置中の全負極に対して短時間にかつ負極全体に均一にリチウムイオンがドーピングでき、耐電圧が向上したエネルギー密度が飛躍的に増大し、電気二重層キャパシタが本来有する大きい出力密度と相俟って、高容量のキャパシタが実現する見通しが得られた。しかし、かかる高容量のキャパシタを実用化するためには、なお、種々の問題があり、これらの問題の解決が迫られている。
特開平8−107048号公報 特開平9−55342号公報 特開平9−232190号公報 特開平11−297578号公報 国際公開番号WO98・033227号公報
Thus, even in a large-sized cell such as a cylindrical device in which electrodes are wound or a square battery in which a plurality of electrodes are stacked, lithium ions are uniformly distributed over the entire negative electrode in a short time with respect to all the negative electrodes in the device. The energy density that can be doped and the withstand voltage is increased dramatically, and the high output density inherent in the electric double layer capacitor is expected to realize a high-capacity capacitor. However, in order to put such a high-capacitance capacitor into practical use, there are still various problems, and there is an urgent need to solve these problems.
Japanese Patent Laid-Open No. 8-1007048 JP-A-9-55342 Japanese Patent Laid-Open No. 9-232190 JP-A-11-297578 International Publication Number WO98 / 033227

上記の負極及び/又は正極をリチウムイオン供給源であるリチウム金属と接触させて、予め負極及び/又は正極にリチウムイオンをドープするタイプの大型のキャパシタについて本発明者は研究を進めたところ、このタイプのキャパシタにおいては、室温における静電容量は問題がないものの、温度−20〜−10℃における低温では、その特性、特に、静電容量が顕著に低下する現象が有することが見出された。自動車用などの蓄電装置としては、寒冷地などでも使用されるので上記低温での特性も極めて重要視される。   The present inventor has advanced research on a large-sized capacitor in which the negative electrode and / or positive electrode is brought into contact with lithium metal which is a lithium ion supply source, and the negative electrode and / or positive electrode is previously doped with lithium ions. It has been found that the capacitance at room temperature has no problem in the type of capacitor, but at the low temperature of −20 ° C. to −10 ° C., its characteristics, in particular, the phenomenon in which the capacitance decreases significantly. . As a power storage device for automobiles and the like, it is also used in cold regions and the like, and the characteristics at the low temperature are also regarded as extremely important.

かくして、本発明は、負極及び/又は正極をリチウム金属と接触させて、予め負極にリチウムイオンをドーピングするタイプのリチウムイオンキャパシタについて、エネルギー密度や出力密度に関し、低温での特性、特に静電容量が低下することのない改良されたキャパシタを提供することを課題とする。   Thus, the present invention relates to a lithium ion capacitor of a type in which a negative electrode and / or a positive electrode is brought into contact with lithium metal, and the negative electrode is previously doped with lithium ions. It is an object of the present invention to provide an improved capacitor that does not deteriorate.

上記課題を解決するため、本発明者らは鋭意研究を行った結果、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、負極及び/又は正極にリチウムイオンをドーピングさせ、正極と負極を短絡させた後の正極電位が0.95V以下となるリチウムイオンキャパシタにおいては、そこで使用される負極活物質の物性が、低温での特性、特に静電容量と関係し、該負極を、従来と比較して小さい特定の粒度分布を有する負極活物質から形成することにより、上記の課題を解決できることを見出し、本発明に到達した。 In order to solve the above problems, the present inventors have conducted intensive research. As a result, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material is reversible with lithium ions. In a lithium ion capacitor having a positive electrode potential of 0.95 V or less after the negative electrode and / or the positive electrode are doped with lithium ions and the positive electrode and the negative electrode are short-circuited, the negative electrode used therein The physical properties of the active material are related to characteristics at low temperature, particularly capacitance, and the above problem can be solved by forming the negative electrode from a negative electrode active material having a specific particle size distribution smaller than that of the conventional material. And reached the present invention.

かくして、本発明は、以下の要旨を有することを特徴とするものである。
(1)正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備え、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極電位が0.95V以下となるリチウムイオンキャパシタであって、上記負極が、50%体積累積径(D50)が0.51.9μmである負極活物質粒子から形成され、かつ前記負極活物質粒子がポリアセン系物質であることを特徴とするリチウムイオンキャパシタ。
(2)前記負極及び/又は正極が、それぞれ該負極及び/又は該正極と対向して配置されたリチウムイオン供給源との電気化学的接触によって予めリチウムイオンがドーピングされている上記(1)に記載のリチウムイオンキャパシタ。
(3)負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質重量が負極活物資の重量よりも大きい上記(1)又は(2)に記載のリチウムイオンキャパシタ。
(4)前記正極及び負極が、それぞれ表裏面を貫通する孔を有する集電体を備える上記(1)〜(3)のいずれかに記載のリチウムイオンキャパシタ。
)ポリアセン系物質が、芳香族系縮合ポリマーを非酸化性雰囲気にて400〜800℃で熱処理し、H/Cが0.05〜0.5の不溶不融性基体である上記(1)〜()のいずれかに記載のリチウムイオンキャパシタ。
Thus, the present invention is characterized by having the following gist.
(1) A positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material Is a substance capable of reversibly carrying lithium ions, and is a lithium ion capacitor having a positive electrode potential of 0.95 V or less after the positive electrode and the negative electrode are short-circuited, wherein the negative electrode has a 50% volume cumulative diameter ( D50) is formed from negative electrode active material particles having a size of 0.5 to 1.9 μm , and the negative electrode active material particles are polyacene-based materials .
(2) In the above (1), the negative electrode and / or the positive electrode are previously doped with lithium ions by electrochemical contact with a lithium ion supply source disposed to face the negative electrode and / or the positive electrode, respectively. The lithium ion capacitor described.
(3) The negative electrode active material has a capacitance per unit weight of 3 times or more as compared with the positive electrode active material, and the positive electrode active material weight is larger than the weight of the negative electrode active material. The lithium ion capacitor as described in 2).
(4) The lithium ion capacitor according to any one of (1) to (3), wherein each of the positive electrode and the negative electrode includes a current collector having a hole penetrating the front and back surfaces.
( 5 ) The above-mentioned (1), wherein the polyacene material is an insoluble infusible substrate obtained by heat-treating an aromatic condensation polymer at 400 to 800 ° C. in a non-oxidizing atmosphere and having an H / C of 0.05 to 0.5. )-( 4 ) The lithium ion capacitor in any one of.

本発明によれば、予め負極にリチウムイオンをドーピングする、特に大容量のキャパシタであって、エネルギー密度や出力密度に関し、低温での特性、特に静電容量が低下することのない改良されたキャパシタが提供される。本発明でおいて、該負極を、従来と比較して小さい特定の粒度分布を有する負極活物質から形成することにより何故に、キャパシタの低温における特性が改良されるかについては、必ずしも明らかではないが、次のように推定される。   According to the present invention, a lithium ion is previously doped into the negative electrode, in particular, a large-capacity capacitor, which is an improved capacitor that does not lower the characteristics at low temperature, particularly the capacitance, in terms of energy density and output density. Is provided. In the present invention, it is not necessarily clear why the characteristics at a low temperature of the capacitor are improved by forming the negative electrode from a negative electrode active material having a specific particle size distribution smaller than that of the prior art. Is estimated as follows.

リチウムイオンを予め負極及び/又は正極にドーピングするリチウムイオンキャパシタは電解液にリチウムイオン含有の有機溶媒溶液を用いており、該電解液の低温でのイオン伝導性が低いことから低温特性は一般の電気二重層キャパシタに比較し劣っていた。特にリチウムイオンのみが出入りする負極の影響を強く受けていたことから、負極活物質の粒径を特定の小さい粒度分布に制御することにより、電解液との界面が増大し、低温時にもリチウムイオンの移動が容易になり低温時における特性が向上し上記の如き優れた特性が得られるものと考えられる。   The lithium ion capacitor in which the negative electrode and / or the positive electrode are doped in advance with lithium ions uses an organic solvent solution containing lithium ions as an electrolyte, and the low temperature characteristics of the electrolyte are low because the electrolyte has low ion conductivity at low temperatures. It was inferior to the electric double layer capacitor. In particular, since it was strongly influenced by the negative electrode through which only lithium ions enter and exit, by controlling the particle size of the negative electrode active material to a specific small particle size distribution, the interface with the electrolyte increased, and lithium ions even at low temperatures. It is considered that the above-mentioned excellent characteristics can be obtained by improving the characteristics at a low temperature.

本発明のリチウムイオンキャパシタは、正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備え、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極電位が0.95V以下を有する。ここで、「正極」とは、放電の際に電流が流れ出る側の極であり、「負極」とは放電の際に電流が流れ込む側の極をいう。 The lithium ion capacitor of the present invention includes a positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of a lithium salt as an electrolytic solution, and the positive electrode active material is a substance capable of reversibly supporting lithium ions and / or anions. and the negative electrode active material is reversibly carried substance lithium ions, a positive electrode collector position after short-circuiting the positive electrode and the negative electrode has the following 0.95 V. Here, the “positive electrode” is an electrode on the side where current flows out during discharge, and the “negative electrode” is an electrode on the side where current flows in during discharge.

本発明のリチウムイオンキャパシタでは、負極及び/又は正極に対するリチウムイオンのドーピングにより正極と負極を短絡させた後の正極の電位が0.95V以下にされていることが必要である。負極及び/又は正極に対するリチウムイオンのドーピングされていないキャパシタでは、正極及び負極の電位はいずれも3Vであり、充電前においては、正極と負極を短絡させた後の正極の電位は3Vである。
なお、本発明で、正極と負極を短絡させた後の正極の電位が0.95V以下とは、以下の(A)又は(B)の2つのいずれかの方法で求められる正極の電位が0.95V以下の場合をいう。即ち、(A)リチウムイオンによるドーピングの後、キャパシタセルの正極端子と負極端子を導線で直接結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位。(B)充放電試験機にて12時間以上かけて0Vまで定電流放電させた後に正極端子と負極端子を導線で結合させた状態で12時間以上放置した後に短絡を解除し、0.5〜1.5時間内に測定した正極電位。
In the lithium ion capacitor of the present invention, the potential of the positive electrode after the positive electrode and the negative electrode are short-circuited by doping lithium ions to the negative electrode and / or the positive electrode needs to be 0.95 V or less. In a capacitor in which lithium ions are not doped with respect to the negative electrode and / or the positive electrode, the potentials of the positive electrode and the negative electrode are both 3V, and before charging, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 3V.
In the present invention, the potential of the positive electrode after short-circuiting the positive electrode and the negative electrode is 0.95 V or less means that the potential of the positive electrode obtained by either of the following two methods (A) or (B) It means the case of 0.95 V or less. That is, (A) After doping with lithium ions, the positive electrode terminal and the negative electrode terminal of the capacitor cell are left in a state of being directly coupled with a conductive wire for 12 hours or more, and then the short circuit is released, and within 0.5 to 1.5 hours Measured positive electrode potential. (B) After discharging at constant current to 0 V over 12 hours in a charge / discharge tester, leaving the positive electrode terminal and the negative electrode terminal connected with a conductive wire for 12 hours or more, releasing the short circuit, 0.5 to Positive electrode potential measured within 1.5 hours.

本発明において、正極と負極とを短絡させた後の正極電位が0.95V以下というのは、リチウムイオンがドーピングされた直後だけに限られるものではなく、充電状態、放電状態あるいは充放電を繰り返した後に短絡した場合など、いずれかの状態で短絡後の正極電位が0.95V以下となることである。 In the present invention, the positive electrode potential of 0.95 V or less after the positive electrode and the negative electrode are short-circuited is not limited to just after lithium ions are doped. The positive electrode potential after short-circuiting is 0.95 V or less in any state, such as when short-circuiting after repeating.

本発明において、正極と負極とを短絡させた後の正極電位が0.95V以下にするということに関し、以下に詳細に説明する。上述のように活性炭や炭素材は通常3V(Li/Li)前後の電位を有しており、正極、負極ともに活性炭を用いてセルを組んだ場合、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。また、正極に活性炭、負極にリチウムイオン二次電池にて使用されている黒鉛や難黒鉛化炭素のような炭素材を用いた、いわゆるハイブリットキャパシタの場合も同様であり、いずれの電位も約3Vとなるため、短絡しても正極電位はかわらず約3Vである。正極と負極の重量バランスにもよるが充電すると負極電位が0V近傍まで推移するので、充電電圧を高くすることが可能となるため高電圧、高エネルギー密度を有したキャパシタとなる。一般的に充電電圧の上限は正極電位の上昇による電解液の分解が起こらない電圧に決められるので、正極電位を上限にした場合、負極電位が低下する分、充電電圧を高めることが可能となる。しかしながら、短絡時に正極電位が約3Vとなる上述のハイブリットキャパシタでは、正極の上限電位を例えば4.0Vとした場合、放電時の正極電位は3.0Vまでであり、正極の電位変化は1.0V程度と正極の容量を充分利用できていない。更に、負極にリチウムイオンを挿入(充電)、脱離(放電)した場合、初期の充放電効率が低い場合が多く、放電時に脱離できないリチウムイオンが存在していることが知られている。これは、負極表面にて電解液の分解に消費される場合や、炭素材の構造欠陥部にトラップされる等の説明がなされているが、この場合正極の充放電効率に比べ負極の充放電効率が低くなり、充放電を繰り返した後にセルを短絡させると正極電位は3Vよりも高くなり、さらに利用容量は低下する。すなわち、正極は4.0Vから2.0Vまで放電可能であるところ、4.0Vから3.0Vまでしか使えない場合、利用容量として半分しか使っていないこととなり、高電圧にはなるが高容量にはならない。 In the present invention, the fact that the positive electrode potential after the positive electrode and the negative electrode are short-circuited is set to 0.95 V or less will be described in detail below. As described above, activated carbon and carbon materials usually have a potential of about 3 V (Li / Li + ), and when the cell is assembled using activated carbon for both the positive electrode and the negative electrode, both potentials are about 3 V. Even if it is short-circuited, the positive electrode potential is about 3 V regardless. The same applies to a so-called hybrid capacitor using activated carbon as the positive electrode and carbon material such as graphite or non-graphitizable carbon used in the lithium ion secondary battery as the negative electrode. Therefore, even if a short circuit occurs, the positive electrode potential is about 3 V regardless. Although depending on the weight balance between the positive electrode and the negative electrode, when charged, the potential of the negative electrode transitions to around 0 V, so that the charging voltage can be increased, so that the capacitor has a high voltage and a high energy density. Generally, the upper limit of the charging voltage is determined to be a voltage at which the electrolyte solution does not decompose due to the increase in the positive electrode potential. Therefore, when the positive electrode potential is set as the upper limit, the charging voltage can be increased by the amount of decrease in the negative electrode potential. . However, in the above-described hybrid capacitor in which the positive electrode potential is about 3V at the time of short circuit, when the upper limit potential of the positive electrode is 4.0V, for example, the positive electrode potential at the time of discharge is up to 3.0V. The capacity of the positive electrode of about 0 V is not fully utilized. Furthermore, when lithium ions are inserted (charged) and desorbed (discharged) into the negative electrode, the initial charge / discharge efficiency is often low, and it is known that there are lithium ions that cannot be desorbed during discharge. This is explained when it is consumed in the decomposition of the electrolyte solution on the negative electrode surface or trapped in the structural defect part of the carbon material. In this case, the charge / discharge of the negative electrode is compared with the charge / discharge efficiency of the positive electrode. When the efficiency is lowered and the cell is short-circuited after repeated charging and discharging, the positive electrode potential becomes higher than 3 V, and the utilization capacity further decreases. That is, the positive electrode can be discharged from 4.0 V to 2.0 V. However, when only 4.0 V to 3.0 V can be used, only half of the usage capacity is used. It will not be.

ハイブリットキャパシタを高電圧、高エネルギー密度だけでなく、高容量そして更にエネルギー密度を高めるためには、正極の利用容量を向上させることが必要である。   In order to increase not only high voltage and high energy density but also high capacity and energy density of the hybrid capacitor, it is necessary to improve the capacity of the positive electrode.

短絡後の正極電位が3.0Vよりも低下すればそれだけ利用容量が増え、高容量になる。0.95V以下になるためには、セルの充放電により充電される量だけでなく、別途リチウム金属などのリチウムイオン供給源から負極にリチウムイオンを充電することが好ましい。正極と負極以外からリチウムイオンが供給されるので、短絡させた時には、正極、負極、リチウム金属の平衡電位になるため、正極電位、負極電位ともに3.0V以下になる。リチウム金属の量が多くなる程に平衡電位は低くなる。負極材、正極材が変われば平衡電位も変わるので、短絡後の正極電位が0.95V以下になるように、負極材、正極材の特性を鑑みて負極に担持させるリチウムイオン量の調整が必要である。 If the positive electrode potential after the short-circuit falls below 3.0 V, the use capacity increases and the capacity increases. In order to become 0.95 V or less, it is preferable to charge not only the amount charged by charging / discharging the cell but also separately charging lithium ions from a lithium ion supply source such as lithium metal to the negative electrode. Since lithium ions are supplied from other than the positive electrode and the negative electrode, when they are short-circuited, the equilibrium potentials of the positive electrode, the negative electrode, and the lithium metal are reached, so that both the positive electrode potential and the negative electrode potential are 3.0 V or less. As the amount of lithium metal increases, the equilibrium potential decreases. If the negative electrode material and the positive electrode material change, the equilibrium potential also changes. Therefore, the amount of lithium ions supported on the negative electrode can be adjusted in view of the characteristics of the negative electrode material and the positive electrode material so that the positive electrode potential after short circuit becomes 0.95 V or less. is necessary.

本発明において、キャパシタセルを充電する前に、予め負極及び/又は正極にリチウムイオンをドーピングし、正極と負極を短絡させた後の正極の電位を0.95V以下にすることにより、正極の利用容量が高くなるため高容量となり、大きいエネルギー密度が得られる。正極および/又は負極に供給されたリチウムイオンの量が少ないと正極と負極を短絡させた時に正極電位が0.95V以下よりも高くなり、セルのエネルギー密度は小さくなる。一般的には0.1V以上であり、好ましくは0.3V以上である。 In the present invention, before charging the capacitor cell, the negative electrode and / or the positive electrode is preliminarily doped with lithium ions, and the positive electrode potential is 0.95 V or less after the positive electrode and the negative electrode are short-circuited. Since the use capacity becomes high, the capacity becomes high and a large energy density can be obtained . The positive electrode potential when the amount of supplied lithium ion to the positive electrode and / or negative electrode is less was short-circuiting between the positive electrode and the negative electrode is higher than below 0.95 V, the energy density of the cell is reduced. On one general it is at 0.1V or more, preferably 0.3V or higher.

本発明で、リチウムイオンのドーピングは、負極と正極の片方あるいは両方いずれでもよいが、例えば正極に活性炭を用いた場合、リチウムイオンのドーピング量が多くなり正極電位が低くなると、リチウムイオンを不可逆的に消費してしまい、セルの容量が低下するなどの不具合が生じる場合がある。このため、負極と正極にドーピングするリチウムイオンは、それぞれの電極活物質を考慮し、これらの不具合を生じないようにするのが好ましい。本発明では、正極のドーピング量と負極のドーピング量を制御することは工程上煩雑となるため、リチウムイオンのドーピングは好ましくは負極に対して行われる。   In the present invention, lithium ion doping may be either one or both of the negative electrode and the positive electrode. For example, when activated carbon is used for the positive electrode, the lithium ion becomes irreversible when the amount of lithium ion doping increases and the positive electrode potential decreases. May cause problems such as a decrease in cell capacity. For this reason, it is preferable that the lithium ions doped in the negative electrode and the positive electrode do not cause these problems in consideration of the respective electrode active materials. In the present invention, since controlling the doping amount of the positive electrode and the doping amount of the negative electrode becomes complicated in the process, the doping of lithium ions is preferably performed on the negative electrode.

本発明のリチウムイオンキャパシタでは、特に、負極活物質の単位重量当たりの静電容量が正極活物質の単位重量当たりの静電容量の3倍以上を有し、かつ正極活物質重量が負極活物質重量よりも大きくする場合、高電圧且つ高容量のキャパシタが得られる。また、それと同時に、正極の単位重量当たりの静電容量に対して大きな単位重量当たりの静電容量を持つ負極を用いる場合には、負極の電位変化量を変えずに負極活物質重量を減らすことが可能となるため、正極活物質の充填量が多くなりセルの静電容量及び容量が大きくなる。正極活物質重量は負極活物質重量に対して大きいことが好ましいが、1.1倍〜10倍であることが更に好ましい。1.1倍未満であれば容量差が小さくなり、10倍を超えると逆に容量が小さくなる場合もあり、また正極と負極の厚み差が大きくなり過ぎるのでセル構成上好ましくない。   In the lithium ion capacitor of the present invention, in particular, the electrostatic capacity per unit weight of the negative electrode active material has more than three times the electrostatic capacity per unit weight of the positive electrode active material, and the positive electrode active material weight is the negative electrode active material When larger than the weight, a capacitor having a high voltage and a high capacity can be obtained. At the same time, when using a negative electrode having a capacitance per unit weight that is larger than the capacitance per unit weight of the positive electrode, the negative electrode active material weight is reduced without changing the potential change amount of the negative electrode. Therefore, the filling amount of the positive electrode active material is increased, and the capacitance and capacity of the cell are increased. The weight of the positive electrode active material is preferably larger than the weight of the negative electrode active material, but more preferably 1.1 times to 10 times. If it is less than 1.1 times, the capacity difference becomes small, and if it exceeds 10 times, the capacity may be reduced, and the thickness difference between the positive electrode and the negative electrode becomes too large, which is not preferable in terms of the cell structure.

なお、本発明において、キャパシタセル(以下、単にセルもいう)の静電容量及び容量は次のように定義される。セルの静電容量とは、セルの単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はF(ファラッド)、セルの単位重量当たりの静電容量とはセルの静電容量に対するセル内に充填している正極活物質重量と負極活物質重量の合計重量の除で示される(単位はF/g)。また、正極又は負極の静電容量とは、正極あるいは負極の単位電圧当たりセルに流れる電気量(放電カーブの傾き)を示し、単位はF、正極あるいは負極の単位重量当たりの静電容量とは正極あるいは負極の静電容量をセル内に充填している正極あるいは負極活物質重量の除で示される値であり、単位はF/gである。   In the present invention, the capacitance and capacity of a capacitor cell (hereinafter also simply referred to as a cell) are defined as follows. The capacitance of a cell indicates the amount of electricity flowing through the cell per unit voltage of the cell (the slope of the discharge curve), the unit is F (farad), and the capacitance per unit weight of the cell is the capacitance of the cell It is shown by the division of the total weight of the weight of the positive electrode active material and the weight of the negative electrode active material filled in the cell (unit: F / g). The capacitance of the positive electrode or the negative electrode indicates the amount of electricity flowing through the cell per unit voltage of the positive electrode or the negative electrode (the slope of the discharge curve), and the unit is F, the capacitance per unit weight of the positive electrode or the negative electrode. The value is shown by dividing the positive electrode or negative electrode capacitance by the weight of the positive electrode or negative electrode active material filling the cell, and the unit is F / g.

更に、セル容量とは、セルの放電開始電圧と放電終了電圧の差、即ち電圧変化量とセルの静電容量の積であり単位はC(クーロン)であるが、1Cは1秒間に1Aの電流が流れたときの電荷量であるので本特許においては換算してmAh表示することとした。正極容量とは放電開始時の正極電位と放電終了時の正極電位の差(正極電位変化量)と正極の静電容量の積であり単位はCまたはmAh、同様に負極容量とは放電開始時の負極電位と放電終了時の負極電位の差(負極電位変化量)と負極の静電容量の積であり単位はCまたはmAhである。これらセル容量と正極容量、負極容量は一致する。   Furthermore, the cell capacity is the difference between the cell discharge start voltage and the discharge end voltage, that is, the product of the voltage change amount and the cell capacitance, and the unit is C (coulomb). 1C is 1A per second. Since this is the amount of charge when a current flows, in this patent it is converted to mAh. The positive electrode capacity is the product of the difference between the positive electrode potential at the start of discharge and the positive electrode potential at the end of discharge (amount of change in positive electrode potential) and the electrostatic capacity of the positive electrode. The unit is C or mAh. The product of the difference between the negative electrode potential and the negative electrode potential at the end of discharge (negative electrode potential change amount) and the negative electrode capacitance, and the unit is C or mAh. These cell capacity, positive electrode capacity, and negative electrode capacity coincide.

本発明のリチウムイオンキャパシタにおいて、予め負極及び/又は正極にリチウムイオンをドーピングさせる手段は特に限定されない。例えば、リチウムイオンを供給可能な、金属リチウムなどのリチウムイオン供給源をリチウム極としてキャパシタセル内に配置できる。リチウムイオン供給源の量(リチウム金属等の重量)は、所定の負極の容量が得られる量だけあればよい。   In the lithium ion capacitor of the present invention, means for doping lithium ions into the negative electrode and / or the positive electrode in advance is not particularly limited. For example, a lithium ion supply source such as metallic lithium capable of supplying lithium ions can be disposed in the capacitor cell as a lithium electrode. The amount of lithium ion supply source (weight of lithium metal or the like) may be as long as a predetermined negative electrode capacity can be obtained.

この場合、負極及び/又は正極とリチウム極は物理的な接触(短絡)でもよいし、電気化学的にドーピングさせてもよい。リチウムイオン供給源は、導電性多孔体からなるリチウム極集電体上に形成しえもよい。リチウム極集電体となる導電性多孔体としては、ステンレスメッシュ等のリチウムイオン供給源と反応しない金属多孔体が使用できる。   In this case, the negative electrode and / or the positive electrode and the lithium electrode may be in physical contact (short circuit) or may be electrochemically doped. The lithium ion supply source may be formed on a lithium electrode current collector made of a conductive porous body. As the conductive porous body serving as the lithium electrode current collector, a metal porous body that does not react with a lithium ion supply source such as a stainless mesh can be used.

大容量の多層構造のキャパシタセルでは正極及び負極にそれぞれ電気を受配電する正極集電体及び負極集電体が備えられるが、かかる正極集電体及び負極集電体が使用され、かつリチウム極が設けられるセルの場合、リチウム極が負極集電体に対向する位置に設けられ、電気化学的に負極及び/又は正極にリチウムイオンを供給することが好ましい。この場合、正極集電体及び負極集電体として、例えばエキスパンドメタルのように表裏面を貫通する孔を備えた材料を用い、リチウム極を負極あるいは正極に対向させて配置する。この貫通孔の形態、数等は特に限定されず、後述する電解液中のリチウムイオンが電極集電体に遮断されることなく電極の表裏間を移動できるように、設定することができる。   A large-capacity multilayer capacitor cell is provided with a positive electrode current collector and a negative electrode current collector for receiving and distributing electricity at the positive electrode and the negative electrode, respectively. The positive electrode current collector and the negative electrode current collector are used, and the lithium electrode In the case of the cell, the lithium electrode is preferably provided at a position facing the negative electrode current collector, and lithium ions are preferably supplied to the negative electrode and / or the positive electrode electrochemically. In this case, as the positive electrode current collector and the negative electrode current collector, for example, a material having holes penetrating the front and back surfaces such as expanded metal is used, and the lithium electrode is disposed so as to face the negative electrode or the positive electrode. The form, number, and the like of the through holes are not particularly limited, and can be set so that lithium ions in the electrolyte described later can move between the front and back of the electrode without being blocked by the electrode current collector.

本発明のリチウムイオンキャパシタでは、負極及び/又は正極にドーピングするリチウム極をセル中の局所的に配置した場合もリチウムイオンのドーピングが均一に行うことができる。従って、正極及び負極を積層もしくは捲回した大容量のセルの場合も、最外周又は最外側のセルの一部にリチウム極を配置することにより、スムーズにかつ均一に負極及び/又は正極にリチウムイオンをドーピングできる。   In the lithium ion capacitor of the present invention, the lithium ion can be uniformly doped even when the lithium electrode doped in the negative electrode and / or the positive electrode is locally arranged in the cell. Therefore, even in the case of a large-capacity cell in which the positive electrode and the negative electrode are laminated or wound, the lithium electrode can be smoothly and uniformly placed on the negative electrode and / or the positive electrode by arranging the lithium electrode in a part of the outermost or outermost cell. Ions can be doped.

電極集電体の材質としては、一般にリチウム系電池に提案されている種々の材質を用いることができ、正極集電体にはアルミニウム、ステンレス等、負極集電体にはステンレス、銅、ニッケル等をそれぞれ用いることができる。また、セル内に配置されたリチウム供給源との電気化学的接触によりドーピングする場合のリチウムとは、リチウム金属あるいはリチウム−アルミニウム合金のように、少なくともリチウムを含有し、リチウムイオンを供給することのできる物質をいう。   As the material of the electrode current collector, various materials generally proposed for lithium batteries can be used, such as aluminum and stainless steel for the positive electrode current collector, stainless steel, copper, nickel and the like for the negative electrode current collector. Can be used respectively. In addition, when doping is performed by electrochemical contact with a lithium supply source disposed in the cell, lithium means that at least lithium is contained and lithium ions are supplied like lithium metal or lithium-aluminum alloy. A substance that can be used.

本発明のリチウムイオンキャパシタにおける負極活物質は重要であり、該負極活物質は、リチウムイオンを可逆的に担持できる物質からなるポリアセン系物質(以下、PASともいう)である。PASは、フェノール樹脂等を炭化させ、必要に応じて賦活され、次いで粉砕したものが用いられる。炭化工程は、フェノール樹脂等を加熱炉等に収容し、フェノール樹脂等が炭化する温度で所要時間加熱することによって行われる。その際の温度は加熱時間等によって異なるが、PASの場合は通常、加熱時間が1〜3時間程度とされる場合、500〜1000℃に設定される。粉砕工程は、ボールミル等の既知の粉砕機を用いて行われる。 Negative electrode active material in the lithium ion capacitor of the present invention is important, negative electrode active material, lithium ions reversibly carrying it, such a material Lupolen Riasen based material (hereinafter, also referred to as PAS). P AS is the phenol resin is carbonized, is activated as needed, and then those obtained by pulverizing are used. A carbonization process is performed by accommodating phenol resin etc. in a heating furnace etc., and heating for a required time at the temperature which phenol resin etc. carbonize. The temperature at that time varies depending on the heating time and the like, but in the case of PAS, it is usually set to 500 to 1000 ° C. when the heating time is about 1 to 3 hours. The pulverization step is performed using a known pulverizer such as a ball mill.

本発明の負極活物質としては、PASは、高容量が得られる点で必要である。PASに400mAh/gのリチウムイオンを担持(充電)させた後に放電させると650F/g以上の静電容量が得られ、また、500mAh/g以上のリチウムイオンを充電させると750F/g以上の静電容量が得られる。PASはアモルファス構造を有し、担持させるリチウムイオン量を増加させるほど電位が低下するので、得られるキャパシタの耐電圧(充電電圧)が高くなり、また、放電における電圧の上昇速度(放電カーブの傾き)が低くなるため、容量が若干大きくなる。よって、求められるキャパシタの使用電圧に応じて、リチウムイオン量は活物質のリチウムイオン吸蔵能力の範囲内にて設定することが望ましい。 As the negative electrode active material of the present invention, P AS is a need in that high capacity is obtained. Capacitance of 650 F / g or more can be obtained by discharging after charging (charging) 400 mAh / g of lithium ions on PAS, and static electricity of 750 F / g or more can be obtained by charging lithium ions of 500 mAh / g or more. Capacitance can be obtained. Since PAS has an amorphous structure and the potential decreases as the amount of lithium ions carried increases, the withstand voltage (charging voltage) of the obtained capacitor increases, and the rate of voltage rise during discharge (the slope of the discharge curve) ) Is low, the capacity is slightly increased. Therefore, it is desirable to set the amount of lithium ions within the range of the lithium ion storage capacity of the active material according to the required working voltage of the capacitor.

また、PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化がないためサイクル特性に優れ、またリチウムイオンの挿入・脱離に対して等方的な分子構造(高次構造)であるため急速充電、急速放電にも優れるので好適である。PASの前駆体である芳香族系縮合ポリマーとは、芳香族炭化水素化合物とアルデヒド類との縮合物である。芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノール等の如き、いわゆるフェノール類を好適に用いることができる。例えば、下記式   In addition, since PAS has an amorphous structure, there is no structural change such as swelling / shrinkage with respect to insertion / extraction of lithium ions, so that cycle characteristics are excellent, and isotropic to insertion / extraction of lithium ions. Since it has a molecular structure (higher order structure), it is suitable for rapid charging and rapid discharging. The aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, xylenol and the like can be suitably used. For example, the following formula

Figure 0004705404
Figure 0004705404

(ここで、x及びyはそれぞれ独立に、0、1または2である)で表されるメチレン・ビスフェノール類であることができ、あるいはヒドロキシ・ビフェニル類、ヒドロキシナフタレン類であることもできる。なかでも、フェノール類が好適である。 (Wherein x and y are each independently 0, 1 or 2), or may be hydroxy biphenyls or hydroxynaphthalenes. Of these, phenols are preferred.

また、上記芳香族系縮合ポリマーとしては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリン等で置換した変成芳香族系縮合ポリマー、例えばフェノールとキシレンとホルムアルデヒドとの縮合物を用いることもできる。更に、メラミン、尿素で置換した変成芳香族系ポリマーを用いることもでき、フラン樹脂も好適である。   As the aromatic condensation polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc. A modified aromatic condensation polymer such as a condensate of phenol, xylene and formaldehyde can also be used. Furthermore, a modified aromatic polymer substituted with melamine or urea can be used, and a furan resin is also suitable.

本発明でPASは次のようにして製造される。即ち、上記芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400〜800°Cの適当な温度まで徐々に加熱することにより、水素原子/炭素原子の原子数比(以下H/Cと記す)が0.5〜0.05、好ましくは0.35〜0.10の不溶不融性基体となる。   In the present invention, PAS is manufactured as follows. That is, by gradually heating the aromatic condensation polymer to a suitable temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including vacuum), the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as “atom number ratio”) H / C) is an insoluble and infusible substrate having 0.5 to 0.05, preferably 0.35 to 0.10.

上記の不溶不融性基体は、X線回折(CuKα)によれば、メイン・ピークの位置は2θで表して24°以下に存在し、また該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在する。即ち、上記不溶不融性基体は、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有し、リチウムイオンを安定にドーピングすることができる。   According to X-ray diffraction (CuKα), the insoluble and infusible substrate described above has a main peak position represented by 2θ of 24 ° or less, and between 41 and 46 ° in addition to the main peak. There are other broad peaks. That is, the insoluble infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, has an amorphous structure, and can be stably doped with lithium ions.

本発明で負極活物質の有する粒度特性は重要であり、その50%体積累積径(D50ともいう)が0.51.9μmである。D50が0.5μmより小さい場合には活物質粒子が嵩高くなってしまい、電極にした時の密度が小さくなることから単位容積当たりのエネルギー密度が低下する傾向があり好ましくない。更には、粒子同士を結着させるために必要なバインダー量が多くなるために内部抵抗が上昇することもある。また、逆にD50が1.9μmより大きい場合には、負極物質粒子の内部まで、溶媒和したリチウムイオンが拡散して出入りする際の速度が遅くなってしまうので好ましくない。本発明で、負極活物質のD50は、特には、0.5〜1.0μmが好適である。 In the present invention, the particle size characteristic of the negative electrode active material is important, and the 50% volume cumulative diameter (also referred to as D50) is 0.5 to 1.9 μm. When D50 is smaller than 0.5 μm, the active material particles become bulky, and the density when formed into an electrode becomes small, so that the energy density per unit volume tends to decrease, which is not preferable. Furthermore, since the amount of binder necessary for binding the particles increases, the internal resistance may increase. On the other hand, when D50 is larger than 1.9 μm, the rate at which the solvated lithium ions diffuse into and out of the negative electrode material particles becomes slow, which is not preferable. In the present invention, D50 of the negative electrode active material, JP, 0.5 to 1.0 [mu] m is preferred.

一般的にリチウムイオン二次電池においては、負極材は微粉化すると比表面積が大きくなり初期の充放電効率が低下しセル容量が低下することが知られている。したがって粒径としては20μm前後が主流となっている。一方、本発明のリチウムイオンキャパシタは、負極及び/又は正極に予めリチウムイオンがドーピングされるので、初期の充放電効率によりセル容量が変化することはないので、微粉化された負極活物質を用いる上で好適な蓄電装置である。   In general, in a lithium ion secondary battery, it is known that when the negative electrode material is pulverized, the specific surface area increases, the initial charge / discharge efficiency decreases, and the cell capacity decreases. Accordingly, the main particle size is around 20 μm. On the other hand, in the lithium ion capacitor of the present invention, since the negative electrode and / or the positive electrode are preliminarily doped with lithium ions, the cell capacity does not change due to the initial charge / discharge efficiency. A power storage device suitable for the above.

また、本発明の負極活物質粒子は、全メソ孔容積が0.005〜1.0cc/gであり、比表面積が0.01〜1000m/gであるのが好ましい。全メソ孔容積が0.005cc/gより小さい場合には、溶媒和したリチウムイオンの易動度が低下するので、高出力時や低温時には、負極活物質界面付近のリチウムイオン濃度が追随しにくくなり好ましくない。逆に、1.0cc/gより大きいと、活物質の真密度が低下して、電極体積当りの容量が小さくなり好ましくない。全メソ孔容積は、0.006〜0.8cc/gが好適である。また、比表面積は1000m/gを超えると、リチウムイオンの不可逆容量が大きくなり好ましくない。また、0.01m/gより小さい場合は、電解液の保液量が少なくなり、抵抗が大きくなるので好ましくない。比表面積は好ましくは、0.1〜600m/gである。 The negative electrode active material particle of the present invention, the total mesopore volume is 0.005~1.0cc / g, specific surface area is preferably 0.01~1000m 2 / g. When the total mesopore volume is less than 0.005 cc / g, the mobility of solvated lithium ions decreases, so the lithium ion concentration near the negative electrode active material interface is less likely to follow at high output and low temperatures. It is not preferable. On the other hand, if it is larger than 1.0 cc / g, the true density of the active material is lowered, and the capacity per electrode volume is decreased, which is not preferable. The total mesopore volume is preferably 0.006 to 0.8 cc / g. On the other hand, if the specific surface area exceeds 1000 m 2 / g, the irreversible capacity of lithium ions increases, which is not preferable. On the other hand, if it is less than 0.01 m 2 / g, the amount of electrolyte solution retained is reduced and the resistance is increased, which is not preferable. The specific surface area is preferably 0.1 to 600 m 2 / g.

本発明における負極は、上記特定の粒度特性を有する負極活物質粉末から形成されるが、その手段は既存のものが使用できる。即ち、負極活物質粉末、バインダー及び必要に応じて導電性粉末および増粘剤(CMCなど)を水系又は有機溶媒中に分散させてスラリーとし、該スラリーを上記した集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体に貼り付けてもよい。ここで使用されるバインダーとしては、例えば、SBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、アクリル系樹脂などを用いることができる。バインダーの使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40重量%の割合で加えることが適当である。   The negative electrode in the present invention is formed from the negative electrode active material powder having the above specific particle size characteristics, and existing means can be used. That is, a negative electrode active material powder, a binder and, if necessary, a conductive powder and a thickener (such as CMC) are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the above-described current collector, Alternatively, the slurry may be formed into a sheet shape in advance and attached to a current collector. As the binder used here, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, a thermoplastic resin such as polypropylene or polyethylene, an acrylic resin, or the like is used. Can do. The amount of the binder used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add it at a ratio of 2 to 40% by weight with respect to the negative electrode active material.

また、上記で必要に応じて使用される導電剤としては、アセチレンブラック、グラファイト、金属粉末等が挙げられる。導電剤の使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40%の割合で加えることが適当である。   Examples of the conductive agent used as necessary in the above include acetylene black, graphite, and metal powder. The amount of the conductive agent used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add the conductive agent at a ratio of 2 to 40% with respect to the negative electrode active material.

一方、本発明で正極の形成に使用される正極活物質としては、リチウムイオンと、例えばテトラフルオロボレートのようなアニオンを可逆的に担持できるものであれば特には限定されない。かかる正極活物質としては、例えば、活性炭、導電性高分子、ポリアセン系物質等を挙げることができる。本発明の正極活物質において例えば活性炭の有する粒度は一般的に使用される広い範囲のものが使用できる。例えば、その50%体積累積径(D50ともいう)が2μm以上であり好ましくは、2〜50μm、特に2〜20μmが好適である。また、平均細孔径が好ましくは10nm以下であり、比表面積が好ましくは600〜3000m/g、特には1300〜2500m/gであるのが好適である。 On the other hand, the positive electrode active material used for forming the positive electrode in the present invention is not particularly limited as long as it can reversibly carry lithium ions and anions such as tetrafluoroborate. Examples of the positive electrode active material include activated carbon, conductive polymer, polyacene-based material, and the like. In the positive electrode active material of the present invention, for example, activated carbon having a wide range of particle sizes can be used. For example, the 50% volume cumulative diameter (also referred to as D50) is 2 μm or more, preferably 2 to 50 μm, particularly 2 to 20 μm. The average pore diameter is preferably 10 nm or less, and the specific surface area is preferably 600 to 3000 m 2 / g, particularly 1300 to 2500 m 2 / g.

本発明における正極は、上記の正極活物質粉末から形成されるが、その手段は、上記負極の場合と同様に、既存のものが使用できる。即ち、負極活物質粉末、バインダー及び必要に応じて導電性粉末および増粘剤(CMCなど)を水系又は有機溶媒中に分散させてスラリーとし、該スラリーを上記した集電体に塗布するか、又は上記スラリーを予めシート状に成形し、これを集電体に貼り付けてもよい。ここで使用されるバインダーとしては、例えば、SBR等のゴム系バインダーやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、アクリル系樹脂などを用いることができる。バインダーの使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40重量%の割合で加えることが適当である。   The positive electrode in the present invention is formed from the above positive electrode active material powder, and the existing means can be used as in the case of the negative electrode. That is, a negative electrode active material powder, a binder and, if necessary, a conductive powder and a thickener (such as CMC) are dispersed in an aqueous or organic solvent to form a slurry, and the slurry is applied to the above-described current collector, Alternatively, the slurry may be formed into a sheet shape in advance and attached to a current collector. As the binder used here, for example, a rubber-based binder such as SBR, a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, a thermoplastic resin such as polypropylene or polyethylene, an acrylic resin, or the like is used. Can do. The amount of the binder used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add it at a ratio of 2 to 40% by weight with respect to the negative electrode active material.

また、上記で必要に応じて使用される導電剤としては、アセチレンブラック、グラファイト、金属粉末等が挙げられる。導電剤の使用量は、負極活物質の電気伝導度、電極形状等により異なるが、負極活物質に対して2〜40%の割合で加えることが適当である。   Examples of the conductive agent used as necessary in the above include acetylene black, graphite, and metal powder. The amount of the conductive agent used varies depending on the electrical conductivity of the negative electrode active material, the electrode shape, and the like, but it is appropriate to add the conductive agent at a ratio of 2 to 40% with respect to the negative electrode active material.

本発明のリチウムイオンキャパシタにおける、非プロトン性有機溶媒電解質溶液を形成する非プロトン性有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。更に、これら非プロトン性有機溶媒の二種以上を混合した混合液を用いることもできる。   Examples of the aprotic organic solvent forming the aprotic organic solvent electrolyte solution in the lithium ion capacitor of the present invention include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, Examples include dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solution in which two or more of these aprotic organic solvents are mixed can also be used.

また、上記の単一あるいは混合の溶媒に溶解させる電解質は、リチウムイオンを生成しうる電解質であれば、あらゆるものを用いることができる。このような電解質としては、例えばLiClO、LiAsF、LiBF、LiPF等が挙げられる。上記の電解質及び溶媒は、充分に脱水された状態で混合され、電解質溶液とするのであるが、電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため少なくとも0.1モル/l以上とすることが好ましく、0.5〜1.5モル/lの範囲内とすることが更に好ましい。 Any electrolyte can be used as long as it is an electrolyte capable of generating lithium ions as the electrolyte dissolved in the single or mixed solvent. Examples of such an electrolyte include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 and the like. The electrolyte and the solvent are mixed in a sufficiently dehydrated state to form an electrolyte solution. The concentration of the electrolyte in the electrolyte is at least 0.1 mol / l in order to reduce the internal resistance of the electrolyte. The above is preferable, and the range of 0.5 to 1.5 mol / l is more preferable.

また、本発明のリチウムイオンキャパシタとしては、特に、帯状の正極と負極とをセパレータを介して捲回させる円筒型セル、板状の正極と負極とをセパレータを介して各3層以上積層された角型セル、あるいは、板状の正極と負極とをセパレータを介した各3層以上積層物を外壮フォルム内封入したフォルム型セルなどの大容量のセルに適する。これらのセルの構造は、国際公開WO00/07255号公報、国際公開WO03/003395号公報、特開2004−266091号公報などにより既に知られており、本発明のキャパシタセルもかかる既存のセルと同様な構成とすることができる。   In addition, as the lithium ion capacitor of the present invention, in particular, a cylindrical cell in which a strip-like positive electrode and a negative electrode are wound through a separator, and a plate-like positive electrode and a negative electrode are laminated in three or more layers through a separator. It is suitable for a large-capacity cell such as a rectangular cell or a form-type cell in which a laminate of three or more layers each having a plate-like positive electrode and negative electrode through a separator is enclosed in an outer form. The structure of these cells is already known from International Publication WO00 / 07255, International Publication WO03 / 003395, Japanese Patent Application Laid-Open No. 2004-266091, etc., and the capacitor cell of the present invention is similar to such an existing cell. It can be set as a simple structure.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されないことはもちろんである。
(実施例1)
(負極活物質の製造法)
平均粒子径17μmの粒状フェノール樹脂(ベルパールR700;エアウォーターベルパール社製)を静置型電気炉中に入れ、窒素雰囲気下で720℃まで50℃/時間の昇温速度で昇温し、更に720℃で5時間保持することによりPAS粉体を得た。かくして得られたPAS粉体をアルミナ製ボールミル粉砕機で粉砕時間を6時間、40時間、72時間、170時間、720時間と変えることにより、平均粒子径D50%が、それぞれ7.1μm(試料1)、2.5μm(試料2)、1.9μm(試料3)、1.0μm(試料4)、0.5μm(試料5)の試料を得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Example 1
(Method for producing negative electrode active material)
Particulate phenolic resin (Bellpearl R700; manufactured by Air Water Bellpearl Co., Ltd.) having an average particle diameter of 17 μm is placed in a static electric furnace, heated to 720 ° C. at a heating rate of 50 ° C./hour in a nitrogen atmosphere, and further 720 A PAS powder was obtained by holding at 5 ° C. for 5 hours. By changing the pulverization time of the PAS powder thus obtained with an alumina ball mill pulverizer to 6 hours, 40 hours, 72 hours, 170 hours, and 720 hours, the average particle diameter D50% was 7.1 μm (sample 1). ), 2.5 μm (sample 2), 1.9 μm (sample 3), 1.0 μm (sample 4), and 0.5 μm (sample 5).

次に、上記試料1〜5の粉体92重量部に対し、アセチレンブラック粉体6重量部、アクリレート系共重合体バインダー5重量部、カルボキシメチルセルロース(CMC)4重量部、イオン交換水200重量部を加えて混合攪拌機にて充分混合することにより負極スラリー1〜5を得た。   Next, 6 parts by weight of acetylene black powder, 5 parts by weight of an acrylate copolymer binder, 4 parts by weight of carboxymethyl cellulose (CMC), and 200 parts by weight of ion-exchanged water with respect to 92 parts by weight of the powders of Samples 1 to 5 above. Were added and sufficiently mixed with a mixing stirrer to obtain negative electrode slurries 1 to 5.

(負極の単位重量当たりの静電容量測定が650F/gとなるために予め必要となるリチウムイオンのドーピング量の測定)
負極スラリー1〜5を、厚さ18μmの銅箔片面に対し、固形分目付量にして2.5mg/cmになるよう塗工し、200℃で20時間真空乾燥し、各電極を1.5×2.0cmサイズに切り出して負極箔電極1〜5を作製した。該負極箔電極と、対極として1.5×2.0cmサイズ、厚み250μmの金属リチウムを、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬セル1〜5を組んだ。また、参照極には金属リチウムを用いた。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を用いた。
(Measurement of the doping amount of lithium ions required in advance for the capacitance measurement per unit weight of the negative electrode to be 650 F / g)
The negative electrode slurries 1 to 5 were coated on one side of a copper foil having a thickness of 18 μm so as to have a solid content of 2.5 mg / cm 2 and vacuum-dried at 200 ° C. for 20 hours. 5 × 2.0 cm 2 size was cut out to prepare negative electrode foil electrodes 1 to 5. Simulated cells 1 to 5 were assembled with the negative electrode foil electrode, metallic lithium having a size of 1.5 × 2.0 cm 2 and a thickness of 250 μm as a counter electrode, and a non-woven fabric made of polyethylene having a thickness of 50 μm as a separator. Moreover, metallic lithium was used for the reference electrode. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.

この模擬セル1〜5に対し、25℃において10mAの定電流で負極電位が25mVになるまで充電し、その後25mVの定電圧を印加する定電流−定電圧充電を行った後、1mAにて1.5Vまで放電を行った。放電開始1分後の負極の電位から0.2V電位変化する間の放電時間より負極箔電極1〜5の負極活物質単位重量当たりの静電容量を求め、該静電容量が650F/gになるように充電時間を制御することにより充電量(リチウムイオンのドーピング量)を確認したところ、負極箔電極1は385mAh/g、負極箔電極2は420mAh/g、負極箔電極3は450mAh/g、負極箔電極4は530mAh/g、負極箔電極5は750mAh/gであった。即ち、平均粒子径D50%の値が小さい負極活物質程ドーピング量は大きくなった。結果を表1に示す。   The simulated cells 1 to 5 were charged at a constant current of 10 mA at 25 ° C. until the negative electrode potential became 25 mV, and then subjected to constant current-constant voltage charging in which a constant voltage of 25 mV was applied, and then 1 at 1 mA. Discharge to 5V. The electrostatic capacity per unit weight of the negative electrode active material of the negative electrode foil electrodes 1 to 5 was determined from the discharge time while the potential of the negative electrode changed 0.2 V from the potential of the negative electrode 1 minute after the start of discharge, and the capacitance was 650 F / g. The charging amount (lithium ion doping amount) was confirmed by controlling the charging time so that the negative electrode foil electrode 1 was 385 mAh / g, the negative electrode foil electrode 2 was 420 mAh / g, and the negative electrode foil electrode 3 was 450 mAh / g. The negative electrode foil electrode 4 was 530 mAh / g, and the negative electrode foil electrode 5 was 750 mAh / g. In other words, the negative electrode active material having a smaller average particle diameter D of 50% has a larger doping amount. The results are shown in Table 1.

Figure 0004705404
Figure 0004705404

(正極活性炭スラリーの製造法)
おが屑を原料とし、電気炉中に入れ窒素気流下で50℃/時間の速度950℃まで昇温した後、窒素/水蒸気1:1の混合ガスにより12時間賦活することにより、比表面積2450m/gの活性炭を製造した。該活性炭をアルミナ製ボールミル粉砕機で5時間粉砕して平均粒子径が7μmの活性炭粉末を得た。
(Method for producing positive electrode activated carbon slurry)
Sawdust is used as a raw material, put in an electric furnace, heated to a rate of 950 ° C. at a rate of 50 ° C./hour in a nitrogen stream, and then activated with a mixed gas of nitrogen / water vapor 1: 1 for 12 hours, whereby a specific surface area of 2450 m 2 / g of activated carbon was produced. The activated carbon was pulverized with an alumina ball mill pulverizer for 5 hours to obtain activated carbon powder having an average particle size of 7 μm.

上記活性炭粉末92重量部、アセチレンブラック粉体6重量部、水溶性アクリレート系共重合体バインダー7重量部、カルボキシメチルセルロース(CMC)4重量部、イオン交換水200重量部を混合攪拌機にて充分混合することにより正極スラリー1を得た。   92 parts by weight of the activated carbon powder, 6 parts by weight of acetylene black powder, 7 parts by weight of a water-soluble acrylate copolymer binder, 4 parts by weight of carboxymethyl cellulose (CMC), and 200 parts by weight of ion-exchanged water are sufficiently mixed with a mixing stirrer. Thus, positive electrode slurry 1 was obtained.

(正極の単位重量当たりの静電容量測定)
正極スラリー1を、カーボン系導電塗料をコーティングした厚さ20μmのアルミニウム箔片面に固形分目付量にして4.0mg/cmになるよう塗工し、200℃で20時間真空乾燥して正極を得た。この正極を1.5×2.0cmサイズに切り出して、乾燥することにより正極箔電極1を得た。
(Capacitance measurement per unit weight of positive electrode)
The positive electrode slurry 1 was applied to one side of an aluminum foil having a thickness of 20 μm coated with a carbon-based conductive paint so that the solid content was 4.0 mg / cm 2, and vacuum-dried at 200 ° C. for 20 hours to form a positive electrode. Obtained. The positive electrode foil electrode 1 was obtained by cutting this positive electrode into 1.5 × 2.0 cm 2 size and drying it.

上記正極箔電極1を、同サイズで厚み250μmのリチウム金属を対極として、厚さ50μmのポリエチレン製不織布をセパレータとして介し模擬セル6を組み立てた。また、参照極には金属リチウムを用いた。電解液としては、エチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を用いた。 A simulated cell 6 was assembled using the positive electrode foil electrode 1 having a lithium metal of the same size and a thickness of 250 μm as a counter electrode and a polyethylene non-woven fabric having a thickness of 50 μm as a separator. Moreover, metallic lithium was used for the reference electrode. As the electrolytic solution, a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 was used.

この模擬セル6に対し、10mAの定電流で正極電位が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、1mAの定電流で正極電位が2.5Vになるまで放電した。3.5V〜2.5V間の放電時間より正極箔電極1の単位重量当たりの静電容量を求めたところ88F/gであった。   The simulated cell 6 was charged with a constant current of 10 mA until the positive electrode potential reached 3.8 V, and then subjected to constant current-constant voltage charging in which a constant voltage of 3.8 V was applied for 1 hour. Next, the battery was discharged at a constant current of 1 mA until the positive electrode potential became 2.5V. The capacitance per unit weight of the positive electrode foil electrode 1 was determined from the discharge time between 3.5 V and 2.5 V, and found to be 88 F / g.

(負極エキスパンドメタル電極の製造法)
厚さ32μm(開口率57%)の銅製エキスパンドメタル(日本金属工業社製)に対し、上記負極スラリー1〜5を順次、縦型両面同時ダイコーターにて各活物質の目付け量が同じになるようにダイの吐出量を調整し両面同時塗工、乾燥することにより、負極1〜5を得た。各負極の総厚みは負極1が165μm、負極2が171μm、負極3が173μm、負極4が180μm、負極5が193μmであった。
(Production method of negative electrode expanded metal electrode)
With respect to a copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 32 μm (aperture ratio 57%), the negative electrode slurries 1 to 5 are successively applied in the same amount of each active material by a vertical double-sided simultaneous die coater. Thus, negative electrode 1-5 was obtained by adjusting the discharge amount of die | dye, coating both surfaces simultaneously, and drying. The total thickness of each negative electrode was 165 μm for negative electrode 1, 171 μm for negative electrode 2, 173 μm for negative electrode 3, 180 μm for negative electrode 4, and 193 μm for negative electrode 5.

(正極エキスパンドメタル電極の製造法)
厚さ38μm(開口率45%)のアルミニウム製エキスパンドメタル(日本金属工業社製)の両面に水系のカーボン系導電塗料を縦型両面同時ダイコーターにて両面同時塗工し、乾燥することにより導電層が形成された正極用集電体を得た。全体の厚み(集電体厚みと導電層厚みの合計)は52μmであり貫通孔はほぼ導電塗料により閉塞された。上記正極スラリー1をコンマコーターにて該正極集電体の両面に片面ずつ塗工、乾燥することにより、総厚み260μmの正極1を得た。
(Production method of positive electrode expanded metal electrode)
Water-based carbon conductive paint is coated on both sides of aluminum expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) with a thickness of 38μm (aperture ratio 45%) on both sides with a vertical double-sided simultaneous die coater and dried to conduct electricity. A positive electrode current collector with a layer formed thereon was obtained. The total thickness (the total of the current collector thickness and the conductive layer thickness) was 52 μm, and the through hole was almost blocked by the conductive paint. The positive electrode slurry 1 was applied to both surfaces of the positive electrode current collector on one side with a comma coater and dried to obtain a positive electrode 1 having a total thickness of 260 μm.

(積層セルの作製)
負極1〜5および正極1を2.4cm×3.8cmの大きさにカットし、セパレータとして厚さ35μmのセルロース/レーヨン混合不織布を用いて、負極集電体、正極集電体の接続端子との溶接部(以下「接続端子溶接部」という)がそれぞれ交互に反対側になるよう配置し、負極1〜5について、それぞれ負極6枚、正極5枚を積層したセルを作製した。
(Production of stacked cells)
The negative electrodes 1 to 5 and the positive electrode 1 are cut to a size of 2.4 cm × 3.8 cm, and a cellulose / rayon mixed nonwoven fabric having a thickness of 35 μm is used as a separator. The welded portions (hereinafter referred to as “connecting terminal welded portions”) were alternately arranged on the opposite side, and negative electrodes 1 to 5 were each fabricated by stacking 6 negative electrodes and 5 positive electrodes.

最上部と最下部はセパレータを配置させて、4辺をテープ止めすることにより電極積層ユニットを得た。負極活物質重量に対して表1に示す予め必要となる充電量の調整は、所定量となるようなリチウム金属箔を厚さ80μmのステンレス網に圧着したものを作製し、これを負極と対向するように電極積層ユニットの最外部に1枚配置した。負極(6枚)とリチウム金属を圧着したステンレス網はそれぞれ溶接し、接触させ、負極とリチウム金属箔がショートした形の三極積層ユニットを得た。負極1〜5に対し、所定量となるリチウム金属箔の厚みは表2に示す。   Separators were placed on the uppermost and lowermost parts, and four sides were taped to obtain an electrode laminate unit. For the adjustment of the required charge amount shown in Table 1 with respect to the weight of the negative electrode active material, a lithium metal foil having a predetermined amount is bonded to a stainless steel net having a thickness of 80 μm, and this is opposed to the negative electrode. One sheet was arranged on the outermost part of the electrode stacking unit. The negative electrode (six pieces) and the stainless steel mesh to which the lithium metal was pressure bonded were welded and brought into contact with each other to obtain a three-pole laminated unit in which the negative electrode and the lithium metal foil were short-circuited. Table 2 shows the thickness of the lithium metal foil that is a predetermined amount with respect to the negative electrodes 1 to 5.

Figure 0004705404
Figure 0004705404

次に、上記三極積層ユニットの正極集電体の端子溶接部(5枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのアルミニウム製正極端子を重ねて超音波溶接した。同様に負極集電体の端子溶接部(6枚)に、予めシール部分にシーラントフィルムを熱融着した巾10mm、長さ30mm、厚さ0.2mmのニッケル製負極端子を重ねて抵抗溶接し、縦102mm、横52mm、深さ1.3mmに深絞りした外装フィルム2枚の内部へ設置した。   Next, a positive electrode made of aluminum having a width of 10 mm, a length of 30 mm, and a thickness of 0.2 mm, in which a sealant film is heat-sealed in advance to the terminal welded portion (five pieces) of the positive electrode current collector of the three-pole laminated unit. The terminals were superposed and ultrasonically welded. Similarly, a negative electrode terminal made of nickel (width 10mm, length 30mm, thickness 0.2mm), in which a sealant film is heat-sealed to the seal portion in advance, is overlapped and resistance welded to the terminal welds (six pieces) of the negative electrode current collector. And installed in two exterior films deeply drawn to 102 mm in length, 52 mm in width, and 1.3 mm in depth.

外装ラミネートフィルムの端子部2辺と他の1辺を熱融着した後、電解液としてエチレンカーボネート、ジエチルカーボネートおよびプロピレンカーボネートを重量比で3:4:1とした混合溶媒に、1モル/lの濃度にLiPFを溶解した溶液を真空含浸させた後、残り1辺を減圧下にて熱融着し、真空封止を行うことによりフィルム型キャパシタを各3セル組立てた。 After heat-sealing the two sides of the terminal portion of the exterior laminate film and the other side, 1 mol / l in a mixed solvent of ethylene carbonate, diethyl carbonate and propylene carbonate in a weight ratio of 3: 4: 1 as an electrolytic solution. A solution in which LiPF 6 was dissolved at a concentration of 5 was vacuum impregnated, and the remaining one side was heat-sealed under reduced pressure, and vacuum sealing was performed to assemble three film capacitors.

(セルの特性評価)
14日間室温にて放置後、各負極につき1セルを分解したところ、リチウム金属はいずれも完全に無くなっていたことから、負極活物質の単位重量当たりに650F/gの静電容量を得るためのリチウムイオンがドーピングされたと判断した。
(Characteristic evaluation of cells)
After leaving at room temperature for 14 days, one cell was disassembled for each negative electrode. As a result, all of the lithium metal was completely removed, so that a capacitance of 650 F / g per unit weight of the negative electrode active material was obtained. It was judged that lithium ions were doped.

残ったフィルム型キャパシタの各セルを、25℃および−20℃で24時間放置した後に、200mAの定電流でセル電圧が3.8Vになるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、20mAの定電流でセル電圧が1.9Vになるまで放電した。この3.8V−1.9Vのサイクルを繰り返し、3回目の放電容量を測定した。25℃と−20℃の放電容量、比率および25℃のエネルギー密度測定結果を表3に示す。   The remaining cells of the film type capacitor were left at 25 ° C. and −20 ° C. for 24 hours, then charged with a constant current of 200 mA until the cell voltage reached 3.8 V, and then a constant voltage of 3.8 V was applied. Constant current-constant voltage charging was performed for 1 hour. Next, the battery was discharged at a constant current of 20 mA until the cell voltage reached 1.9V. This 3.8V-1.9V cycle was repeated, and the third discharge capacity was measured. Table 3 shows the discharge capacity and ratio at 25 ° C. and −20 ° C. and the energy density measurement results at 25 ° C.

Figure 0004705404
Figure 0004705404

また、各1セルずつ、正極と負極を短絡させ正極の電位を測定したところ、いずれの正極電位も0.80〜0.95Vの範囲であり、0.95V以下であった。 Moreover, when the positive electrode and the negative electrode were short-circuited for each cell and the potential of the positive electrode was measured, all the positive electrode potentials were in the range of 0.80 to 0.95 V, and were 0.95 V or less.

表3に示すように、適切にリチウムイオン量を調整することにより、正極と負極を短絡させた後の正極電位が0.95V以下となることから、微粉化された負極活物質を用いても容量は低下せず、高いエネルギー密度を有した積層フィルム型キャパシタが得られた。中でもD50%粒径が0.51.9μmの範囲となる試料3、4、5はいずれも−20℃という低温領域でも25℃の放電容量に対し75%以上となる高い容量保持率を有することがわかる。



As shown in Table 3, by adjusting the amount of lithium ions appropriately, the positive electrode potential after short-circuiting the positive electrode and the negative electrode is 0.95 V or less, so the finely divided negative electrode active material is used. However, the capacity did not decrease, and a multilayer film capacitor having a high energy density was obtained. Among them, samples 3, 4 and 5 whose D50% particle size is in the range of 0.5 to 1.9 μm have a high capacity retention rate of 75% or more with respect to the discharge capacity of 25 ° C. even in a low temperature region of −20 ° C. It can be seen that



Claims (5)

正極、負極、及び、電解液としてリチウム塩の非プロトン性有機溶媒電解質溶液を備え、正極活物質がリチウムイオン及び/又はアニオンを可逆的に担持可能な物質であり、かつ負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極と負極を短絡させた後の正極電位が0.95V以下となるリチウムイオンキャパシタであって、上記負極が、50%体積累積径(D50)が0.51.9μmである負極活物質粒子から形成され、かつ前記負極活物質粒子がポリアセン系物質であることを特徴とするリチウムイオンキャパシタ。 A positive electrode, a negative electrode, and an aprotic organic solvent electrolyte solution of lithium salt as an electrolyte solution, the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions, and the negative electrode active material is lithium ions Is a lithium ion capacitor having a positive electrode potential of 0.95 V or less after the positive electrode and the negative electrode are short-circuited, and the negative electrode has a 50% volume cumulative diameter (D50). A lithium ion capacitor , wherein the negative electrode active material particles are 0.5 to 1.9 μm , and the negative electrode active material particles are a polyacene-based material . 前記負極及び/又は正極が、それぞれ該負極及び/又は該正極と対向して配置されたリチウムイオン供給源との電気化学的接触によって予めリチウムイオンがドーピングされている請求項1に記載のリチウムイオンキャパシタ。   2. The lithium ion according to claim 1, wherein the negative electrode and / or the positive electrode are previously doped with lithium ions by electrochemical contact with a lithium ion source disposed opposite to the negative electrode and / or the positive electrode, respectively. Capacitor. 負極活物質は、正極活物質に比べて、単位重量あたりの静電容量が3倍以上を有し、かつ正極活物質重量が負極活物資の重量よりも大きい請求項1又は2に記載のリチウムイオンキャパシタ。   3. The lithium according to claim 1, wherein the negative electrode active material has a capacitance per unit weight of at least three times that of the positive electrode active material, and the weight of the positive electrode active material is larger than the weight of the negative electrode active material. Ion capacitor. 前記正極及び負極が、それぞれ表裏面を貫通する孔を有する集電体を備える請求項1〜3のいずれかに記載のリチウムイオンキャパシタ。   The lithium ion capacitor according to claim 1, wherein each of the positive electrode and the negative electrode includes a current collector having holes penetrating the front and back surfaces. ポリアセン系物質が、芳香族系縮合ポリマーを非酸化性雰囲気にて400〜800℃で熱処理し、H/Cが0.05〜0.5の不溶不融性基体である請求項1〜のいずれかに記載のリチウムイオンキャパシタ。 Polyacene substance, heat treated at 400 to 800 ° C. The aromatic condensation polymer in a non-oxidizing atmosphere, H / C is according to claim 1-4 which is insoluble and infusible base of 0.05 to 0.5 The lithium ion capacitor in any one.
JP2005125707A 2005-04-22 2005-04-22 Lithium ion capacitor Active JP4705404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005125707A JP4705404B2 (en) 2005-04-22 2005-04-22 Lithium ion capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005125707A JP4705404B2 (en) 2005-04-22 2005-04-22 Lithium ion capacitor

Publications (2)

Publication Number Publication Date
JP2006303330A JP2006303330A (en) 2006-11-02
JP4705404B2 true JP4705404B2 (en) 2011-06-22

Family

ID=37471236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005125707A Active JP4705404B2 (en) 2005-04-22 2005-04-22 Lithium ion capacitor

Country Status (1)

Country Link
JP (1) JP4705404B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231234A (en) 2008-03-25 2009-10-08 Fuji Heavy Ind Ltd Carbon material for negative electrode, electric power storage device, and product having mounted thereon electric power storage device
US8617744B2 (en) 2009-06-02 2013-12-31 Nec Corporation Electricity storage device
CN104641435B (en) * 2012-08-30 2017-05-03 株式会社吴羽 Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
KR20220016125A (en) * 2019-06-03 2022-02-08 무사시 에너지 솔루션즈 가부시키가이샤 Electrical storage device and manufacturing method of lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236755A (en) * 1992-12-16 1994-08-23 Osaka Gas Co Ltd Negative electrode material, its manufacture, and lithium secondary battery
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236755A (en) * 1992-12-16 1994-08-23 Osaka Gas Co Ltd Negative electrode material, its manufacture, and lithium secondary battery
JPH0955342A (en) * 1994-12-27 1997-02-25 Asahi Glass Co Ltd Electric double layer capacitor
JPH11297578A (en) * 1998-04-10 1999-10-29 Mitsubishi Chemical Corp Electric double-layer capacitor
WO2003003395A1 (en) * 2001-06-29 2003-01-09 Kanebo, Limited Organic electrolyte capacitor

Also Published As

Publication number Publication date
JP2006303330A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4731967B2 (en) Lithium ion capacitor
JP4971729B2 (en) Lithium ion capacitor
JP4813152B2 (en) Lithium ion capacitor
JP4924966B2 (en) Lithium ion capacitor
JP5322435B2 (en) Negative electrode active material for electricity storage devices
JP4705566B2 (en) Electrode material and manufacturing method thereof
JP4857073B2 (en) Lithium ion capacitor
JP2008066053A (en) Negative electrode active material for power storage device, and its manufacturing method
JP2007180431A (en) Lithium ion capacitor
JP2006338963A (en) Lithium ion capacitor
JP2006286926A (en) Lithium ion capacitor
JP2006286923A (en) Lithium ion capacitor
JP2007019108A (en) Lithium ion capacitor
JP2007067088A (en) Lithium ion capacitor
JP4705404B2 (en) Lithium ion capacitor
JP4731974B2 (en) Lithium ion capacitor
JP2007180429A (en) Lithium ion capacitor
JP4731979B2 (en) Lithium ion capacitor
JP4732074B2 (en) Lithium ion capacitor
JP2008166309A (en) Lithium ion capacitor
WO2015163093A1 (en) Positive electrode for lithium ion capacitor, and lithium ion capacitor
JP2008060479A (en) Lithium ion capacitor
JP2007180434A (en) Lithium ion capacitor
JP2007180437A (en) Lithium ion capacitor
JP2006286921A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250