JP2021044250A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2021044250A
JP2021044250A JP2020189542A JP2020189542A JP2021044250A JP 2021044250 A JP2021044250 A JP 2021044250A JP 2020189542 A JP2020189542 A JP 2020189542A JP 2020189542 A JP2020189542 A JP 2020189542A JP 2021044250 A JP2021044250 A JP 2021044250A
Authority
JP
Japan
Prior art keywords
particle size
electrode
active material
positive electrode
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020189542A
Other languages
Japanese (ja)
Other versions
JP7211405B2 (en
Inventor
保宏 十河
Yasuhiro Sogo
保宏 十河
隆寛 久保
Takahiro Kubo
隆寛 久保
井口 隆明
Takaaki Iguchi
隆明 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2020189542A priority Critical patent/JP7211405B2/en
Publication of JP2021044250A publication Critical patent/JP2021044250A/en
Application granted granted Critical
Publication of JP7211405B2 publication Critical patent/JP7211405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a power storage element in which an electrode is prevented from being bent by pressing.SOLUTION: A power storage element includes an electrode including a foil-shaped electrode base material, and an active material layer superimposed on the electrode base material and containing a particulate active material, and the particle size D50 and the particle size D90 of the active material satisfy a relational expression of 0.39 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0.43 (In the formula, the particle size D50 is the particle size at which the volume integration is 50% in the particle size distribution, and the particle size D90 is the particle size at which the volume integration is 90% in the particle size distribution).SELECTED DRAWING: Figure 1

Description

本発明は、蓄電素子に関する。 The present invention relates to a power storage element.

従来、正極及び負極を電極として備え、電極が、箔状の電極基材と、粒子状の活物質を含み且つ電極基材に重ねられた活物質層とを有する非水電解質二次電池が知られている。 Conventionally, a non-aqueous electrolyte secondary battery has been known in which a positive electrode and a negative electrode are provided as electrodes, and the electrode has a foil-shaped electrode base material and an active material layer containing a particulate active material and superposed on the electrode base material. Has been done.

この種の非水電解質二次電池に使用され得る正極の活物質としては、特定の組成及び特定の粒径を有する粒子状のニッケルコバルト複合水酸化物から得られる活物質が考えられる(例えば、特許文献1)。特許文献1には、斯かる複合水酸化物を粒度測定し10%、50%、90%の体積積算値となる粒径をD10、D50、D90としたとき、(D50−D10)/D50≦0.25、及び、(D90−D10)/D50≦0.25が満たされることが記載されている。 As the positive electrode active material that can be used in this type of non-aqueous electrolyte secondary battery, an active material obtained from a particulate nickel-cobalt composite hydroxide having a specific composition and a specific particle size can be considered (for example). Patent Document 1). According to Patent Document 1, when the particle size of such a composite hydroxide is measured and the particle sizes that are the volume integration values of 10%, 50%, and 90% are D10, D50, and D90, (D50-D10) / D50≤ It is stated that 0.25 and (D90-D10) / D50 ≦ 0.25 are satisfied.

ところが、上記のように得られた活物質を電極に含む電池では、例えば製造時に、電極がプレスされることによって、電極が曲がる場合がある。 However, in a battery containing the active material obtained as described above in the electrode, the electrode may be bent by being pressed, for example, during manufacturing.

特開2014−144894号公報Japanese Unexamined Patent Publication No. 2014-144894

本発明は、電極がプレスによって曲がることが抑制された蓄電素子を提供することを課題とする。 An object of the present invention is to provide a power storage element in which the electrodes are prevented from being bent by a press.

本発明の蓄電素子は、箔状の電極基材と、該電極基材に重ねられ且つ粒子状の活物質を含む活物質層と、を有する電極を備え、
活物質の粒径D50と粒径D90とは、0.39≦粒径D50/(粒径D50+粒径D90)≦0.43 の関係式を満たす(式中、粒径D50は、粒度分布にて体積積算が50%となる粒径であり、粒径D90は、粒度分布にて体積積算が90%となる粒径である。)。
当該関係式を満たすことにより、プレスにより曲がることが抑制された電極が得られるメカニズムは必ずしも明らかではないが、以下の通りと推測される。すなわち、斯かる構成の蓄電素子によれば、活物質の粒径が上記の関係式を満たすため、電極がプレスされても、活物質層において、より大きい粒子の間により小さい粒子が適度に入り込む。小さい粒子が大きい粒子の間に入り込む分、厚み方向の圧縮力が活物質層の面方向に分散される。従って、電極基材の一部に圧縮力が集中することが抑えられる。これにより、活物質層が電極基材に比較的均等な力で押し付けられる。電極基材に対して比較的均等に力が加わることから、不均一な圧縮力で電極基材が伸びることが抑えられる。従って、厚み方向に波打つように電極が曲がることを抑制できる。また、例えば、矩形状の電極基材の一辺に沿って電極基材が露出した電極の場合、プレスされると、露出した側を内側にして電極が湾曲しやすい。しかしながら、電極基材が不均一に伸びることが上記のごとく抑えられる分、電極が湾曲することを抑制できる。このように、斯かる構成の蓄電素子によれば、電極が曲がることを抑制できる。
The power storage element of the present invention includes an electrode having a foil-shaped electrode base material and an active material layer superimposed on the electrode base material and containing a particulate active material.
The particle size D50 and the particle size D90 of the active material satisfy the relational expression of 0.39 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0.43 (in the formula, the particle size D50 has a particle size distribution. The particle size D90 is the particle size at which the volume integration is 50%, and the particle size D90 is the particle size at which the volume integration is 90% in the particle size distribution.)
The mechanism by which an electrode whose bending is suppressed by pressing is obtained by satisfying the relational expression is not always clear, but it is presumed to be as follows. That is, according to the power storage element having such a configuration, since the particle size of the active material satisfies the above relational expression, even if the electrode is pressed, smaller particles appropriately enter between the larger particles in the active material layer. .. As the small particles enter between the large particles, the compressive force in the thickness direction is dispersed in the plane direction of the active material layer. Therefore, it is possible to prevent the compressive force from being concentrated on a part of the electrode base material. As a result, the active material layer is pressed against the electrode base material with a relatively uniform force. Since the force is applied to the electrode base material relatively evenly, it is possible to prevent the electrode base material from stretching due to a non-uniform compressive force. Therefore, it is possible to prevent the electrode from bending so as to undulate in the thickness direction. Further, for example, in the case of an electrode in which the electrode base material is exposed along one side of a rectangular electrode base material, when pressed, the electrode tends to bend with the exposed side inside. However, since the non-uniform elongation of the electrode base material is suppressed as described above, the bending of the electrode can be suppressed. As described above, according to the power storage element having such a configuration, it is possible to suppress the bending of the electrodes.

上記の蓄電素子では、電極は、正極であってもよい。正極の活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)であってもよい。 In the above power storage element, the electrode may be a positive electrode. Active material of the positive electrode, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (but is 0 <v ≦ 1.3, a w + x + y = 1, 0 <w <1, 0 <x <1, 0 <y <1, 1.7 ≦ z ≦ 2.3).

上記の蓄電素子では、電極は、電極基材に活物質層が重なることによって電極基材が覆われた被覆部と、電極基材に活物質層が重ならず電極基材が露出した露出部とを有してもよい。被覆部と露出部とを有する電極がプレスされると、活物質層の厚み分、より強い力が被覆部に加わる。しかしながら、電極が被覆部と露出部とを有しても、被覆部から電極基材へ比較的均等に力が加わる分、電極がプレスによって曲がることを抑制できる。 In the above-mentioned power storage element, the electrode has a coating portion in which the electrode base material is covered by overlapping the active material layer on the electrode base material and an exposed portion in which the active material layer does not overlap the electrode base material and the electrode base material is exposed. And may have. When the electrode having the covering portion and the exposed portion is pressed, a stronger force is applied to the covering portion by the thickness of the active material layer. However, even if the electrode has a coated portion and an exposed portion, it is possible to prevent the electrode from being bent by the press because the force is applied relatively evenly from the coated portion to the electrode base material.

上記の蓄電素子では、上記の電極が厚み方向に積み重なっていてもよい。 In the power storage element, the electrodes may be stacked in the thickness direction.

本発明によれば、電極がプレスによって曲がることを抑制できる。 According to the present invention, it is possible to prevent the electrode from being bent by the press.

図1は、本実施形態に係る蓄電素子の斜視図である。FIG. 1 is a perspective view of a power storage element according to the present embodiment. 図2は、同実施形態に係る蓄電素子の正面図である。FIG. 2 is a front view of the power storage element according to the same embodiment. 図3は、図1のIII−III線位置の断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 図4は、図1のIV−IV線位置の断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 図5は、同実施形態に係る蓄電素子の一部を組み立てた状態の斜視図であって、注液栓、電極体、集電体、及び外部端子を蓋板に組み付けた状態の斜視図である。FIG. 5 is a perspective view of a state in which a part of the power storage element according to the same embodiment is assembled, and is a perspective view of a state in which the liquid injection plug, the electrode body, the current collector, and the external terminal are assembled to the lid plate. is there. 図6は、同実施形態に係る蓄電素子の電極体の構成を説明するための図である。FIG. 6 is a diagram for explaining the configuration of the electrode body of the power storage element according to the embodiment. 図7は、図6のVII−VII線位置の断面図である。FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 図8は、同実施形態に係る蓄電素子を含む蓄電装置の斜視図である。FIG. 8 is a perspective view of a power storage device including a power storage element according to the same embodiment. 図9は、正極の湾曲値を表すグラフである。FIG. 9 is a graph showing the curvature value of the positive electrode.

以下、本発明に係る蓄電素子の一実施形態について、図1〜図7を参照しつつ説明する。蓄電素子には、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 Hereinafter, an embodiment of the power storage element according to the present invention will be described with reference to FIGS. 1 to 7. The power storage element includes a secondary battery, a capacitor, and the like. In the present embodiment, a rechargeable secondary battery will be described as an example of the power storage element. The name of each component (each component) of the present embodiment is that of the present embodiment, and may be different from the name of each component (each component) in the background technology.

本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置100に用いられる。前記蓄電装置100では、該蓄電装置100に用いられる蓄電素子1が電気エネルギーを供給する。 The power storage element 1 of the present embodiment is a non-aqueous electrolyte secondary battery. More specifically, the power storage element 1 is a lithium ion secondary battery that utilizes electron transfer generated by the movement of lithium ions. This type of power storage element 1 supplies electrical energy. The power storage element 1 is used alone or in a plurality. Specifically, the power storage element 1 is used alone when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, the power storage element 1 is used in the power storage device 100 in combination with the other power storage element 1. In the power storage device 100, the power storage element 1 used in the power storage device 100 supplies electrical energy.

蓄電素子1は、図1〜図7に示すように、正極11と負極12とを電極として含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電体5等を有する。 As shown in FIGS. 1 to 7, the power storage element 1 includes an electrode body 2 including a positive electrode 11 and a negative electrode 12 as electrodes, a case 3 accommodating the electrode body 2, and an external terminal arranged outside the case 3. An external terminal 7 which is 7 and conducts with the electrode body 2 is provided. Further, the power storage element 1 has a current collector 5 or the like that conducts the electrode body 2 and the external terminal 7 in addition to the electrode body 2, the case 3, and the external terminal 7.

電極体2は、正極11と負極12とがセパレータ4によって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。 The electrode body 2 is formed by winding a laminated body 22 in which a positive electrode 11 and a negative electrode 12 are laminated in a state of being insulated from each other by a separator 4.

正極11は、金属箔111(正極基材)と、金属箔111に重ねられ且つ活物質を含む正極活物質層112と、を有する。本実施形態では、正極活物質層112は、金属箔111の両面にそれぞれ重ねられる。正極11の厚みは、通常、40μm以上200μm以下である。金属箔111は帯状である。本実施形態の正極の金属箔111は、例えば、アルミニウム箔である。 The positive electrode 11 has a metal foil 111 (positive electrode base material) and a positive electrode active material layer 112 that is overlapped with the metal foil 111 and contains an active material. In the present embodiment, the positive electrode active material layer 112 is laminated on both sides of the metal foil 111, respectively. The thickness of the positive electrode 11 is usually 40 μm or more and 200 μm or less. The metal foil 111 is strip-shaped. The metal leaf 111 of the positive electrode of the present embodiment is, for example, an aluminum foil.

正極活物質層112は、活物質と、バインダと、を含む。詳しくは、正極活物質層112は、活物質を85質量%以上95質量%以下含み、バインダを2質量%以上10質量%以下含む。正極活物質層112の厚みは、通常、10μm以上100μm以下である。正極活物質層112の目付量は、通常、5.0mg/cm以上15.0mg/cm以下である。正極活物質層112は、プレスされることによって、通常、1g/cm以上4g/cm以下の充填密度を有する。 The positive electrode active material layer 112 contains an active material and a binder. Specifically, the positive electrode active material layer 112 contains 85% by mass or more and 95% by mass or less of the active material, and 2% by mass or more and 10% by mass or less of the binder. The thickness of the positive electrode active material layer 112 is usually 10 μm or more and 100 μm or less. The basis weight of the positive electrode active material layer 112 is usually 5.0 mg / cm 2 or more and 15.0 mg / cm 2 or less. The positive electrode active material layer 112 usually has a packing density of 1 g / cm 3 or more and 4 g / cm 3 or less when pressed.

正極11の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極11の活物質は、粒子状である。 The active material of the positive electrode 11 is a compound that can occlude and release lithium ions. The active material of the positive electrode 11 is in the form of particles.

正極11の活物質の粒径D50と粒径D90とは、0.39≦粒径D50/(粒径D50+粒径D90)≦0.43 の関係式を満たす(式中、粒径D50は、粒度分布にて体積積算が50%となる粒径であり、粒径D90は、粒度分布にて体積積算が90%となる粒径である。)。即ち、正極11の活物質の粒度分布において、体積積算が50%となる粒径D50と、体積積算が90%となる粒径D90とは、上記関係式を満たす。 The particle size D50 and the particle size D90 of the active material of the positive electrode 11 satisfy the relational expression of 0.39 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0.43 (in the formula, the particle size D50 is The particle size is such that the volume integration is 50% in the particle size distribution, and the particle size D90 is the particle size in which the volume integration is 90% in the particle size distribution). That is, in the particle size distribution of the active material of the positive electrode 11, the particle size D50 having a volume integration of 50% and the particle size D90 having a volume integration of 90% satisfy the above relational expression.

粒径D50は、通常、2μm以上10μm以下である。粒径D50は、3μm以上8μm以下であってもよい。 The particle size D50 is usually 2 μm or more and 10 μm or less. The particle size D50 may be 3 μm or more and 8 μm or less.

粒径D90は、通常、3μm以上15μm以下である。粒径D90は、4μm以上11μm以下であってもよい。 The particle size D90 is usually 3 μm or more and 15 μm or less. The particle size D90 may be 4 μm or more and 11 μm or less.

上記の粒径D50は、粒径の粒度分布において小径側から体積累積分布を描き、体積累積頻度が50%となる平均粒径(メディアン径とも呼ばれる)である。粒径D50は、レーザ回折・散乱式の粒度分布測定装置によって測定することにより求めたD50の値である。上記の粒径D90は、体積累積頻度が90%となる粒径である点以外は、粒径D50と同様である。粒径D50及び粒径D90の測定条件については、実施例において詳しく説明する。 The above-mentioned particle size D50 is an average particle size (also referred to as a median diameter) in which a volume cumulative distribution is drawn from the small diameter side in the particle size distribution and the volume accumulation frequency is 50%. The particle size D50 is a value of D50 obtained by measuring with a laser diffraction / scattering type particle size distribution measuring device. The particle size D90 is the same as the particle size D50 except that the volume accumulation frequency is 90%. The measurement conditions for the particle size D50 and the particle size D90 will be described in detail in Examples.

なお、上記と同様にして測定した粒径であって体積積算が10%となる粒径D10は、通常、1μm以上5μm以下である。 The particle size D10 measured in the same manner as described above and having a volume integration of 10% is usually 1 μm or more and 5 μm or less.

正極11の活物質は、例えば、リチウム金属酸化物である。具体的に、正極の活物質は、例えば、LiMeO(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)、又は、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiFePO、LiMnPO、LiMnSiO、LiCoPOF等)である。 The active material of the positive electrode 11 is, for example, a lithium metal oxide. Specifically, the active material of the positive electrode is, for example, a composite oxide represented by Li v MeO z (Me represents one or more transition metals) (L v Co y O 2 , Li v Ni w O). 2, Li v Mn x O 4 , Li v Ni w Co y Mn x O 2 , etc.), or, Li a Me b (XO c ) d (Me represents one or more transition metals, X is e.g. P, Si, B, a polyanion compounds represented by the representative of the V) (Li a Fe b PO 4, Li a Mn b PO 4, Li a Mn b SiO 4, Li a Co b PO 4 F , etc.).

本実施形態では、正極11の活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)である。上記のごときLiNiMnCoの化学組成で表されるリチウム金属複合酸化物は、例えば、LiNi1/3Co1/3Mn1/3 、LiNi1/6Co2/3Mn1/6 などである。 In this embodiment, the active material of the positive electrode 11, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (provided that at 0 <v ≦ 1.3, w + x + y = 1 , 0 <w <1, 0 <x <1, 0 <y <1, 1.7 ≦ z ≦ 2.3). Additional such Li v Ni w Mn x Co y O lithium-metal composite oxide represented by the chemical composition of z is, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 1/6 Co 2 / 3 Mn 1/6 O 2 and the like.

正極活物質層112に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。 The binder used for the positive electrode active material layer 112 is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, and polymethacrylic. Acid, styrene-butadiene rubber (SBR). The binder of this embodiment is polyvinylidene fluoride.

正極活物質層112は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の正極活物質層112は、導電助剤としてアセチレンブラックを有する。 The positive electrode active material layer 112 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The positive electrode active material layer 112 of the present embodiment has acetylene black as a conductive auxiliary agent.

負極12は、金属箔121(負極基材)と、金属箔121に重ねられ且つ活物質を含む負極活物質層122と、を有する。本実施形態では、負極活物質層122は、金属箔121の両面にそれぞれ重ねられる。金属箔121は帯状である。本実施形態の負極の金属箔121は、銅箔である。負極12の厚みは、通常、40μm以上200μm以下である。 The negative electrode 12 has a metal foil 121 (negative electrode base material) and a negative electrode active material layer 122 that is overlapped with the metal foil 121 and contains an active material. In the present embodiment, the negative electrode active material layer 122 is laminated on both sides of the metal foil 121, respectively. The metal foil 121 is strip-shaped. The metal leaf 121 of the negative electrode of the present embodiment is a copper foil. The thickness of the negative electrode 12 is usually 40 μm or more and 200 μm or less.

負極活物質層122は、活物質と、バインダと、を有する。負極活物質層122は、セパレータ4を介して正極11と向き合うように配置される。負極活物質層122の厚みは、通常、10μm以上100μm以下である。 The negative electrode active material layer 122 has an active material and a binder. The negative electrode active material layer 122 is arranged so as to face the positive electrode 11 via the separator 4. The thickness of the negative electrode active material layer 122 is usually 10 μm or more and 100 μm or less.

負極12の活物質は、負極12において充電反応及び放電反応の電極反応に寄与し得るものである。負極12の活物質は、粒子状である。本実施形態の負極の活物質は、難黒鉛化炭素である。 The active material of the negative electrode 12 can contribute to the electrode reaction of the charge reaction and the discharge reaction in the negative electrode 12. The active material of the negative electrode 12 is in the form of particles. The active material of the negative electrode of the present embodiment is non-graphitized carbon.

負極12の活物質の粒径D50(正極11の活物質の粒径D50と同様)は、通常、2μm以上10μm以下である。斯かる粒径D50は、2μm以上8μm以下であってもよい。 The particle size D50 of the active material of the negative electrode 12 (similar to the particle size D50 of the active material of the positive electrode 11) is usually 2 μm or more and 10 μm or less. Such a particle size D50 may be 2 μm or more and 8 μm or less.

負極活物質層122に用いられるバインダは、正極活物質層112に用いられたバインダと同様のものである。本実施形態のバインダは、ポリフッ化ビニリデンである。 The binder used for the negative electrode active material layer 122 is the same as the binder used for the positive electrode active material layer 112. The binder of this embodiment is polyvinylidene fluoride.

負極活物質層122は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層122は、導電助剤を有していない。 The negative electrode active material layer 122 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The negative electrode active material layer 122 of the present embodiment does not have a conductive auxiliary agent.

セパレータ4は、絶縁性を有する部材である。セパレータ4は、帯状である。セパレータ4は、正極11と負極12との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極11と負極12とが互いに絶縁される。また、セパレータ4は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ4を挟んで交互に積層される正極11と負極12との間を移動する。 The separator 4 is a member having an insulating property. The separator 4 has a strip shape. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12. As a result, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 11 and the negative electrode 12 are insulated from each other. Further, the separator 4 holds the electrolytic solution in the case 3. As a result, when the power storage element 1 is charged and discharged, lithium ions move between the positive electrode 11 and the negative electrode 12 which are alternately laminated with the separator 4 in between.

セパレータ4は、例えば、織物、不織布、又は多孔膜によって多孔質に構成される。セパレータ4の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、又は、セルロースが挙げられる。 The separator 4 is made porous by, for example, a woven fabric, a non-woven fabric, or a porous membrane. Examples of the material of the separator 4 include polymer compounds, glass, and ceramics. Examples of the polymer compound include polyesters such as polyacrylonitrile (PAN), polyamide (PA) and polyethylene terephthalate (PET), polyolefins (PP) such as polypropylene (PP) and polyethylene (PE), and cellulose. ..

セパレータ4の幅(帯形状の短手方向の寸法)は、負極活物質層122の幅より僅かに大きい。セパレータ4は、正極活物質層112及び負極活物質層122が重なるように幅方向に位置ずれした状態で重ね合わされた正極11と負極12との間に配置される。 The width of the separator 4 (the dimension of the strip shape in the lateral direction) is slightly larger than the width of the negative electrode active material layer 122. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12 in which the positive electrode active material layer 112 and the negative electrode active material layer 122 are overlapped with each other in a state of being displaced in the width direction so as to overlap each other.

本実施形態の電極体2では、以上のように構成される正極11と負極12とがセパレータ4によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極11、負極12、及びセパレータ4の積層体22が巻回される。 In the electrode body 2 of the present embodiment, the positive electrode 11 and the negative electrode 12 configured as described above are wound in a state of being insulated by the separator 4. That is, in the electrode body 2 of the present embodiment, the laminated body 22 of the positive electrode 11, the negative electrode 12, and the separator 4 is wound.

正極11及び負極12は、それぞれ、金属箔(電極基材)に活物質層が重なることによって金属箔(電極基材)が覆われた被覆部104と、金属箔(電極基材)に活物質層が重ならず金属箔(電極基材)が露出した露出部105とを有する。露出部105は、帯状の金属箔(電極基材)の幅方向における一方の端縁に沿って形成される。 The positive electrode 11 and the negative electrode 12 have a coating portion 104 in which the metal foil (electrode base material) is covered by overlapping the active material layer on the metal foil (electrode base material), and the active material on the metal foil (electrode base material), respectively. It has an exposed portion 105 in which the layers do not overlap and the metal foil (electrode base material) is exposed. The exposed portion 105 is formed along one end edge in the width direction of the strip-shaped metal foil (electrode base material).

正極11と負極12とが積層された状態で、図6に示すように、正極11の露出部105と負極12の露出部105とは重なっていない。即ち、正極11の露出部105が、正極11と負極12との重なる領域から幅方向に突出し、且つ、負極12の露出部105が、正極11と負極12との重なる領域から幅方向(正極11の露出部105の突出方向と反対の方向)に突出する。積層された状態の正極11、負極12、及びセパレータ4、即ち、積層体22が巻回されることによって、電極体2が形成される。正極11の露出部105又は負極12の露出部105のみが積層された部位によって、電極体2における露出積層部26が構成される。このように、正極11は、負極12及びセパレータ4を介して厚み方向に積み重なっている。負極12は、正極11及びセパレータ4を介して厚み方向に積み重なっている。 In a state where the positive electrode 11 and the negative electrode 12 are laminated, as shown in FIG. 6, the exposed portion 105 of the positive electrode 11 and the exposed portion 105 of the negative electrode 12 do not overlap. That is, the exposed portion 105 of the positive electrode 11 protrudes in the width direction from the region where the positive electrode 11 and the negative electrode 12 overlap, and the exposed portion 105 of the negative electrode 12 extends in the width direction (positive electrode 11) from the region where the positive electrode 11 and the negative electrode 12 overlap. (In the direction opposite to the protruding direction of the exposed portion 105). The electrode body 2 is formed by winding the positive electrode 11, the negative electrode 12, and the separator 4, that is, the laminated body 22, in a laminated state. The exposed laminated portion 26 in the electrode body 2 is formed by the portion where only the exposed portion 105 of the positive electrode 11 or the exposed portion 105 of the negative electrode 12 is laminated. In this way, the positive electrode 11 is stacked in the thickness direction via the negative electrode 12 and the separator 4. The negative electrode 12 is stacked in the thickness direction via the positive electrode 11 and the separator 4.

露出積層部26は、電極体2における集電体5と導通される部位である。露出積層部26は、巻回された正極11、負極12、及びセパレータ4の巻回中心方向視において、中空部27(図6参照)を挟んで二つの部位(二分された露出積層部)261に区分けされる。 The exposed laminated portion 26 is a portion of the electrode body 2 that is electrically connected to the current collector 5. The exposed laminated portion 26 has two portions (divided exposed laminated portion) 261 sandwiching the hollow portion 27 (see FIG. 6) in the winding center direction of the wound positive electrode 11, negative electrode 12, and separator 4. It is divided into.

以上のように構成される露出積層部26は、電極体2の各極に設けられる。即ち、正極11の露出部105のみが積層された露出積層部26が電極体2における正極11の露出積層部を構成し、負極12の露出部105のみが積層された露出積層部26が電極体2における負極12の露出積層部を構成する。 The exposed laminated portion 26 configured as described above is provided at each pole of the electrode body 2. That is, the exposed laminated portion 26 in which only the exposed portion 105 of the positive electrode 11 is laminated constitutes the exposed laminated portion of the positive electrode 11 in the electrode body 2, and the exposed laminated portion 26 in which only the exposed portion 105 of the negative electrode 12 is laminated constitutes the electrode body. The exposed laminated portion of the negative electrode 12 in No. 2 is formed.

ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電体5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。 The case 3 has a case main body 31 having an opening and a lid plate 32 that closes (closes) the opening of the case main body 31. The case 3 houses the electrolytic solution in the internal space together with the electrode body 2, the current collector 5, and the like. Case 3 is formed of a metal that is resistant to electrolytes. The case 3 is formed of, for example, aluminum or an aluminum-based metal material such as an aluminum alloy. The case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material in which a resin such as nylon is adhered to aluminum.

電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。 The electrolytic solution is a non-aqueous electrolyte solution. The electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent. The organic solvent is, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Electrolyte salts are LiClO 4 , LiBF 4 , LiPF 6 , and the like.

電解液は、例えば、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の容積割合で混合した混合溶媒に、0.5〜1.5mol/LのLiPFを溶解させたものである。 The electrolytic solution is, for example, a solution in which 0.5 to 1.5 mol / L of LiPF 6 is dissolved in a mixed solvent in which propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed in a predetermined volume ratio.

ケース3は、ケース本体31の開口周縁部と、長方形状の蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3は、ケース本体31と蓋板32とによって画定される内部空間を有する。本実施形態では、ケース本体31の開口周縁部と蓋板32の周縁部とは、溶接によって接合される。 The case 3 is formed by joining the opening peripheral edge of the case body 31 and the peripheral edge of the rectangular lid plate 32 in a superposed state. Further, the case 3 has an internal space defined by the case main body 31 and the lid plate 32. In the present embodiment, the peripheral edge of the opening of the case body 31 and the peripheral edge of the lid plate 32 are joined by welding.

以下では、図1に示すように、蓋板32の長辺方向をX軸方向とし、蓋板32の短辺方向をY軸方向とし、蓋板32の法線方向をZ軸方向とする。 In the following, as shown in FIG. 1, the long side direction of the lid plate 32 is the X-axis direction, the short side direction of the lid plate 32 is the Y-axis direction, and the normal direction of the lid plate 32 is the Z-axis direction.

ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。 The case body 31 has a square tube shape (that is, a bottomed square tube shape) in which one end in the opening direction (Z-axis direction) is closed.

蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。具体的に、蓋板32は、ケース本体31の開口を塞ぐようにケース本体31に当接する。より具体的には、蓋板32が開口を塞ぐように、蓋板32の周縁部がケース本体31の開口周縁部に重ねられる。開口周縁部と蓋板32とが重ねられた状態で、蓋板32とケース本体31との境界部が溶接される。これにより、ケース3が構成される。 The lid plate 32 is a plate-shaped member that closes the opening of the case body 31. Specifically, the lid plate 32 comes into contact with the case body 31 so as to close the opening of the case body 31. More specifically, the peripheral edge of the lid plate 32 is overlapped with the peripheral edge of the opening of the case body 31 so that the lid plate 32 closes the opening. The boundary portion between the lid plate 32 and the case body 31 is welded in a state where the opening peripheral edge portion and the lid plate 32 are overlapped with each other. As a result, the case 3 is configured.

蓋板32は、Z軸方向視において、ケース本体31の開口周縁部に対応した輪郭形状を有する。即ち、蓋板32は、Z軸方向視において、X軸方向に長い矩形状の板材である。また、蓋板32の四隅は、円弧状である。 The lid plate 32 has a contour shape corresponding to the opening peripheral edge of the case body 31 in the Z-axis direction. That is, the lid plate 32 is a rectangular plate material that is long in the X-axis direction when viewed in the Z-axis direction. The four corners of the lid plate 32 are arcuate.

蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。 The lid plate 32 has a gas discharge valve 321 capable of discharging the gas in the case 3 to the outside. The gas discharge valve 321 discharges gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure. The gas discharge valve 321 is provided at the center of the lid plate 32 in the X-axis direction.

ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。 The case 3 is provided with a liquid injection hole for injecting an electrolytic solution. The liquid injection hole communicates the inside and the outside of the case 3. The liquid injection hole is provided in the lid plate 32.

注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。 The injection hole is sealed (closed) by the injection plug 326. The liquid injection plug 326 is fixed to the case 3 (the lid plate 32 in the example of the present embodiment) by welding.

外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。例えば、外部端子7は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。 The external terminal 7 is a portion that is electrically connected to the external terminal 7 of another power storage element 1 or an external device or the like. The external terminal 7 is formed of a conductive member. For example, the external terminal 7 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or an aluminum alloy, or a copper-based metal material such as copper or a copper alloy.

外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。外部端子7は、蓋板32に沿って拡がる板状である。詳しくは、外部端子7は、Z軸方向視において矩形状の板状である。 The external terminal 7 has a surface 71 to which a bus bar or the like can be welded. The surface 71 is a flat surface. The external terminal 7 has a plate shape that extends along the lid plate 32. Specifically, the external terminal 7 has a rectangular plate shape in the Z-axis direction.

集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材50を介して電極体2と通電可能に接続される。即ち、蓄電素子1は、電極体2と集電体5とを通電可能に接続するクリップ部材50を備える。 The current collector 5 is arranged in the case 3 and is directly or indirectly connected to the electrode body 2 so as to be energized. The current collector 5 of the present embodiment is electrically connected to the electrode body 2 via the clip member 50. That is, the power storage element 1 includes a clip member 50 that connects the electrode body 2 and the current collector 5 so as to be energized.

集電体5は、導電性を有する部材によって形成される。図3に示すように、集電体5は、ケース3の内面に沿って配置される。 The current collector 5 is formed of a conductive member. As shown in FIG. 3, the current collector 5 is arranged along the inner surface of the case 3.

集電体5は、蓄電素子1の正極11と負極12とにそれぞれ配置される。本実施形態の蓄電素子1では、ケース3内において、電極体2の正極11の露出積層部26と、負極12の露出積層部26とにそれぞれ配置される。 The current collector 5 is arranged on the positive electrode 11 and the negative electrode 12 of the power storage element 1, respectively. In the power storage element 1 of the present embodiment, the storage element 1 is arranged in the exposed laminated portion 26 of the positive electrode 11 of the electrode body 2 and the exposed laminated portion 26 of the negative electrode 12 in the case 3, respectively.

正極11の集電体5と負極12の集電体5とは、異なる材料によって形成される。具体的に、正極11の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成され、負極12の集電体5は、例えば、銅又は銅合金によって形成される。 The current collector 5 of the positive electrode 11 and the current collector 5 of the negative electrode 12 are formed of different materials. Specifically, the current collector 5 of the positive electrode 11 is formed of, for example, aluminum or an aluminum alloy, and the current collector 5 of the negative electrode 12 is formed of, for example, copper or a copper alloy.

本実施形態の蓄電素子1では、袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電体5)がケース3内に収容される。 In the power storage element 1 of the present embodiment, the electrode body 2 (specifically, the electrode body 2 and the current collector 5) housed in the bag-shaped insulating cover 6 is housed in the case 3.

次に、上記実施形態の蓄電素子の製造方法について説明する。 Next, a method of manufacturing the power storage element of the above embodiment will be described.

蓄電素子1の製造方法では、金属箔(電極基材)に活物質を含む合剤を塗布し、活物質層を形成し、電極(正極11及び負極12)を作製する。次に、正極11、セパレータ4、及び負極12を重ね合わせて電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。 In the method for manufacturing the power storage element 1, a mixture containing an active material is applied to a metal foil (electrode base material) to form an active material layer, and electrodes (positive electrode 11 and negative electrode 12) are produced. Next, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed to form the electrode body 2. Subsequently, the electrode body 2 is put into the case 3, and the electrolytic solution is put into the case 3 to assemble the power storage element 1.

電極(正極11)の作製では、金属箔の両面に、活物質とバインダと溶媒とを含む合剤をそれぞれ塗布することによって活物質層(正極活物質層112)を形成する。金属箔に合剤を塗布するときには、帯状の金属箔における幅方向の一方の端部を合剤で覆わないように合剤を塗布する。これにより、電極(正極11)は、金属箔に活物質層が重なることによって金属箔が覆われた被覆部104と、金属箔に活物質層が重ならず金属箔が露出した露出部105とを有することとなる。活物質層を形成するための塗布方法としては、一般的な方法が採用される。負極も同様にして作製する。続いて、電極(正極11)をロールでプレスする。プレス圧は、通常、1000N/cm以上24000N/cm以下である。活物質層の厚み分、被覆部104には、露出部105よりもプレスによってより大きい力が加わる。被覆部104における金属箔がより強く圧縮されることによって、被覆部104における金属箔の厚みが、露出部105における金属箔の厚みよりも薄くなり、金属箔の厚みのばらつきによって、電極が曲がり得る。 In the production of the electrode (positive electrode 11), an active material layer (positive electrode active material layer 112) is formed by applying a mixture containing an active material, a binder, and a solvent to both surfaces of the metal foil. When applying the mixture to the metal foil, the mixture is applied so that one end in the width direction of the strip-shaped metal foil is not covered with the mixture. As a result, the electrode (positive electrode 11) includes a covering portion 104 in which the metal foil is covered by the active material layer overlapping the metal foil, and an exposed portion 105 in which the metal foil is exposed without the active material layer overlapping the metal foil. Will have. As a coating method for forming the active material layer, a general method is adopted. The negative electrode is also manufactured in the same manner. Subsequently, the electrode (positive electrode 11) is pressed with a roll. The press pressure is usually 1000 N / cm or more and 24000 N / cm or less. Due to the thickness of the active material layer, a larger force is applied to the covering portion 104 by pressing than to the exposed portion 105. As the metal foil in the covering portion 104 is compressed more strongly, the thickness of the metal foil in the covering portion 104 becomes thinner than the thickness of the metal foil in the exposed portion 105, and the electrode may bend due to the variation in the thickness of the metal foil. ..

電極体2の形成では、正極11と負極12との間にセパレータ4を挟み込んだ積層体22を巻回することにより、電極体2を形成する。詳しくは、正極活物質層112と負極活物質層122とがセパレータ4を介して互いに向き合うように、正極11とセパレータ4と負極12とを重ね合わせ、積層体22を作る。続いて、積層体22を巻回して、電極体2を形成する。 In the formation of the electrode body 2, the electrode body 2 is formed by winding the laminated body 22 having the separator 4 sandwiched between the positive electrode 11 and the negative electrode 12. Specifically, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed so that the positive electrode active material layer 112 and the negative electrode active material layer 122 face each other via the separator 4 to form the laminated body 22. Subsequently, the laminated body 22 is wound to form the electrode body 2.

蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極11と一方の外部端子7とを導通させ、且つ、負極12と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。 In assembling the power storage element 1, the electrode body 2 is put into the case body 31 of the case 3, the opening of the case body 31 is closed with the lid plate 32, and the electrolytic solution is injected into the case 3. When closing the opening of the case body 31 with the lid plate 32, the electrode body 2 is inserted inside the case body 31, the positive electrode 11 and one external terminal 7 are made conductive, and the negative electrode 12 and the other external terminal 7 are connected. The opening of the case body 31 is closed with the lid plate 32 in a conductive state. When the electrolytic solution is injected into the case 3, the electrolytic solution is injected into the case 3 through the injection hole of the lid plate 32 of the case 3.

上記のように構成された本実施形態の蓄電素子1では、正極11の活物質の粒径D50と粒径D90とは、0.39≦粒径D50/(粒径D50+粒径D90)≦0.43 の関係式を満たす。当該関係式を満たすことにより、プレスにより曲がることが抑制された電極が得られるメカニズムは必ずしも明らかではないが、以下の通りと推測される。すなわち、正極11の活物質の粒径が上記関係式を満たすため、正極11がプレスされても、正極活物質層112において、より大きい粒子の間により小さい粒子が適度に入り込む。小さい粒子が大きい粒子の間に入り込む分、厚み方向の圧縮力が正極活物質層112の面方向に分散される。従って、正極基材(金属箔111)の一部に圧縮力が集中することが抑えられる。これにより、正極活物質層112が正極基材(金属箔111)に比較的均等な力で押し付けられる。正極基材(金属箔111)に対して比較的均等に力が加わることから、不均一な圧縮力で正極基材(金属箔111)が伸びることが抑えられる。従って、厚み方向に波打つように正極11が曲がることを抑制できる。また、正極基材(金属箔111)の一部が活物質と重ならず露出した正極11が、湾曲して曲がることを抑制できる。即ち、矩形状の正極基材(金属箔111)の一辺に沿って正極基材(金属箔111)が露出した正極11は、露出した側を内側にして湾曲することが抑制される。このように、本実施形態の蓄電素子1によれば、正極11が曲がることを抑制できる。 In the power storage element 1 of the present embodiment configured as described above, the particle size D50 and the particle size D90 of the active material of the positive electrode 11 are 0.39 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0. Satisfy the relational expression of .43. The mechanism by which an electrode whose bending is suppressed by pressing is obtained by satisfying the relational expression is not always clear, but it is presumed to be as follows. That is, since the particle size of the active material of the positive electrode 11 satisfies the above relational expression, even if the positive electrode 11 is pressed, smaller particles appropriately enter between the larger particles in the positive electrode active material layer 112. As the small particles enter between the large particles, the compressive force in the thickness direction is dispersed in the plane direction of the positive electrode active material layer 112. Therefore, it is possible to prevent the compressive force from being concentrated on a part of the positive electrode base material (metal foil 111). As a result, the positive electrode active material layer 112 is pressed against the positive electrode base material (metal foil 111) with a relatively uniform force. Since the force is applied relatively evenly to the positive electrode base material (metal foil 111), the positive electrode base material (metal leaf 111) is prevented from stretching due to the non-uniform compressive force. Therefore, it is possible to prevent the positive electrode 11 from bending so as to undulate in the thickness direction. Further, the positive electrode 11 in which a part of the positive electrode base material (metal foil 111) is exposed without overlapping with the active material can be prevented from bending and bending. That is, the positive electrode 11 in which the positive electrode base material (metal foil 111) is exposed along one side of the rectangular positive electrode base material (metal foil 111) is prevented from being curved with the exposed side inward. As described above, according to the power storage element 1 of the present embodiment, it is possible to suppress the bending of the positive electrode 11.

上記の蓄電素子1では、正極11が被覆部104と露出部105とを有する。被覆部104と露出部105とを有する正極11が厚み方向にプレスされると、正極活物質層112の厚み分、より強い力が被覆部104に加わる。しかしながら、正極11が被覆部と露出部とを有しても、被覆部から正極基材(金属箔111)へ比較的均等に力が加わる分、正極11がプレスによって曲がることをより確実に抑制できる。 In the above-mentioned power storage element 1, the positive electrode 11 has a covering portion 104 and an exposed portion 105. When the positive electrode 11 having the covering portion 104 and the exposed portion 105 is pressed in the thickness direction, a stronger force is applied to the covering portion 104 by the thickness of the positive electrode active material layer 112. However, even if the positive electrode 11 has a coated portion and an exposed portion, the positive electrode 11 is more reliably suppressed from being bent by the press because the force is applied relatively evenly from the coated portion to the positive electrode base material (metal foil 111). it can.

上記の蓄電素子1では、正極11が厚み方向に積み重なっている。負極12も厚み方向に積み重なっている。具体的には、積層体22にて、正極11と負極12とが積層され、積層体22が巻回されることによって電極体2が形成される。上記のごとく、正極11が波打ったり湾曲したりして曲がることが抑えられていることから、電極体2において、電極間の距離をより均一に近づけることができる。 In the power storage element 1, the positive electrodes 11 are stacked in the thickness direction. The negative electrodes 12 are also stacked in the thickness direction. Specifically, the positive electrode 11 and the negative electrode 12 are laminated on the laminated body 22, and the laminated body 22 is wound to form the electrode body 2. As described above, since the positive electrode 11 is suppressed from being wavy or curved and bent, the distance between the electrodes can be made more uniform in the electrode body 2.

上記の蓄電素子1では、正極活物質層112に含まれる活物質の粒径D50が2μm以上10μm以下であることにより、活物質の粒径が比較的小さいことから、蓄電素子1(電池)が十分な出力を有することができる。 In the above-mentioned power storage element 1, since the particle size D50 of the active material contained in the positive electrode active material layer 112 is 2 μm or more and 10 μm or less, the particle size of the active material is relatively small. It can have sufficient output.

尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The power storage element of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.

上記の実施形態では、活物質を含む層が金属箔に直接接した電極(正極及び負極)について詳しく説明したが、本発明では、正極及び負極の少なくともいずれか一方が、バインダと導電助剤とを含む導電層を有してもよい。正極活物質層112及び負極活物質層122の少なくともいずれか一方が導電層を有し、活物質層における電極基材(金属箔)と接する面の方に、導電層が配置されてもよい。 In the above embodiment, the electrodes (positive electrode and negative electrode) in which the layer containing the active material is in direct contact with the metal foil have been described in detail, but in the present invention, at least one of the positive electrode and the negative electrode is a binder and a conductive auxiliary agent. May have a conductive layer containing. At least one of the positive electrode active material layer 112 and the negative electrode active material layer 122 may have a conductive layer, and the conductive layer may be arranged on the surface of the active material layer in contact with the electrode base material (metal foil).

上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極11又は負極12は、活物質層を金属箔の片面側にのみ備えてもよい。 In the above embodiment, the electrodes in which the active material layer is arranged on both sides of the metal leaf of each electrode have been described, but in the power storage element of the present invention, the positive electrode 11 or the negative electrode 12 has the active material layer on one side of the metal leaf. It may be provided only on the side.

上記実施形態では、上記の関係式を満たす活物質を含む電極が正極である蓄電素子について説明したが、本発明の蓄電素子では、上記の関係式を満たす活物質を含む電極が負極であってもよい。 In the above embodiment, the power storage element in which the electrode containing the active material satisfying the above relational expression is the positive electrode has been described, but in the power storage element of the present invention, the electrode containing the active material satisfying the above relational expression is the negative electrode. May be good.

上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。 In the above embodiment, the power storage element 1 including the electrode body 2 in which the laminated body 22 is wound has been described in detail, but the power storage element of the present invention may include the laminated body 22 which is not wound. Specifically, the power storage element may include an electrode body in which a positive electrode, a separator, a negative electrode, and a separator each formed in a rectangular shape are stacked a plurality of times in this order.

上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 In the above embodiment, the case where the power storage element 1 is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described, but the type and size (capacity) of the power storage element 1 are arbitrary. is there. Further, in the above embodiment, the lithium ion secondary battery has been described as an example of the power storage element 1, but the present invention is not limited to this. For example, the present invention can be applied to various secondary batteries and other storage elements of capacitors such as electric double layer capacitors.

上記実施形態では、露出部は、帯状の金属箔の短手方向の一端部に設けられているが、本発明は、このような形態に限られない。すなわち、露出部は、金属箔の2辺以上の端部に設けられていてもよい。具体的には、露出部は、帯状の金属箔の短手方向の両端部に沿って設けられていてもよい。なお、上記実施形態のように、電極において、金属箔の短手方向の一方の端部に沿って露出部が設けられていると、プレスの際に、金属箔(具体的には、被覆部及び露出部)へ非対称に力が加わるため、電極が湾曲しやすい。しかしながら、このような電極であっても、湾曲が抑制されるという効果が顕著に発揮される。 In the above embodiment, the exposed portion is provided at one end of the strip-shaped metal foil in the lateral direction, but the present invention is not limited to such an embodiment. That is, the exposed portion may be provided at two or more sides of the metal foil. Specifically, the exposed portions may be provided along both ends of the strip-shaped metal foil in the lateral direction. If the electrode is provided with an exposed portion along one end of the metal foil in the lateral direction as in the above embodiment, the metal foil (specifically, the covering portion) is provided at the time of pressing. And the exposed part), the electrode is easily curved because the force is applied asymmetrically. However, even with such an electrode, the effect of suppressing curvature is remarkably exhibited.

蓄電素子1(例えば電池)は、図8に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。 The power storage element 1 (for example, a battery) may be used in a power storage device 100 (a battery module when the power storage element is a battery) as shown in FIG. The power storage device 100 includes at least two power storage elements 1 and a bus bar member 91 that electrically connects two (different) power storage elements 1 to each other. In this case, the technique of the present invention may be applied to at least one power storage element.

以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。 A non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.

(実施例1)
(1)正極の作製
所定の粒度分布を有する活物質(LiNi1/3Co1/3Mn1/3)を用意した。粒度分布から求めた活物質の粒径D50は、3.8μmであり、粒径D90は、5.0μmであった。溶剤としてN−メチル−2−ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、4.5質量%、91質量%とした。調製した正極用の合剤をアルミニウム箔(15μm厚み)の両面に、乾燥後の塗布量(目付量)が17.2mg/cmとなるようにそれぞれ塗布した。乾燥後、ロールプレスを行った。ロールプレスは、活物質層の充填密度が2.7g/cmとなるように行った。その後、真空乾燥して、水分を除去した。活物質層(1層分)の厚みは、32μmであった。
正極の活物質の粒度分布は、レーザ回折・散乱式の粒度分布測定装置を用いて測定した。そして、粒度分布から、粒径D50及び粒径D90を求めた。なお、粒径D10についても同様にして求めた。測定条件の詳細は、下記の通りである。
・装置名、型式、メーカー名
メーカー:マイクロトラック・ベル社
装置 :レーザー回折・散乱式 粒度分布測定装置
型式 :MT3000EXII
・前処理
分散媒:蒸留水
分散剤:製品名「エキストランMA02 ニュートラル」(メルク社) 0.5% (蒸留水に0.5%のエキストランMA02 ニュートラルを希釈させた溶液を溶媒と
して使用した)
・サンプリング
循環器(SDC(SampleDelivery Controller))のバスに
前処理で調整した溶液を循環させ、透過率が0.85±0.05になるように少量ずつサンプル(活物質の粉体)を投入した。
・分散
分散条件:循環器(SDC(SampleDelivery Controller)
)にサンプル(活物質)を投入後、流速24mL/secで循環させながら、超音波を40Wの出力で120sec照射した。
・測定条件
分散後、測定時間10secで5回測定を行い、5回の結果を平均した。
(Example 1)
(1) Preparation of Positive Electrode An active material (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) having a predetermined particle size distribution was prepared. The particle size D50 of the active material determined from the particle size distribution was 3.8 μm, and the particle size D90 was 5.0 μm. A mixture for the positive electrode was prepared by mixing and kneading N-methyl-2-pyrrolidone (NMP) as a solvent, a conductive auxiliary agent (acetylene black), a binder (PVdF), and an active material. .. The blending amounts of the conductive auxiliary agent, the binder, and the active material were 4.5% by mass, 4.5% by mass, and 91% by mass, respectively. The prepared mixture for the positive electrode was applied to both sides of the aluminum foil (thickness of 15 μm) so that the coating amount (basis weight) after drying was 17.2 mg / cm 2 . After drying, a roll press was performed. The roll press was performed so that the packing density of the active material layer was 2.7 g / cm 3. Then, it was vacuum dried to remove water. The thickness of the active material layer (for one layer) was 32 μm.
The particle size distribution of the active material of the positive electrode was measured using a laser diffraction / scattering type particle size distribution measuring device. Then, the particle size D50 and the particle size D90 were obtained from the particle size distribution. The particle size D10 was also determined in the same manner. The details of the measurement conditions are as follows.
・ Device name, model, manufacturer name Manufacturer: Microtrack Bell Co., Ltd. Device: Laser diffraction / scattering type particle size distribution measuring device Model: MT3000EXII
-Pretreatment Dispersion medium: Distilled water Dispersant: Product name "Extran MA02 Neutral" (Merck) 0.5% (Diluted water diluted with 0.5% Extran MA02 Neutral was used as the solvent. )
-Circulate the solution prepared by pretreatment in the bath of the sampling circulator (SDC (Sample Delivery Controller)), and add the sample (powder of active material) little by little so that the transmittance becomes 0.85 ± 0.05. did.
Dispersion Dispersion condition: Cardiovascular system (SDC (Sample Delivery Controller)
After putting the sample (active material) into), ultrasonic waves were irradiated at an output of 40 W for 120 sec while circulating at a flow velocity of 24 mL / sec.
-Measurement conditions After dispersion, measurement was performed 5 times with a measurement time of 10 sec, and the results of 5 times were averaged.

(2)負極の作製
活物質としては、粒径D50が4μmの粒子状の難黒鉛化炭素を用いた。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。バインダは、7質量%となるように配合し、活物質は、93質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が7.9mg/cmとなるように、銅箔(10μm厚み)の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分を除去した。活物質層(1層分)の厚みは、35μmであった。
(2) Preparation of Negative Electrode As the active material, particulate non-graphitized carbon having a particle size D50 of 4 μm was used. Moreover, PVdF was used as a binder. The mixture for the negative electrode was prepared by mixing and kneading NMP, a binder, and an active material as solvents. The binder was blended so as to be 7% by mass, and the active material was blended so as to be 93% by mass. The prepared mixture for the negative electrode was applied to both sides of the copper foil (10 μm thickness) so that the coating amount (weight) after drying was 7.9 mg / cm 2. After drying, a roll press was performed and vacuum dried to remove water. The thickness of the active material layer (for one layer) was 35 μm.

(3)セパレータ
セパレータとして厚みが22μmのポリエチレン製微多孔膜を用いた。ポリエチレン製微多孔膜の透気度は、100秒/100ccであった。
(3) Separator A polyethylene microporous membrane having a thickness of 22 μm was used as the separator. The air permeability of the polyethylene microporous membrane was 100 seconds / 100 cc.

(4)電解液の調製
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPFを溶解させ、電解液を調製した。
(4) Preparation of electrolytic solution As the electrolytic solution, one prepared by the following method was used. As the non-aqueous solvent, a solvent obtained by mixing 1 part by volume of propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was used, and LiPF 6 was dissolved in this non-aqueous solvent so that the salt concentration was 1 mol / L. An electrolyte was prepared.

(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(5) Arrangement of Electrode Body in Case Using the above positive electrode, the above negative electrode, the above electrolytic solution, the separator, and the case, a battery was manufactured by a general method.
First, a sheet-like material formed by arranging and laminating a separator between the positive electrode and the negative electrode was wound around. Next, the wound electrode body was placed in the case body of the aluminum square battery case as a case. Subsequently, the positive electrode and the negative electrode were electrically connected to each of the two external terminals. Furthermore, a lid plate was attached to the case body. The above electrolytic solution was injected into the case through a liquid injection port formed on the lid plate of the case. Finally, the case was sealed by sealing the injection port of the case.

(実施例2)
正極の作製において、粒径D50が3.9μmであり且つ粒径D90が5.7μmである活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an active material having a particle size D50 of 3.9 μm and a particle size D90 of 5.7 μm was used in the production of the positive electrode.

(実施例3)
正極の作製において、粒径D50が5.6μmであり且つ粒径D90が8.8μmである活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an active material having a particle size D50 of 5.6 μm and a particle size D90 of 8.8 μm was used in the production of the positive electrode.

(実施例4)
正極の作製において、粒径D50が6.0μmであり且つ粒径D90が9.0μmであり、組成がLiNi1/6Co2/3Mn1/6である活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Example 4)
In the production of the positive electrode, except that an active material having a particle size D50 of 6.0 μm, a particle size D90 of 9.0 μm, and a composition of LiNi 1/6 Co 2/3 Mn 1/6 O 2 was used. Manufactured a lithium ion secondary battery in the same manner as in Example 1.

(比較例1)
正極の作製において、粒径D50が5.1μmであり且つ粒径D90が8.2μmである活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Example 1)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an active material having a particle size D50 of 5.1 μm and a particle size D90 of 8.2 μm was used in the production of the positive electrode.

(比較例2)
正極の作製において、粒径D50が5.5μmであり且つ粒径D90が8.8μmである活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an active material having a particle size D50 of 5.5 μm and a particle size D90 of 8.8 μm was used in the production of the positive electrode.

(比較例3)
正極の作製において、粒径D50が5.7μmであり且つ粒径D90が7.3μmである活物質を用いた点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
(Comparative Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that an active material having a particle size D50 of 5.7 μm and a particle size D90 of 7.3 μm was used in the production of the positive electrode.

<プレスによる正極の曲がり(湾曲)の評価>
正極の湾曲値を次のようにして測定した。まず、正極を真空乾燥させ、真空乾燥後の正極を2mの長さで切り取った。次に、5mのまっすぐな金尺の長手方向と、正極の長手方向とが概ね平行となるように、切り取った正極を配置した。露出部の長手方向の一方の端部(角部)、および、他方の端部(角部)を金尺に接地させた。露出部の長手方向の一方の端から1m部分(すなわち、正極の長手方向中央部)において、露出部の端縁から金尺までの隙間の距離を測定した。測定では、最小単位0.1mmのスケールルーペを用い、測定値を湾曲値(mm)とした。
<Evaluation of cathode bending (curving) by pressing>
The curvature value of the positive electrode was measured as follows. First, the positive electrode was vacuum-dried, and the positive electrode after vacuum-drying was cut off to a length of 2 m. Next, the cut positive electrode was arranged so that the longitudinal direction of the 5 m straight metal scale and the longitudinal direction of the positive electrode were substantially parallel to each other. One end (corner) of the exposed portion in the longitudinal direction and the other end (corner) were grounded to the metal scale. The distance of the gap from the edge of the exposed portion to the metal scale was measured at a portion 1 m from one end in the longitudinal direction of the exposed portion (that is, the central portion in the longitudinal direction of the positive electrode). In the measurement, a scale loupe having a minimum unit of 0.1 mm was used, and the measured value was a curvature value (mm).

各実施例及び各比較例の電池における正極の曲がり(湾曲)について評価した結果を表1及び図9に示す。表1及び図9から把握されるように、比較例の電池と比べて、上記の関係式を満たす実施例の電池では、電極が曲がることを抑制できた。特に、0.40≦粒径D50/(粒径D50+粒径D90)≦0.41の場合には、湾曲値をより小さくできることが分かった。 Tables 1 and 9 show the results of evaluation of the bending (curving) of the positive electrode in the batteries of each Example and each Comparative Example. As can be seen from Table 1 and FIG. 9, in the battery of the example satisfying the above relational expression, the bending of the electrode could be suppressed as compared with the battery of the comparative example. In particular, when 0.40 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0.41, it was found that the curvature value can be made smaller.

Figure 2021044250
Figure 2021044250

1:蓄電素子(非水電解質二次電池)、
2:電極体、
26:露出積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、 6:絶縁カバー、
7:外部端子、 71:面、
11:正極、
111:正極の金属箔(正極基材)、 112:正極活物質層、
12:負極、
121:負極の金属箔(負極基材)、 122:負極活物質層、
104:被覆部、 105:露出部、
91:バスバ部材、
100:蓄電装置。
1: Power storage element (non-aqueous electrolyte secondary battery),
2: Electrode body,
26: Exposed laminated part,
3: Case, 31: Case body, 32: Lid plate,
4: Separator,
5: Current collector, 50: Clip member, 6: Insulation cover,
7: External terminal, 71: Surface,
11: Positive electrode,
111: Metal leaf of positive electrode (positive electrode base material), 112: Positive electrode active material layer,
12: Negative electrode,
121: Metal leaf of negative electrode (negative electrode base material), 122: Negative electrode active material layer,
104: Cover, 105: Exposed,
91: Bus bar member,
100: Power storage device.

Claims (5)

箔状の電極基材と、該電極基材に重ねられ且つ粒子状の活物質を含む活物質層と、を有する電極を備え、
前記活物質の粒径D50と粒径D90とは、0.39≦粒径D50/(粒径D50+粒径D90)≦0.43 の関係式を満たす(式中、粒径D50は、粒度分布にて体積積算が50%となる粒径であり、粒径D90は、粒度分布にて体積積算が90%となる粒径である。)、蓄電素子。
An electrode having a foil-shaped electrode base material and an active material layer superimposed on the electrode base material and containing a particulate active material is provided.
The particle size D50 and the particle size D90 of the active material satisfy the relational expression of 0.39 ≤ particle size D50 / (particle size D50 + particle size D90) ≤ 0.43 (in the formula, the particle size D50 is the particle size distribution). The particle size D90 is the particle size at which the volume integration is 50%, and the particle size D90 is the particle size at which the volume integration is 90% in the particle size distribution).
前記電極は、正極である、請求項1に記載の蓄電素子。 The power storage element according to claim 1, wherein the electrode is a positive electrode. 前記活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<v≦1.3であり、w+x+y=1であり、0<w<1であり、0<x<1であり、0<y<1であり、1.7≦z≦2.3である)である、請求項2に記載の蓄電素子。 The active material, Li v Ni w Mn x Co y O z lithium-metal composite oxide represented by the chemical composition (but is 0 <v ≦ 1.3, a w + x + y = 1, 0 <w < The power storage element according to claim 2, wherein 1 is, 0 <x <1, 0 <y <1, and 1.7 ≦ z ≦ 2.3). 前記電極は、前記電極基材に前記活物質層が重なることによって前記電極基材が覆われた被覆部と、前記電極基材に前記活物質層が重ならず前記電極基材が露出した露出部とを有する、請求項1乃至3のいずれか1項に記載の蓄電素子。 The electrode is exposed to a coating portion in which the electrode base material is covered by overlapping the active material layer on the electrode base material and an exposed portion in which the active material layer is not overlapped on the electrode base material and the electrode base material is exposed. The power storage element according to any one of claims 1 to 3, further comprising a part. 前記電極が厚み方向に積み重なっている、請求項1乃至4のいずれか1項に記載の蓄電素子。 The power storage element according to any one of claims 1 to 4, wherein the electrodes are stacked in the thickness direction.
JP2020189542A 2016-02-05 2020-11-13 Storage element Active JP7211405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020189542A JP7211405B2 (en) 2016-02-05 2020-11-13 Storage element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021090A JP6806302B2 (en) 2016-02-05 2016-02-05 Positive electrode catalyst for fuel cells
JP2020189542A JP7211405B2 (en) 2016-02-05 2020-11-13 Storage element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015070823A Division JP6796272B2 (en) 2015-03-31 2015-03-31 Power storage element

Publications (2)

Publication Number Publication Date
JP2021044250A true JP2021044250A (en) 2021-03-18
JP7211405B2 JP7211405B2 (en) 2023-01-24

Family

ID=59564551

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016021090A Active JP6806302B2 (en) 2016-02-05 2016-02-05 Positive electrode catalyst for fuel cells
JP2020189542A Active JP7211405B2 (en) 2016-02-05 2020-11-13 Storage element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016021090A Active JP6806302B2 (en) 2016-02-05 2016-02-05 Positive electrode catalyst for fuel cells

Country Status (1)

Country Link
JP (2) JP6806302B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7384858B2 (en) 2021-06-23 2023-11-21 矢崎総業株式会社 connector device
CN114452973A (en) * 2022-02-08 2022-05-10 权冉(银川)科技有限公司 Hydrogen energy catalytic preparation process and material method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2009277596A (en) * 2008-05-16 2009-11-26 Panasonic Corp Method of manufacturing electrode group for secondary battery and secondary battery
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
JP2013201077A (en) * 2012-03-26 2013-10-03 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JP2013234102A (en) * 2012-05-10 2013-11-21 Tanaka Chemical Corp Titanium oxide and method of manufacturing the same, lithium titanate and method of manufacturing the same, and lithium battery
WO2014034859A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
WO2014069117A1 (en) * 2012-10-30 2014-05-08 日立マクセル株式会社 Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP2014123529A (en) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery
JP2014132563A (en) * 2012-12-04 2014-07-17 Gs Yuasa Corp Power storage element and power storage device
JP2014143108A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Positive electrode active material and lithium secondary battery including the active material
JP2014186955A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
WO2014192759A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Positive electrode active material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203641A (en) * 2001-12-28 2003-07-18 Nitto Denko Corp Fuel cell
US7858267B2 (en) * 2003-07-24 2010-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Fuel cell electrode, fuel cell, and manufacturing methods thereof
JP2006134603A (en) * 2004-11-02 2006-05-25 Bridgestone Corp Catalyst structure and film-electrode junction for solid, polymer type fuel cell using the same
US8227135B2 (en) * 2005-03-29 2012-07-24 Toyota Motor Corporation Electrolytes to enhance oxygen reduction reaction (ORR) in the cathode layer of PEM fuel cell
WO2013008501A1 (en) * 2011-07-14 2013-01-17 昭和電工株式会社 Oxygen reduction catalyst, process for producing same, and polymer electrolyte membrane fuel cell
JP5806596B2 (en) * 2011-11-15 2015-11-10 株式会社日本触媒 Composite and production method thereof
JP2017039630A (en) * 2015-08-21 2017-02-23 出光興産株式会社 Porous carbon material and manufacturing method therefor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003323895A (en) * 2002-02-26 2003-11-14 Sony Corp Nonaqueous electrolyte battery
JP2009277596A (en) * 2008-05-16 2009-11-26 Panasonic Corp Method of manufacturing electrode group for secondary battery and secondary battery
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012178252A (en) * 2011-02-25 2012-09-13 Hitachi Vehicle Energy Ltd Lithium ion secondary battery and its positive electrode
WO2012121407A1 (en) * 2011-03-10 2012-09-13 株式会社クレハ Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode
JP2013201077A (en) * 2012-03-26 2013-10-03 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery
JP2013234102A (en) * 2012-05-10 2013-11-21 Tanaka Chemical Corp Titanium oxide and method of manufacturing the same, lithium titanate and method of manufacturing the same, and lithium battery
WO2014034859A1 (en) * 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
WO2014069117A1 (en) * 2012-10-30 2014-05-08 日立マクセル株式会社 Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP2014132563A (en) * 2012-12-04 2014-07-17 Gs Yuasa Corp Power storage element and power storage device
JP2014123529A (en) * 2012-12-21 2014-07-03 Jfe Mineral Co Ltd Positive electrode material for lithium secondary battery
JP2014143108A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Positive electrode active material and lithium secondary battery including the active material
JP2014186955A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
WO2014192759A1 (en) * 2013-05-28 2014-12-04 旭硝子株式会社 Positive electrode active material

Also Published As

Publication number Publication date
JP6806302B2 (en) 2021-01-06
JP2017136579A (en) 2017-08-10
JP7211405B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
KR101851846B1 (en) Lithium ion secondary battery and system using same
JP6176500B2 (en) Secondary battery, method for producing the same, and method for producing negative electrode sheet used in the battery
WO2018043375A1 (en) Electricity storage element and method for producing same
JP7211405B2 (en) Storage element
JP2017191651A (en) Power storage element
CN106025169B (en) Electric storage element
WO2017098716A1 (en) Power storage element
CN105990549B (en) Electric storage element
JP6770701B2 (en) Power storage element
JP2017195059A (en) Method of recovering output of electricity storage element
CN109075317B (en) Electric storage element and method for manufacturing same
JP2016186886A (en) Electricity storage element
JP7096981B2 (en) Lithium ion secondary battery
CN109844999B (en) Energy storage element and method for manufacturing energy storage element
JP2018174098A (en) Power storage element
JP2017168302A (en) Power storage device
JP6796272B2 (en) Power storage element
JP6880488B2 (en) Lithium ion secondary battery
JP6770716B2 (en) Lithium ion secondary battery
JP2017183082A (en) Power storage device
CN109075310B (en) Electric storage element
JP6946617B2 (en) Power storage element
JP6853944B2 (en) Power storage element
JP2017201588A (en) Electricity storage element
JP7008275B2 (en) Power storage element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221226

R150 Certificate of patent or registration of utility model

Ref document number: 7211405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150