WO2016035308A1 - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
WO2016035308A1
WO2016035308A1 PCT/JP2015/004387 JP2015004387W WO2016035308A1 WO 2016035308 A1 WO2016035308 A1 WO 2016035308A1 JP 2015004387 W JP2015004387 W JP 2015004387W WO 2016035308 A1 WO2016035308 A1 WO 2016035308A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
storage element
supply layer
power storage
ion supply
Prior art date
Application number
PCT/JP2015/004387
Other languages
French (fr)
Japanese (ja)
Inventor
増田 英樹
北野 真也
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to JP2016546310A priority Critical patent/JPWO2016035308A1/en
Publication of WO2016035308A1 publication Critical patent/WO2016035308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the technique disclosed in this specification relates to a power storage element including a negative electrode housed in an exterior body.
  • a battery in which a power generation element is housed in a battery case is known (Japanese Patent Laid-Open No. 2008-192540).
  • a lithium ion supplier made of a lithium compound capable of releasing lithium ions is disposed on the inner surface of the battery case.
  • the lithium ion supplier disposed on the inner surface of the battery case and the power generation element may come into contact with each other, and the lithium ion supply body may be damaged. There is.
  • This specification discloses a technology related to a power storage element in which the lithium ion supply layer is prevented from being damaged when the power storage element is accommodated in the exterior body.
  • a power storage element described in this specification includes an exterior body, a power storage element including a negative electrode housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode housed in the exterior body.
  • the lithium ion supply layer is formed on the bottom surface of the outer package.
  • the exploded perspective view which shows the electrical storage element of this invention Sectional drawing which shows the electrical storage element which concerns on Embodiment 1 of this invention
  • Sectional drawing which shows the electrical storage element which concerns on Embodiment 2 of this invention Sectional drawing which shows the electrical storage element which concerns on Embodiment 3 of this invention.
  • Schematic which shows the electrical storage apparatus provided with the electrical storage element of this invention Schematic which shows the motor vehicle provided with the electrical storage apparatus provided with the electrical storage element of this invention.
  • a power storage element described in this specification includes an exterior body, a power storage element including a negative electrode housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode housed in the exterior body.
  • the lithium ion supply layer is formed on the bottom surface of the outer package.
  • the power storage element When the power storage element is accommodated in the exterior body, the power storage element may come into contact with the inner surface of the side wall of the exterior body. At this time, for example, if a lithium ion supply layer is formed on the inner surface of the side wall of the exterior body, the power storage element may come into contact with the lithium ion supply body and the lithium ion supply layer may be damaged.
  • the electricity storage device described in the present specification when the electricity storage element is accommodated in the exterior body, it is possible to suppress the interference between the lithium ion supply layer and the electricity storage element, so that the lithium ion supply layer is damaged. Can be suppressed.
  • the power storage element is a wound power storage element in which the negative electrode, the positive electrode, and a separator are wound, and the wound power storage element has a substantially oval cross-sectional shape in a direction perpendicular to the winding axis.
  • the lithium ion supply layer may be formed between a portion having a curved shape of the wound power storage element and a bottom surface of the exterior body.
  • the side surface intersecting the major axis direction of the cross-sectional shape has a relatively large curvature. For this reason, a relatively large space is formed between the side surface of the wound power storage element that intersects the long axis direction of the cross-sectional shape and the inner surface of the case having a rectangular parallelepiped shape. Space efficiency can be improved by arranging the lithium ion supply layer in this relatively large space.
  • the lithium ion supply layer may be formed by applying a mixture containing a lithium ion supplier to the bottom surface of the exterior body.
  • the lithium ion supply body can be arranged in the case by a simple method of applying a mixture containing the lithium ion supply body to the inner surface of the exterior body.
  • the surface of the lithium ion supply layer may be covered with an insulating sheet through which lithium ions pass.
  • the lithium ion supply layer can be prevented from being detached from the bottom surface in the exterior body by the sheet.
  • the area of the inner surface of the outer package in which the lithium ion supply layer is formed may be rougher than the area of the inner surface of the outer package in which the lithium ion supply layer is not formed.
  • the lithium ion supply layer can be made difficult to fall off from the inner surface of the exterior body.
  • a resistance coating may be formed on the inner surface of the outer package in which the lithium ion supply layer is formed.
  • a plurality of the power storage elements may be used to form a power storage device.
  • the power storage device may be used as an automobile.
  • FIG. 1 A power storage device 1 according to Embodiment 1 will be described with reference to FIGS.
  • the lower right side of the sheet with the symbol F is the front side of the electricity storage element 1
  • the upper right side of the page with the symbol R is the right side of the electricity storage element 1
  • the symbol U is attached.
  • the upper side of the drawing is the upper side of the storage element 1.
  • Storage element 1 is a rechargeable secondary battery, more specifically a nonaqueous electrolyte secondary battery, and more specifically a lithium ion battery.
  • the power storage element 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and supplies power to a power source that operates with electric energy.
  • the power storage element 1 has a configuration in which a power storage element 3 is accommodated in an exterior body 2 together with an electrolyte (not shown).
  • the electrolyte may be an electrolytic solution or a solid electrolyte.
  • the exterior body 2 includes a case main body 4 and a lid body 5.
  • the case main body 4 has a substantially rectangular parallelepiped shape as a whole, and an opening 4A is formed on one end surface side, that is, the upper end surface side.
  • the case body 4 is made of a conductive material, and is made of metal such as aluminum or aluminum alloy.
  • the opening 4A has a rectangular shape in which the width dimension in the left-right direction is longer than the width dimension in the direction orthogonal to the left-right direction, that is, the front-rear direction.
  • the case body 4 contains the electricity storage element 3 and is filled with an electrolyte.
  • the power storage element 3 is accommodated inside the case body 4 in a posture in which the longitudinal direction of the case body 4 coincides with the longitudinal direction of the power storage element 3.
  • the lid 5 is provided with a positive electrode terminal 6, a negative electrode terminal 7, a positive electrode current collector 8, and a negative electrode current collector 9.
  • the lid body 5 has a substantially rectangular shape as a whole, and has substantially the same shape as the opening 4A.
  • the lid 5 is joined to the case body 4 so as to close the opening 4 ⁇ / b> A of the case body 4.
  • the lid 5 is made of a conductive material, and is made of metal such as aluminum or aluminum alloy.
  • a positive electrode terminal 6 and a negative electrode terminal 7 are arranged on the outer surface, ie, the upper surface of the lid 5. Specifically, the positive electrode terminal 6 is disposed on one end side in the longitudinal direction of the lid 5, that is, the left side, and the negative electrode terminal 7 is disposed on the other end side in the longitudinal direction, that is, the right side.
  • Two positive electrode current collectors 8 extending downward from the lower surface of the lid 5 are disposed near the left end of the lid 5. Although not shown in detail, the upper end portion of the positive electrode current collector 8 is electrically connected to the positive electrode terminal 6.
  • the positive electrode current collector 8 has an elongated shape along the portion where the positive electrode current collector foil 33 is exposed in the electricity storage element 3 to be described later.
  • the two positive electrode current collectors 8 are arranged so that their plate surfaces face each other.
  • the positive electrode current collector 8 is made of a metal plate having a sufficient thickness so as to obtain a large current capacity, such as an aluminum alloy plate.
  • Two negative electrode current collectors 9 extending downward from the lower surface of the lid 5 are disposed at a position from the right end of the lid 5. Although not shown in detail, the upper end portion of the negative electrode current collector 9 is electrically connected to the negative electrode terminal 7.
  • the negative electrode current collector 9 has an elongated shape along the portion where the negative electrode current collector foil 34 is exposed in the electricity storage element 3 to be described later.
  • the two negative electrode current collectors 9 are arranged so that their plate surfaces face each other.
  • the negative electrode current collector 9 is made of a metal plate having a sufficient thickness so as to obtain a large current capacity, such as a copper alloy plate.
  • the power storage element 3 is formed by, for example, winding a positive electrode 31 and a negative electrode 32 through a separator 37 with the long side of a polyethylene core having a substantially rectangular plate shape being the center of the winding axis. This is a winding type power storage element.
  • the electrical storage element 3 corresponds to the core, and is long in the direction along the winding axis of the core, short in the direction perpendicular to the winding axis of the core, and perpendicular to the plate surface of the core. It is configured in a cylindrical shape wound in a short flat shape.
  • the electricity storage element 3 has a shape in which the area of the region formed by the direction along the short side direction of the core and the direction along the long side direction of the core is larger than the areas of the other regions. And the electrical storage element 3 is accommodated in the case main body 4 by making the long side direction of a winding core into the left-right direction.
  • the cross-sectional shape of the electricity storage element 3 in the direction orthogonal to the winding axis is substantially oval.
  • the substantially oval shape includes an oval shape and also includes a shape that can be regarded as an oval shape even if it is not an oval shape. Further, the substantially oval shape includes an elliptical shape.
  • the positive electrode 31 is obtained by forming a positive electrode mixture layer on the surface of an aluminum foil having a strip shape in which the winding direction is the longitudinal direction.
  • the positive electrode 31 has a portion where the positive electrode current collector foil 33 is exposed without forming the positive electrode mixture layer on one edge extending in the longitudinal direction.
  • the positive electrode mixture layer includes a positive electrode active material, and may include a conductive additive, a binder, and the like in addition to the positive electrode active material.
  • the positive electrode active material is not particularly limited as long as it can occlude and release lithium ions, and may be an inorganic compound or an organic compound.
  • transition metal oxides such as manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, vanadium oxide (for example, V 2 O 5 ); spinel represented by LiMn 2 O 4 or the like Transition metal oxides having a spinel crystal structure typified by spinel type lithium nickel manganese oxide and the like represented by type lithium manganese oxide, LiNi 1.5 Mn 0.5 O 4 and the like; LiCoO 2 , LiNiO 2 LiMeO 2 type having an ⁇ -NaFeO 2 structure represented by LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 O 2, etc.
  • Me is a transition metal) lithium transition metal composite oxide; Li x FePO 4, Li x Fe 1-y Mn y PO 4, Olympoi such Li x CoPO 4 Lithium phosphorus oxides having the structure.
  • organic compounds include conductive polymer materials such as polyaniline and polypyrrole; disulfide polymer materials; sulfur (S); iron sulfate (Fe 2 (SO 4 )) 3 ) and the like.
  • the positive electrode active material a so-called lithium-excess type lithium transition metal composite oxide that can be expressed as Li 1 + ⁇ Me 1- ⁇ O 2 ( ⁇ > 0) can also be used.
  • These positive electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • conductive assistants examples include carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. Materials. These conductive assistants may be used alone or in combination of two or more.
  • the type of the binder is not particularly limited as long as it is a material that is stable with respect to a solvent and an electrolytic solution used at the time of electrode production and is stable with respect to an oxidation-reduction reaction at the time of charge and discharge.
  • the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene rubber (SBR). ), Polymers having rubber elasticity such as fluororubber. These binders may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the positive electrode mixture may contain a viscosity modifier and the like.
  • a viscosity modifier any compound such as carboxymethylcellulose (CMC) and N-methylpyrrolidone (NMP) can be appropriately selected as necessary.
  • the positive electrode 31 is overlapped so that the portion where the positive electrode current collector foil 33 is exposed is arranged on one end side, that is, on the positive electrode 31 side (left side) from the separator 37 and the positive electrode mixture layer.
  • the negative electrode 32 is overlaid so that the portion where the negative electrode current collector foil 34 is exposed is arranged on the other end side of the separator 37 and the negative electrode mixture layer, that is, on the negative electrode 32 side (right side).
  • the negative electrode 32 is obtained by forming a negative electrode mixture layer on the surface of a copper foil having a strip shape in which the winding direction is the longitudinal direction.
  • the negative electrode 32 has a portion where the negative electrode current collector foil 34 is exposed without forming the negative electrode mixture layer at one edge extending in the longitudinal direction.
  • the negative electrode mixture layer includes a negative electrode active material, and may include a conductive additive and a binder in addition to the negative electrode active material.
  • the same ones as those used for the positive electrode 31 can be appropriately selected and used.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions.
  • Specific examples of the negative electrode active material include amorphous carbon such as non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon); graphite; Al, Si, Pb, Sn, Zn, Cd, etc. Alloys of these metals and lithium; tungsten oxide; molybdenum oxide; iron sulfide; titanium sulfide; lithium titanate and the like.
  • These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
  • amorphous carbon and graphite are preferable.
  • the separator 37 is not particularly limited as long as it has insulating properties.
  • a polyolefin microporous film for example, a polyolefin microporous film; a synthetic resin woven or non-woven fabric; a natural fiber, glass fiber, or ceramic fiber woven or non-woven fabric; paper or the like can be used.
  • the polyolefin microporous membrane can be selected from polyethylene, polypropylene, and composite membranes thereof.
  • the synthetic resin fiber can be selected from polyolefins such as polyacrylonitrile (PAN), polyamide (PA), polyester, polyethylene terephthalate (PET), polypropylene (PP) or polyethylene (PE), and mixtures thereof.
  • electrolyte an electrolytic solution or a solid electrolyte can be used.
  • electrolytic solution a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent can be used.
  • the electrolyte solution is impregnated in the positive electrode mixture layer, the negative electrode mixture layer, and the separator 37.
  • the electrolytic solution is not limited, and those generally proposed for use in lithium ion batteries and the like can be used.
  • Nonaqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and other cyclic carbonates; ⁇ -butyrolactone, ⁇ -valerolactone and other cyclic esters; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and other chains
  • the carbonates include chain esters such as methyl formate, methyl acetate, and methyl butyrate alone or a mixture of two or more thereof, but are not limited thereto.
  • electrolyte salt examples include inorganic ion salts containing one kind of lithium (Li), sodium (Na), or potassium (K) such as LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , and LiSCN; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F And organic ion salts such as 5 SO 2 ) 3 and (CH 3 ) 4 NBF 4 .
  • These ionic compounds can be used alone or in admixture of two or more.
  • the content of the supporting salt in the electrolyte is not particularly limited, and may be set as appropriate according to the type of the supporting salt used, the solvent, etc., for example, 0.1 to 5.0 mol / L, preferably 0. 8 to 2.0 mol / L can be mentioned.
  • a room temperature molten salt or ionic liquid may be used as the electrolytic solution.
  • a solid electrolyte When a solid electrolyte is used as the electrolyte, a polymer solid electrolyte can be used as the solid electrolyte, and a porous polymer solid electrolyte membrane can be used as the polymer solid electrolyte.
  • the polymer solid electrolyte can further contain an electrolytic solution.
  • the electrolyte solution constituting the gel may be different from the electrolyte solution contained in the pores.
  • the positive electrode current collector 8 and the positive electrode current collector foil 33 are connected by ultrasonic welding while being sandwiched between the clips 35.
  • the negative electrode current collector 9 and the negative electrode current collector foil 34 are connected by ultrasonic welding while being sandwiched between the clips 36.
  • the clip 35 is made of a material having a resistance value substantially equal to the material of the positive electrode current collector 8 and the positive electrode current collector foil 33 to be connected.
  • the clip 35 on the positive electrode 31 side is made of, for example, an aluminum alloy.
  • the clip 36 is made of a material having a resistance value substantially equal to the material of the negative electrode current collector 9 and the negative electrode current collector foil 34 to be connected.
  • the clip 36 on the negative electrode 32 side is made of, for example, a copper alloy.
  • the case body 4 of the exterior body 2 includes a bottom wall 40 at a position opposite to the opening 4 ⁇ / b> A. From the four side edges of the bottom wall 40, side walls 50 are formed to rise upward.
  • the bottom wall 40 does not mean a wall arranged on the lower side with respect to gravity, but means a wall arranged on the side opposite to the opening 4A of the case body 4. For this reason, when the electrical storage element 1 is used, for example, the bottom wall 40 may be in a posture positioned on the upper side with respect to gravity.
  • the electrical storage element 1 can be arrange
  • a lithium ion supply layer 42 that supplies lithium ions to the negative electrode 32 is formed on the inner surface 41 (an example of the bottom surface) of the bottom wall 40.
  • the lithium ion supply layer 42 includes a lithium ion supplier that releases lithium ions when a positive voltage is applied, and may include a conductive aid, a binder, and the like in addition to the lithium ion supplier.
  • the lithium ion supplier is not particularly limited as long as it can occlude and release lithium ions, and may be, for example, an inorganic compound. Moreover, you may use metallic lithium as a lithium ion supply body.
  • an inorganic compound spinel type lithium manganese oxide represented by LiMn 2 O 4 or the like, spinel type represented by spinel type lithium nickel manganese oxide or the like represented by LiNi 1.5 Mn 0.5 O 4 or the like Lithium transition metal oxide having a crystal structure; LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 O 2, etc.
  • LiMeO 2 type (Me is a transition metal) lithium transition metal composite oxide having an alpha-NaFeO 2 structure represented by; Li x FePO 4, Li x Fe 1-y Mn y PO 4, olivine such as Li x CoPO 4 Examples thereof include a lithium phosphorus oxide having a structure.
  • a so-called lithium-excess type lithium transition metal composite oxide that can be expressed as Li 1 + ⁇ Me 1- ⁇ O 2 ( ⁇ > 0) can also be used as the lithium ion supplier.
  • the ratio of elements such as Co, Ni and Mn constituting the transition metal element constituting the lithium transition metal composite oxide can be arbitrarily selected according to the required characteristics, but the discharge capacity increases.
  • the molar ratio Co / Me of the transition metal element Me is preferably 0.02 to 0.23, more preferably 0.04 to 0.21, and even more preferably 0.06 to 0.17. Further, since the discharge capacity is increased, the molar ratio Mn / Me of the transition metal element Me is preferably 0.63 to 0.72, and more preferably 0.65 to 0.71.
  • lithium ion suppliers may be used alone or in combination of two or more.
  • the lithium ion supplier includes LiMeO 2 type lithium transition metal composite oxide (Me is a transition metal), vanadium oxide (V 2 O 5 ), and lithium-excess type lithium transition metal composite oxide (Li 1 + ⁇ ) containing nickel. It is preferable to include one or more compounds selected from the group consisting of Me 1- ⁇ O 2 ( ⁇ > 0), Me is a transition metal).
  • the same material as the positive electrode active material contained in the positive electrode mixture layer may be used, or a different material may be used.
  • the discharge capacity of the lithium ion supply layer 42 is preferably 1% or more and 20% or less, and more preferably 3% or more and 12% or less with respect to the discharge capacity of the positive electrode 31.
  • the type of conductive aid contained in the lithium ion supply layer 42 is not particularly limited.
  • conductive assistants include carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. Materials. These conductive assistants may be used alone or in combination of two or more.
  • the conductive auxiliary agent used for the lithium ion supply layer 42 and the conductive auxiliary agent used for the positive electrode 31 may be the same substance or different substances.
  • the kind of the binder contained in the lithium ion supply layer 42 is not particularly limited as long as it is stable with respect to a solvent and an electrolytic solution used when manufacturing the electrode.
  • the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene rubber (SBR). ), Polymers having rubber elasticity such as fluororubber. These binders may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the binder contained in the lithium ion supply layer 42 may be the same material as the binder contained in the positive electrode mixture layer, or may be a different material.
  • the composition of the lithium ion supply layer 42 is such that the lithium ion supplier is 50 parts by mass or more and 96 parts by mass or less, the conductive assistant is 2 parts by mass or more and 30 parts by mass or less, and the binder is 2 parts by mass or more and 30 parts by mass or less. It can be.
  • the conductive agent is 10 parts by mass or more and 30 parts by mass or less, the electric resistance of the lithium ion supply layer 42 is lowered even when the lithium ion supply layer 42 is formed thick. Can be preferred.
  • the lithium ion supply layer 42 may fall off and be damaged even when the lithium ion supply layer 42 is formed thick. Can be suppressed, which is preferable.
  • the lithium ion supply layer 42 may contain components other than those described above.
  • a lithium ion supply layer 42 is formed by applying a mixture containing a lithium ion supplier, a conductive additive, and a binder to the inner surface 41 of the bottom wall 40.
  • a lithium ion supply layer 42 is formed on substantially the entire bottom wall 40 in a cross section of the case body 4 in a direction perpendicular to the longitudinal direction of the case body 4.
  • the lithium ion supply layer 42 and the case body 4 are electrically connected. Further, since the case body 4 and the lid 5 are also electrically connected, the lithium ion supply layer 42 is also electrically connected to the lid 5.
  • the lithium ion supply layer 42 can be formed by applying a mixture containing a lithium ion supplier, a conductive additive, and a binder to the inner surface 41 of the bottom wall 40 of the case body 4 and drying the mixture. . Moreover, the lithium ion supply layer 42 can also be formed by applying a mixture and drying it, and further applying a mixture and drying it repeatedly, so-called overcoating. Further, the lithium ion supply layer 42 can be formed by applying a mixture to the inner surface 41 of the bottom wall 40 of the case body 4 and then sintering the mixture. Thus, the lithium ion supply layer 42 can be formed by an arbitrary method as necessary.
  • the introduction of lithium ions contained in the lithium ion supply layer 42 into the negative electrode 32 can be performed, for example, by applying a voltage between the exterior body 2 and the negative electrode terminal 7.
  • the current flowing between the exterior body 2 and the negative electrode terminal 7 can be equal to or less than the current (A) having the same value as the capacity of the lithium ion supply layer 42, and the thickness of the lithium ion supply layer 42 is relatively large. In such a case, it is preferable that the current (A) has a smaller value.
  • the voltage applied between the outer package 2 and the negative electrode terminal 7 varies depending on the type of the lithium ion supply body included in the lithium ion supply layer 42, but can be 3.5V to 4.2V.
  • the positive electrode 31 is manufactured as follows.
  • a positive electrode active material for example, lithium transition metal oxide
  • a binder for example, polyvinylidene fluoride
  • a conductive additive for example, acetylene black
  • a positive electrode mixture is prepared by appropriately adding N-methylpyrrolidone thereto to prepare a paste. This positive electrode mixture is applied to both surfaces of a positive electrode substrate made of an aluminum foil. This is dried, and the positive electrode 31 is produced by pressurizing with a roll press.
  • the negative electrode 32 is produced as follows. A negative electrode active material (for example, hard carbon) and a binder (for example, polyvinylidene fluoride) are mixed. N-methylpyrrolidone is appropriately added thereto to prepare a paste, thereby preparing a negative electrode mixture. This negative electrode mixture is applied to both surfaces of a negative electrode substrate made of copper foil. This is dried and the negative electrode 32 is produced by pressurizing with a roll press.
  • a negative electrode active material for example, hard carbon
  • a binder for example, polyvinylidene fluoride
  • separator 37 for example, a polyolefin microporous film is used.
  • the winding type power storage element 3 is manufactured by winding the positive electrode 31 and the negative electrode 32 obtained as described above through the separator 37.
  • the case body 4 having the opening 4A and the lid body 5 are created.
  • a positive terminal 6 and a negative terminal 7 are attached to the lid 5.
  • a positive electrode current collector 8 is connected to the positive electrode terminal 6, and a negative electrode current collector 9 is connected to the negative electrode terminal 7.
  • the clip 35 is ultrasonically welded to the positive electrode current collector foil 33 and the positive electrode current collector 8.
  • the clip 36 is ultrasonically welded to the negative electrode current collector foil 34 and the negative electrode current collector 9 in a state where the negative electrode current collector foil 34 and the negative electrode current collector 9 are sandwiched between the clips 36.
  • the electrical storage element 3 is connected to the lid 5.
  • the case body 4 is formed into a predetermined shape using a metal plate.
  • a mixture containing a lithium ion supplier is applied to the inner surface 41 of the bottom wall 40 of the case body 4.
  • a lithium ion supply layer 42 is formed on the inner surface 41 of the bottom wall 4 of the case body 4.
  • the power storage element 3 connected to the lid 5 is inserted into the case body 4 from the opening 4 ⁇ / b> A of the case body 4.
  • the hole edge of the opening 4A of the case body 4 and the side edge of the lid 5 are welded by a known method.
  • An electrolyte is injected from an injection port (not shown) provided on the side wall 50 of the case body 4, and the injection port is sealed.
  • the power storage device includes an exterior body, a power storage element 3 including a negative electrode 32 housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode 32 housed in the exterior body,
  • the lithium ion supply layer is formed on the bottom surface in the exterior body.
  • the electricity storage element 3 When the electricity storage element 3 is accommodated in the exterior body 2, the electricity storage element 3 may come into contact with the inner surface of the side wall of the exterior body 2. At this time, for example, if the lithium ion supply layer 42 is formed on the inner surface of the side wall of the exterior body 2, the power storage element 3 may come into contact with the lithium ion supply layer 42 and the lithium ion supply layer 42 may be damaged.
  • the lithium ion supply layer 42 and the electricity storage element 3 can be prevented from interfering with each other when the electricity storage element 3 is accommodated in the exterior body 2. It is possible to prevent the supply layer 42 from being damaged.
  • the lithium ion supply layer 42 is formed by applying a mixture containing a lithium ion supply body to the inner surface 41 of the bottom wall 40 of the case body 4.
  • the lithium ion supply layer 42 can be formed in the exterior body 2 by the simple method of apply
  • FIG. it can.
  • the lithium ion supply layer 42 is formed between a portion having a curved shape of the power storage element 3 having a winding shape and the inner surface 41 of the bottom wall 40 of the case body 4.
  • the part which has the curved-surface shape of the electrical storage element 3 means the side surface which cross
  • the side surface intersecting the long axis direction of the cross-sectional shape has a relatively large curvature. Therefore, a relatively large space 51 is formed between the side surface of the wound power storage element 3 that intersects the long axis direction of the cross-sectional shape and the inner surface of the case body 4 having a rectangular parallelepiped shape. .
  • the lithium ion supply layer 42 is between the side surface of the winding-type electricity storage element 3 that intersects the major axis direction of the cross-sectional shape and the inner surface of the case body 4 having a rectangular parallelepiped shape. Since it is arranged in a relatively large space 51, space efficiency can be improved.
  • Embodiment 3 will be described with reference to FIG. As shown in FIG. 5, a roughened region 60 in which the inner surface 41 of the bottom wall 40 is roughened is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in the region where the lithium ion supply layer 42 is formed. ing.
  • the roughened region 60 is roughened from the inner surface of the side wall 50 of the case body 4 and the inner surface 41 of the bottom wall 40 than the region different from the region where the lithium ion supply layer 42 is formed. That is, the roughened region 60 is a region that is rougher than the region of the inner surface of the exterior body in which the lithium ion supply layer is not formed.
  • the roughened region 60 can be formed by a known method such as embossing, brushing with a metal brush, sand blasting, laser irradiation, etching, or the like.
  • the surface of the lithium ion supply layer 42 is covered with a protective member 61 that allows lithium ions to pass therethrough. By being covered with this protective member 61, the lithium ion supply layer 42 is prevented from dropping from the inner surface 41 of the bottom wall 40 of the case body 4.
  • the protective member 61 may be an insulating sheet through which lithium ions pass.
  • a polyolefin microporous film As the sheet, a polyolefin microporous film; a woven or non-woven fabric made of a synthetic resin; a natural fiber; a woven or non-woven fabric of glass fiber or ceramic fiber; paper or the like can be used.
  • the polyolefin microporous membrane can be selected from polyethylene, polypropylene, and composite membranes thereof.
  • the synthetic resin fiber can be selected from polyolefins such as polyacrylonitrile (PAN), polyamide (PA), polyester, polyethylene terephthalate (PET), polypropylene (PP) or polyethylene (PE), and mixtures thereof.
  • the protection member 61 may be a metal member having a plurality of through holes, such as a wire mesh or a punching metal.
  • a metal member arbitrary metals, such as copper, aluminum, and stainless steel, can be appropriately selected as necessary.
  • a metal member you may use the same material as the metal which comprises the exterior body 4.
  • the protective member 61 may be a member made of synthetic resin, which is formed in a net shape or a plate shape in which a plurality of through holes are formed.
  • the mixture containing the lithium ion supplier may be filled in the mesh or the through-hole formed in the protective member 61 made of metal or synthetic resin. Thereby, the amount of lithium ions introduced into the negative electrode 32 can be increased.
  • the surface of the lithium ion supply layer 42 is covered with the protective member 61 that allows lithium ions to pass therethrough.
  • the protective member 61 By covering the lithium ion supply layer 42 with the protective member 61, it is possible to prevent the lithium ion supply layer 42 from dropping from the inner surface 41 of the bottom wall 40 of the case body 4.
  • the inner surface 41 of the bottom wall 40 of the case body 4 has a region where the lithium ion supply layer 42 is formed in a region different from the region where the lithium ion supply layer 42 is formed.
  • a roughened roughened region 60 is formed.
  • the lithium ion supply layer 42 is firmly held on the inner surface 41 of the bottom wall 40 of the case body 4. Thereby, it is possible to prevent the lithium ion supply layer 42 from being detached from the inner surface 41 of the bottom wall 40 of the case body 4.
  • a resistance coating 62 is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in the region where the lithium ion supply layer 42 is formed.
  • the resistance film 62 has a higher electrical resistance than a region where the lithium ion supply layer 42 is not formed.
  • the resistance film 62 can be formed, for example, by oxidizing the inner surface 41 of the bottom wall 40 of the case body 4 to form an oxide film.
  • the inner surface 41 of the bottom wall 40 of the case body 4 may be coated with a ceramic film.
  • a mixture containing a binder (for example, PVDF) and a conductive additive (for example, acetylene black) may be applied to the inner surface 41 of the bottom wall 40 of the case body 4.
  • the exterior body 4 is at a potential relative to the positive electrode 31.
  • the exterior bodies 4 of the plurality of power storage elements 1 that have completed the precharge process may have different potentials.
  • the power storage elements 1 having different potentials of the outer package 4 come into contact with each other, there is a concern that the outer packages 4 of the power storage element 1 are short-circuited and a short-circuit current flows.
  • a resistance film 62 is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in a region where the lithium ion supply layer 42 is formed. Has a larger electric resistance than the region where the lithium ion supply layer 42 is not formed.
  • the electricity storage element 1 is a lithium ion battery which is a kind of nonaqueous electrolyte secondary battery.
  • the present invention is not limited thereto, and the storage element 1 may be another secondary battery such as a lead storage battery or a nickel hydride battery, or may be a primary battery.
  • a capacitor etc. may be sufficient.
  • the power storage element 3 of the power storage element 1 is the wound power storage element 3 formed in a flat shape by winding the positive electrode 31 and the negative electrode 32 via the separator 37, but is not limited thereto.
  • the power storage element 3 may be a stacked power storage element formed by stacking the positive electrode 31 and the negative electrode 32 with the separator 37 interposed therebetween.
  • the power storage element 1 is configured to include one power storage element 3, but is not limited thereto, and the power storage element 1 may be configured to include two or more power storage elements 3.
  • a power storage device can be configured by combining a plurality of power storage elements according to the above embodiment, and one embodiment thereof is shown in FIG.
  • the power storage device 101 includes a plurality of power storage units 100. Each power storage unit 100 includes a plurality of power storage elements 1.
  • the power storage device 101 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), and one embodiment thereof is shown in FIG.
  • EV electric vehicle
  • HEV hybrid vehicle
  • PHEV plug-in hybrid vehicle
  • the storage element according to the present invention can suppress damage to the lithium ion supply layer when the storage element is housed in the exterior body, the electric vehicle (EV), the hybrid vehicle (HEV), and the plug-in hybrid It can be effectively used as a power source for automobiles such as automobiles (PHEV), a power source for electronic devices and a power storage power source.
  • Power storage element 2 Exterior body 3: Power storage element 30: Exterior body 31: Positive electrode 32: Negative electrode 37: Separator 40: Bottom wall 41: Inner surface 42: Lithium ion supply layer 61: Protection member 100: Power storage unit 101: Power storage device 102: Body body 103: Automobile

Abstract

The purpose of the present invention is to provide a power storage device with which damage to a lithium ion supply layer is suppressed when a storage element 3 is housed in an outer casing. A power storage device 1 is provided with an outer casing 2, a storage element 3 that comprises a negative electrode 32 and is housed in the outer casing 2, and a lithium ion supply layer 42 for supplying lithium ions to the negative electrode 32 to be housed in the outer casing 2. The lithium ion supply layer 42 is formed on an inside surface 41 at a bottom wall 40 of the outer casing 2. Damage to the lithium ion feed layer 42 can thereby be suppressed when the storage element 3 is housed in the outer casing 2.

Description

蓄電素子Electricity storage element
 本明細書に開示される技術は、外装体内に収容された負極を含む蓄電素子に関する。 The technique disclosed in this specification relates to a power storage element including a negative electrode housed in an exterior body.
 従来、電池ケース内に、発電要素が収容された電池が知られている(特開2008-192540号)。この電池は、電池ケースの内側面に、リチウムイオンを放出可能なリチウム化合物からなるリチウムイオン供給体が配置されている。 Conventionally, a battery in which a power generation element is housed in a battery case is known (Japanese Patent Laid-Open No. 2008-192540). In this battery, a lithium ion supplier made of a lithium compound capable of releasing lithium ions is disposed on the inner surface of the battery case.
特開2008-192540号公報JP 2008-192540 A
 しかしながら、上記の構成によると、発電要素を電池ケース内に収容する際に、電池ケースの内側面に配置されたリチウムイオン供給体と、発電要素とが接触し、リチウムイオン供給体が損傷する恐れがある。 However, according to the above configuration, when the power generation element is accommodated in the battery case, the lithium ion supplier disposed on the inner surface of the battery case and the power generation element may come into contact with each other, and the lithium ion supply body may be damaged. There is.
 本明細書では、外装体内に蓄電要素を収容する際にリチウムイオン供給層が損傷することが抑制された蓄電素子に係る技術を開示する。 This specification discloses a technology related to a power storage element in which the lithium ion supply layer is prevented from being damaged when the power storage element is accommodated in the exterior body.
 本明細書に記載された蓄電素子は、外装体と、前記外装体内に収容される負極を含む蓄電要素と、前記外装体内に収容される前記負極にリチウムイオンを供給するリチウムイオン供給層とを備え、前記リチウムイオン供給層は、前記外装体内の底面に形成される。 A power storage element described in this specification includes an exterior body, a power storage element including a negative electrode housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode housed in the exterior body. The lithium ion supply layer is formed on the bottom surface of the outer package.
 本明細書に開示された技術によれば、外装体内に蓄電要素を収容する際に、リチウムイオン供給層が損傷することを抑制することができる。 According to the technology disclosed in this specification, it is possible to suppress damage to the lithium ion supply layer when the power storage element is accommodated in the exterior body.
本発明の実施形態1に係る蓄電素子を示す斜視図The perspective view which shows the electrical storage element which concerns on Embodiment 1 of this invention. 本発明の蓄電素子を示す分解斜視図The exploded perspective view which shows the electrical storage element of this invention 本発明の実施形態1に係る蓄電素子を示す断面図Sectional drawing which shows the electrical storage element which concerns on Embodiment 1 of this invention 本発明の実施形態2に係る蓄電素子を示す断面図Sectional drawing which shows the electrical storage element which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る蓄電素子を示す断面図Sectional drawing which shows the electrical storage element which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る蓄電素子を示す断面図Sectional drawing which shows the electrical storage element which concerns on Embodiment 4 of this invention. 本発明の蓄電素子が備えられる蓄電装置を示す概略図Schematic which shows the electrical storage apparatus provided with the electrical storage element of this invention 本発明の蓄電素子が備えられる蓄電装置が備えられる自動車を示す概略図Schematic which shows the motor vehicle provided with the electrical storage apparatus provided with the electrical storage element of this invention.
(本実施形態の概要)
 本明細書に記載された蓄電素子は、外装体と、前記外装体内に収容される負極を含む蓄電要素と、前記外装体内に収容される前記負極にリチウムイオンを供給するリチウムイオン供給層とを備え、前記リチウムイオン供給層は、前記外装体内の底面に形成される。
(Outline of this embodiment)
A power storage element described in this specification includes an exterior body, a power storage element including a negative electrode housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode housed in the exterior body. The lithium ion supply layer is formed on the bottom surface of the outer package.
 蓄電要素を外装体内に収容する際に、蓄電要素が外装体の側壁の内面に接触する場合が考えられる。このとき、例えば、外装体の側壁の内面にリチウムイオン供給層が形成されていると、蓄電要素がリチウムイオン供給体に接触し、リチウムイオン供給層が損傷する恐れがある。 When the power storage element is accommodated in the exterior body, the power storage element may come into contact with the inner surface of the side wall of the exterior body. At this time, for example, if a lithium ion supply layer is formed on the inner surface of the side wall of the exterior body, the power storage element may come into contact with the lithium ion supply body and the lithium ion supply layer may be damaged.
 本明細書に記載された蓄電素子によれば、外装体内に蓄電要素を収容する際に、リチウムイオン供給層と蓄電要素とが干渉することを抑制することができるので、リチウムイオン供給層が損傷することを抑制することができる。 According to the electricity storage device described in the present specification, when the electricity storage element is accommodated in the exterior body, it is possible to suppress the interference between the lithium ion supply layer and the electricity storage element, so that the lithium ion supply layer is damaged. Can be suppressed.
 前記蓄電要素は、前記負極と正極とセパレータとが巻回される巻回型蓄電要素であり、前記巻回型蓄電要素は、巻回軸に直交する方向の断面形状が略長円形状であり、前記リチウムイオン供給層は、前記巻回型蓄電要素の曲面形状を有する部分と前記外装体内の底面との間に形成されていてもよい。 The power storage element is a wound power storage element in which the negative electrode, the positive electrode, and a separator are wound, and the wound power storage element has a substantially oval cross-sectional shape in a direction perpendicular to the winding axis. The lithium ion supply layer may be formed between a portion having a curved shape of the wound power storage element and a bottom surface of the exterior body.
 巻回軸に直交する方向の断面形状が長円形状をなす巻回型蓄電要素の外面において、その断面形状の長軸方向と交差する側面は、比較的に曲率が大きい。このため、巻回型蓄電要素のうち、その断面形状の長軸方向と交差する側面と、直方体形状をなすケースの内面との間には比較的に大きなスペースが形成される。この比較的に大きなスペース内にリチウムイオン供給層を配することにより、スペース効率を向上させることができる。 In the outer surface of the wound power storage element in which the cross-sectional shape in the direction orthogonal to the winding axis forms an oval shape, the side surface intersecting the major axis direction of the cross-sectional shape has a relatively large curvature. For this reason, a relatively large space is formed between the side surface of the wound power storage element that intersects the long axis direction of the cross-sectional shape and the inner surface of the case having a rectangular parallelepiped shape. Space efficiency can be improved by arranging the lithium ion supply layer in this relatively large space.
 前記リチウムイオン供給層は、リチウムイオン供給体を含む合剤を前記外装体内の底面に塗布することにより形成されていてもよい。 The lithium ion supply layer may be formed by applying a mixture containing a lithium ion supplier to the bottom surface of the exterior body.
 上記の構成によれば、リチウムイオン供給体を含む合剤を外装体の内面に塗布するという簡易な手法により、ケース内にリチウムイオン供給体を配することができる。 According to the above configuration, the lithium ion supply body can be arranged in the case by a simple method of applying a mixture containing the lithium ion supply body to the inner surface of the exterior body.
 前記リチウムイオン供給層の表面は、リチウムイオンが通過する絶縁性のシートで覆われていてもよい。 The surface of the lithium ion supply layer may be covered with an insulating sheet through which lithium ions pass.
 上記の構成によれば、シートによって、リチウムイオン供給層が外装体内の底面から脱離することを抑制することができる。 According to the above configuration, the lithium ion supply layer can be prevented from being detached from the bottom surface in the exterior body by the sheet.
 前記リチウムイオン供給層が形成されている外装体の内面の領域は、リチウムイオン供給層が形成されていない外装体の内面の領域よりも粗くてもよい。 The area of the inner surface of the outer package in which the lithium ion supply layer is formed may be rougher than the area of the inner surface of the outer package in which the lithium ion supply layer is not formed.
 上記の構成によれば、リチウムイオン供給層が形成されている外装体の内面の領域が粗いため、リチウムイオン供給層が外装体の内面から脱落しにくくすることができる。 According to the above configuration, since the region of the inner surface of the exterior body on which the lithium ion supply layer is formed is rough, the lithium ion supply layer can be made difficult to fall off from the inner surface of the exterior body.
 前記リチウムイオン供給層が形成されている前記外装体の内面の領域には、抵抗被膜が形成されていてもよい。 A resistance coating may be formed on the inner surface of the outer package in which the lithium ion supply layer is formed.
 上記の構成によれば、外装体の電位が異なる蓄電素子同士が接触する場合であっても、抵抗被膜が存在することにより、蓄電素子の外装体同士が短絡することを抑制することができる。 According to the above configuration, even when power storage elements having different potentials of the exterior body are in contact with each other, it is possible to prevent the exterior bodies of the power storage elements from being short-circuited due to the presence of the resistance film.
 前記蓄電素子を複数用いて、蓄電装置としてもよい。 A plurality of the power storage elements may be used to form a power storage device.
 前記蓄電装置を用いて、自動車としてもよい。 The power storage device may be used as an automobile.
<実施形態1>
 実施形態1に係る蓄電素子1について図1~図3を参照しつつ説明する。以下の説明では、図1において、符号Fが付された紙面右下側を蓄電素子1の前側とし、符号Rが付された紙面右上側を蓄電素子1の右側とし、符号Uが付された紙面上側を蓄電素子1の上側とする。
<Embodiment 1>
A power storage device 1 according to Embodiment 1 will be described with reference to FIGS. In the following description, in FIG. 1, the lower right side of the sheet with the symbol F is the front side of the electricity storage element 1, the upper right side of the page with the symbol R is the right side of the electricity storage element 1, and the symbol U is attached. The upper side of the drawing is the upper side of the storage element 1.
(蓄電素子1)
 図1に示す蓄電素子1は、繰り返し充放電可能な二次電池であり、より具体的には非水電解質二次電池であり、さらにより具体的にはリチウムイオン電池である。蓄電素子1は、例えば電気自動車やハイブリッド自動車等の車両に搭載され、電気エネルギーで作動する動力源に電力を供給する。
(Storage element 1)
1 is a rechargeable secondary battery, more specifically a nonaqueous electrolyte secondary battery, and more specifically a lithium ion battery. The power storage element 1 is mounted on a vehicle such as an electric vehicle or a hybrid vehicle, and supplies power to a power source that operates with electric energy.
 図2に示すように、蓄電素子1は、蓄電要素3が、外装体2内に図示しない電解質と共に収容された構成を有する。電解質は、電解液であってもよく、また、固体電解質であってもよい。 As shown in FIG. 2, the power storage element 1 has a configuration in which a power storage element 3 is accommodated in an exterior body 2 together with an electrolyte (not shown). The electrolyte may be an electrolytic solution or a solid electrolyte.
(外装体2)
 外装体2は、ケース本体4と蓋体5とを有する。ケース本体4は、全体として略直方体状をなし、一端面側、即ち上端面側に開口部4Aが開口形成されている。ケース本体4は、導電性材料により形成され、例えばアルミニウム、アルミニウム合金等の金属製である。
(Exterior body 2)
The exterior body 2 includes a case main body 4 and a lid body 5. The case main body 4 has a substantially rectangular parallelepiped shape as a whole, and an opening 4A is formed on one end surface side, that is, the upper end surface side. The case body 4 is made of a conductive material, and is made of metal such as aluminum or aluminum alloy.
 開口部4Aは、左右方向の幅寸法が、上記左右方向に直交する方向、即ち前後方向の幅寸法よりも長い矩形状をなす。ケース本体4の内部には、蓄電要素3が収容されるとともに、電解質が充填されている。蓄電要素3は、ケース本体4の内部において、ケース本体4の長手方向と、蓄電要素3の長手方向とが一致する姿勢で収容されている。 The opening 4A has a rectangular shape in which the width dimension in the left-right direction is longer than the width dimension in the direction orthogonal to the left-right direction, that is, the front-rear direction. The case body 4 contains the electricity storage element 3 and is filled with an electrolyte. The power storage element 3 is accommodated inside the case body 4 in a posture in which the longitudinal direction of the case body 4 coincides with the longitudinal direction of the power storage element 3.
 蓋体5には、正極端子6、負極端子7、正極集電体8、及び負極集電体9が設けられている。蓋体5は、全体として略長方形状をなし、開口部4Aと略同一の形状をなす。蓋体5は、ケース本体4の開口部4Aを塞ぐようにケース本体4に接合されている。なお、蓋体5は、導電性材料により形成され、例えばアルミニウム、アルミニウム合金等の金属製である。 The lid 5 is provided with a positive electrode terminal 6, a negative electrode terminal 7, a positive electrode current collector 8, and a negative electrode current collector 9. The lid body 5 has a substantially rectangular shape as a whole, and has substantially the same shape as the opening 4A. The lid 5 is joined to the case body 4 so as to close the opening 4 </ b> A of the case body 4. The lid 5 is made of a conductive material, and is made of metal such as aluminum or aluminum alloy.
 蓋体5の外面、即ち、上面には正極端子6と負極端子7とが配置されている。具体的には、正極端子6は、蓋体5の長手方向における一端側、即ち左側に配置されて、負極端子7は、長手方向における他端側、即ち右側に配置されている。 A positive electrode terminal 6 and a negative electrode terminal 7 are arranged on the outer surface, ie, the upper surface of the lid 5. Specifically, the positive electrode terminal 6 is disposed on one end side in the longitudinal direction of the lid 5, that is, the left side, and the negative electrode terminal 7 is disposed on the other end side in the longitudinal direction, that is, the right side.
 蓋体5の左端部寄り位置には、蓋体5の下面から下方に延びる2つの正極集電体8が配設されている。詳細には図示しないが、正極集電体8の上端部は、正極端子6に電気的に接続されている。 Two positive electrode current collectors 8 extending downward from the lower surface of the lid 5 are disposed near the left end of the lid 5. Although not shown in detail, the upper end portion of the positive electrode current collector 8 is electrically connected to the positive electrode terminal 6.
 正極集電体8は、後述する蓄電要素3において正極集電箔33が露出する部分に沿う細長い形状である。2つの正極集電体8は、互いの板面が対向する向きで配されている。正極集電体8は、例えばアルミニウム合金板など、大きな電流容量が得られるように十分な厚さを有する金属板からなる。 The positive electrode current collector 8 has an elongated shape along the portion where the positive electrode current collector foil 33 is exposed in the electricity storage element 3 to be described later. The two positive electrode current collectors 8 are arranged so that their plate surfaces face each other. The positive electrode current collector 8 is made of a metal plate having a sufficient thickness so as to obtain a large current capacity, such as an aluminum alloy plate.
 蓋体5の右端部よりの位置には、蓋体5の下面から下方に延びる2つの負極集電体9が配設されている。詳細には図示しないが、負極集電体9の上端部は、負極端子7に電気的に接続されている。 Two negative electrode current collectors 9 extending downward from the lower surface of the lid 5 are disposed at a position from the right end of the lid 5. Although not shown in detail, the upper end portion of the negative electrode current collector 9 is electrically connected to the negative electrode terminal 7.
 負極集電体9は、後述する蓄電要素3において負極集電箔34が露出する部分に沿う細長い形状である。2つの負極集電体9は、互いの板面が対向する向きで配されている。負極集電体9は、例えば銅合金板など、大きな電流容量が得られるように十分な厚さを有する金属板からなる。 The negative electrode current collector 9 has an elongated shape along the portion where the negative electrode current collector foil 34 is exposed in the electricity storage element 3 to be described later. The two negative electrode current collectors 9 are arranged so that their plate surfaces face each other. The negative electrode current collector 9 is made of a metal plate having a sufficient thickness so as to obtain a large current capacity, such as a copper alloy plate.
(蓄電要素3)
 蓄電要素3は、略長方形状の板状をなすポリエチレン製の巻芯の長辺を巻軸の中心にして、例えば、正極31と負極32とをセパレータ37を介して巻回することにより形成される巻回型蓄電素子である。
(Storage element 3)
The power storage element 3 is formed by, for example, winding a positive electrode 31 and a negative electrode 32 through a separator 37 with the long side of a polyethylene core having a substantially rectangular plate shape being the center of the winding axis. This is a winding type power storage element.
 これにより、蓄電要素3は、巻芯に対応して、巻芯の巻軸に沿った方向に長く、巻芯の巻軸に垂直な方向に短い、かつ、巻芯の板面に垂直な方向に短い扁平型に巻回した筒形状に構成される。蓄電要素3は、巻芯の短辺方向に沿った方向と、巻芯の長辺方向に沿った方向とによって形成される領域の面積が、他の領域の面積より大きくなる形状をなす。そして、蓄電要素3は、巻芯の長辺方向を左右方向として、ケース本体4に収容される。 Thereby, the electrical storage element 3 corresponds to the core, and is long in the direction along the winding axis of the core, short in the direction perpendicular to the winding axis of the core, and perpendicular to the plate surface of the core. It is configured in a cylindrical shape wound in a short flat shape. The electricity storage element 3 has a shape in which the area of the region formed by the direction along the short side direction of the core and the direction along the long side direction of the core is larger than the areas of the other regions. And the electrical storage element 3 is accommodated in the case main body 4 by making the long side direction of a winding core into the left-right direction.
 蓄電要素3は、巻回軸に直交する方向の断面形状が略長円形状をなしている。略長円形状とは、長円形状を含むと共に、長円形状でなくとも、実質的に長円形状とみなせる形状も含む。また、略長円形状は、楕円形状も含む。 The cross-sectional shape of the electricity storage element 3 in the direction orthogonal to the winding axis is substantially oval. The substantially oval shape includes an oval shape and also includes a shape that can be regarded as an oval shape even if it is not an oval shape. Further, the substantially oval shape includes an elliptical shape.
(正極31)
 正極31は、巻回方向を長手方向とした帯状をなすアルミニウム箔の表面に正極合剤層が形成されたものである。正極31は、その長手方向に延びる一方の縁には、正極合剤層が形成されずに正極集電箔33が露出する部分が存在する。正極合剤層は、正極活物質を含み、正極活物質以外に、導電助剤、バインダ等を含んでもよい。
(Positive electrode 31)
The positive electrode 31 is obtained by forming a positive electrode mixture layer on the surface of an aluminum foil having a strip shape in which the winding direction is the longitudinal direction. The positive electrode 31 has a portion where the positive electrode current collector foil 33 is exposed without forming the positive electrode mixture layer on one edge extending in the longitudinal direction. The positive electrode mixture layer includes a positive electrode active material, and may include a conductive additive, a binder, and the like in addition to the positive electrode active material.
 正極活物質としては、リチウムイオンを吸蔵及び放出できることを限度として、特に制限されず、無機化合物であってもよく、また有機化合物であってもよい。例えば、無機化合物としては、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、バナジウム酸化物(例えばV)等の遷移金属酸化物;LiMn等で表されるスピネル型リチウムマンガン酸化物、LiNi1.5Mn0.5等で表されるスピネル型リチウムニッケルマンガン酸化物等に代表されるスピネル型結晶構造を有するリチウム遷移金属酸化物;LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、Li1.1Co2/3Ni1/6Mn1/6等に代表されるα-NaFeO構造を有するLiMeO型(Meは遷移金属)リチウム遷移金属複合酸化物;LiFePO、LiFe1-yMnPO、LiCoPO等のオリビン構造を有するリチウムリン酸化物等が挙げられる。有機化合物としては、ポリアニリンやポリピロール等の導電性ポリマー材料;ジスルフィド系ポリマー材料;硫黄(S);硫酸鉄(Fe(SO
)等の硫化物等が挙げられる。
The positive electrode active material is not particularly limited as long as it can occlude and release lithium ions, and may be an inorganic compound or an organic compound. For example, as an inorganic compound, transition metal oxides such as manganese dioxide (MnO 2 ), iron oxide, copper oxide, nickel oxide, vanadium oxide (for example, V 2 O 5 ); spinel represented by LiMn 2 O 4 or the like Transition metal oxides having a spinel crystal structure typified by spinel type lithium nickel manganese oxide and the like represented by type lithium manganese oxide, LiNi 1.5 Mn 0.5 O 4 and the like; LiCoO 2 , LiNiO 2 LiMeO 2 type having an α-NaFeO 2 structure represented by LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 O 2, etc. Me is a transition metal) lithium transition metal composite oxide; Li x FePO 4, Li x Fe 1-y Mn y PO 4, Olympoi such Li x CoPO 4 Lithium phosphorus oxides having the structure. Examples of organic compounds include conductive polymer materials such as polyaniline and polypyrrole; disulfide polymer materials; sulfur (S); iron sulfate (Fe 2 (SO 4 ))
3 ) and the like.
 また、正極活物質として、Li1+αMe1-α(α>0)と表記可能な、いわゆる、リチウム過剰型リチウム遷移金属複合酸化物を用いることもできる。これらの正極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 As the positive electrode active material, a so-called lithium-excess type lithium transition metal composite oxide that can be expressed as Li 1 + α Me 1-α O 2 (α> 0) can also be used. These positive electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type.
 導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料が挙げられる。これらの導電助剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Examples of conductive assistants include carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. Materials. These conductive assistants may be used alone or in combination of two or more.
 バインダは、電極製造時に使用する溶媒や電解液に対して安定であり、また、充放電時の酸化還元反応に対して安定な材料であれば特にその種類は制限されない。バインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマー等が挙げられる。これらのバインダは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 The type of the binder is not particularly limited as long as it is a material that is stable with respect to a solvent and an electrolytic solution used at the time of electrode production and is stable with respect to an oxidation-reduction reaction at the time of charge and discharge. Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene rubber (SBR). ), Polymers having rubber elasticity such as fluororubber. These binders may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、必要に応じて、正極合剤に粘度調整剤等を含有させてもよい。粘度調整剤としては、カルボキシメチルセルロース(CMC)、N-メチルピロリドン(NMP)等の任意の化合物を必要に応じて適宜に選択することができる。 Further, if necessary, the positive electrode mixture may contain a viscosity modifier and the like. As the viscosity modifier, any compound such as carboxymethylcellulose (CMC) and N-methylpyrrolidone (NMP) can be appropriately selected as necessary.
 正極31は、正極集電箔33が露出する部分が、セパレータ37や正極合剤層よりも一端側、即ち、正極31側(左側)に配されるように重ねられている。また、負極32は、負極集電箔34が露出する部分が、セパレータ37や負極合剤層よりも他端側、即ち、負極32側(右側)に配されるように重ねられている。 The positive electrode 31 is overlapped so that the portion where the positive electrode current collector foil 33 is exposed is arranged on one end side, that is, on the positive electrode 31 side (left side) from the separator 37 and the positive electrode mixture layer. Moreover, the negative electrode 32 is overlaid so that the portion where the negative electrode current collector foil 34 is exposed is arranged on the other end side of the separator 37 and the negative electrode mixture layer, that is, on the negative electrode 32 side (right side).
 これにより、蓄電要素3の一端側、即ち、正極31側(左側)には、正極集電箔33が露出する部分のみが積層して設けられ、他端側、即ち、負極32側(右側)には、負極集電箔34が露出する部分のみが積層して設けられている。 Thereby, only the part which the positive electrode current collector foil 33 exposes is laminated | stacked and provided in the one end side of the electrical storage element 3, ie, the positive electrode 31 side (left side), and the other end side, ie, the negative electrode 32 side (right side). Only the portion where the negative electrode current collector foil 34 is exposed is laminated.
(負極32)
 負極32は、巻回方向を長手方向とした帯状をなす銅箔の表面に負極合剤層が形成されたものである。負極32は、その長手方向に延びる一方の縁には、負極合剤層が形成されずに負極集電箔34が露出する部分が存在する。負極合剤層は、負極活物質を含み、負極活物質以外に、導電助剤、バインダを含んでもよい。
(Negative electrode 32)
The negative electrode 32 is obtained by forming a negative electrode mixture layer on the surface of a copper foil having a strip shape in which the winding direction is the longitudinal direction. The negative electrode 32 has a portion where the negative electrode current collector foil 34 is exposed without forming the negative electrode mixture layer at one edge extending in the longitudinal direction. The negative electrode mixture layer includes a negative electrode active material, and may include a conductive additive and a binder in addition to the negative electrode active material.
 負極32に用いられる導電助剤、バインダ、粘度調整剤等は、正極31に用いられたものと同様のものを適宜に選択して使用することができる。 As the conductive additive, binder, viscosity modifier and the like used for the negative electrode 32, the same ones as those used for the positive electrode 31 can be appropriately selected and used.
 負極活物質としては、リチウムイオンを可逆的に吸蔵及び放出できることを限度として、特に制限されない。負極活物質として、具体的には、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の非晶質炭素;黒鉛;Al、Si、Pb、Sn、Zn、Cd等の金属とリチウムとの合金;酸化タングステン;酸化モリブデン;硫化鉄;硫化チタン;チタン酸リチウム等が挙げられる。これらの負極活物質は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの負極活物質の中でも、非晶質炭素及び黒鉛が好ましい。 The negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions. Specific examples of the negative electrode active material include amorphous carbon such as non-graphitizable carbon (hard carbon) and graphitizable carbon (soft carbon); graphite; Al, Si, Pb, Sn, Zn, Cd, etc. Alloys of these metals and lithium; tungsten oxide; molybdenum oxide; iron sulfide; titanium sulfide; lithium titanate and the like. These negative electrode active materials may be used individually by 1 type, and may be used in combination of 2 or more type. Among these negative electrode active materials, amorphous carbon and graphite are preferable.
(セパレータ37)
 セパレータ37は、絶縁性を備えるものであることを限度として特に制限されない。セパレータ37としては、例えば、ポリオレフィン微多孔膜;合成樹脂製の織物又は不織布;天然繊維、ガラス繊維又はセラミック繊維の織物又は不織布;紙等を用いることができる。ポリオレフィン微多孔膜としては、ポリエチレン、ポリプロピレン及びこれらの複合膜から選択することができる。合成樹脂繊維としては、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエステル、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)又はポリエチレン(PE)等のポリオレフィン及びこれらの混合物から選択することができる。
(Separator 37)
The separator 37 is not particularly limited as long as it has insulating properties. As the separator 37, for example, a polyolefin microporous film; a synthetic resin woven or non-woven fabric; a natural fiber, glass fiber, or ceramic fiber woven or non-woven fabric; paper or the like can be used. The polyolefin microporous membrane can be selected from polyethylene, polypropylene, and composite membranes thereof. The synthetic resin fiber can be selected from polyolefins such as polyacrylonitrile (PAN), polyamide (PA), polyester, polyethylene terephthalate (PET), polypropylene (PP) or polyethylene (PE), and mixtures thereof.
(電解質)
 電解質としては、電解液、又は、固体電解質を用いることができる。電解液としては、非水溶媒に電解質塩を溶解させた非水電解液を用いることができる。電解液は、外装体2内において、正極合剤層、負極合剤層及びセパレータ37に含浸されている。電解液は限定されるものではなく、一般にリチウムイオン電池等への使用が提案されているものが使用可能である。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ-ブチロラクトン、γ-バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。なお、電解液には公知の添加剤を加えてもよい。
(Electrolytes)
As the electrolyte, an electrolytic solution or a solid electrolyte can be used. As the electrolytic solution, a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent can be used. In the exterior body 2, the electrolyte solution is impregnated in the positive electrode mixture layer, the negative electrode mixture layer, and the separator 37. The electrolytic solution is not limited, and those generally proposed for use in lithium ion batteries and the like can be used. Nonaqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate and other cyclic carbonates; γ-butyrolactone, γ-valerolactone and other cyclic esters; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and other chains Examples of the carbonates include chain esters such as methyl formate, methyl acetate, and methyl butyrate alone or a mixture of two or more thereof, but are not limited thereto. In addition, you may add a well-known additive to electrolyte solution.
 電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF、LiSCN等のリチウム(Li)、ナトリウム(Na)又はカリウム(K)の1種を含む無機イオン塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、(CHNBF等の有機イオン塩等が挙げられる。これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。電解質における支持塩の含有量については、特に制限されず、使用する支持塩の種類や溶媒等に応じて適宜設定すればよいが、例えば、0.1~5.0mol/L、好ましくは0.8~2.0mol/Lが挙げられる。 Examples of the electrolyte salt include inorganic ion salts containing one kind of lithium (Li), sodium (Na), or potassium (K) such as LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , and LiSCN; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F And organic ion salts such as 5 SO 2 ) 3 and (CH 3 ) 4 NBF 4 . These ionic compounds can be used alone or in admixture of two or more. The content of the supporting salt in the electrolyte is not particularly limited, and may be set as appropriate according to the type of the supporting salt used, the solvent, etc., for example, 0.1 to 5.0 mol / L, preferably 0. 8 to 2.0 mol / L can be mentioned.
 さらに、LiN(CSOのようなパーフルオロアルキル基を有するリチウム塩を混合して用いることにより、電解質の粘度を下げること、及び、蓄電素子の自己放電を抑制することができ、好ましい。 Furthermore, by mixing and using a lithium salt having a perfluoroalkyl group such as LiN (C 2 F 5 SO 2 ) 2 , it is possible to reduce the viscosity of the electrolyte and to suppress self-discharge of the storage element. It is possible and preferable.
 また、電解液として常温溶融塩やイオン液体を用いてもよい。 Also, a room temperature molten salt or ionic liquid may be used as the electrolytic solution.
 電解質として固体電解質を用いる場合は、固体電解質として高分子固体電解質を用い、高分子固体電解質として有孔性高分子固体電解質膜を用いることができる。そして、高分子固体電解質にさらに電解液を含有させることができる。また、電解質としてゲル状の高分子固体電解質を用いる場合は、ゲルを構成する電解液と、細孔中等に含有される電解液とは、異なっていてもよい。 When a solid electrolyte is used as the electrolyte, a polymer solid electrolyte can be used as the solid electrolyte, and a porous polymer solid electrolyte membrane can be used as the polymer solid electrolyte. The polymer solid electrolyte can further contain an electrolytic solution. Further, when a gel polymer solid electrolyte is used as the electrolyte, the electrolyte solution constituting the gel may be different from the electrolyte solution contained in the pores.
(集電体と蓄電要素3との接続構造)
 正極集電体8と、正極集電箔33とは、クリップ35によって挟み込まれた状態で超音波溶接されることにより接続される。また、負極集電体9と、負極集電箔34とは、クリップ36によって挟み込まれた状態で超音波溶接されることで接続される。
(Connection structure between current collector and power storage element 3)
The positive electrode current collector 8 and the positive electrode current collector foil 33 are connected by ultrasonic welding while being sandwiched between the clips 35. The negative electrode current collector 9 and the negative electrode current collector foil 34 are connected by ultrasonic welding while being sandwiched between the clips 36.
 クリップ35は、接続される正極集電体8及び正極集電箔33の材質とほぼ同等の抵抗値を有する材料からなる。本実施形態においては、正極31側のクリップ35は、例えばアルミニウム合金からなる。 The clip 35 is made of a material having a resistance value substantially equal to the material of the positive electrode current collector 8 and the positive electrode current collector foil 33 to be connected. In the present embodiment, the clip 35 on the positive electrode 31 side is made of, for example, an aluminum alloy.
 また、クリップ36は、接続される負極集電体9及び負極集電箔34の材質とほぼ同等の抵抗値を有する材料からなる。本実施形態においては、負極32側のクリップ36は、例えば銅合金からなる。 The clip 36 is made of a material having a resistance value substantially equal to the material of the negative electrode current collector 9 and the negative electrode current collector foil 34 to be connected. In the present embodiment, the clip 36 on the negative electrode 32 side is made of, for example, a copper alloy.
(リチウムイオン供給層42)
 図2及び図3に示すように、外装体2のケース本体4は、開口部4Aと反対側の位置に、底壁40を備える。底壁40の4つの側縁からは、それぞれ側壁50が上方に立ち上がって形成されている。
(Lithium ion supply layer 42)
As shown in FIGS. 2 and 3, the case body 4 of the exterior body 2 includes a bottom wall 40 at a position opposite to the opening 4 </ b> A. From the four side edges of the bottom wall 40, side walls 50 are formed to rise upward.
 なお、底壁40は、重力について下側に配された壁を意味するものではなく、ケース本体4の開口部4Aと反対側に配された壁であることを意味する。このため、蓄電素子1が使用されている際に、例えば、底壁40が重力について上側に位置する姿勢になってもよい。蓄電素子1は必要に応じて任意の姿勢で配置することができる。 In addition, the bottom wall 40 does not mean a wall arranged on the lower side with respect to gravity, but means a wall arranged on the side opposite to the opening 4A of the case body 4. For this reason, when the electrical storage element 1 is used, for example, the bottom wall 40 may be in a posture positioned on the upper side with respect to gravity. The electrical storage element 1 can be arrange | positioned with arbitrary attitude | positions as needed.
 図3に示すように、底壁40の内面41(底面の一例)には、負極32にリチウムイオンを供給するリチウムイオン供給層42が形成されている。 3, a lithium ion supply layer 42 that supplies lithium ions to the negative electrode 32 is formed on the inner surface 41 (an example of the bottom surface) of the bottom wall 40.
 リチウムイオン供給層42は、正電圧を印加したときにリチウムイオン放出するリチウムイオン供給体を含み、リチウムイオン供給体以外に、導電助剤、バインダ等を含んでもよい。 The lithium ion supply layer 42 includes a lithium ion supplier that releases lithium ions when a positive voltage is applied, and may include a conductive aid, a binder, and the like in addition to the lithium ion supplier.
 リチウムイオン供給体としては、リチウムイオンを吸蔵及び放出できることを限度として、特に制限されず、例えば、無機化合物であってもよい。また、リチウムイオン供給体としては、金属リチウムを用いてもよい。無機化合物としては、LiMn等で表されるスピネル型リチウムマンガン酸化物、LiNi1.5Mn0.5等で表されるスピネル型リチウムニッケルマンガン酸化物等に代表されるスピネル型結晶構造を有するリチウム遷移金属酸化物;LiCoO、LiNiO、LiCo1/3Ni1/3Mn1/3、Li1.1Co2/3Ni1/6Mn1/6等に代表されるα-NaFeO構造を有するLiMeO型(Meは遷移金属)リチウム遷移金属複合酸化物;LiFePO、LiFe1-yMnPO、LiCoPO等のオリビン構造を有するリチウムリン酸化物等が挙げられる。 The lithium ion supplier is not particularly limited as long as it can occlude and release lithium ions, and may be, for example, an inorganic compound. Moreover, you may use metallic lithium as a lithium ion supply body. As an inorganic compound, spinel type lithium manganese oxide represented by LiMn 2 O 4 or the like, spinel type represented by spinel type lithium nickel manganese oxide or the like represented by LiNi 1.5 Mn 0.5 O 4 or the like Lithium transition metal oxide having a crystal structure; LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 O 2, etc. LiMeO 2 type (Me is a transition metal) lithium transition metal composite oxide having an alpha-NaFeO 2 structure represented by; Li x FePO 4, Li x Fe 1-y Mn y PO 4, olivine such as Li x CoPO 4 Examples thereof include a lithium phosphorus oxide having a structure.
 また、リチウムイオン供給体として、Li1+αMe1-α(α>0)と表記可能な、いわゆる、リチウム過剰型リチウム遷移金属複合酸化物を用いることもできる。ここで、Li/Me比は1.25~1.6が好ましい。なお、Li/Me比をβとすると、β=(1+α)/(1-α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。該リチウム遷移金属複合酸化物を構成する遷移金属元素を構成するCo、Ni及びMn等の元素の比率は、求められる特性に応じて任意に選択することができるが、放電容量が大きくなることから、遷移金属元素Meに対するCoのモル比Co/Meは、0.02~0.23が好ましく、0.04~0.21がより好ましく、0.06~0.17がさらにより好ましい。また、放電容量が大きくなることから、遷移金属元素Meに対するMnのモル比Mn/Meは0.63~0.72が好ましく、0.65~0.71がより好ましい。 In addition, a so-called lithium-excess type lithium transition metal composite oxide that can be expressed as Li 1 + α Me 1-α O 2 (α> 0) can also be used as the lithium ion supplier. Here, the Li / Me ratio is preferably 1.25 to 1.6. If the Li / Me ratio is β, β = (1 + α) / (1−α). For example, when Li / Me is 1.5, α = 0.2. The ratio of elements such as Co, Ni and Mn constituting the transition metal element constituting the lithium transition metal composite oxide can be arbitrarily selected according to the required characteristics, but the discharge capacity increases. The molar ratio Co / Me of the transition metal element Me is preferably 0.02 to 0.23, more preferably 0.04 to 0.21, and even more preferably 0.06 to 0.17. Further, since the discharge capacity is increased, the molar ratio Mn / Me of the transition metal element Me is preferably 0.63 to 0.72, and more preferably 0.65 to 0.71.
 これらのリチウムイオン供給体は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。また、リチウムイオン供給体は、ニッケルを含有するLiMeO型リチウム遷移金属複合酸化物(Meは遷移金属)、バナジウム酸化物(V)及びリチウム過剰型リチウム遷移金属複合酸化物(Li1+αMe1-α(α>0)、Meは遷移金属)からなる群から選ばれる1種又は複数の化合物を含むことが好ましい。 These lithium ion suppliers may be used alone or in combination of two or more. In addition, the lithium ion supplier includes LiMeO 2 type lithium transition metal composite oxide (Me is a transition metal), vanadium oxide (V 2 O 5 ), and lithium-excess type lithium transition metal composite oxide (Li 1 + α ) containing nickel. It is preferable to include one or more compounds selected from the group consisting of Me 1-α O 2 (α> 0), Me is a transition metal).
 リチウムイオン供給体は、正極合剤層に含まれる正極活物質と同じ物質を用いてもよく、また、異なる物質を用いてもよい。 As the lithium ion supplier, the same material as the positive electrode active material contained in the positive electrode mixture layer may be used, or a different material may be used.
 リチウムイオン供給層42の放電容量は、正極31の放電容量に対して、1%以上20%以下であることが好ましく、3%以上12%以下であることがより好ましい。 The discharge capacity of the lithium ion supply layer 42 is preferably 1% or more and 20% or less, and more preferably 3% or more and 12% or less with respect to the discharge capacity of the positive electrode 31.
 リチウムイオン供給層42に含まれる導電助剤の種類は特に制限されない。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料が挙げられる。これらの導電助剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。リチウムイオン供給層42に用いられる導電助剤と、正極31に用いられる導電助剤とは、同じ物質であってもよく、また、異なる物質であってもよい。 The type of conductive aid contained in the lithium ion supply layer 42 is not particularly limited. Examples of conductive assistants include carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, conductive ceramic material, etc. Materials. These conductive assistants may be used alone or in combination of two or more. The conductive auxiliary agent used for the lithium ion supply layer 42 and the conductive auxiliary agent used for the positive electrode 31 may be the same substance or different substances.
 リチウムイオン供給層42に含まれるバインダは、電極製造時に使用する溶媒や電解液に対して安定であれば特にその種類は制限されない。バインダとしては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂;エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマー等が挙げられる。これらのバインダは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。リチウムイオン供給層42に含まれるバインダは、正極合剤層に含まれるバインダと同じ物質であってもよく、また、異なる物質であってもよい。 The kind of the binder contained in the lithium ion supply layer 42 is not particularly limited as long as it is stable with respect to a solvent and an electrolytic solution used when manufacturing the electrode. Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene; ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene rubber (SBR). ), Polymers having rubber elasticity such as fluororubber. These binders may be used individually by 1 type, and may be used in combination of 2 or more type. The binder contained in the lithium ion supply layer 42 may be the same material as the binder contained in the positive electrode mixture layer, or may be a different material.
 リチウムイオン供給層42の組成は、リチウムイオン供給体が50質量部以上96質量部以下であり、導電助剤が2質量部以上30質量部以下であり、バインダが2質量部以上30質量部以下とすることができる。リチウムイオン供給層42の組成において、導電剤が10質量部以上30質量部以下であれば、リチウムイオン供給層42を厚く形成する場合であっても、リチウムイオン供給層42の電気抵抗を低くすることができ、好ましい。リチウムイオン供給層42の組成において、バインダが10質量部以上30質量部以下であれば、リチウムイオン供給層42を厚く形成する場合であっても、リチウムイオン供給層42が脱落して損傷することを抑制することができ、好ましい。なお、リチウムイオン供給層42は上記以外の成分を含んでもよい。 The composition of the lithium ion supply layer 42 is such that the lithium ion supplier is 50 parts by mass or more and 96 parts by mass or less, the conductive assistant is 2 parts by mass or more and 30 parts by mass or less, and the binder is 2 parts by mass or more and 30 parts by mass or less. It can be. In the composition of the lithium ion supply layer 42, if the conductive agent is 10 parts by mass or more and 30 parts by mass or less, the electric resistance of the lithium ion supply layer 42 is lowered even when the lithium ion supply layer 42 is formed thick. Can be preferred. In the composition of the lithium ion supply layer 42, if the binder is 10 parts by mass or more and 30 parts by mass or less, the lithium ion supply layer 42 may fall off and be damaged even when the lithium ion supply layer 42 is formed thick. Can be suppressed, which is preferable. The lithium ion supply layer 42 may contain components other than those described above.
 図3に示すように、リチウムイオン供給体と、導電助剤と、バインダと、を含む合剤が、底壁40の内面41に塗布されることにより、リチウムイオン供給層42が形成されている。本実施形態においては、ケース本体4のうち、ケース本体4の長手方向に直交する方向の断面において、底壁40の略全体にリチウムイオン供給層42が形成されている。 As shown in FIG. 3, a lithium ion supply layer 42 is formed by applying a mixture containing a lithium ion supplier, a conductive additive, and a binder to the inner surface 41 of the bottom wall 40. . In the present embodiment, a lithium ion supply layer 42 is formed on substantially the entire bottom wall 40 in a cross section of the case body 4 in a direction perpendicular to the longitudinal direction of the case body 4.
 リチウムイオン供給層42と、ケース本体4とは、電気的に接続されている。また、ケース本体4と蓋体5の間も電気的に接続されているので、リチウムイオン供給層42は、蓋体5とも電気的に接続されている。 The lithium ion supply layer 42 and the case body 4 are electrically connected. Further, since the case body 4 and the lid 5 are also electrically connected, the lithium ion supply layer 42 is also electrically connected to the lid 5.
 リチウムイオン供給層42は、ケース本体4の底壁40の内面41に、リチウムイオン供給体と、導電助剤と、バインダと、を含む合剤を塗布して乾燥することにより形成することができる。また、リチウムイオン供給層42は、合剤を塗布して乾燥し、更に合剤を塗布して乾燥することを繰り返して、いわゆる重ね塗りをすることにより形成することもできる。また、リチウムイオン供給層42は、ケース本体4の底壁40の内面41に、合剤を塗布した後に、焼結することにより形成することもできる。このように、リチウムイオン供給層42は、必要に応じて、任意の方法により形成することができる。 The lithium ion supply layer 42 can be formed by applying a mixture containing a lithium ion supplier, a conductive additive, and a binder to the inner surface 41 of the bottom wall 40 of the case body 4 and drying the mixture. . Moreover, the lithium ion supply layer 42 can also be formed by applying a mixture and drying it, and further applying a mixture and drying it repeatedly, so-called overcoating. Further, the lithium ion supply layer 42 can be formed by applying a mixture to the inner surface 41 of the bottom wall 40 of the case body 4 and then sintering the mixture. Thus, the lithium ion supply layer 42 can be formed by an arbitrary method as necessary.
 リチウムイオン供給層42に含まれるリチウムイオンを負極32に導入することは、例えば、外装体2-負極端子7間に電圧を印可することにより、おこなうことができる。外装体2と負極端子7との間に流される電流は、リチウムイオン供給層42の容量と同一数値の電流(A)以下とすることができ、リチウムイオン供給層42の厚みが比較的に大きい場合はより小さな値の電流(A)とすることが好ましい。また、外装体2と負極端子7との間に印加される電圧は、リチウムイオン供給層42に含まれるリチウムイオン供給体の種類により異なるが、3.5V~4.2Vとすることができる。 The introduction of lithium ions contained in the lithium ion supply layer 42 into the negative electrode 32 can be performed, for example, by applying a voltage between the exterior body 2 and the negative electrode terminal 7. The current flowing between the exterior body 2 and the negative electrode terminal 7 can be equal to or less than the current (A) having the same value as the capacity of the lithium ion supply layer 42, and the thickness of the lithium ion supply layer 42 is relatively large. In such a case, it is preferable that the current (A) has a smaller value. The voltage applied between the outer package 2 and the negative electrode terminal 7 varies depending on the type of the lithium ion supply body included in the lithium ion supply layer 42, but can be 3.5V to 4.2V.
(実施形態の製造工程)
 続いて、本実施形態に係る蓄電素子1の製造工程の一例について説明する。なお、蓄電素子1の製造工程は、以下の記載に限定されない。
(Manufacturing process of embodiment)
Then, an example of the manufacturing process of the electrical storage element 1 which concerns on this embodiment is demonstrated. In addition, the manufacturing process of the electrical storage element 1 is not limited to the following description.
 正極31は次のようにして作製される。正極活物質(例えばリチウム遷移金属酸化物)と、バインダ(例えば、ポリフッ化ビニリデン)と、導電助剤(例えば、アセチレンブラック)と、を混合する。これにN-メチルピロリドンを適宜加えてペースト状に調製することにより正極合剤を作製する。この正極合剤を、アルミニウム箔からなる正極基材の両面に塗布する。これを乾燥して、ロールプレス機で加圧することにより、正極31を作製する。 The positive electrode 31 is manufactured as follows. A positive electrode active material (for example, lithium transition metal oxide), a binder (for example, polyvinylidene fluoride), and a conductive additive (for example, acetylene black) are mixed. A positive electrode mixture is prepared by appropriately adding N-methylpyrrolidone thereto to prepare a paste. This positive electrode mixture is applied to both surfaces of a positive electrode substrate made of an aluminum foil. This is dried, and the positive electrode 31 is produced by pressurizing with a roll press.
 負極32は次のようにして作製される。負極活物質(例えば、ハードカーボン)と、バインダ(例えば、ポリフッ化ビニリデン)と、を混合する。これにN-メチルピロリドンを適宜加えてペースト状に調製することにより、負極合剤を作製する。この負極合剤を銅箔からなる負極基材の両面に塗布する。これを乾燥して、ロールプレス機で加圧することにより負極32を作製する。 The negative electrode 32 is produced as follows. A negative electrode active material (for example, hard carbon) and a binder (for example, polyvinylidene fluoride) are mixed. N-methylpyrrolidone is appropriately added thereto to prepare a paste, thereby preparing a negative electrode mixture. This negative electrode mixture is applied to both surfaces of a negative electrode substrate made of copper foil. This is dried and the negative electrode 32 is produced by pressurizing with a roll press.
 セパレータ37としては、例えば、ポリオレフィン微多孔膜を使用する。 As the separator 37, for example, a polyolefin microporous film is used.
 上記のようにして得られた正極31と負極32とをセパレータ37を介して巻回することにより巻回型の蓄電要素3を作製する。 The winding type power storage element 3 is manufactured by winding the positive electrode 31 and the negative electrode 32 obtained as described above through the separator 37.
 金属板材を用いて、開口部4Aを有するケース本体4と、蓋体5を作成する。蓋体5には、正極端子6と、負極端子7とを取り付ける。正極端子6には正極集電体8を接続し、負極端子7には負極集電体9を接続する。 Using the metal plate material, the case body 4 having the opening 4A and the lid body 5 are created. A positive terminal 6 and a negative terminal 7 are attached to the lid 5. A positive electrode current collector 8 is connected to the positive electrode terminal 6, and a negative electrode current collector 9 is connected to the negative electrode terminal 7.
 正極集電箔33と正極集電体8とをクリップ35で挟んだ状態で、クリップ35を、正極集電箔33及び正極集電体8に対して超音波溶接する。また、負極集電箔34と負極集電体9とをクリップ36で挟んだ状態で、クリップ36を、負極集電箔34と負極集電体9に対して超音波溶接する。これにより、蓄電要素3は蓋体5に接続される。 In a state where the positive electrode current collector foil 33 and the positive electrode current collector 8 are sandwiched between the clips 35, the clip 35 is ultrasonically welded to the positive electrode current collector foil 33 and the positive electrode current collector 8. Further, the clip 36 is ultrasonically welded to the negative electrode current collector foil 34 and the negative electrode current collector 9 in a state where the negative electrode current collector foil 34 and the negative electrode current collector 9 are sandwiched between the clips 36. Thereby, the electrical storage element 3 is connected to the lid 5.
 金属板材によりケース本体4を所定の形状に形成する。ケース本体4の底壁40の内面41に、リチウムイオン供給体を含む合剤を塗布する。これを乾燥することによりケース本体4の底壁4の内面41にリチウムイオン供給層42を形成する。 The case body 4 is formed into a predetermined shape using a metal plate. A mixture containing a lithium ion supplier is applied to the inner surface 41 of the bottom wall 40 of the case body 4. By drying this, a lithium ion supply layer 42 is formed on the inner surface 41 of the bottom wall 4 of the case body 4.
 続いて、ケース本体4の開口部4Aから、蓋体5に接続された蓄電要素3をケース本体4の内部に挿入する。ケース本体4の開口部4Aの孔縁部と、蓋体5の側縁部とを公知の手法により溶接する。ケース本体4の側壁50に設けられた注入口(図示せず)から電解質を注入し、注入口を封口する。 Subsequently, the power storage element 3 connected to the lid 5 is inserted into the case body 4 from the opening 4 </ b> A of the case body 4. The hole edge of the opening 4A of the case body 4 and the side edge of the lid 5 are welded by a known method. An electrolyte is injected from an injection port (not shown) provided on the side wall 50 of the case body 4, and the injection port is sealed.
 そして、ケース本体4には正電圧を印加し、負極端子7には負電圧を印加することにより、リチウムイオン供給層42からリチウムイオンを放出させ、負極32にリチウムイオンを導入する。これにより、蓄電素子1に対し、負極32の不可逆容量の一部もしくは全てを補うための充電(プリチャージ)が完了する。 Then, a positive voltage is applied to the case body 4 and a negative voltage is applied to the negative electrode terminal 7, thereby releasing lithium ions from the lithium ion supply layer 42 and introducing lithium ions into the negative electrode 32. Thereby, the charge (precharge) for supplementing part or all of the irreversible capacity of the negative electrode 32 is completed for the power storage element 1.
(実施形態の作用、効果)
 続いて、本実施形態の作用、効果について説明する。本実施形態に係る蓄電素子は、外装体と、外装体内に収容される負極32を含む蓄電要素3と、外装体内に収容される負極32にリチウムイオンを供給するリチウムイオン供給層とを備え、リチウムイオン供給層は、外装体内の底面に形成される。
(Operation and effect of the embodiment)
Then, the effect | action and effect of this embodiment are demonstrated. The power storage device according to this embodiment includes an exterior body, a power storage element 3 including a negative electrode 32 housed in the exterior body, and a lithium ion supply layer that supplies lithium ions to the negative electrode 32 housed in the exterior body, The lithium ion supply layer is formed on the bottom surface in the exterior body.
 蓄電要素3を外装体2内に収容する際に、蓄電要素3が外装体2の側壁の内面に接触する場合が考えられる。このとき、例えば、外装体2の側壁の内面にリチウムイオン供給層42が形成されていると、蓄電要素3がリチウムイオン供給層42に接触し、リチウムイオン供給層42が損傷する恐れがある。 When the electricity storage element 3 is accommodated in the exterior body 2, the electricity storage element 3 may come into contact with the inner surface of the side wall of the exterior body 2. At this time, for example, if the lithium ion supply layer 42 is formed on the inner surface of the side wall of the exterior body 2, the power storage element 3 may come into contact with the lithium ion supply layer 42 and the lithium ion supply layer 42 may be damaged.
 本実施形態に係る蓄電素子1によれば、外装体2内に蓄電要素3を収容する際に、リチウムイオン供給層42と蓄電要素3とが干渉することを抑制することができるので、リチウムイオン供給層42が損傷することを抑制することができる。 According to the electricity storage device 1 according to the present embodiment, the lithium ion supply layer 42 and the electricity storage element 3 can be prevented from interfering with each other when the electricity storage element 3 is accommodated in the exterior body 2. It is possible to prevent the supply layer 42 from being damaged.
 また、リチウムイオン供給層42は、リチウムイオン供給体を含む合剤をケース本体4の底壁40の内面41に塗布することにより形成されている。 The lithium ion supply layer 42 is formed by applying a mixture containing a lithium ion supply body to the inner surface 41 of the bottom wall 40 of the case body 4.
 上記の構成によれば、リチウムイオン供給体を含む合剤をケース本体4の底壁40の内面41に塗布するという簡易な手法により、外装体2内にリチウムイオン供給層42を形成することができる。 According to said structure, the lithium ion supply layer 42 can be formed in the exterior body 2 by the simple method of apply | coating the mixture containing a lithium ion supply body to the inner surface 41 of the bottom wall 40 of the case main body 4. FIG. it can.
<実施形態2>
 続いて、実施形態2について図4を参照しつつ説明する。図4に示すように、リチウムイオン供給層42は、巻回型をなす蓄電要素3の曲面形状を有する部分と、ケース本体4の底壁40の内面41との間に形成されている。なお、蓄電要素3の曲面形状を有する部分とは、蓄電要素3の外面のうち、巻回軸に直交する方向の断面形状の長軸方向(図4における上下方向)と交差する側面をいう。すなわち、リチウムイオン供給層42は、ケース本体4のうち、ケース本体4の長手方向に直交する方向の断面において、底壁40の前側の隅部、及び後側の隅部に形成されている。
<Embodiment 2>
Next, Embodiment 2 will be described with reference to FIG. As shown in FIG. 4, the lithium ion supply layer 42 is formed between a portion having a curved shape of the power storage element 3 having a winding shape and the inner surface 41 of the bottom wall 40 of the case body 4. In addition, the part which has the curved-surface shape of the electrical storage element 3 means the side surface which cross | intersects the major axis direction (up-down direction in FIG. 4) of the cross-sectional shape of the outer surface of the electrical storage element 3 in the direction orthogonal to a winding axis. That is, the lithium ion supply layer 42 is formed at the front corner and the rear corner of the bottom wall 40 in the cross section of the case main body 4 in the direction orthogonal to the longitudinal direction of the case main body 4.
 巻回軸に直交する方向の断面形状が長円形状をなす巻回型の蓄電要素3の外面において、その断面形状の長軸方向と交差する側面は、比較的に曲率が大きい。このため、巻回型の蓄電要素3のうち、その断面形状の長軸方向と交差する側面と、直方体形状をなすケース本体4の内面との間には比較的に大きなスペース51が形成される。 In the outer surface of the winding type power storage element 3 in which the cross-sectional shape in the direction orthogonal to the winding axis forms an oval shape, the side surface intersecting the long axis direction of the cross-sectional shape has a relatively large curvature. Therefore, a relatively large space 51 is formed between the side surface of the wound power storage element 3 that intersects the long axis direction of the cross-sectional shape and the inner surface of the case body 4 having a rectangular parallelepiped shape. .
 本実施形態によれば、リチウムイオン供給層42は、巻回型の蓄電要素3のうち、その断面形状の長軸方向と交差する側面と、直方体形状をなすケース本体4の内面との間にある比較的に大きなスペース51内に配されるため、スペース効率を向上させることができる。 According to the present embodiment, the lithium ion supply layer 42 is between the side surface of the winding-type electricity storage element 3 that intersects the major axis direction of the cross-sectional shape and the inner surface of the case body 4 having a rectangular parallelepiped shape. Since it is arranged in a relatively large space 51, space efficiency can be improved.
<実施形態3>
 続いて、実施形態3について図5を参照しつつ説明する。図5に示すように、ケース本体4の底壁40の内面41には、リチウムイオン供給層42が形成された領域に、底壁40の内面41が粗化された粗化領域60が形成されている。
<Embodiment 3>
Next, Embodiment 3 will be described with reference to FIG. As shown in FIG. 5, a roughened region 60 in which the inner surface 41 of the bottom wall 40 is roughened is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in the region where the lithium ion supply layer 42 is formed. ing.
 粗化領域60は、ケース本体4の側壁50の内面、及び底壁40の内面41のうち、リチウムイオン供給層42が形成されている領域とは異なる領域よりも、粗化されている。すなわち、粗化領域60とは、リチウムイオン供給層が形成されていない外装体の内面の領域よりも粗い領域のことである。粗化領域60は、エンボス加工、金属ブラシによるブラッシング、サンドブラスト、レーザー照射、エッチング等、公知の手法により形成することができる。 The roughened region 60 is roughened from the inner surface of the side wall 50 of the case body 4 and the inner surface 41 of the bottom wall 40 than the region different from the region where the lithium ion supply layer 42 is formed. That is, the roughened region 60 is a region that is rougher than the region of the inner surface of the exterior body in which the lithium ion supply layer is not formed. The roughened region 60 can be formed by a known method such as embossing, brushing with a metal brush, sand blasting, laser irradiation, etching, or the like.
 リチウムイオン供給層42の表面は、リチウムイオンを通過させる保護部材61により覆われている。この保護部材61に覆われることにより、リチウムイオン供給層42が、ケース本体4の底壁40の内面41から脱落することが抑制される。 The surface of the lithium ion supply layer 42 is covered with a protective member 61 that allows lithium ions to pass therethrough. By being covered with this protective member 61, the lithium ion supply layer 42 is prevented from dropping from the inner surface 41 of the bottom wall 40 of the case body 4.
 保護部材61は、リチウムイオンが通過する絶縁性のシートであってもよい。シートとしては、ポリオレフィン微多孔膜;合成樹脂製の織物又は不織布;天然繊維;ガラス繊維又はセラミック繊維の織物又は不織布;紙等を用いることができる。ポリオレフィン微多孔膜としては、ポリエチレン、ポリプロピレン及びこれらの複合膜から選択することができる。合成樹脂繊維としては、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエステル、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)又はポリエチレン(PE)等のポリオレフィン及びこれらの混合物から選択することができる。 The protective member 61 may be an insulating sheet through which lithium ions pass. As the sheet, a polyolefin microporous film; a woven or non-woven fabric made of a synthetic resin; a natural fiber; a woven or non-woven fabric of glass fiber or ceramic fiber; paper or the like can be used. The polyolefin microporous membrane can be selected from polyethylene, polypropylene, and composite membranes thereof. The synthetic resin fiber can be selected from polyolefins such as polyacrylonitrile (PAN), polyamide (PA), polyester, polyethylene terephthalate (PET), polypropylene (PP) or polyethylene (PE), and mixtures thereof.
 また、保護部材61は、金網、パンチングメタル等、複数の貫通孔を有する金属部材であってもよい。金属部材としては、銅、アルミニウム、ステンレス等、必要に応じて任意の金属を適宜に選択することができる。金属部材としては、外装体4を構成する金属と同じ材質のものを用いてもよい。 Further, the protection member 61 may be a metal member having a plurality of through holes, such as a wire mesh or a punching metal. As a metal member, arbitrary metals, such as copper, aluminum, and stainless steel, can be appropriately selected as necessary. As a metal member, you may use the same material as the metal which comprises the exterior body 4. FIG.
 また、保護部材61は、網状、又は複数の貫通孔が形成された板状に形成された、合成樹脂製の部材であってもよい。 Further, the protective member 61 may be a member made of synthetic resin, which is formed in a net shape or a plate shape in which a plurality of through holes are formed.
 金属製又は合成樹脂製の保護部材61に形成された、網目又は貫通孔の内部には、リチウムイオン供給体を含む合剤が充填されていてもよい。これにより、負極32に導入されるリチウムイオンの量を増加させることができる。 The mixture containing the lithium ion supplier may be filled in the mesh or the through-hole formed in the protective member 61 made of metal or synthetic resin. Thereby, the amount of lithium ions introduced into the negative electrode 32 can be increased.
 上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configuration other than the above is substantially the same as that of the first embodiment, the same members are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態によれば、リチウムイオン供給層42の表面は、リチウムイオンを通過させる保護部材61により覆われている。リチウムイオン供給層42が保護部材61に覆われることにより、ケース本体4の底壁40の内面41から脱落することが抑制される。 According to this embodiment, the surface of the lithium ion supply layer 42 is covered with the protective member 61 that allows lithium ions to pass therethrough. By covering the lithium ion supply layer 42 with the protective member 61, it is possible to prevent the lithium ion supply layer 42 from dropping from the inner surface 41 of the bottom wall 40 of the case body 4.
 また、本実施形態によれば、ケース本体4の底壁40の内面41には、リチウムイオン供給層42が形成された領域に、リチウムイオン供給層42が形成された領域とは異なる領域よりも粗化された粗化領域60が形成されている。 Further, according to the present embodiment, the inner surface 41 of the bottom wall 40 of the case body 4 has a region where the lithium ion supply layer 42 is formed in a region different from the region where the lithium ion supply layer 42 is formed. A roughened roughened region 60 is formed.
 上記の構成により、リチウムイオン供給層42は、ケース本体4の底壁40の内面41に強固に保持される。これにより、リチウムイオン供給層42が、ケース本体4の底壁40の内面41から脱離することを抑制することができる。 With the above configuration, the lithium ion supply layer 42 is firmly held on the inner surface 41 of the bottom wall 40 of the case body 4. Thereby, it is possible to prevent the lithium ion supply layer 42 from being detached from the inner surface 41 of the bottom wall 40 of the case body 4.
<実施形態4>
 続いて、実施形態4について図6を参照しつつ説明する。図6に示すように、ケース本体4の底壁40の内面41には、リチウムイオン供給層42が形成された領域に、抵抗被膜62が形成されている。抵抗被膜62は、リチウムイオン供給層42が形成されていない領域と比較して、電気抵抗が大きくなっている。
<Embodiment 4>
Next, Embodiment 4 will be described with reference to FIG. As shown in FIG. 6, a resistance coating 62 is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in the region where the lithium ion supply layer 42 is formed. The resistance film 62 has a higher electrical resistance than a region where the lithium ion supply layer 42 is not formed.
 抵抗被膜62は、例えば、ケース本体4の底壁40の内面41を酸化させて酸化物の膜を形成することにより形成することができる。また、ケース本体4の底壁40の内面41にセラミックの被膜をコーティングしてもよい。また、ケース本体4の底壁40の内面41にバインダ(例えば、PVDF)と導電助剤(例えば、アセチレンブラック)とを含む混合物を塗布してもよい。 The resistance film 62 can be formed, for example, by oxidizing the inner surface 41 of the bottom wall 40 of the case body 4 to form an oxide film. The inner surface 41 of the bottom wall 40 of the case body 4 may be coated with a ceramic film. Further, a mixture containing a binder (for example, PVDF) and a conductive additive (for example, acetylene black) may be applied to the inner surface 41 of the bottom wall 40 of the case body 4.
 上記以外の構成については、実施形態1と略同様なので、同一部材については同一符号を付し、重複する説明を省略する。 Since the configuration other than the above is substantially the same as that of the first embodiment, the same members are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態に係る蓄電素子1においては、リチウムイオン供給層42に含まれるリチウムイオンを負極32に導入する充電工程(プリチャージ工程)が終了した後、外装体4は、正極31に対して電位を有する。このため、プリチャージ工程が終了した複数の蓄電素子1の外装体4は、それぞれ異なる電位を有する場合がある。外装体4の電位が異なる蓄電素子1同士が接触すると、蓄電素子1の外装体4同士が短絡して、短絡電流が流れることが懸念される。 In the electricity storage device 1 according to the present embodiment, after the charging step (precharge step) for introducing lithium ions contained in the lithium ion supply layer 42 into the negative electrode 32 is completed, the exterior body 4 is at a potential relative to the positive electrode 31. Have For this reason, the exterior bodies 4 of the plurality of power storage elements 1 that have completed the precharge process may have different potentials. When the power storage elements 1 having different potentials of the outer package 4 come into contact with each other, there is a concern that the outer packages 4 of the power storage element 1 are short-circuited and a short-circuit current flows.
 上記の点に鑑み、本実施形態においては、ケース本体4の底壁40の内面41には、リチウムイオン供給層42が形成された領域に、抵抗被膜62が形成されており、該抵抗被膜62はリチウムイオン供給層42が形成されていない領域と比較して電気抵抗が大きい。 In view of the above points, in the present embodiment, a resistance film 62 is formed on the inner surface 41 of the bottom wall 40 of the case body 4 in a region where the lithium ion supply layer 42 is formed. Has a larger electric resistance than the region where the lithium ion supply layer 42 is not formed.
 上記の構成により、外装体4の電位が異なる蓄電素子1同士が接触した場合において、リチウムイオン供給層42からケース本体4に電流が流れることを、抵抗被膜62により抑制することができる。この結果、蓄電素子1の外装体4同士が接触した場合でも、外装体4の間に短絡電流が流れることを抑制することができる。 With the above configuration, when the power storage elements 1 having different potentials of the outer package 4 are in contact with each other, the current flow from the lithium ion supply layer 42 to the case body 4 can be suppressed by the resistance coating 62. As a result, even when the exterior bodies 4 of the power storage element 1 are in contact with each other, it is possible to suppress a short-circuit current from flowing between the exterior bodies 4.
<他の実施形態>
 本明細書で開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も含まれる。
<Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings, and includes, for example, the following various aspects.
 上記実施形態では、蓄電素子1が非水電解質二次電池の一種であるリチウムイオン電池である例を挙げた。しかしこれに限らず、蓄電素子1は、鉛蓄電池やニッケル水素電池等の他の二次電池でもよく、一次電池であってもよい。また、キャパシタ等でもよい。 In the above embodiment, an example in which the electricity storage element 1 is a lithium ion battery which is a kind of nonaqueous electrolyte secondary battery has been described. However, the present invention is not limited thereto, and the storage element 1 may be another secondary battery such as a lead storage battery or a nickel hydride battery, or may be a primary battery. Moreover, a capacitor etc. may be sufficient.
 上記実施形態では、蓄電素子1の蓄電要素3は、正極31と負極32とをセパレータ37を介して巻回することにより扁平形状に形成した巻回型蓄電要素3とされたが、これに限らず、例えば、蓄電要素3は、正極31と負極32とをセパレータ37を介して積層して形成される積層型の蓄電要素であってもよい。 In the above embodiment, the power storage element 3 of the power storage element 1 is the wound power storage element 3 formed in a flat shape by winding the positive electrode 31 and the negative electrode 32 via the separator 37, but is not limited thereto. For example, the power storage element 3 may be a stacked power storage element formed by stacking the positive electrode 31 and the negative electrode 32 with the separator 37 interposed therebetween.
 上記実施形態に係る蓄電素子1は、1つの蓄電要素3を備える構成としたが、これに限らず、蓄電素子1は、2つ以上の蓄電要素3を備える構成とすることができる。 The power storage element 1 according to the above embodiment is configured to include one power storage element 3, but is not limited thereto, and the power storage element 1 may be configured to include two or more power storage elements 3.
 上記実施形態に係る蓄電素子を複数組み合わせることで蓄電装置を構成することができ、その一実施形態を図7に示す。蓄電装置101は、複数の蓄電ユニット100を備えている。それぞれの蓄電ユニット100は、複数の蓄電素子1を備えている。蓄電装置101は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができ、その一実施形態を図8に示す。 A power storage device can be configured by combining a plurality of power storage elements according to the above embodiment, and one embodiment thereof is shown in FIG. The power storage device 101 includes a plurality of power storage units 100. Each power storage unit 100 includes a plurality of power storage elements 1. The power storage device 101 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), and one embodiment thereof is shown in FIG.
 本発明に係る蓄電素子は、外装体内に蓄電要素を収容する際に、リチウムイオン供給層が損傷することを抑制することができるため、電気自動車(EV)やハイブリッド自動車(HEV)やプラグインハイブリッド自動車(PHEV)等の自動車用電源、電子機器用電源及び電力貯蔵用電源等に有効に利用できる。 Since the storage element according to the present invention can suppress damage to the lithium ion supply layer when the storage element is housed in the exterior body, the electric vehicle (EV), the hybrid vehicle (HEV), and the plug-in hybrid It can be effectively used as a power source for automobiles such as automobiles (PHEV), a power source for electronic devices and a power storage power source.
1:蓄電素子
2:外装体
3:蓄電要素
30:外装体
31:正極
32:負極
37:セパレータ
40:底壁
41:内面
42:リチウムイオン供給層
61:保護部材
100:蓄電ユニット
101:蓄電装置
102:車体本体
103:自動車
1: Power storage element 2: Exterior body 3: Power storage element 30: Exterior body 31: Positive electrode 32: Negative electrode 37: Separator 40: Bottom wall 41: Inner surface 42: Lithium ion supply layer 61: Protection member 100: Power storage unit 101: Power storage device 102: Body body 103: Automobile

Claims (8)

  1.  外装体と、
     前記外装体内に収容される負極を含む蓄電要素と、
     前記外装体内に収容される前記負極にリチウムイオンを供給するリチウムイオン供給層とを備え、
     前記リチウムイオン供給層は、前記外装体内の底面に形成される、蓄電素子。
    An exterior body,
    A power storage element including a negative electrode housed in the exterior body;
    A lithium ion supply layer for supplying lithium ions to the negative electrode housed in the exterior body,
    The lithium ion supply layer is a power storage element formed on a bottom surface of the exterior body.
  2.  前記蓄電要素は、前記負極と正極とセパレータとが巻回される巻回型蓄電要素であり、
     前記巻回型蓄電要素は、巻回軸に直交する方向の断面形状が略長円形状であり、
     前記リチウムイオン供給層は、前記巻回型蓄電要素の曲面形状を有する部分と前記外装体内の底面との間に形成される、請求項1に記載の蓄電素子。
    The power storage element is a wound power storage element in which the negative electrode, the positive electrode, and the separator are wound.
    The wound power storage element has a substantially oval cross-sectional shape in a direction perpendicular to the winding axis,
    2. The power storage element according to claim 1, wherein the lithium ion supply layer is formed between a portion having a curved shape of the wound power storage element and a bottom surface in the exterior body.
  3.  前記リチウムイオン供給層は、リチウムイオン供給体を含む合剤を前記外装体内の底面に塗布することにより形成される、請求項1又は請求項2に記載の蓄電素子。 The electric storage element according to claim 1 or 2, wherein the lithium ion supply layer is formed by applying a mixture containing a lithium ion supplier to the bottom surface of the outer package.
  4.  前記リチウムイオン供給層の表面は、リチウムイオンが通過する絶縁性のシートで覆われる、請求項1乃至請求項3のいずれか一項に記載の蓄電素子。 The electric storage element according to any one of claims 1 to 3, wherein a surface of the lithium ion supply layer is covered with an insulating sheet through which lithium ions pass.
  5.  前記リチウムイオン供給層が形成されている前記外装体の内面の領域は、前記リチウムイオン供給層が形成されていない前記外装体の内面の領域よりも粗い、請求項1乃至請求項4のいずれか一項に記載の蓄電素子。 The region of the inner surface of the outer package in which the lithium ion supply layer is formed is rougher than the region of the inner surface of the outer package in which the lithium ion supply layer is not formed. The electricity storage device according to one item.
  6.  前記リチウムイオン供給層が形成されている前記外装体の内面の領域には、抵抗被膜が形成される、請求項1乃至請求項5のいずれか一項に記載の蓄電素子。 The electric storage element according to any one of claims 1 to 5, wherein a resistance film is formed in a region of an inner surface of the exterior body on which the lithium ion supply layer is formed.
  7.  請求項1乃至請求項6のいずれか一項に記載の蓄電素子が、複数備えられる、蓄電装置。 A power storage device comprising a plurality of power storage elements according to any one of claims 1 to 6.
  8.  請求項7に記載の蓄電装置が、備えられる、自動車。
     
    An automobile provided with the power storage device according to claim 7.
PCT/JP2015/004387 2014-09-03 2015-08-28 Power storage device WO2016035308A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546310A JPWO2016035308A1 (en) 2014-09-03 2015-08-28 Electricity storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014179183 2014-09-03
JP2014-179183 2014-09-03

Publications (1)

Publication Number Publication Date
WO2016035308A1 true WO2016035308A1 (en) 2016-03-10

Family

ID=55439391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004387 WO2016035308A1 (en) 2014-09-03 2015-08-28 Power storage device

Country Status (2)

Country Link
JP (1) JPWO2016035308A1 (en)
WO (1) WO2016035308A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002515A1 (en) * 2020-11-20 2022-05-25 Volkswagen Aktiengesellschaft Battery cells with separate lithium-ion-source and method for producing a battery cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042003A (en) * 2006-08-08 2008-02-21 Fdk Corp Lithium ion accumulation element
JP2008192540A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Lithium ion battery before pre-doping and manufacturing method of lithium ion battery
JP2010086728A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Lithium ion battery
JP2011216600A (en) * 2010-03-31 2011-10-27 Jm Energy Corp Energy storage device
JP2011222909A (en) * 2010-04-14 2011-11-04 Fdk Corp Lithium ion capacitor, power storage device, and manufacturing method thereof
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012248556A (en) * 2011-05-25 2012-12-13 Nec Tokin Corp Electrochemical device and method for manufacturing the same
JP2013058378A (en) * 2011-09-08 2013-03-28 Toyota Industries Corp Lithium ion secondary battery, and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042003A (en) * 2006-08-08 2008-02-21 Fdk Corp Lithium ion accumulation element
JP2008192540A (en) * 2007-02-07 2008-08-21 Toyota Motor Corp Lithium ion battery before pre-doping and manufacturing method of lithium ion battery
JP2010086728A (en) * 2008-09-30 2010-04-15 Toyota Motor Corp Lithium ion battery
JP2011216600A (en) * 2010-03-31 2011-10-27 Jm Energy Corp Energy storage device
JP2011222909A (en) * 2010-04-14 2011-11-04 Fdk Corp Lithium ion capacitor, power storage device, and manufacturing method thereof
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012248556A (en) * 2011-05-25 2012-12-13 Nec Tokin Corp Electrochemical device and method for manufacturing the same
JP2013058378A (en) * 2011-09-08 2013-03-28 Toyota Industries Corp Lithium ion secondary battery, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002515A1 (en) * 2020-11-20 2022-05-25 Volkswagen Aktiengesellschaft Battery cells with separate lithium-ion-source and method for producing a battery cell

Also Published As

Publication number Publication date
JPWO2016035308A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
US9960453B2 (en) Lithium ion secondary battery and system using same
US9431680B2 (en) Electric storage device, electric storage system, and manufacturing method thereof
US20140170451A1 (en) Electrode
JP4557001B2 (en) Electrode for electrochemical device and electrochemical device
CN102742059B (en) Rectangular cell
JP6102556B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP7140899B2 (en) electrode group
WO2013094004A1 (en) Lithium secondary battery
US10686182B2 (en) Secondary battery
JP6776291B2 (en) Batteries, battery packs, vehicles, and stationary power supplies
CN112670601A (en) Ultra high power hybrid battery design with uniform heat distribution
EP3048661B1 (en) Nonaqueous electrolyte secondary battery
JP2019053862A (en) Laminated electrode body and power storage element
JP2003208924A (en) Lithium secondary battery
JP2008262826A (en) Coin-shaped nonaqueous electrolytic solution secondary battery
WO2012114904A1 (en) Nonaqueous-electrolyte secondary battery
CN106463656B (en) Battery and cell manufacturing method
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2013197052A (en) Lithium ion power storage device
WO2016035309A1 (en) Power storage element
WO2016035308A1 (en) Power storage device
WO2012114905A1 (en) Nonaqueous-electrolyte secondary battery
JP6735036B2 (en) Lithium ion secondary battery
JP4609353B2 (en) Charging system
JP2008311011A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838300

Country of ref document: EP

Kind code of ref document: A1