JP2012004491A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2012004491A
JP2012004491A JP2010140698A JP2010140698A JP2012004491A JP 2012004491 A JP2012004491 A JP 2012004491A JP 2010140698 A JP2010140698 A JP 2010140698A JP 2010140698 A JP2010140698 A JP 2010140698A JP 2012004491 A JP2012004491 A JP 2012004491A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode
positive electrode
storage device
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010140698A
Other languages
Japanese (ja)
Inventor
Riza Miyagawa
里咲 宮川
Noriyuki Hado
之規 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010140698A priority Critical patent/JP2012004491A/en
Publication of JP2012004491A publication Critical patent/JP2012004491A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device in which internal resistance is reduced, an lithium ion is doped to a negative electrode in short time, and electrodes are uniformly formed.SOLUTION: A power storage device is formed of a unit including a nonaqueous electrolyte 7 containing a lithium ion, a lithium ion supply source 6, an positive electrode capable of reversibly carrying an anion or a cation, and a negative electrode capable of reversibly doping the lithium ion for alternately laminating the positive electrode and the negative electrode through a separator 3. As for the positive electrode or the negative electrode having a collector formed by coating electrode paint containing a positive electrode active material or a negative electrode active material to one side or both sides thereof, the collector having a through hole with an average diameter of not less than 0.3 μm and not more than 1.0 μm and an aperture of not less than 0.1% and not more than 1.0% is used.

Description

本発明は、ハイブリットキャパシタまたは二次電池と呼ばれる蓄電デバイスに関するものである。   The present invention relates to an electricity storage device called a hybrid capacitor or a secondary battery.

近年、大電流を必要とするハイブリッド自動車などの駆動用としてのハイパワー用途や電力補助供給源として、蓄電デバイスに対する期待が高まっている。   In recent years, there is an increasing expectation for power storage devices as high power applications for driving hybrid vehicles and the like that require large currents, and as power auxiliary supply sources.

最近ではこれらの用途として、正極に電気二重層キャパシタ用として用いられるような分極性電極を使用し、負極にリチウムイオンを吸蔵(ドープ)および脱離しうる炭素材料を使用したハイブリットキャパシタと呼ばれる蓄電デバイスが提案されている。このハイブリッドキャパシタは、負極にあらかじめリチウムイオンをドープして、ハイブリッドキャパシタの電圧(正極電位と負極電位の電位差)を高くすることで、高耐電圧化、高エネルギー密度化できるという特長を有している。   Recently, as these applications, a power storage device called a hybrid capacitor using a polarizable electrode as used for an electric double layer capacitor in the positive electrode and a carbon material capable of inserting and extracting lithium ions in the negative electrode Has been proposed. This hybrid capacitor has the feature that high withstand voltage and high energy density can be achieved by increasing the voltage of the hybrid capacitor (potential difference between the positive electrode potential and the negative electrode potential) by doping lithium ions into the negative electrode in advance. Yes.

また、リチウムイオンのドープ技術は、リチウムイオン二次電池にも応用可能であり、負極にリチウムイオンをドープすることで、リチウムを含まない高容量化合物を正極活物質に用いることが可能になり、正極活物質自体にリチウムイオンをドープして脱離させる化学反応を伴わないことから、充放電サイクルに優れた蓄電デバイスを提供することが出来る。   The lithium ion doping technology can also be applied to lithium ion secondary batteries, and by doping lithium ions into the negative electrode, it becomes possible to use a high-capacity compound that does not contain lithium as the positive electrode active material, Since the positive electrode active material itself does not involve a chemical reaction in which lithium ions are doped and desorbed, an electricity storage device having an excellent charge / discharge cycle can be provided.

特許文献1、2には、リチウム金属と負極を電気化学的に接触させることによりリチウムイオンが負極にドープされるという二次電池またはキャパシタが提案されている。   Patent Documents 1 and 2 propose secondary batteries or capacitors in which lithium ions are doped into the negative electrode by bringing lithium metal and the negative electrode into electrochemical contact.

特に、特許文献1には、正極集電体及び負極集電体がそれぞれ表裏面を貫通する孔を備えるとともにその気孔率が1%以上30%以下であり、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムを、正極あるいは負極と対向して配置されたリチウムと負極を電気化学的に接触することにより、該リチウムの全部あるいは一部を、該リチウムに隣接する負極には直接に、その他の負極には少なくとも1層以上の正極を透過させて担持させた有機電解質電池が提案されている。   In particular, in Patent Document 1, each of the positive electrode current collector and the negative electrode current collector has holes penetrating the front and back surfaces, and the porosity thereof is 1% or more and 30% or less, and the negative electrode active material reversibly absorbs lithium. It is possible to support lithium from the negative electrode by contacting the positive electrode or lithium disposed opposite to the negative electrode and the negative electrode electrochemically, so that all or a part of the lithium is made into the negative electrode adjacent to the lithium. There has been proposed an organic electrolyte battery in which at least one positive electrode is permeated and supported on the other negative electrode.

国際公開第2000/007255号International Publication No. 2000/007255 国際公開第2003/003395号International Publication No. 2003/003395

しかし、特許文献1、2のようにリチウム金属と負極を電気化学的に接触させることによりリチウムイオンを負極にドープする方法は、ドープにかなりの時間を要するため、工程上時間を短くすることが課題である。   However, the method of doping lithium ions into the negative electrode by bringing lithium metal and the negative electrode into electrochemical contact as in Patent Documents 1 and 2 requires a considerable amount of time for doping, and therefore the process time can be shortened. It is a problem.

また、特許文献1のような表裏面に貫通孔を多く有する集電体は、活物質を含むスラリー状の電極塗料を塗工して作製した電極層との接触抵抗が高くなる為、蓄電デバイスの内部抵抗は大きくなり、高電流において高容量が得られないことが課題である。さらに、表裏面に貫通孔を多く有する集電体では、活物質を含むスラリー状の電極塗料を塗工する場合に塗工面の反対側に抜けやすく、均一な電極が作製できない。均一な電極を作製するためには、高コストの特殊な縦型コーターを使用しなければならないといった課題もある。   Further, a current collector having many through-holes on the front and back surfaces as in Patent Document 1 has a high contact resistance with an electrode layer produced by applying a slurry-like electrode paint containing an active material. The problem is that the internal resistance of the capacitor increases and a high capacity cannot be obtained at a high current. Furthermore, in a current collector having many through holes on the front and back surfaces, when applying a slurry-like electrode paint containing an active material, it tends to come off to the opposite side of the coated surface, and a uniform electrode cannot be produced. In order to produce a uniform electrode, there is a problem that a special high-cost vertical coater must be used.

本発明では上記課題を解決するために、集電体に施す貫通孔の大きさ、開孔率、厚み等や正極、負極に含まれる活物質を制御することによって、作業工程の所要時間を短縮し、内部抵抗等の電気特性を改善した蓄電デバイスを提供するものである。   In the present invention, in order to solve the above-mentioned problems, the time required for the work process is shortened by controlling the size, the opening ratio, the thickness, etc. of the through-holes applied to the current collector and the active material contained in the positive electrode and the negative electrode. Thus, an electrical storage device having improved electrical characteristics such as internal resistance is provided.

すなわち、本発明の蓄電デバイスは、リチウムイオンを含有する非水系電解液と、リチウム供給源と、アニオンまたはカチオンを可逆的に担持可能な正極と、リチウムイオンを可逆的にドープ可能な負極を備え、セパレータを介して前記正極と前記負極を交互に積層するユニットで構成され、ユニットの最外部の片側もしくは両側にはリチウム供給源が積層された蓄電デバイスであって、正極活物質または負極活物質を含む電極塗料を片面もしくは両面に塗工して前記正極または前記負極を構成する集電体の平均直径が0.3μm以上1.0μm以下の貫通孔を有し、かつ前記貫通孔の開孔率が0.1%以上1.0%以下であることを特徴とする。   That is, the electricity storage device of the present invention includes a non-aqueous electrolyte containing lithium ions, a lithium supply source, a positive electrode capable of reversibly supporting anions or cations, and a negative electrode capable of reversibly doping lithium ions. An electricity storage device comprising a unit in which the positive electrode and the negative electrode are alternately stacked via a separator, and a lithium supply source is stacked on one or both sides of the outermost unit, the positive electrode active material or the negative electrode active material An electrode paint containing a through-hole having a mean diameter of a current collector constituting the positive electrode or the negative electrode of 0.3 μm or more and 1.0 μm or less by coating on one or both sides, and opening the through-hole The rate is from 0.1% to 1.0%.

本発明の蓄電デバイスは、前記集電体の厚みが8μm以上、50μm以下であることを特徴とする。   The electricity storage device of the present invention is characterized in that the current collector has a thickness of 8 μm or more and 50 μm or less.

本発明の蓄電デバイスにおいて、正極に含まれる正極活物質及び負極に含まれる負極活物質は、累積体積分率50%に対応する粒子径(D50)が1.0μm以上8.0μm以下であることを特徴とする。   In the electricity storage device of the present invention, the positive electrode active material contained in the positive electrode and the negative electrode active material contained in the negative electrode have a particle size (D50) corresponding to a cumulative volume fraction of 50% of 1.0 μm or more and 8.0 μm or less. It is characterized by.

本発明の蓄電デバイスは、集電体を除く負極及び正極の片面の厚みを1μm以上30μm以下とした電極を用いたことを特徴とする。   The electricity storage device of the present invention is characterized in that an electrode having a thickness of 1 μm or more and 30 μm or less of the negative electrode and the positive electrode excluding the current collector is used.

本発明によれば、集電体に活物質を含む電極塗料を片面もしくは両面に塗工した電極について、平均直径が0.3μm以上1.0μm以下の貫通孔を有し、かつ開孔率が0.1%以上1.0%以下の集電体を用いることで、活物質を含むスラリー状の電極塗料を塗工して作製した電極層との接触抵抗が低くなる為、蓄電デバイスの内部抵抗は低減し、高電流において高容量が得られる。   According to the present invention, an electrode in which an electrode paint containing an active material is applied to one or both sides of a current collector has through-holes having an average diameter of 0.3 μm or more and 1.0 μm or less, and an open area ratio is By using a current collector of 0.1% or more and 1.0% or less, the contact resistance with the electrode layer produced by applying the slurry-like electrode paint containing the active material is lowered, so that the inside of the electricity storage device The resistance is reduced, and a high capacity is obtained at a high current.

また、負極とリチウム金属箔とを接触させた状態で非水系電解液とともに容器中に封入して、予めリチウムをイオン化させた状態でドープさせた、すなわちプレドープに必要な最低限の貫通孔を有するため、均一かつ迅速なドープを行うことができる。さらに、前述の集電体を用いることで、特殊な塗工装置を用いなくても、活物質を含むスラリー状の電極塗料を均一に塗工することが可能となる。   In addition, the negative electrode and the lithium metal foil are sealed in a container together with a non-aqueous electrolyte solution, and doped in advance with lithium ionized, that is, it has the minimum through-holes necessary for pre-doping. Therefore, uniform and quick dope can be performed. Furthermore, by using the above-described current collector, it is possible to uniformly apply a slurry-like electrode paint containing an active material without using a special coating apparatus.

集電体の厚みを8μm以上、50μm以下と薄くすることで、ユニットあたりの積層枚数を増やして面積を増やす事が可能となり、蓄電デバイスの低抵抗化が図れる。また、薄くすることで負極へのリチウムイオンのドープ時間は短縮される。   By reducing the thickness of the current collector to 8 μm or more and 50 μm or less, the number of stacked layers per unit can be increased to increase the area, and the resistance of the power storage device can be reduced. Moreover, the doping time of the lithium ion to a negative electrode is shortened by making it thin.

正極に含まれる正極活物質及び負極に含まれる負極活物質を、D50を1.0μm以上8.0μm以下にすることで粒子間において導通し易くなり、さらに蓄電デバイスの内部抵抗は低減する。   When the positive electrode active material contained in the positive electrode and the negative electrode active material contained in the negative electrode are made to have a D50 of 1.0 μm or more and 8.0 μm or less, conduction between particles is facilitated, and the internal resistance of the electricity storage device is further reduced.

集電体を除く負極及び正極の片面の厚みを30μm以下に薄く塗工すると、電解液中のリチウムイオンの拡散抵抗は低減し、さらに蓄電デバイスの内部抵抗は低減して高電流時の容量は増大する。   When the thickness of one side of the negative electrode and the positive electrode excluding the current collector is thinly applied to 30 μm or less, the diffusion resistance of lithium ions in the electrolytic solution is reduced, the internal resistance of the electricity storage device is further reduced, and the capacity at high current is Increase.

また、薄い電極を用いるとユニットあたりの積層枚数を増やす事が可能となるため、対向面積を増やして内部抵抗を低減することが可能となる。   Further, when thin electrodes are used, the number of stacked layers per unit can be increased, so that the opposing area can be increased and the internal resistance can be reduced.

さらに、電極を薄くすることで、負極へのリチウムイオンのドープ時間の短縮化が図られた蓄電デバイスを提供することができる。   Furthermore, by reducing the thickness of the electrode, it is possible to provide an electricity storage device in which the doping time of lithium ions into the negative electrode is shortened.

本発明の蓄電デバイスの模式断面図。The schematic cross section of the electrical storage device of this invention.

本発明の実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の蓄電デバイスの模式断面図である。   FIG. 1 is a schematic cross-sectional view of an electricity storage device of the present invention.

集電体を除く正極の片面1にはアニオンまたはカチオンを可逆的に担持可能な電極が用いられ、集電体を除く負極の片面2にはリチウムイオンを可逆的にドープ可能な電極が用いられる。電荷を取り出すための正極集電体4の両面に集電体を除く正極の片面1を配置して正極としている。同様に電荷を取り出すための負極集電体5の両面に集電体を除く負極の片面2を配置して負極としている。   An electrode capable of reversibly supporting anions or cations is used on one side 1 of the positive electrode excluding the current collector, and an electrode capable of reversibly doping lithium ions is used on one side 2 of the negative electrode excluding the current collector. . One side 1 of the positive electrode excluding the current collector is arranged on both sides of the positive electrode current collector 4 for taking out electric charges to form a positive electrode. Similarly, one side 2 of the negative electrode excluding the current collector is disposed on both sides of the negative electrode current collector 5 for taking out electric charges to form a negative electrode.

負極が最外部になるように、負極と正極はセパレータ3を介して交互に積層したユニットが構成される。ユニット最外部に、片側もしくは両側にはリチウム供給源6を積層させ、リチウムイオンを含有する非水系溶液である電解液7が含浸された構成として蓄電デバイスが作製される。   A unit in which the negative electrode and the positive electrode are alternately stacked via the separator 3 is configured so that the negative electrode is the outermost part. A lithium storage source 6 is laminated on one or both sides on the outermost part of the unit, and an electricity storage device is manufactured as a structure impregnated with an electrolyte solution 7 that is a non-aqueous solution containing lithium ions.

本発明は、蓄電デバイスの内部抵抗を低減し、かつリチウムイオンを負極へ短時間にドープするためになされるとともに、均一な電極を作製するためになされたものであり、リチウムイオンを含有する非水系電解液と、リチウム供給源と、アニオンまたはカチオンを可逆的に担持可能な正極と、リチウムイオンを可逆的にドープ可能な負極を備え、セパレータを介して前記正極と前記負極を交互に積層するユニットで構成され、ユニットの最外部の片側もしくは両側にはリチウム供給源が積層された蓄電デバイスであって、集電体に活物質を含む電極塗料を片面もしくは両面に塗工した電極について、平均直径が0.3μm以上1.0μm以下の貫通孔を有し、かつ開孔率が0.1%以上1.0%以下の集電体を用いることで、活物質を含むスラリー状の電極塗料を塗工して作製した電極層との接触抵抗が低くなる為、蓄電デバイスの内部抵抗は低減し、高電流において高容量が得られる。   The present invention has been made to reduce the internal resistance of an electricity storage device and to dope lithium ions into the negative electrode in a short time, and to make a uniform electrode. An aqueous electrolyte solution, a lithium supply source, a positive electrode capable of reversibly supporting anions or cations, and a negative electrode capable of reversibly doping lithium ions are provided, and the positive electrode and the negative electrode are alternately stacked via a separator. It is an electricity storage device that consists of a unit and has a lithium supply source laminated on one or both sides of the outermost part of the unit, and for an electrode in which an electrode paint containing an active material is applied to one or both sides of a current collector By using a current collector having a through hole with a diameter of 0.3 μm or more and 1.0 μm or less and an open area ratio of 0.1% or more and 1.0% or less, Since the contact resistance with the electrode layer produced by applying the rally-like electrode paint is lowered, the internal resistance of the electricity storage device is reduced, and a high capacity can be obtained at a high current.

また、リチウムイオンのプレドープに必要な最低限の貫通孔を有するため、均一かつ迅速なドープを行うことができる。さらに、前述の集電体を用いることで、特殊な塗工装置を用いなくても、活物質を含むスラリー状の電極塗料を均一に塗工できることを見いだしたものである。   Moreover, since it has the minimum through-hole required for lithium ion pre-doping, uniform and rapid doping can be performed. Furthermore, it has been found that by using the above-described current collector, a slurry-like electrode paint containing an active material can be uniformly applied without using a special coating apparatus.

貫通孔の平均直径が1.0μmより大きく、かつ開孔率が1.0%より多い場合、活物質を含むスラリー状の電極塗料を塗工して作製した電極層との接触抵抗が高くなる為、蓄電デバイスの内部抵抗は大きくなり、高電流において高容量が得られない。また、物質を含むスラリー状の電極塗料を塗工する場合に塗りにくく、生産性が落ちるとともに均一な電極が作製できない。   When the average diameter of the through holes is larger than 1.0 μm and the open area ratio is larger than 1.0%, the contact resistance with the electrode layer produced by applying the slurry-like electrode paint containing the active material is increased. For this reason, the internal resistance of the electricity storage device increases, and a high capacity cannot be obtained at a high current. In addition, when applying a slurry-like electrode paint containing a substance, it is difficult to apply, and productivity is reduced and a uniform electrode cannot be produced.

また、リチウムイオンが短時間でかつ均一に負極へプレドープするために貫通孔の平均直径の下限は0.3μm以上が好ましい。   Further, the lower limit of the average diameter of the through holes is preferably 0.3 μm or more so that lithium ions are pre-doped into the negative electrode uniformly in a short time.

貫通孔の開孔率の下限はリチウム挿入が不均一になることを防止する点から0.1%以上が好ましい。   The lower limit of the opening ratio of the through holes is preferably 0.1% or more from the viewpoint of preventing the lithium insertion from becoming uneven.

尚、上記集電体に対する貫通孔の大きさおよび開孔率の適用は正極側、負極側の両極側またはどちらか一方でも良い。   In addition, the application of the size of the through hole and the open area ratio to the current collector may be performed on either the positive electrode side, the negative electrode side, or either one.

貫通孔を有する負極集電体および正極集電体の厚みは、8μm以上、50μm以下にすることで、ユニットあたりの積層枚数を増やして面積を増やせ、さらに蓄電デバイスの低抵抗化が図れる。また、薄くすることで負極へのリチウムイオンのドープ時間は短縮される。   By setting the thicknesses of the negative electrode current collector and the positive electrode current collector having through-holes to 8 μm or more and 50 μm or less, the number of stacked layers per unit can be increased, the area can be increased, and the resistance of the electricity storage device can be reduced. Moreover, the doping time of the lithium ion to a negative electrode is shortened by making it thin.

8μmより薄くなると電極作製時の作業性が低下し、電極を作製できない恐れがある。また、50μmより厚くなると、ユニットあたりの積層枚数が減り抵抗は増大する。さらに負極へのリチウムイオンのドープは遅くなり、ドープのムラが生じる恐れがある。   If the thickness is less than 8 μm, workability at the time of electrode production is reduced, and there is a possibility that the electrode cannot be produced. On the other hand, if the thickness is greater than 50 μm, the number of stacked layers per unit decreases and the resistance increases. Furthermore, the doping of lithium ions into the negative electrode is slow, and there is a risk of uneven doping.

正極に含まれる正極活物質及び負極に含まれる負極活物質を、D50が1.0μm以上8.0μm以下とすることで、電解液中のリチウムイオンの拡散抵抗が低減し内部抵抗は低減する。   By setting the positive electrode active material contained in the positive electrode and the negative electrode active material contained in the negative electrode to D50 of 1.0 μm or more and 8.0 μm or less, the diffusion resistance of lithium ions in the electrolytic solution is reduced and the internal resistance is reduced.

さらに、8.0μmより粒径が大きいと、薄い電極を均一に作製できない恐れがある。また、粒径が1.0μmより小さい場合には、貫通孔の中に粒子が入り込む可能性がり、ドープ時間の増大が懸念される。   Furthermore, if the particle diameter is larger than 8.0 μm, there is a possibility that a thin electrode cannot be produced uniformly. On the other hand, when the particle diameter is smaller than 1.0 μm, there is a possibility that the particles may enter the through hole, and there is a concern about an increase in the dope time.

負極活物質の形状は、例えば、球状、燐片状等があるが、どのような形状であっても構わない。   Examples of the shape of the negative electrode active material include a spherical shape and a flake shape, but any shape may be used.

集電体を除く負極及び正極の片面の厚みを30μm以下に薄く塗工することで、電解液中のリチウムイオンの拡散抵抗は低減し、さらに蓄電デバイスの内部抵抗は低減して高電流時の容量は増大する。   By thinly applying the thickness of one side of the negative electrode and the positive electrode excluding the current collector to 30 μm or less, the diffusion resistance of lithium ions in the electrolytic solution is reduced, and the internal resistance of the electricity storage device is further reduced. Capacity increases.

また、集電体を除く負極及び正極の片面の厚みは、正極に含まれる正極活物質及び負極に含まれる負極活物質のD50の最小値から1.0μm以上となる。   Moreover, the thickness of the single side | surface of the negative electrode except a collector and a positive electrode becomes 1.0 micrometer or more from the minimum value of D50 of the positive electrode active material contained in a positive electrode, and the negative electrode active material contained in a negative electrode.

集電体を除く負極及び正極の片面の厚みが30μmより厚くなると、負極においてリチウムイオンの拡散抵抗が高くなり、内部抵抗は高くなる。また、負極へのリチウムイオンのドープは遅くなり、ドープのムラが生じる恐れがある。負極は、負極集電体に対して片面塗工、両面塗工どちらであっても構わない。   When the thickness of one side of the negative electrode and the positive electrode excluding the current collector is greater than 30 μm, the diffusion resistance of lithium ions at the negative electrode increases and the internal resistance increases. Also, the doping of lithium ions into the negative electrode is slow, and there is a risk of uneven doping. The negative electrode may be either single-sided coating or double-sided coating with respect to the negative electrode current collector.

また、電極を薄くすることで、負極へのリチウムイオンのドープ時間の短縮化が図られる。   Further, by reducing the thickness of the electrode, the doping time of lithium ions into the negative electrode can be shortened.

さらに、薄い電極を用いるとユニットあたりの積層枚数を多くして対向面積を増やすことが可能となり、内部抵抗を低減することができる。   Furthermore, when a thin electrode is used, the number of stacked layers per unit can be increased to increase the facing area, and the internal resistance can be reduced.

貫通孔を有する正極集電体および負極集電体は、例えばパンチングや電解エッチング処理、レーザー処理等の様々な方法にて製造されるが、特に限定されない。また、貫通孔の形態、数は特に限定されない。   The positive electrode current collector and the negative electrode current collector having through-holes are manufactured by various methods such as punching, electrolytic etching treatment, and laser treatment, but are not particularly limited. Moreover, the form and number of through holes are not particularly limited.

リチウム供給源の集電体および負極集電体の材質としては、一般にリチウムイオン二次電池などに使用されている種々の材質を用いることができ、ステンレス、銅、ニッケル等をそれぞれ用いることができる。また、集電体には貫通孔を有した圧延箔や電解箔を用いることができる。また、リチウム供給源の集電体は負極集電体と同様の厚みのものが使用でき、貫通孔の有無は問わない。   As materials of the current collector and negative electrode current collector of the lithium supply source, various materials generally used for lithium ion secondary batteries and the like can be used, and stainless steel, copper, nickel, etc. can be used respectively. . The current collector may be a rolled foil or an electrolytic foil having through holes. Further, the current collector of the lithium supply source can be of the same thickness as the negative electrode current collector, and it does not matter whether there are through holes.

正極集電体の材質としては、一般にリチウムイオン二次電池などに使用されている種々の材質を用いることができ、アルミニウム、ステンレス等を用いることができる。   As a material of the positive electrode current collector, various materials generally used for lithium ion secondary batteries and the like can be used, and aluminum, stainless steel, and the like can be used.

集電体を除く負極の片面厚み/集電体を除く正極の片面厚みの比は特に限定されない。   The ratio of the single-sided thickness of the negative electrode excluding the current collector / the single-sided thickness of the positive electrode excluding the current collector is not particularly limited.

集電体上の片面もしくは両面の負極及び正極は、例えば、活物質を含む電極塗料を作製し、それを集電体に塗工する方法や、活物質を含むシート電極を作製して集電体に貼りつける等の方法があるが、負極においては負極活物質、正極においては正極活物質それぞれが含まれていれば、どのような方法によるものでも構わない。   For the negative electrode and the positive electrode on one or both sides of the current collector, for example, an electrode paint containing an active material is produced, and a method of coating the current paint on a current collector or a sheet electrode containing an active material is produced. There is a method such as sticking to the body, but any method may be used as long as the negative electrode includes the negative electrode active material and the positive electrode includes the positive electrode active material.

負極の主成分である負極活物質は、リチウムイオンを可逆的にドープできる物質から形成される。例えば、リチウムイオン二次電池の負極に用いられる黒鉛材料や、難黒鉛化炭素材料、コークスなどの炭素材料、ポリアセン系物質等を挙げることができるが、低抵抗化や低コスト化を考慮すると、好ましくは、黒鉛材料や難黒鉛化炭素材料がよい。   The negative electrode active material that is the main component of the negative electrode is formed of a material that can be reversibly doped with lithium ions. For example, a graphite material used for a negative electrode of a lithium ion secondary battery, a non-graphitizable carbon material, a carbon material such as coke, a polyacene-based substance, and the like can be mentioned, but considering low resistance and low cost, A graphite material or a non-graphitizable carbon material is preferable.

正極の主成分である正極活物質は、アニオンまたはカチオンを可逆的に担持できる物質から形成される。例えば、分極性を有するフェノール樹脂系活性炭、ヤシガラ系活性炭、石油コークス系活性炭やポリアセンなどの炭素材料を用いることができる。また、リチウムイオン二次電池の正極材料なども用いることができる。   The positive electrode active material that is the main component of the positive electrode is formed of a material that can reversibly carry anions or cations. For example, carbon materials such as polarizable phenol resin activated carbon, coconut shell activated carbon, petroleum coke activated carbon, and polyacene can be used. Moreover, the positive electrode material etc. of a lithium ion secondary battery can also be used.

正極および負極には、必要により導電助剤やバインダ添加される。導電助剤としては、黒鉛、カーボンブラック、ケッチェンブラック、気相成長カーボンやカーボンナノチューブなどが挙げられ、特にカーボンブラック、黒鉛が好ましい。バインダとしては、例えば、スチレンブタジエンゴム(SBR)等のゴム系バインダやポリ四フッ化エチレン、ポリフッ化ビニリデン等の含フッ素系樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂を用いることができる。   If necessary, a conductive additive or a binder is added to the positive electrode and the negative electrode. Examples of the conductive assistant include graphite, carbon black, ketjen black, vapor-grown carbon, and carbon nanotube, and carbon black and graphite are particularly preferable. As the binder, for example, a rubber-based binder such as styrene-butadiene rubber (SBR), a fluorine-containing resin such as polytetrafluoroethylene or polyvinylidene fluoride, or a thermoplastic resin such as polypropylene or polyethylene can be used.

リチウムイオン供給源には、リチウム金属あるいはリチウム−アルミニウム合金のように、リチウムイオンを供給できる物質を使用することができる。リチウム供給源のサイズは、負極と同サイズもしくはそれより1〜2mm小さいのが好ましい。厚みはリチウムイオンのドープ量によって変更することができるが、好ましくは5μm〜400μmがよい。400μmより厚くすると、リチウム供給源が残存し、安全性に問題が生じる恐れがある。5μmより薄くすると、取り扱いが難しくなる恐れがある。   As the lithium ion supply source, a substance capable of supplying lithium ions, such as lithium metal or lithium-aluminum alloy, can be used. The size of the lithium supply source is preferably the same size as the negative electrode or 1-2 mm smaller than that. The thickness can be changed depending on the doping amount of lithium ions, but preferably 5 μm to 400 μm. If it is thicker than 400 μm, the lithium supply source remains, which may cause a problem in safety. If it is thinner than 5 μm, handling may be difficult.

ユニットとは、負極が最外部になるように、セパレータを介して正極と負極が交互に積層されたものであり、負極は2枚以上、正極は1枚以上積層されたものをいう。ユニットは、規定する容量に合わせて、何枚ずつであっても構わない。また、ユニット中の負極および正極の枚数を少なくして、複数のユニットを積層しても構わない。   The unit is a unit in which positive electrodes and negative electrodes are alternately stacked via separators so that the negative electrode is the outermost part, and two or more negative electrodes and one or more positive electrodes are stacked. Any number of units may be used according to the specified capacity. Further, a plurality of units may be stacked by reducing the number of negative electrodes and positive electrodes in the unit.

本発明において、あらかじめ負極にリチウムをドープさせる手段は特に限定されない。例えば、負極とリチウム金属を物理的に短絡させる方法でも、または電気化学的にドープさせる方法いずれでもよい。リチウム供給源は、ユニット最外部の負極と対向した箇所の片側もしくは両側に積層する。リチウム供給源は、2箇所以上積層すると、リチウムイオンのドープ時間はさらに短くなり、均一にドープされる。そのため、複数のユニットを積層し、各ユニットの最外部全てにリチウム供給源を積層しても構わない。積層箇所好ましくは、2箇所以上、10箇所以下がよい。1箇所だけの積層だと、リチウムイオンのドープ時間が長くなり、均一にドープされない恐れがある。10箇所を超えると、リチウム供給源を積層する積層工程が煩雑になり、好ましくない。   In the present invention, means for doping lithium into the negative electrode in advance is not particularly limited. For example, either a method of physically short-circuiting the negative electrode and lithium metal or a method of electrochemically doping may be used. The lithium supply source is laminated on one side or both sides of the portion facing the negative electrode on the outermost part of the unit. When two or more lithium supply sources are stacked, the doping time of lithium ions is further shortened and the lithium supply source is uniformly doped. Therefore, a plurality of units may be stacked, and a lithium supply source may be stacked on all outermost portions of each unit. Laminate location is preferably 2 or more and 10 or less. If only one layer is stacked, the lithium ion dope time becomes long, and there is a possibility that it is not uniformly doped. If it exceeds 10, the lamination process for laminating the lithium supply source becomes complicated, which is not preferable.

次に、リチウムイオンを含有する非水系の溶液から構成される電解液の溶媒は、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ―ブチルラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等が挙げられる。さらに、これらの溶媒を2種類以上混合した混合溶媒も用いることができる。この中で、少なくともプロピレンカーボネートとエチレンカーボネートいずれかを有することが好ましい。また、ビニレンカーボネート、フルオロエチレンカーボネート等の添加剤を0.01〜0.5mol/L程度添加しても構わない。   Next, the solvent of the electrolytic solution composed of a non-aqueous solution containing lithium ions is, for example, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyl lactone, acetonitrile, dimethoxyethane, tetrahydrofuran. , Dioxolane, methylene chloride, sulfolane and the like. Furthermore, a mixed solvent obtained by mixing two or more of these solvents can also be used. Among these, it is preferable to have at least either propylene carbonate or ethylene carbonate. Moreover, you may add about 0.01-0.5 mol / L additives, such as vinylene carbonate and fluoroethylene carbonate.

また、上記溶媒に溶解させる電解質は、電離してリチウムイオンを生成するものであれば良く、例えば、LiI、LiClO、LiAsF、LiBF、LiPF等が挙げられる。これらの溶質は、上記溶媒中に0.5mol/L以上とすることが好ましく、0.5〜1.5mol/Lの範囲内とすることが更に好ましい。 The electrolyte to be dissolved in the solvent, as long as it generates lithium upon ionization, for example, LiI, LiClO 4, LiAsF 6 , LiBF 4, LiPF 6 , and the like. These solutes are preferably 0.5 mol / L or more in the solvent, and more preferably in the range of 0.5 to 1.5 mol / L.

尚、本発明の蓄電デバイスの構成はハイブリットキャパシタだけでなく二次電池(特にリチウムイオン二次電池)等にも適用可能である。   In addition, the structure of the electrical storage device of this invention is applicable not only to a hybrid capacitor but to a secondary battery (especially lithium ion secondary battery) etc.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1)
D50が2μmの難黒鉛化炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
Example 1
88 parts by mass of a non-graphitizable carbon material having a D50 of 2 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethylcellulose, and 200 parts by mass of water were mixed to obtain a negative electrode slurry.

次いで、得られた負極スラリーを、平均直径が0.9μmでかつ開孔率が1.0%の貫通孔を有した厚さ20μmのケミカルエッチング銅箔上に片面20μmとなるよう両面に塗工し、乾燥後プレスして、厚さ60μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides so as to be 20 μm on one side on a 20 μm thick chemically etched copper foil having through holes with an average diameter of 0.9 μm and an open area ratio of 1.0%. Then, after drying, pressing was performed to obtain a negative electrode having a thickness of 60 μm.

D50が2μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が0.9μmでかつ開孔率が1.0%の貫通孔を有した厚さ20μmの貫通アルミ箔上に片面30μmとなるよう両面に塗工し、乾燥後プレスして、厚さ80μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 2 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water has an average diameter of 0.9 μm and a porosity of 1.0%. A 20 μm-thick through aluminum foil having through-holes was coated on both sides to have a thickness of 30 μm, dried and pressed to obtain a positive electrode having a thickness of 80 μm.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

(実施例2)
D50が1μmの難黒鉛化炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
(Example 2)
88 parts by mass of a non-graphitizable carbon material having a D50 of 1 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethylcellulose, and 200 parts by mass of water were mixed to obtain a negative electrode slurry.

次いで、得られた負極スラリーを、平均直径が0.5μmでかつ開孔率が1.0%の貫通孔を有した厚さ50μmのメッシュ銅箔上に片面20μmとなるよう両面に塗工し、乾燥後プレスして、厚さ90μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides so as to be 20 μm on one side on a 50 μm-thick mesh copper foil having through holes with an average diameter of 0.5 μm and an open area ratio of 1.0%. After drying, pressing was performed to obtain a negative electrode having a thickness of 90 μm.

D50が1μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が0.5μmでかつ開孔率が1.0%の貫通孔を有した厚さ50μmの貫通アルミ箔上に片面30μmとなるよう両面に塗工し、乾燥後プレスして、厚さ110μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 1 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water has an average diameter of 0.5 μm and a porosity of 1.0%. On both sides of a 50 μm-thick penetrating aluminum foil having through-holes of 30 μm on one side, dried and pressed to obtain a 110 μm-thick positive electrode.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

(実施例3)
D50が8μmの人造黒鉛炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
(Example 3)
88 parts by mass of artificial graphite carbon material having a D50 of 8 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water were mixed to obtain a negative electrode slurry.

次いで、得られた負極スラリーを、平均直径が1.0μmでかつ開孔率が1.0%の貫通孔を有した厚さ10μmのパンチング銅箔上に片面10μmとなるよう両面に塗工し、乾燥後プレスして、厚さ30μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides so as to be 10 μm on one side on a 10 μm-thick punched copper foil having through holes with an average diameter of 1.0 μm and an open area ratio of 1.0%. After drying, pressing was performed to obtain a negative electrode having a thickness of 30 μm.

D50が8μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が1.0μmでかつ開孔率が1.0%の貫通孔を有した厚さ10μmの貫通アルミ箔上に片面20μmとなるよう両面に塗工し、乾燥後プレスして、厚さ50μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 8 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water has an average diameter of 1.0 μm and a porosity of 1.0%. On both sides of a 10 μm-thick penetrating aluminum foil having through-holes of 20 μm on one side, dried and pressed to obtain a positive electrode having a thickness of 50 μm.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

(比較例1)
D50が2μmの黒鉛化炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
(Comparative Example 1)
A negative electrode slurry was obtained by mixing 88 parts by mass of a graphitized carbon material having a D50 of 2 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethylcellulose, and 200 parts by mass of water.

次いで、得られた負極スラリーを、平均直径が3μmでかつ開孔率が1.0%の貫通孔を有し厚さ20μmのメッシュ銅箔上に片面20μmとなるよう両面に塗工し、乾燥後プレスして、厚さ60μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides so as to be 20 μm on one side on a 20 μm thick mesh copper foil having through holes with an average diameter of 3 μm and an open area ratio of 1.0%, and dried. After pressing, a negative electrode having a thickness of 60 μm was obtained.

D50が2μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が3μmでかつ開孔率が1.0%の貫通孔を有し厚さ20μmの貫通アルミ箔上に片面30μmとなるよう両面に塗工し、乾燥後プレスして、厚さ80μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 2 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water penetrates with an average diameter of 3 μm and a porosity of 1.0%. It coated on both surfaces so that it might become 30 micrometers on one side on a 20-micrometer-thick through aluminum foil which has a hole, it dried and pressed, and the positive electrode of thickness 80 micrometers was obtained.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

(比較例2)
D50が3μmの難黒鉛化炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
(Comparative Example 2)
88 parts by mass of a non-graphitizable carbon material having a D50 of 3 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethylcellulose, and 200 parts by mass of water were mixed to obtain a negative electrode slurry.

次いで、得られた負極スラリーを、平均直径が0.2μmでかつ開孔率が1.0%の貫通孔を有し厚さ80μmのパンチング銅箔上に片面20μmとなるよう両面に塗工し、乾燥後プレスして、厚さ120μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides of a punched copper foil having an average diameter of 0.2 μm and a hole area ratio of 1.0% so as to have a thickness of 20 μm on one side. After drying, pressing was performed to obtain a negative electrode having a thickness of 120 μm.

D50が3μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が0.2μmでかつ開孔率が1%であり、厚さが80μmの貫通アルミ箔上に片面30μmとなるよう両面に塗工し、乾燥後プレスして、厚さ140μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 3 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water has an average diameter of 0.2 μm and a porosity of 1%. On both sides of the aluminum foil having a thickness of 80 μm, coating was performed on both sides so as to be 30 μm on one side, followed by drying and pressing to obtain a positive electrode having a thickness of 140 μm.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

(比較例3)
D50が2μmの難黒鉛化炭素材料を88質量部、黒鉛6質量部、SBR5質量部、カルボキシメチルセルロース4質量部、水200質量部を混合して、負極スラリーを得た。
(Comparative Example 3)
88 parts by mass of a non-graphitizable carbon material having a D50 of 2 μm, 6 parts by mass of graphite, 5 parts by mass of SBR, 4 parts by mass of carboxymethylcellulose, and 200 parts by mass of water were mixed to obtain a negative electrode slurry.

次いで、得られた負極スラリーを、平均直径が0.2μmでかつ開孔率が1%の貫通孔を有し厚さ20μmのメッシュ銅箔上に片面50μmとなるよう両面に塗工し、乾燥後プレスして、厚さ120μmの負極を得た。   Next, the obtained negative electrode slurry was coated on both sides so as to be 50 μm on one side on a 20 μm thick mesh copper foil having through holes with an average diameter of 0.2 μm and a porosity of 1%, and dried. After pressing, a negative electrode having a thickness of 120 μm was obtained.

D50が3μmの活性炭92質量部、黒鉛8質量部、SBR3質量部、カルボキシメチルセルロース3質量部、水200質量部を混合したものを、平均直径が0.2μmでかつ開孔率が1%の貫通孔を有し厚さ20μmの貫通アルミ箔上に片面60μmとなるよう両面に塗工し、乾燥後プレスして、厚さ140μmの正極を得た。   A mixture of 92 parts by mass of activated carbon having a D50 of 3 μm, 8 parts by mass of graphite, 3 parts by mass of SBR, 3 parts by mass of carboxymethyl cellulose, and 200 parts by mass of water penetrates with an average diameter of 0.2 μm and a porosity of 1%. It coated on both surfaces so that it might become 60 micrometers on one side on the 20-micrometer-thick through aluminum foil which has a hole, it dried and pressed, and the positive electrode of thickness 140 micrometers was obtained.

上記で得られた電極を、その活物質が塗布されている部分の電極面積が6cmとなるように、正極を2枚、負極を3枚切り出した。 Two positive electrodes and three negative electrodes were cut out from the electrode obtained above so that the electrode area of the portion where the active material was applied was 6 cm 2 .

次いで、負極と正極の間に厚さ30μmのセルロール系セパレータを介して、負極/正極/負極の順で、積層して、ユニットを作製した。   Next, a unit was fabricated by laminating a negative electrode / positive electrode / negative electrode in this order via a 30 μm-thick cell roll separator between the negative electrode and the positive electrode.

作製したユニットは、真空乾燥機で130℃、6時間減圧処理した後、ユニットの最外部の両側にそれぞれ1枚のリチウム金属を負極に対向させて配置してからアルミラミネートフィルムで形成した容器に入れた。   The prepared unit was vacuum-treated at 130 ° C. for 6 hours in a vacuum dryer, and then placed on each outermost side of the unit with one lithium metal facing the negative electrode, and then placed in a container formed of an aluminum laminate film. I put it in.

エチレンカーボネートとプロピレンカーボネートを、1対1の割合で混合した混合溶媒に、1mol/LのLiPFを溶かした非水電解液をアルミラミネートフィルム内に注入してから密閉し、蓄電デバイスを作製した。 A non-aqueous electrolyte solution in which 1 mol / L LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were mixed at a ratio of 1: 1 was poured into an aluminum laminate film and sealed to produce an electricity storage device. .

作製した蓄電デバイスは、リチウム金属から負極に400mAh/gのリチウムイオンがドープされるように定電圧放電を行った。この際のドープ時間を測定した。   The produced electricity storage device was subjected to constant voltage discharge so that 400 mAh / g of lithium ions was doped from the lithium metal to the negative electrode. The dope time at this time was measured.

上記の状態で、定電流定電圧にて3.8Vで充電を1時間行い、セル電圧が2.2Vになるまで80mAで放電した。放電時の電圧降下より内部抵抗を算出した。   In the above state, the battery was charged at 3.8 V with a constant current and constant voltage for 1 hour, and discharged at 80 mA until the cell voltage reached 2.2 V. The internal resistance was calculated from the voltage drop during discharge.

実施例1〜3、比較例1〜3におけるドープ時間、内部抵抗の測定結果を表1に示す。集電体の平均直径および開孔率および厚みは、正極集電体と負極集電体のいずれかの値を示す。活物質D50は正極および負極の活物質の累積体積分率50%に対応する粒子径の値を示し、正極および負極の厚みは、集電体を除く片面の厚みを示す。   Table 1 shows the measurement results of the doping time and internal resistance in Examples 1 to 3 and Comparative Examples 1 to 3. The average diameter, the porosity, and the thickness of the current collector indicate values of either the positive electrode current collector or the negative electrode current collector. The active material D50 indicates a particle size value corresponding to a cumulative volume fraction of 50% of the positive and negative electrode active materials, and the positive and negative electrode thicknesses indicate the thickness of one side excluding the current collector.

Figure 2012004491
Figure 2012004491

実施例1、2および3と比較例1を比較すると、集電体の貫通孔の平均直径が大きい場合、活物質の粒子が貫通孔に入り込む事で、内部抵抗が上昇するとともにドープの所要時間がかかることが確認された。実施例1、2および3と比較例2を比較すると、集電体が厚い場合、薄い集電体と比べドープに約2.7倍の時間を要した。また、比較例3のように電極を厚くすると、内部抵抗は実施例1、2および3と比較して約2倍上昇し、さらにリチウムイオンのドープに時間を要することが確認された。また、開孔率が1.0%より大きい場合は、前述したとおり均一な電極の塗工ができず、前述の試験は実施できなかった。   When Examples 1, 2, and 3 are compared with Comparative Example 1, when the average diameter of the through-holes of the current collector is large, the active material particles enter the through-holes, thereby increasing the internal resistance and the required time for doping. Has been confirmed. When Examples 1, 2, and 3 were compared with Comparative Example 2, when the current collector was thick, it took about 2.7 times as long to dope as compared to the thin current collector. Further, when the electrode was made thicker as in Comparative Example 3, it was confirmed that the internal resistance increased about twice as compared with Examples 1, 2, and 3, and further it took time to dope lithium ions. Further, when the open area ratio was larger than 1.0%, the uniform electrode could not be applied as described above, and the above test could not be performed.

内部抵抗を低減するとともに、負極に短時間でリチウムイオンをドープさせ、さらに均一な電極化が図られた蓄電デバイスの提供が可能となることが分かった。   It has been found that it is possible to provide an electricity storage device in which the internal resistance is reduced and the negative electrode is doped with lithium ions in a short time to achieve a more uniform electrode.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

1 集電体を除く正極の片面
2 集電体を除く負極の片面
3 セパレータ
4 正極集電体
5 負極集電体
6 リチウム供給源
7 電解液
DESCRIPTION OF SYMBOLS 1 One side of positive electrode except current collector 2 One side of negative electrode excluding current collector 3 Separator 4 Positive electrode current collector 5 Negative electrode current collector 6 Lithium supply source 7 Electrolyte

Claims (4)

リチウムイオンを含有する非水系電解液と、リチウム供給源と、アニオンまたはカチオンを可逆的に担持可能な正極と、リチウムイオンを可逆的にドープ可能な負極を備え、セパレータを介して前記正極と前記負極を交互に積層するユニットで構成され、ユニットの最外部の片側もしくは両側にはリチウム供給源が積層された蓄電デバイスであって、正極活物質または負極活物質を含む電極塗料を片面もしくは両面に塗工して前記正極または前記負極を構成する集電体の平均直径が0.3μm以上1.0μm以下の貫通孔を有し、かつ前記貫通孔の開孔率が0.1%以上1.0%以下であることを特徴とする蓄電デバイス。   A non-aqueous electrolyte containing lithium ions; a lithium supply source; a positive electrode capable of reversibly supporting anions or cations; and a negative electrode capable of reversibly doping lithium ions; An electricity storage device composed of units in which negative electrodes are alternately laminated, with a lithium supply source laminated on one or both sides of the outermost unit, and an electrode paint containing a positive electrode active material or a negative electrode active material on one side or both sides The current collector constituting the positive electrode or the negative electrode has a through hole with an average diameter of 0.3 μm or more and 1.0 μm or less, and the opening ratio of the through hole is 0.1% or more. An electricity storage device characterized by being 0% or less. 前記集電体の厚みが8μm以上、50μm以下であることを特徴とする請求項1に記載の蓄電デバイス。   The power storage device according to claim 1, wherein the current collector has a thickness of 8 μm or more and 50 μm or less. 前記正極に含まれる正極活物質または前記負極に含まれる負極活物質は、累積体積分率50%に対応する粒子径(D50)が1.0μm以上8.0μm以下であることを特徴とする請求項1または2に記載の蓄電デバイス。   The positive electrode active material contained in the positive electrode or the negative electrode active material contained in the negative electrode has a particle diameter (D50) corresponding to a cumulative volume fraction of 50% of 1.0 μm or more and 8.0 μm or less. Item 3. The electricity storage device according to Item 1 or 2. 前記集電体を除く負極及び正極の片面の厚みを1μm以上30μm以下とした電極を用いたことを特徴とする請求項1〜3のいずれか1項に記載の蓄電デバイス。   The electrical storage device according to any one of claims 1 to 3, wherein an electrode having a thickness of 1 μm or more and 30 μm or less of a negative electrode and a positive electrode excluding the current collector is used.
JP2010140698A 2010-06-21 2010-06-21 Power storage device Pending JP2012004491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010140698A JP2012004491A (en) 2010-06-21 2010-06-21 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010140698A JP2012004491A (en) 2010-06-21 2010-06-21 Power storage device

Publications (1)

Publication Number Publication Date
JP2012004491A true JP2012004491A (en) 2012-01-05

Family

ID=45536099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010140698A Pending JP2012004491A (en) 2010-06-21 2010-06-21 Power storage device

Country Status (1)

Country Link
JP (1) JP2012004491A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104127A1 (en) * 2012-12-27 2014-07-03 日新電機株式会社 Method for manufacturing electricity storage device
JP2015130245A (en) * 2014-01-06 2015-07-16 日新電機株式会社 Power storage device
WO2016035308A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage device
WO2016174862A1 (en) * 2015-04-28 2016-11-03 株式会社Gsユアサ Negative electrode for nonaqueous-electrolyte power storage element
JP2016192277A (en) * 2015-03-31 2016-11-10 株式会社Gsユアサ Power storage element
WO2018211916A1 (en) * 2017-05-18 2018-11-22 富士フイルム株式会社 Perforated metal foil, perforated metal foil manufacturing method, secondary battery negative electrode, and secondary battery positive electrode
JP2019140126A (en) * 2019-05-30 2019-08-22 株式会社Nbcメッシュテック Manufacturing method of current collector for lithium ion secondary battery
WO2019163896A1 (en) * 2018-02-22 2019-08-29 Jsr株式会社 Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
JP2021044250A (en) * 2016-02-05 2021-03-18 株式会社Gsユアサ Power storage element

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014104127A1 (en) * 2012-12-27 2017-01-12 日新電機株式会社 Method for manufacturing power storage device
TWI504039B (en) * 2012-12-27 2015-10-11 Nissin Electric Co Ltd Power storage device and method for producing the same and power storage apparatus
WO2014104127A1 (en) * 2012-12-27 2014-07-03 日新電機株式会社 Method for manufacturing electricity storage device
JP2015130245A (en) * 2014-01-06 2015-07-16 日新電機株式会社 Power storage device
WO2016035308A1 (en) * 2014-09-03 2016-03-10 株式会社Gsユアサ Power storage device
JP2016192277A (en) * 2015-03-31 2016-11-10 株式会社Gsユアサ Power storage element
WO2016174862A1 (en) * 2015-04-28 2016-11-03 株式会社Gsユアサ Negative electrode for nonaqueous-electrolyte power storage element
JPWO2016174862A1 (en) * 2015-04-28 2018-03-29 株式会社Gsユアサ Negative electrode for non-aqueous electrolyte storage element
JP2021044250A (en) * 2016-02-05 2021-03-18 株式会社Gsユアサ Power storage element
JP7211405B2 (en) 2016-02-05 2023-01-24 株式会社Gsユアサ Storage element
WO2018211916A1 (en) * 2017-05-18 2018-11-22 富士フイルム株式会社 Perforated metal foil, perforated metal foil manufacturing method, secondary battery negative electrode, and secondary battery positive electrode
JPWO2018211916A1 (en) * 2017-05-18 2020-03-12 富士フイルム株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery and positive electrode for secondary battery
WO2019163896A1 (en) * 2018-02-22 2019-08-29 Jsr株式会社 Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
JPWO2019163896A1 (en) * 2018-02-22 2021-03-04 武蔵エナジーソリューションズ株式会社 Power storage device, negative electrode for power storage device, and their manufacturing method
JP2019140126A (en) * 2019-05-30 2019-08-22 株式会社Nbcメッシュテック Manufacturing method of current collector for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4857073B2 (en) Lithium ion capacitor
WO2011125325A1 (en) Electricity accumulator device
JP2012004491A (en) Power storage device
WO2006112070A1 (en) Lithium ion capacitor
KR20100108205A (en) Electric storage device and manufacturing method thereof
US9208958B2 (en) Lithium ion capacitor
WO2013054710A1 (en) Lithium ion capacitor, power storage device, power storage system
WO2012063545A1 (en) Lithium ion capacitor
JP2012089825A (en) Lithium ion capacitor
JP2008252013A (en) Lithium-ion capacitor
WO2019163896A1 (en) Power storage device, power storage device electrode, and method for manufacturing said power storage device and power storage device electrode
JP2006338963A (en) Lithium ion capacitor
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JP2010287641A (en) Energy storage device
US20140315084A1 (en) Method and apparatus for energy storage
JPWO2012127991A1 (en) Power storage device
JP4731974B2 (en) Lithium ion capacitor
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP6487841B2 (en) Power storage device
JP2013089606A (en) Electrode sheet, method of manufacturing the same and power storage device using the same
JP2012028366A (en) Power storage device
JP2012195563A (en) Lithium ion capacitor
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2013138096A (en) Electricity storage device
JP2014216452A (en) Power storage device