JP6770716B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP6770716B2
JP6770716B2 JP2017013415A JP2017013415A JP6770716B2 JP 6770716 B2 JP6770716 B2 JP 6770716B2 JP 2017013415 A JP2017013415 A JP 2017013415A JP 2017013415 A JP2017013415 A JP 2017013415A JP 6770716 B2 JP6770716 B2 JP 6770716B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
material layer
graphite
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017013415A
Other languages
Japanese (ja)
Other versions
JP2018120829A (en
Inventor
純 大山
純 大山
亮介 下川
亮介 下川
和輝 川口
和輝 川口
智典 加古
智典 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2017013415A priority Critical patent/JP6770716B2/en
Publication of JP2018120829A publication Critical patent/JP2018120829A/en
Application granted granted Critical
Publication of JP6770716B2 publication Critical patent/JP6770716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池などの蓄電素子に関する。 The present invention relates to a power storage element such as a lithium ion secondary battery.

従来、正極活物質と導電助剤とを含む正極活物質層を有する正極を備えたリチウムイオン二次電池が知られている(例えば、特許文献1)。 Conventionally, a lithium ion secondary battery having a positive electrode having a positive electrode active material layer containing a positive electrode active material and a conductive auxiliary agent is known (for example, Patent Document 1).

特許文献1に記載の電池では、正極活物質は、内部に複数の空隙を有する二次粒子を含み、導電助剤は、例えばグラファイトなどの炭素材料である。 In the battery described in Patent Document 1, the positive electrode active material contains secondary particles having a plurality of voids inside, and the conductive auxiliary agent is a carbon material such as graphite.

特許文献1に記載の電池では、比較的高温で充放電が繰り返されたあとに出力が低下する場合がある。 In the battery described in Patent Document 1, the output may decrease after repeated charging and discharging at a relatively high temperature.

国際公開第2014/024571号International Publication No. 2014/024571

本実施形態は、比較的高温で充放電が繰り返されたあとに出力が低下することを抑制できる蓄電素子を提供することを課題とする。 An object of the present embodiment is to provide a power storage element capable of suppressing a decrease in output after repeated charging and discharging at a relatively high temperature.

本実施形態の蓄電素子は、活物質と黒鉛とを含有する活物質層を有する電極を備え、活物質は、一次粒子が凝集した二次粒子を含み、二次粒子の内部には、一次粒子よりも大きい空孔が形成され、活物質層の比表面積は、2.5m/g以上であり、黒鉛のアスペクト比は、3以上15以下である。上記の構成により、比較的高温で充放電が繰り返されたあとに出力が低下することを抑制できる。 The power storage element of the present embodiment includes an electrode having an active material layer containing an active material and graphite, and the active material contains secondary particles in which primary particles are aggregated, and the primary particles are inside the secondary particles. Larger pores are formed, the specific surface area of the active material layer is 2.5 m 2 / g or more, and the aspect ratio of graphite is 3 or more and 15 or less. With the above configuration, it is possible to suppress a decrease in output after repeated charging and discharging at a relatively high temperature.

本実施形態によれば、比較的高温で充放電が繰り返されたあとに出力が低下することが抑制された蓄電素子を提供できる。 According to the present embodiment, it is possible to provide a power storage element in which a decrease in output is suppressed after repeated charging and discharging at a relatively high temperature.

図1は、本実施形態に係る蓄電素子の斜視図である。FIG. 1 is a perspective view of a power storage element according to the present embodiment. 図2は、図1のII−II線位置の断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 図3は、図1のIII−III線位置の断面図である。FIG. 3 is a cross-sectional view taken along the line III-III of FIG. 図4は、同実施形態に係る蓄電素子の電極体の構成を説明するための図である。FIG. 4 is a diagram for explaining the configuration of the electrode body of the power storage element according to the embodiment. 図5は、重ね合わされた正極、負極、及びセパレータの断面図(図4のV−V断面)である。FIG. 5 is a cross-sectional view (VV cross section of FIG. 4) of the superposed positive electrode, negative electrode, and separator. 図6は、正極の金属箔及び正極活物質層を模式的に表した断面図である。FIG. 6 is a cross-sectional view schematically showing the metal foil of the positive electrode and the positive electrode active material layer. 図7は、同実施形態に係る蓄電素子を含む蓄電装置の斜視図である。FIG. 7 is a perspective view of a power storage device including a power storage element according to the same embodiment. 図8は、比較的高温で充放電が繰り返されたあとの出力保持率と黒鉛のアスペクト比との関係を表すグラフである。FIG. 8 is a graph showing the relationship between the output retention rate and the aspect ratio of graphite after repeated charging and discharging at a relatively high temperature.

以下、本発明に係る蓄電素子の一実施形態について、図1〜図6を参照しつつ説明する。蓄電素子には、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。 Hereinafter, an embodiment of the power storage element according to the present invention will be described with reference to FIGS. 1 to 6. The power storage element includes a secondary battery, a capacitor, and the like. In the present embodiment, a rechargeable secondary battery will be described as an example of the power storage element. The name of each component (each component) of the present embodiment is that of the present embodiment, and may be different from the name of each component (each component) in the background technology.

本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置100に用いられる。前記蓄電装置100では、該蓄電装置100に用いられる蓄電素子1が電気エネルギーを供給する。 The power storage element 1 of the present embodiment is a non-aqueous electrolyte secondary battery. More specifically, the power storage element 1 is a lithium ion secondary battery that utilizes the electron transfer generated by the movement of lithium ions. This type of power storage element 1 supplies electrical energy. The power storage element 1 is used alone or in a plurality. Specifically, the power storage element 1 is used alone when the required output and the required voltage are small. On the other hand, when at least one of the required output and the required voltage is large, the power storage element 1 is used in the power storage device 100 in combination with the other power storage element 1. In the power storage device 100, the power storage element 1 used in the power storage device 100 supplies electrical energy.

蓄電素子1は、図1〜図6に示すように、正極11と負極12とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電体5等を有する。 As shown in FIGS. 1 to 6, the power storage element 1 includes an electrode body 2 including a positive electrode 11 and a negative electrode 12, a case 3 accommodating the electrode body 2, and an external terminal 7 arranged outside the case 3. It is provided with an external terminal 7 that is electrically connected to the electrode body 2. Further, the power storage element 1 has a current collector 5 or the like that conducts the electrode body 2 and the external terminal 7 in addition to the electrode body 2, the case 3, and the external terminal 7.

電極体2は、正極11と負極12とがセパレータ4によって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。 The electrode body 2 is formed by winding a laminated body 22 in which a positive electrode 11 and a negative electrode 12 are laminated in a state of being insulated from each other by a separator 4.

正極11は、金属箔111(集電箔)と、金属箔111の表面に重ねられ且つ活物質を含む活物質層112と、を有する。本実施形態では、活物質層112は、金属箔111の両面にそれぞれ重なる。なお、正極11の厚さは、通常、40μm以上150μm以下である。 The positive electrode 11 has a metal foil 111 (collecting foil) and an active material layer 112 that is superimposed on the surface of the metal foil 111 and contains an active material. In the present embodiment, the active material layer 112 overlaps both surfaces of the metal foil 111. The thickness of the positive electrode 11 is usually 40 μm or more and 150 μm or less.

金属箔111は帯状である。本実施形態の正極11の金属箔111は、例えば、アルミニウム箔である。正極11は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層112が形成されていない非被覆部115を有する。 The metal foil 111 is strip-shaped. The metal foil 111 of the positive electrode 11 of the present embodiment is, for example, an aluminum foil. The positive electrode 11 has an uncoated portion 115 in which the positive electrode active material layer 112 is not formed at one edge portion in the width direction, which is the lateral direction of the band shape.

正極活物質層112は、粒子状の活物質(活物質粒子)と、粒子状の導電助剤と、バインダとを含有する。正極活物質層112(1層分)の厚さは、通常、12μm以上70μm以下である。正極活物質層112(1層分)の目付量は、通常、4mg/cm 以上17mg/cm 以下である。正極活物質層112の密度は、通常、1.5g/cm 以上3.0g/cm以下である。目付量及び密度は、金属箔111の一方の面を覆うように配置された1層分におけるものである。 The positive electrode active material layer 112 contains a particulate active material (active material particles), a particulate conductive auxiliary agent, and a binder. The thickness of the positive electrode active material layer 112 (for one layer) is usually 12 μm or more and 70 μm or less. The basis weight of the positive electrode active material layer 112 (for one layer) is usually 4 mg / cm 2 or more and 17 mg / cm 2 or less. The density of the positive electrode active material layer 112 is usually 1.5 g / cm 3 or more and 3.0 g / cm 3 or less. The basis weight and density are for one layer arranged so as to cover one surface of the metal foil 111.

正極活物質層112の比表面積は、2.5m/g以上である。正極活物質層112の比表面積は、通常、5.0m/g以下である。正極活物質層112の比表面積は、4.0m/g以下であるとよい。 The specific surface area of the positive electrode active material layer 112 is 2.5 m 2 / g or more. The specific surface area of the positive electrode active material layer 112 is usually 5.0 m 2 / g or less. The specific surface area of the positive electrode active material layer 112 is preferably 4.0 m 2 / g or less.

正極活物質層112の比表面積は、BET法によって測定する。具体的に、斯かる比表面積は、実施例に記載された方法によって測定される。 The specific surface area of the positive electrode active material layer 112 is measured by the BET method. Specifically, such specific surface area is measured by the method described in the Examples.

正極活物質層112の比表面積は、例えば、正極活物質の比表面積を変えること、正極活物質の平均粒子径を変えること、又は、正極活物質の二次粒子の内部に存在する中空部(直径の大きさが活物質粒子の一次粒子径よりも大きいもの)の数を変化させることによって調整できる。具体的に、正極活物質の比表面積を大きくすること、正極活物質の平均粒子径を小さくすること、又は、正極活物質の二次粒子の内部に存在する中空部の数を多くすることによって、比表面積を大きくすることができる。一方、正極活物質の比表面積を小さくすること、正極活物質の平均粒径D50を大きくすること、又は、正極活物質の二次粒子の内部に存在する中空部の数を少なくすることによって、比表面積を小さくすることができる。 The specific surface area of the positive electrode active material layer 112 may be, for example, changing the specific surface area of the positive electrode active material, changing the average particle size of the positive electrode active material, or a hollow portion existing inside the secondary particles of the positive electrode active material. The size of the diameter can be adjusted by changing the number of the primary particle size of the active material particle). Specifically, by increasing the specific surface area of the positive electrode active material, reducing the average particle size of the positive electrode active material, or increasing the number of hollow portions existing inside the secondary particles of the positive electrode active material. , The specific surface area can be increased. On the other hand, by reducing the specific surface area of the positive electrode active material, increasing the average particle size D50 of the positive electrode active material, or reducing the number of hollow portions existing inside the secondary particles of the positive electrode active material. The specific surface area can be reduced.

正極活物質層112は、複数の一次粒子が凝集した二次粒子Aを活物質粒子として含む。詳しくは、正極活物質層112は、複数の一次粒子同士が凝結した二次粒子Aを活物質として含む。二次粒子Aでは、一次粒子同士が互いに固着している。二次粒子Aの内部には、空孔が形成されている。二次粒子の内部の空孔の大きさは、二次粒子を構成する一次粒子のうち最も大きい一次粒子の大きさよりも大きい。斯かる空孔の大きさは、正極活物質層112の厚さ方向の断面を電子顕微鏡で観察した観察像において、空孔を形成する内表面に内接する最も大きい円(真円)の直径によって決める。一次粒子の大きさは、上記と同様な電子顕微鏡の観察像において、二次粒子を構成する一次粒子の各直径を測定することによって決める。一次粒子の断面が楕円状であれば、短径でなく長径の方を一次粒子の大きさとする。 The positive electrode active material layer 112 contains secondary particles A in which a plurality of primary particles are aggregated as active material particles. Specifically, the positive electrode active material layer 112 contains secondary particles A in which a plurality of primary particles are condensed together as an active material. In the secondary particles A, the primary particles are fixed to each other. Vacancies are formed inside the secondary particles A. The size of the pores inside the secondary particle is larger than the size of the largest primary particle among the primary particles constituting the secondary particle. The size of such pores is determined by the diameter of the largest circle (perfect circle) inscribed in the inner surface forming the pores in the observation image obtained by observing the cross section of the positive electrode active material layer 112 in the thickness direction with an electron microscope. Decide. The size of the primary particles is determined by measuring the diameters of the primary particles constituting the secondary particles in the same observation image of the electron microscope as described above. If the cross section of the primary particle is elliptical, the major particle size is defined as the major particle size instead of the minor axis.

正極11の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極11の活物質の上記二次粒子の平均粒子径は、通常、2.0μm以上10μm以下である。二次粒子の平均粒子径は、5.0μm以下であるとよい。上記二次粒子の平均粒子径は、下記のようにして決める。正極活物質層を厚さ方向に切断した断面における電子顕微鏡の観察像において、少なくとも20個の二次粒子をランダムに選ぶ。各二次粒子に外接する最も小さい円の直径を測定する。そして、測定値を平均する。 The active material of the positive electrode 11 is a compound that can occlude and release lithium ions. The average particle size of the secondary particles of the active material of the positive electrode 11 is usually 2.0 μm or more and 10 μm or less. The average particle size of the secondary particles is preferably 5.0 μm or less. The average particle size of the secondary particles is determined as follows. At least 20 secondary particles are randomly selected in an electron microscope observation image in a cross section obtained by cutting the positive electrode active material layer in the thickness direction. Measure the diameter of the smallest circle circumscribing each secondary particle. Then, the measured values are averaged.

正極11の活物質は、例えば、リチウム金属酸化物である。具体的に、正極の活物質は、例えば、LiMeO(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)である。 The active material of the positive electrode 11 is, for example, a lithium metal oxide. Specifically, the active material of the positive electrode, for example, Li p MeO t (Me represents one or more transition metal) complex oxide represented by (Li p Co s O 2, Li p Ni q O 2, a Li p Mn r O 4, Li p Ni q Co s Mn r O 2 , etc.).

より具体的に、正極11の活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)であってもよい。なお、0<q<1であり、0<r<1であり、0<s<1であってもよい。 More specifically, the active material of the positive electrode 11, Li p Ni q Mn r Co s O lithium-metal composite oxide represented by the chemical composition of the t (where a 0 <p ≦ 1.3, q + r + s = 1 , 0 ≦ q ≦ 1, 0 ≦ r ≦ 1, 0 ≦ s ≦ 1, and 1.7 ≦ t ≦ 2.3). It should be noted that 0 <q <1, 0 <r <1, and 0 <s <1.

上記のごときLiNiMnCoの化学組成で表されるリチウム金属複合酸化物は、例えば、LiNi1/3Co1/3Mn1/3、LiNi1/6Co1/6Mn2/3、LiCoO などである。このとき、リチウム金属複合酸化物は、当該化学組成で示される以外の微量元素が含まれてもよい。 Additional such Li p Ni q Mn r Co s O lithium-metal composite oxide represented by the chemical composition of the t, for example, LiNi 1/3 Co 1/3 Mn 1/3 O 2, LiNi 1/6 Co 1 / 6 Mn 2/3 O 2, LiCoO 2 and the like. At this time, the lithium metal composite oxide may contain trace elements other than those shown in the chemical composition.

正極11の活物質は、例えば、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物であってもよい。ただし、0<p≦1.3であり、0.8≦u≦1.2であり、3.8≦v≦4.2であり、0.8≦w≦1.2である。ポリアニオン化合物は、例えば、LiFePO、LiMnPO、LiMnSiO、LiCoPOF、LiFePOF等である。 The active material of the positive electrode 11 is, for example, a polyanion represented by Li p Meu (XO v ) w (Me represents one or more transition metals, and X represents, for example, P, Si, B, V). It may be a compound. However, 0 <p ≦ 1.3, 0.8 ≦ u ≦ 1.2, 3.8 ≦ v ≦ 4.2, and 0.8 ≦ w ≦ 1.2. Examples of the polyanion compound include LiFePO 4 , LiMnPO 4 , LiMnSiO 4 , LiCoPO 4 F, LiFePO 4 F and the like.

正極活物質層112に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。 The binder used for the positive electrode active material layer 112 is, for example, polyvinylidene fluoride (PVdF), a copolymer of ethylene and vinyl alcohol, polymethylmethacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, polymethacrylic. Acid, styrene-butadiene rubber (SBR). The binder of this embodiment is polyvinylidene fluoride.

正極活物質層112は、少なくとも黒鉛Bを導電助剤として含有する。斯かる黒鉛Bは、通常、鱗片状黒鉛である。正極活物質層112は、例えば、ケッチェンブラック(登録商標)、アセチレンブラック、鱗片状黒鉛以外の黒鉛等を導電助剤としてさらに含有してもよい。正極活物質層112において、導電助剤のうち、黒鉛B(鱗片状黒鉛)の占める割合は、30質量%以上であってもよい。 The positive electrode active material layer 112 contains at least graphite B as a conductive auxiliary agent. Such graphite B is usually scaly graphite. The positive electrode active material layer 112 may further contain, for example, Ketjen Black (registered trademark), acetylene black, graphite other than scaly graphite, or the like as a conductive auxiliary agent. In the positive electrode active material layer 112, the proportion of graphite B (scaly graphite) in the conductive auxiliary agent may be 30% by mass or more.

鱗片状黒鉛は、通常、板状である。鱗片状黒鉛は、炭素原子同士が共有結合してなる層が積層された構造を有する。鱗片状黒鉛において、積層の方向が、通常、鱗片状黒鉛の厚さ方向に相当する。 Flaky graphite is usually plate-shaped. Flaky graphite has a structure in which layers formed by covalently bonding carbon atoms are laminated. In scaly graphite, the direction of lamination usually corresponds to the thickness direction of scaly graphite.

正極活物質層112の黒鉛B(鱗片状黒鉛)のアスペクト比は、下記の方法によって測定した測定値の平均値によって決める。斯かるアスペクト比は、3以上15以下である。斯かるアスペクト比は、5以上12以下であってもよい。斯かるアスペクト比は、詳しくは、以下のようにして測定する。正極11を厚さ方向に切断し、切断によって現れた断面を電子顕微鏡で観察する。断面において少なくとも100個の黒鉛B(鱗片状黒鉛)をランダムに選ぶ。ただし、黒鉛B(鱗片状黒鉛)を選ぶときに、金属箔111に接する黒鉛B、及び、少なくとも一部が正極活物質層112の表面に出ている黒鉛Bを除く。選んだ各黒鉛Bの断面に外接する最小面積の長方形の長辺長さと短辺長さとを測定し、短辺長さに対する長辺長さをアスペクト比として算出する。測定した値の平均値を求める。 The aspect ratio of graphite B (scaly graphite) of the positive electrode active material layer 112 is determined by the average value of the measured values measured by the following method. Such an aspect ratio is 3 or more and 15 or less. Such an aspect ratio may be 5 or more and 12 or less. The aspect ratio is measured in detail as follows. The positive electrode 11 is cut in the thickness direction, and the cross section formed by the cutting is observed with an electron microscope. At least 100 graphite B (scaly graphite) are randomly selected in cross section. However, when graphite B (scaly graphite) is selected, graphite B in contact with the metal foil 111 and graphite B in which at least a part thereof is exposed on the surface of the positive electrode active material layer 112 are excluded. The long side length and the short side length of the rectangle having the minimum area circumscribing the cross section of each selected graphite B are measured, and the long side length with respect to the short side length is calculated as the aspect ratio. Calculate the average value of the measured values.

製造された蓄電素子について、黒鉛B(鱗片状黒鉛)のアスペクト比を測定する場合、定電圧放電を行った後に測定する。例えば、1Cレートで3.0Vまで放電した後に3.0Vで5時間の定電圧放電を行い、蓄電素子を解体して正極11を取り出し、洗浄する。洗浄した正極11を上記のごとく厚さ方向に切断し、クロスセクションポリッシャー(CP)加工した断面を電子顕微鏡で観察し、上記のアスペクト比を測定する。 When measuring the aspect ratio of graphite B (scaly graphite) of the manufactured power storage element, it is measured after constant voltage discharge. For example, after discharging to 3.0 V at a 1 C rate, a constant voltage discharge is performed at 3.0 V for 5 hours, the power storage element is disassembled, the positive electrode 11 is taken out, and the positive electrode 11 is washed. The washed positive electrode 11 is cut in the thickness direction as described above, the cross section processed by the cross section polisher (CP) is observed with an electron microscope, and the above aspect ratio is measured.

正極活物質層112の厚さ方向の断面において、黒鉛Bの平均長さ(上記の長方形の長辺長さの平均)は、通常、10μm以上20μm以下である。斯かる平均長さは、上記のアスペクト比の測定方法に従って決定する。黒鉛Bの平均厚さ(上記の長方形の短辺長さの平均)は、通常、0.1μm以上2.0μm以下である。斯かる平均厚さは、上記のアスペクト比の測定方法に従って決定する。 In the cross section of the positive electrode active material layer 112 in the thickness direction, the average length of graphite B (the average length of the long sides of the above rectangle) is usually 10 μm or more and 20 μm or less. Such an average length is determined according to the above-mentioned aspect ratio measuring method. The average thickness of graphite B (the average of the short side lengths of the above rectangles) is usually 0.1 μm or more and 2.0 μm or less. Such an average thickness is determined according to the above-mentioned aspect ratio measuring method.

正極活物質層112では、図6に示すように、活物質の二次粒子Aが、鱗片状黒鉛Bに接している。図示されていないが、正極活物質層112は、互いに独立して存在する一次粒子も含む。一次粒子は、二次粒子からも独立して存在する。斯かる一次粒子は、例えば、二次粒子が解砕されることによって生じる。二次粒子の解砕は、製造時のプレスや充放電時の活物質の膨張収縮によって、二次粒子に力が加わることによって起こる。 In the positive electrode active material layer 112, as shown in FIG. 6, the secondary particles A of the active material are in contact with the scaly graphite B. Although not shown, the positive electrode active material layer 112 also includes primary particles that exist independently of each other. The primary particles also exist independently of the secondary particles. Such primary particles are produced, for example, by crushing the secondary particles. Crushing of secondary particles occurs when a force is applied to the secondary particles due to expansion and contraction of the active material during pressing during manufacturing and charging / discharging.

正極活物質層112において、活物質の二次粒子Aの大きさの平均値は、黒鉛B(鱗片状黒鉛)の平均長さ(上記の長方形の長辺長さの平均)よりも小さくてもよい。活物質の二次粒子Aの大きさの平均値に対する、黒鉛B(鱗片状黒鉛)の平均長さの比は、2以上10以下であってもよい。二次粒子Aの大きさの平均値は、上述した方法によって測定する。黒鉛B(鱗片状黒鉛)の平均長さは、上述した黒鉛の長方形の長辺長さを測定する方法と同じ方法によって測定する。 In the positive electrode active material layer 112, even if the average value of the sizes of the secondary particles A of the active material is smaller than the average length of graphite B (scaly graphite) (the average length of the long sides of the above rectangle). Good. The ratio of the average length of graphite B (scaly graphite) to the average value of the size of the secondary particles A of the active material may be 2 or more and 10 or less. The average value of the sizes of the secondary particles A is measured by the method described above. The average length of graphite B (scaly graphite) is measured by the same method as the method for measuring the long side length of the rectangle of graphite described above.

正極活物質層112において、活物質に対する黒鉛の質量比は、1質量%以上10質量%以下であってもよい。具体的に、活物質の二次粒子に対する鱗片状黒鉛の質量比は、1質量%以上10質量%以下であってもよい。 In the positive electrode active material layer 112, the mass ratio of graphite to the active material may be 1% by mass or more and 10% by mass or less. Specifically, the mass ratio of scaly graphite to the secondary particles of the active material may be 1% by mass or more and 10% by mass or less.

正極活物質層112の空隙率p[%]は、通常、30%以上45%以下である。正極活物質層112の空隙率p[%]は、35%以上であるとよい。正極活物質層112の空隙率p[%]は、水銀圧入法によって測定した結果を基にして算出される。水銀圧入法は、水銀圧入ポロシメーターを用いて実施できる。具体的に、水銀圧入法は、日本工業規格(JIS R1655:2003)に準じて実施する。空隙率p(%)は、水銀圧入法によって測定された水銀圧入量A(cm)と、正極活物質層のみかけ体積V(cm)とから、p=(A/V)×100により算出される。ここで、みかけ体積V(cm)とは、活物質層を平面視したときの面積(cm)に活物質層の厚さ(cm)を乗じたものである。 The porosity p [%] of the positive electrode active material layer 112 is usually 30% or more and 45% or less. The porosity p [%] of the positive electrode active material layer 112 is preferably 35% or more. The porosity p [%] of the positive electrode active material layer 112 is calculated based on the result measured by the mercury intrusion method. The mercury injection method can be carried out using a mercury injection porosimeter. Specifically, the mercury press-fitting method is carried out in accordance with the Japanese Industrial Standards (JIS R1655: 2003). The void ratio p (%) is determined by p = (A / V) × 100 from the mercury injection amount A (cm 3 ) measured by the mercury injection method and the apparent volume V (cm 3 ) of the positive electrode active material layer. It is calculated. Here, the apparent volume V (cm 3 ) is the product of the area (cm 2 ) when the active material layer is viewed in a plan view and the thickness (cm) of the active material layer.

負極12は、金属箔121(集電箔)と、金属箔121の上に形成された負極活物質層122と、を有する。本実施形態では、負極活物質層122は、金属箔121の両面にそれぞれ重ねられる。金属箔121は帯状である。本実施形態の負極の金属箔121は、例えば、銅箔である。負極12は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層122が形成されていない非被覆部125を有する。負極12の厚さは、通常、40μm以上150μm以下である。 The negative electrode 12 has a metal foil 121 (collecting foil) and a negative electrode active material layer 122 formed on the metal foil 121. In the present embodiment, the negative electrode active material layer 122 is laminated on both sides of the metal foil 121, respectively. The metal foil 121 is strip-shaped. The negative electrode metal foil 121 of the present embodiment is, for example, a copper foil. The negative electrode 12 has an uncoated portion 125 in which the negative electrode active material layer 122 is not formed at one edge portion in the width direction, which is the lateral direction of the band shape. The thickness of the negative electrode 12 is usually 40 μm or more and 150 μm or less.

負極活物質層122は、粒子状の活物質(活物質粒子)と、バインダと、を含む。負極活物質層122は、セパレータ4を介して正極11と向き合うように配置される。負極活物質層122の幅は、正極活物質層112の幅よりも大きい。 The negative electrode active material layer 122 contains a particulate active material (active material particles) and a binder. The negative electrode active material layer 122 is arranged so as to face the positive electrode 11 via the separator 4. The width of the negative electrode active material layer 122 is larger than the width of the positive electrode active material layer 112.

負極12の活物質は、負極12において充電反応及び放電反応の電極反応に寄与し得るものである。例えば、負極12の活物質は、グラファイト、非晶質炭素(難黒鉛化炭素、易黒鉛化炭素)などの炭素材料、又は、ケイ素(Si)及び錫(Sn)などリチウムイオンと合金化反応を生じる材料である。本実施形態の負極の活物質は、非晶質炭素である。より具体的には、負極の活物質は、難黒鉛化炭素である。 The active material of the negative electrode 12 can contribute to the electrode reaction of the charge reaction and the discharge reaction in the negative electrode 12. For example, the active material of the negative electrode 12 undergoes an alloying reaction with a carbon material such as graphite or amorphous carbon (non-graphitized carbon, easily graphitized carbon) or lithium ions such as silicon (Si) and tin (Sn). It is the material that is produced. The active material of the negative electrode of this embodiment is amorphous carbon. More specifically, the active material of the negative electrode is non-graphitized carbon.

負極活物質層122(1層分)の厚さは、通常、10μm以上50μm以下である。負極活物質層122の目付量(1層分)は、通常、3mg/cm以上10mg/cm以下である。負極活物質層122の密度(1層分)は、通常、0.9g/cm以上1.6g/cm以下である。 The thickness of the negative electrode active material layer 122 (for one layer) is usually 10 μm or more and 50 μm or less. The basis weight (for one layer) of the negative electrode active material layer 122 is usually 3 mg / cm 2 or more and 10 mg / cm 2 or less. The density (for one layer) of the negative electrode active material layer 122 is usually 0.9 g / cm 3 or more and 1.6 g / cm 3 or less.

負極活物質層に用いられるバインダは、正極活物質層に用いられるバインダと同様のものであってもよい。本実施形態のバインダは、スチレンブタジエンゴム(SBR)である。 The binder used for the negative electrode active material layer may be the same as the binder used for the positive electrode active material layer. The binder of this embodiment is styrene butadiene rubber (SBR).

負極活物質層122では、バインダの割合は、活物質粒子とバインダとの合計質量に対して、2質量%以上10質量%以下であってもよい。 In the negative electrode active material layer 122, the ratio of the binder may be 2% by mass or more and 10% by mass or less with respect to the total mass of the active material particles and the binder.

負極活物質層122は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層122は、導電助剤を有していない。 The negative electrode active material layer 122 may further have a conductive auxiliary agent such as Ketjen Black (registered trademark), acetylene black, and graphite. The negative electrode active material layer 122 of the present embodiment does not have a conductive auxiliary agent.

本実施形態の電極体2では、以上のように構成される正極11と負極12とがセパレータ4によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極11、負極12、及びセパレータ4の積層体22が巻回される。セパレータ4は、絶縁性を有する部材である。セパレータ4は、正極11と負極12との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極11と負極12とが互いに絶縁される。また、セパレータ4は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ4を挟んで交互に積層される正極11と負極12との間を移動する。 In the electrode body 2 of the present embodiment, the positive electrode 11 and the negative electrode 12 configured as described above are wound in a state of being insulated by the separator 4. That is, in the electrode body 2 of the present embodiment, the laminated body 22 of the positive electrode 11, the negative electrode 12, and the separator 4 is wound. The separator 4 is a member having an insulating property. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12. As a result, in the electrode body 2 (specifically, the laminated body 22), the positive electrode 11 and the negative electrode 12 are insulated from each other. Further, the separator 4 holds the electrolytic solution in the case 3. As a result, when the power storage element 1 is charged and discharged, lithium ions move between the positive electrode 11 and the negative electrode 12 which are alternately laminated with the separator 4 in between.

セパレータ4は、帯状である。セパレータ4は、多孔質なセパレータ基材を有する。セパレータ4は、正極11及び負極12間の短絡を防ぐために正極11及び負極12の間に配置されている。本実施形態のセパレータ4は、セパレータ基材41のみを有する。 The separator 4 has a strip shape. The separator 4 has a porous separator base material. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12 in order to prevent a short circuit between the positive electrode 11 and the negative electrode 12. The separator 4 of the present embodiment has only the separator base material 41.

セパレータ基材41は、例えば、織物、不織布、又は多孔膜によって多孔質に構成される。セパレータ基材の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、又は、セルロースが挙げられる。 The separator base material 41 is made porous by, for example, a woven fabric, a non-woven fabric, or a porous membrane. Examples of the material of the separator base material include polymer compounds, glass, and ceramics. Examples of the polymer compound include polyesters such as polyacrylonitrile (PAN), polyamide (PA) and polyethylene terephthalate (PET), polyolefins (PP) such as polypropylene (PP) and polyethylene (PE), and cellulose. ..

セパレータ4の幅(帯形状の短手方向の寸法)は、負極活物質層122の幅より僅かに大きい。セパレータ4は、正極活物質層112及び負極活物質層122が重なるように幅方向に位置ずれした状態で重ね合わされた正極11と負極12との間に配置される。このとき、図4に示すように、正極11の非被覆部115と負極12の非被覆部125とは重なっていない。即ち、正極11の非被覆部115が、正極11と負極12との重なる領域から幅方向に突出し、且つ、負極12の非被覆部125が、正極11と負極12との重なる領域から幅方向(正極11の非被覆部115の突出方向と反対の方向)に突出する。積層された状態の正極11、負極12、及びセパレータ4、即ち、積層体22が巻回されることによって、電極体2が形成される。正極11の非被覆部115又は負極12の非被覆部125のみが積層された部位によって、電極体2における非被覆積層部26が構成される。 The width of the separator 4 (the dimension of the strip shape in the lateral direction) is slightly larger than the width of the negative electrode active material layer 122. The separator 4 is arranged between the positive electrode 11 and the negative electrode 12 which are overlapped with each other so that the positive electrode active material layer 112 and the negative electrode active material layer 122 are overlapped with each other in the width direction. At this time, as shown in FIG. 4, the uncoated portion 115 of the positive electrode 11 and the uncoated portion 125 of the negative electrode 12 do not overlap. That is, the uncoated portion 115 of the positive electrode 11 protrudes in the width direction from the region where the positive electrode 11 and the negative electrode 12 overlap, and the uncoated portion 125 of the negative electrode 12 protrudes in the width direction from the region where the positive electrode 11 and the negative electrode 12 overlap. It protrudes in the direction opposite to the protruding direction of the uncoated portion 115 of the positive electrode 11. The electrode body 2 is formed by winding the positive electrode 11, the negative electrode 12, and the separator 4, that is, the laminated body 22, in a laminated state. The uncoated laminated portion 26 in the electrode body 2 is formed by the portion where only the uncoated portion 115 of the positive electrode 11 or the uncoated portion 125 of the negative electrode 12 is laminated.

非被覆積層部26は、電極体2における集電体5と導通される部位である。非被覆積層部26は、巻回された正極11、負極12、及びセパレータ4の巻回中心方向視において、中空部27(図4参照)を挟んで二つの部位(二分された非被覆積層部)261に区分けされる。 The uncoated laminated portion 26 is a portion of the electrode body 2 that is electrically connected to the current collector 5. The uncoated laminated portion 26 has two portions (divided uncoated laminated portion) with the hollow portion 27 (see FIG. 4) interposed therebetween in the winding center direction of the wound positive electrode 11, negative electrode 12, and separator 4. ) It is divided into 261.

以上のように構成される非被覆積層部26は、電極体2の各極に設けられる。即ち、正極11の非被覆部115のみが積層された非被覆積層部26が電極体2における正極11の非被覆積層部を構成し、負極12の非被覆部125のみが積層された非被覆積層部26が電極体2における負極12の非被覆積層部を構成する。 The uncoated laminated portion 26 configured as described above is provided at each electrode of the electrode body 2. That is, the uncoated laminated portion 26 in which only the uncoated portion 115 of the positive electrode 11 is laminated constitutes the uncoated laminated portion of the positive electrode 11 in the electrode body 2, and only the uncoated portion 125 of the negative electrode 12 is laminated. The portion 26 constitutes an uncoated laminated portion of the negative electrode 12 in the electrode body 2.

ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電体5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。 The case 3 has a case main body 31 having an opening, and a lid plate 32 that closes (closes) the opening of the case main body 31. In the case 3, the electrolytic solution is housed in the internal space together with the electrode body 2 and the current collector 5. Case 3 is formed of a metal that is resistant to electrolytes. The case 3 is formed of, for example, an aluminum-based metal material such as aluminum or an aluminum alloy. The case 3 may be formed of a metal material such as stainless steel and nickel, or a composite material in which a resin such as nylon is adhered to aluminum.

電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の割合で混合した混合溶媒に、0.5〜1.5mol/LのLiPFを溶解させたものである。 The electrolytic solution is a non-aqueous electrolyte solution. The electrolytic solution is obtained by dissolving the electrolyte salt in an organic solvent. The organic solvent is, for example, cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. Electrolyte salts are LiClO 4 , LiBF 4 , LiPF 6 , and the like. The electrolytic solution of the present embodiment is obtained by dissolving 0.5 to 1.5 mol / L of LiPF 6 in a mixed solvent in which propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate are mixed at a predetermined ratio.

ケース3は、ケース本体31の開口周縁部と、長方形状の蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3は、ケース本体31と蓋板32とによって画定される内部空間を有する。本実施形態では、ケース本体31の開口周縁部と蓋板32の周縁部とは、溶接によって接合される。 The case 3 is formed by joining the opening peripheral edge of the case body 31 and the peripheral edge of the rectangular lid plate 32 in a superposed state. Further, the case 3 has an internal space defined by the case main body 31 and the lid plate 32. In the present embodiment, the peripheral edge of the opening of the case body 31 and the peripheral edge of the lid plate 32 are joined by welding.

以下では、図1に示すように、蓋板32の長辺方向をX軸方向とし、蓋板32の短辺方向をY軸方向とし、蓋板32の法線方向をZ軸方向とする。ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。 In the following, as shown in FIG. 1, the long side direction of the lid plate 32 is the X-axis direction, the short side direction of the lid plate 32 is the Y-axis direction, and the normal direction of the lid plate 32 is the Z-axis direction. The case body 31 has a square tube shape (that is, a bottomed square tube shape) in which one end in the opening direction (Z-axis direction) is closed. The lid plate 32 is a plate-shaped member that closes the opening of the case body 31.

蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。 The lid plate 32 has a gas discharge valve 321 capable of discharging the gas in the case 3 to the outside. The gas discharge valve 321 discharges gas from the inside of the case 3 to the outside when the internal pressure of the case 3 rises to a predetermined pressure. The gas discharge valve 321 is provided at the center of the lid plate 32 in the X-axis direction.

ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。 The case 3 is provided with a liquid injection hole for injecting an electrolytic solution. The liquid injection hole communicates the inside and the outside of the case 3. The liquid injection hole is provided in the lid plate 32. The injection hole is sealed (closed) by the injection plug 326. The liquid injection plug 326 is fixed to the case 3 (lid plate 32 in the example of this embodiment) by welding.

外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。例えば、外部端子7は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。 The external terminal 7 is a portion electrically connected to the external terminal 7 of another power storage element 1 or an external device or the like. The external terminal 7 is formed of a conductive member. For example, the external terminal 7 is formed of a highly weldable metal material such as an aluminum-based metal material such as aluminum or an aluminum alloy, or a copper-based metal material such as copper or a copper alloy.

外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。外部端子7は、蓋板32に沿って拡がる板状である。詳しくは、外部端子7は、Z軸方向視において矩形状の板状である。 The external terminal 7 has a surface 71 to which a bus bar or the like can be welded. The surface 71 is a flat surface. The external terminal 7 has a plate shape that extends along the lid plate 32. Specifically, the external terminal 7 has a rectangular plate shape in the Z-axis direction.

集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材50を介して電極体2と通電可能に接続される。即ち、蓄電素子1は、電極体2と集電体5とを通電可能に接続するクリップ部材50を備える。 The current collector 5 is arranged in the case 3 and is directly or indirectly connected to the electrode body 2 so as to be energized. The current collector 5 of the present embodiment is electrically connected to the electrode body 2 via the clip member 50. That is, the power storage element 1 includes a clip member 50 that connects the electrode body 2 and the current collector 5 so as to be energized.

集電体5は、導電性を有する部材によって形成される。図2に示すように、集電体5は、ケース3の内面に沿って配置される。集電体5は、蓄電素子1の正極11と負極12とにそれぞれ配置される。本実施形態の蓄電素子1では、集電体5は、ケース3内において、電極体2の正極11の非被覆積層部26と、負極12の非被覆積層部26とにそれぞれ配置される。 The current collector 5 is formed of a conductive member. As shown in FIG. 2, the current collector 5 is arranged along the inner surface of the case 3. The current collector 5 is arranged on the positive electrode 11 and the negative electrode 12 of the power storage element 1, respectively. In the power storage element 1 of the present embodiment, the current collector 5 is arranged in the uncoated laminated portion 26 of the positive electrode 11 of the electrode body 2 and the uncoated laminated portion 26 of the negative electrode 12 in the case 3, respectively.

正極11の集電体5と負極12の集電体5とは、異なる材料によって形成される。具体的に、正極11の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成され、負極12の集電体5は、例えば、銅又は銅合金によって形成される。 The current collector 5 of the positive electrode 11 and the current collector 5 of the negative electrode 12 are formed of different materials. Specifically, the current collector 5 of the positive electrode 11 is formed of, for example, aluminum or an aluminum alloy, and the current collector 5 of the negative electrode 12 is formed of, for example, copper or a copper alloy.

本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電体5)がケース3内に収容される。 In the power storage element 1 of the present embodiment, the electrode body 2 (specifically, the electrode body 2 and the current collector 5) in a state of being housed in a bag-shaped insulating cover 6 that insulates the electrode body 2 and the case 3 is the case 3. It is housed inside.

次に、上記実施形態の蓄電素子1の製造方法について説明する。 Next, a method of manufacturing the power storage element 1 of the above embodiment will be described.

蓄電素子1の製造方法では、まず、金属箔(集電箔)に活物質を含む合剤を塗布し、活物質層を形成し、電極(正極11及び負極12)を作製する。次に、正極11、セパレータ4、及び負極12を重ね合わせて電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。 In the method for manufacturing the power storage element 1, first, a mixture containing an active material is applied to a metal foil (collecting foil) to form an active material layer, and electrodes (positive electrode 11 and negative electrode 12) are produced. Next, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed to form the electrode body 2. Subsequently, the electrode body 2 is put into the case 3, and the electrolytic solution is put into the case 3 to assemble the power storage element 1.

電極(正極11)の作製では、金属箔の両面に、活物質とバインダと溶媒とを含む合剤をそれぞれ塗布することによって正極活物質層112を形成する。合剤の塗布量を変化させることによって、正極活物質層112の厚さや目付量を調整することができる。正極活物質層112を形成するための塗布方法としては、一般的な方法が採用される。そして、正極活物質層112を所定の圧力でロールプレスする。プレス圧を変化させることにより、正極活物質層112の密度や比表面積を調整できる。なお、同様にして、負極12を作製する。 In the production of the electrode (positive electrode 11), the positive electrode active material layer 112 is formed by applying a mixture containing an active material, a binder, and a solvent to both surfaces of the metal foil. By changing the coating amount of the mixture, the thickness and basis weight of the positive electrode active material layer 112 can be adjusted. As a coating method for forming the positive electrode active material layer 112, a general method is adopted. Then, the positive electrode active material layer 112 is roll-pressed at a predetermined pressure. By changing the press pressure, the density and specific surface area of the positive electrode active material layer 112 can be adjusted. The negative electrode 12 is manufactured in the same manner.

電極体2の形成では、正極11と負極12との間にセパレータ4を挟み込んだ積層体22を巻回することにより、電極体2を形成する。詳しくは、正極活物質層112と負極活物質層122とがセパレータ4を介して互いに向き合うように、正極11とセパレータ4と負極12とを重ね合わせ、積層体22を作る。積層体22を巻回して、電極体2を形成する。なお、積層体22を巻回するときに、正極11又は負極12の外側に、さらなるもう1つのセパレータ4を配置する。 In the formation of the electrode body 2, the electrode body 2 is formed by winding the laminated body 22 having the separator 4 sandwiched between the positive electrode 11 and the negative electrode 12. Specifically, the positive electrode 11, the separator 4, and the negative electrode 12 are superposed so that the positive electrode active material layer 112 and the negative electrode active material layer 122 face each other via the separator 4 to form the laminated body 22. The laminated body 22 is wound to form the electrode body 2. When the laminated body 22 is wound, another separator 4 is arranged outside the positive electrode 11 or the negative electrode 12.

蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極11と一方の外部端子7とを導通させ、且つ、負極12と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。 In assembling the power storage element 1, the electrode body 2 is put into the case body 31 of the case 3, the opening of the case body 31 is closed with the lid plate 32, and the electrolytic solution is injected into the case 3. When closing the opening of the case body 31 with the lid plate 32, the electrode body 2 is inserted inside the case body 31, the positive electrode 11 and one external terminal 7 are made conductive, and the negative electrode 12 and the other external terminal 7 are connected. The opening of the case body 31 is closed with the lid plate 32 in a conductive state. When the electrolytic solution is injected into the case 3, the electrolytic solution is injected into the case 3 through the injection hole of the lid plate 32 of the case 3.

上記のように構成された本実施形態の蓄電素子1は、正極活物質と黒鉛とを含有する正極活物質層112を有する正極11を備える。正極活物質は、一次粒子が凝集した二次粒子を含み、二次粒子の内部には、一次粒子よりも大きい空孔が形成されている。正極活物質層112の比表面積は、2.5m/g以上であり、黒鉛のアスペクト比は、3以上15以下である。斯かる構成により、比較的高温で充放電が繰り返されたあとに出力が低下することを抑制できる。 The power storage element 1 of the present embodiment configured as described above includes a positive electrode 11 having a positive electrode active material layer 112 containing a positive electrode active material and graphite. The positive electrode active material contains secondary particles in which primary particles are aggregated, and pores larger than those of the primary particles are formed inside the secondary particles. The specific surface area of the positive electrode active material layer 112 is 2.5 m 2 / g or more, and the aspect ratio of graphite is 3 or more and 15 or less. With such a configuration, it is possible to suppress a decrease in output after repeated charging and discharging at a relatively high temperature.

本実施形態の蓄電素子1において、活物質の二次粒子に空孔が形成されている分、活物質の表面積が増えるため、出力を向上させることができる。
また、本実施形態の蓄電素子1において、比較的高温で充放電が繰り返されたあとに出力が低下することが抑制される理由として、下記のことが考えられる。充放電等によって、正極活物質層112が膨張収縮したり蓄電素子の内圧が増加したりすることにより、活物質の二次粒子が外方から受ける力(圧縮力等)が増大する。二次粒子がこのような力を受けても、黒鉛のアスペクト比が3以上であることによって、二次粒子が黒鉛に当接しつつ、黒鉛の長手方向に沿って二次粒子が移動できる。従って、上記力を緩衝する緩衝材として黒鉛がはたらき、二次粒子の割れが抑制されると考えられる。その結果、充放電を繰り返したあとの出力が維持されると推測される。一方、黒鉛のアスペクト比が未満であると、上記のような緩衝作用が起こりにくくなり、充放電を繰り返したあとの出力が維持されにくくなると推測される。また、黒鉛のアスペクト比が15以下であることによって、黒鉛の長手方向が同じ方向に揃うことが抑えられ、黒鉛の長手方向がランダムになりやすいと考えられる。黒鉛の長手方向がよりランダムである分、上記力(圧縮力等)の向きにかかわらず、上述した緩衝作用が確実に発揮され、上述したように二次粒子の割れが抑制されると考えられる。
In the power storage element 1 of the present embodiment, the surface area of the active material is increased by the amount of pores formed in the secondary particles of the active material, so that the output can be improved.
Further, in the power storage element 1 of the present embodiment, the following can be considered as the reason why the decrease in output is suppressed after repeated charging and discharging at a relatively high temperature. The positive electrode active material layer 112 expands and contracts due to charging and discharging, and the internal pressure of the power storage element increases, so that the force (compressive force, etc.) received by the secondary particles of the active material from the outside increases. Even if the secondary particles receive such a force, the secondary particles can move along the longitudinal direction of the graphite while the secondary particles are in contact with the graphite because the aspect ratio of the graphite is 3 or more. Therefore, it is considered that graphite acts as a buffer material for cushioning the above-mentioned force, and cracking of secondary particles is suppressed. As a result, it is presumed that the output is maintained after repeated charging and discharging. On the other hand, if the aspect ratio of graphite is less than 3, it is presumed that the above-mentioned buffering action is less likely to occur and the output after repeated charging and discharging is less likely to be maintained. Further, it is considered that when the aspect ratio of graphite is 15 or less, the longitudinal directions of graphite are prevented from being aligned in the same direction, and the longitudinal directions of graphite tend to be random. Since the longitudinal direction of graphite is more random, it is considered that the above-mentioned buffering action is surely exhibited regardless of the direction of the above-mentioned force (compressive force, etc.) and the cracking of secondary particles is suppressed as described above. ..

なお、正極活物質層112の比表面積が2.5m/g未満である状態は、二次粒子の表面の凹凸が比較的少ない状態を反映していると考えられる。二次粒子の表面の凹凸が比較的少なければ、例えば二次粒子同士が当接するように上記の力(圧縮力等)が加わったとしても、二次粒子同士が表面で当接しつつ互いに反対方向に相対移動して、上記の力(圧縮力等)が二次粒子に直接加わることが抑制され得る。これにより、黒鉛の有無にかかわらず、また、黒鉛のアスペクト比にかかわらず、二次粒子の割れが抑制されると考えられる。
これに対し、正極活物質層112の比表面積が2.5m/g以上である状態は、二次粒子の表面の凹凸が比較的多い状態を反映していると考えられる。二次粒子の表面の凹凸が比較的多いときには、上記力(圧縮力等)を緩衝する緩衝材として特定アスペクト比の黒鉛が有効と考えられる。実験データからも把握されるように、黒鉛のアスペクト比が上記の範囲内であることの技術的意義は、正極活物質層112の比表面積が2.5m/g以上であるときに、重要であると考えられる。
The state where the specific surface area of the positive electrode active material layer 112 is less than 2.5 m 2 / g is considered to reflect the state where the surface irregularities of the secondary particles are relatively small. If the surface irregularities of the secondary particles are relatively small, for example, even if the above force (compressive force, etc.) is applied so that the secondary particles abut each other, the secondary particles abut on the surface and in opposite directions. It is possible to suppress the direct application of the above force (compressive force, etc.) to the secondary particles by moving relative to the secondary particles. It is considered that this suppresses the cracking of the secondary particles regardless of the presence or absence of graphite and the aspect ratio of graphite.
On the other hand, the state where the specific surface area of the positive electrode active material layer 112 is 2.5 m 2 / g or more is considered to reflect the state where the surface of the secondary particles has relatively many irregularities. When the surface of the secondary particles has relatively many irregularities, it is considered that graphite having a specific aspect ratio is effective as a buffer material for cushioning the above-mentioned force (compressive force, etc.). As can be seen from the experimental data, the technical significance that the aspect ratio of graphite is within the above range is important when the specific surface area of the positive electrode active material layer 112 is 2.5 m 2 / g or more. Is considered to be.

尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。 The power storage element of the present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment. In addition, some of the configurations of certain embodiments can be deleted.

上記の実施形態では、活物質を含む活物質層が金属箔に直接接した正極について詳しく説明したが、本発明では、正極が、バインダと導電助剤とを含む導電層であって活物質層と金属箔との間に配置された導電層を有してもよい。 In the above embodiment, the positive electrode in which the active material layer containing the active material is in direct contact with the metal foil has been described in detail, but in the present invention, the positive electrode is a conductive layer containing a binder and a conductive auxiliary agent and is an active material layer. It may have a conductive layer arranged between the metal foil and the metal foil.

上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極11又は負極12は、活物質層を金属箔の片面側にのみ備えてもよい。 In the above embodiment, the electrodes in which the active material layer is arranged on both side surfaces of the metal leaf of each electrode have been described, but in the power storage element of the present invention, the positive electrode 11 or the negative electrode 12 has the active material layer on one side of the metal leaf. It may be provided only on the side.

上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。 In the above embodiment, the power storage element 1 including the electrode body 2 in which the laminated body 22 is wound has been described in detail, but the power storage element of the present invention may include the laminated body 22 which is not wound. Specifically, the power storage element may include an electrode body in which a positive electrode, a separator, a negative electrode, and a separator each formed in a rectangular shape are stacked a plurality of times in this order.

上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。 In the above embodiment, the case where the power storage element 1 is used as a non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) capable of charging and discharging has been described, but the type and size (capacity) of the power storage element 1 are arbitrary. is there. Further, in the above embodiment, the lithium ion secondary battery has been described as an example of the power storage element 1, but the present invention is not limited to this. For example, the present invention can be applied to various secondary batteries and other storage elements of capacitors such as electric double layer capacitors.

蓄電素子1(例えば電池)は、図7に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。 The power storage element 1 (for example, a battery) may be used in a power storage device 100 (a battery module when the power storage element is a battery) as shown in FIG. 7. The power storage device 100 includes at least two power storage elements 1 and a bus bar member 91 that electrically connects two (different) power storage elements 1 to each other. In this case, the technique of the present invention may be applied to at least one power storage element.

以下に示すようにして、非水電解質二次電池(リチウムイオン二次電池)を製造した。 A non-aqueous electrolyte secondary battery (lithium ion secondary battery) was manufactured as shown below.

(試験例1)
(1)正極の作製
有機溶媒としてのN−メチル−2−ピロリドン(NMP)と、導電助剤(アセチレンブラック及び鱗片状黒鉛)と、バインダ(PVdF)と、活物質粒子(LiNi1/3Co1/3Mn1/3)とを混合し、混練することで、正極用の合剤を調製した。活物質粒子は、一次粒子が凝集し且つ内部に中空が形成されていない二次粒子であった。導電助剤、バインダ、活物質粒子の配合量は、それぞれ8質量%(アセチレンブラック)、3質量%、89質量%とした。調製した正極用の合剤を、アルミニウム箔(厚さ15μm)の両面に、乾燥後の塗布量(目付量)が8.6mg/cmとなるようにそれぞれ塗布した。乾燥後、所定の圧力でロールプレスを行った。その後、真空乾燥して、水分等を除去した。活物質層(1層分)の厚さは、32μmであった。活物質層の密度は、2.6g/cmであった。活物質粒子の二次粒子の平均粒子径は、4.0μmであった。
・正極活物質層の比表面積
下記のようにして、正極活物質層のBET比表面積を測定した。詳しくは、比表面積測定装置 「MONOSORB」(ユアサアイオニクス社製)を使用して、一点法により求められた測定資料に対する窒素吸着量[m]からBET比表面積を算出した。具体的には、測定試料の投入量を、0.5g±0.01gとし、予備加熱の条件を120℃、15分とした。また、液体窒素を用いて冷却を行い、冷却過程の窒素ガス吸着量を測定した。測定された吸着量(m)を活物質質量(g)で除することにより、BET比表面積を算出した。
(Test Example 1)
(1) Preparation of positive electrode N-methyl-2-pyrrolidone (NMP) as an organic solvent, conductive auxiliary agent (acetylene black and scaly graphite), binder (PVdF), and active material particles (LiNi 1/3 Co) 1/3 Mn 1/3 O 2 ) was mixed and kneaded to prepare a mixture for the positive electrode. The active material particles were secondary particles in which the primary particles were aggregated and no hollow was formed inside. The blending amounts of the conductive auxiliary agent, the binder, and the active material particles were 8% by mass (acetylene black), 3% by mass, and 89% by mass, respectively. The prepared mixture for the positive electrode was applied to both sides of the aluminum foil (thickness 15 μm) so that the coating amount (basis weight) after drying was 8.6 mg / cm 2 . After drying, a roll press was performed at a predetermined pressure. Then, it was vacuum dried to remove moisture and the like. The thickness of the active material layer (for one layer) was 32 μm. The density of the active material layer was 2.6 g / cm 3 . The average particle size of the secondary particles of the active material particles was 4.0 μm.
-Specific surface area of the positive electrode active material layer The BET specific surface area of the positive electrode active material layer was measured as follows. Specifically, the BET specific surface area was calculated from the amount of nitrogen adsorbed [m 2 ] on the measurement data obtained by the one-point method using the specific surface area measuring device "MONOSORB" (manufactured by Yuasa Ionics). Specifically, the input amount of the measurement sample was 0.5 g ± 0.01 g, and the preheating conditions were 120 ° C. for 15 minutes. In addition, cooling was performed using liquid nitrogen, and the amount of nitrogen gas adsorbed during the cooling process was measured. The BET specific surface area was calculated by dividing the measured adsorption amount (m 2 ) by the active material mass (g).

(2)負極の作製
活物質粒子としては、非晶質炭素(難黒鉛化炭素)の粒子を用いた。バインダとしては、スチレンブタジエンゴムを用いた。負極用の合剤は、溶剤としての水と、バインダと、カルボキシメチルセルロース(CMC)と、活物質粒子とを混合、混練することで調製した。CMCは、1.0質量%となるように配合し、バインダは、2.0質量%となるように配合し、活物質粒子は、97.0質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が3.8mg/cmとなるように、銅箔(厚さ10μm)の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分等を除去した。活物質層(1層分)の厚さは、39μmであった。活物質層の密度は、0.974g/cmであった。
(2) Preparation of negative electrode Amorphous carbon (non-graphitized carbon) particles were used as the active material particles. Styrene-butadiene rubber was used as the binder. The mixture for the negative electrode was prepared by mixing and kneading water as a solvent, a binder, carboxymethyl cellulose (CMC), and active material particles. The CMC was blended so as to be 1.0% by mass, the binder was blended so as to be 2.0% by mass, and the active material particles were blended so as to be 97.0% by mass. The prepared mixture for the negative electrode was applied to both sides of the copper foil (thickness 10 μm) so that the coating amount (base weight) after drying was 3.8 mg / cm 2 . After drying, a roll press was performed and vacuum dried to remove water and the like. The thickness of the active material layer (for one layer) was 39 μm. The density of the active material layer was 0.974 g / cm 3 .

(3)セパレータ
セパレータ基材として厚さが22μmのポリエチレン製微多孔膜を用いた。ポリエチレン製微多孔膜の透気抵抗度は、100秒/100ccであった。
(3) Separator A polyethylene microporous membrane having a thickness of 22 μm was used as the separator base material. The air permeability resistance of the polyethylene microporous membrane was 100 seconds / 100 cc.

(4)電解液の調製
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPFを溶解させ、電解液を調製した。
(4) Preparation of electrolytic solution As the electrolytic solution, the one prepared by the following method was used. As the non-aqueous solvent, a solvent obtained by mixing 1 part by volume of propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was used, and LiPF 6 was dissolved in this non-aqueous solvent so that the salt concentration was 1 mol / L. An electrolyte was prepared.

(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
(5) Arrangement of Electrode Body in Case Using the above positive electrode, the above negative electrode, the above electrolytic solution, the separator, and the case, a battery was manufactured by a general method.
First, a sheet-like material in which a separator was arranged between the positive electrode and the negative electrode and laminated was wound. Next, the wound electrode body was placed in the case body of the aluminum square battery case as a case. Subsequently, the positive electrode and the negative electrode were electrically connected to each of the two external terminals. Furthermore, a lid plate was attached to the case body. The above electrolytic solution was injected into the case through a liquid injection port formed on the lid plate of the case. Finally, the case was sealed by sealing the injection port of the case.

(試験例2〜18)
活物質粒子の形状を表1に示すものとなるように変化させること、及び正極活物質層を形成する際のロールプレス圧を変化させることによって、正極活物質層のBET比表面積が表1に示す値となるように電池を製造した点、所定のアスペクト比の黒鉛を用いて黒鉛のアスペクト比が表1に示す値となるように電池を製造した点以外は、試験例1と同様にして電池を製造した。試験例2〜18において、正極活物質層の活物質及びバインダの配合量は、それぞれ試験例1と同様である。なお、活物質粒子の形状が「中空」とは、正極活物質層の断面において、二次粒子の内部に中空部(直径の大きさが活物質粒子の一次粒子径よりも大きいもの)が二以上形成されているものを意味する。活物質粒子の形状が「中実」とは、二次粒子の内部に中空部(直径の大きさが活物質粒子の一次粒子径よりも大きいもの)が形成されていないものを意味する。
・鱗片状黒鉛のアスペクト比
導電助剤として黒鉛を配合した試験例において、上記のようにして黒鉛のアスペクト比
を測定した結果、黒鉛のアスペクト比は、表1に示す通りとなった。
(Test Examples 2 to 18)
By changing the shape of the active material particles as shown in Table 1 and changing the roll press pressure when forming the positive electrode active material layer, the BET specific surface area of the positive electrode active material layer is shown in Table 1. The same as in Test Example 1 except that the battery was manufactured so as to have the values shown and the battery was manufactured so that the aspect ratio of the graphite was the value shown in Table 1 using graphite having a predetermined aspect ratio. Manufactured a battery. In Test Examples 2 to 18, the blending amounts of the active material and the binder in the positive electrode active material layer are the same as those in Test Example 1, respectively. The shape of the active material particles is "hollow", which means that in the cross section of the positive electrode active material layer, a hollow portion (the diameter of which is larger than the primary particle diameter of the active material particles) is two inside the secondary particles. It means what is formed above. When the shape of the active material particle is "solid", it means that a hollow portion (the diameter of which is larger than the primary particle diameter of the active material particle) is not formed inside the secondary particle.
-Aspect ratio of scaly graphite In a test example in which graphite was blended as a conductive auxiliary agent, the aspect ratio of graphite was measured as described above , and as a result, the aspect ratio of graphite was as shown in Table 1.

<出力性能の評価>
電池の直流抵抗(DCR)を測定することによって、各電池の出力性能を評価した。
1. 25℃において5A定電流で4.2Vまで充電し、さらに4.2V定電圧で合計3時間充電した。その後、5A定電流で、終止電圧2.4Vの条件で放電することにより、初期放電容量C1を測定した。
2. 25℃において5A定電流で初期容量の50%相当の電気量になる電圧まで充電し、さらに当該電圧で合計2時間充電した。
3. 25℃において、2C1[A]の定電流放電を行い、放電開始後1秒目の電流値A1と、電圧値V1とを測定した。
4. 上記3.の後の電池を25℃において、5A定電流で、終止電圧2.4Vの条件で放電した。
5. 上記2.の条件で充電後、25℃において、4C1[A]の定電流放電を行い、放電開始後1秒目の電流値A2と、電圧値V2とを測定した。
6. 上記4.の条件での放電、上記2.の条件での充電後、6C1[A]の定電流放電を行い、放電開始後1秒目の電流値A3と、電圧値V3とを測定した。
7. 上記4.の条件での放電、上記2.の条件での充電後、8C1[A]の定電流放電を行い、放電開始後1秒目の電流値A4と、電圧値V4とを測定した。
8. 上記4.の条件での放電、上記2.の条件での充電後、10C1[A]の定電流放電を行い、放電開始後1秒目の電流値A5と、電圧値V5とを測定した。
9. 測定されたA1〜A5をX軸、V1〜V5をY軸にプロットし、最小二乗法により傾きを算出した。V=IRの関係から、算出した傾きを直流抵抗R(DCR)とした。
<Evaluation of output performance>
The output performance of each battery was evaluated by measuring the direct current resistance (DCR) of the batteries.
1. 1. It was charged to 4.2 V with a constant current of 5 A at 25 ° C., and further charged with a constant voltage of 4.2 V for a total of 3 hours. Then, the initial discharge capacity C1 was measured by discharging at a constant current of 5 A under the condition of a final voltage of 2.4 V.
2. At 25 ° C., a constant current of 5 A was charged to a voltage equivalent to 50% of the initial capacity, and the voltage was further charged for a total of 2 hours.
3. 3. A constant current discharge of 2C1 [A] was performed at 25 ° C., and the current value A1 and the voltage value V1 1 second after the start of the discharge were measured.
4. Above 3. The subsequent battery was discharged at 25 ° C. at a constant current of 5 A under the condition of a final voltage of 2.4 V.
5. Above 2. After charging under the conditions of (1), a constant current discharge of 4C1 [A] was performed at 25 ° C., and the current value A2 and the voltage value V2 1 second after the start of the discharge were measured.
6. Above 4. Discharge under the conditions of 2. above. After charging under the conditions of (1), constant current discharge of 6C1 [A] was performed, and the current value A3 and the voltage value V3 1 second after the start of discharge were measured.
7. Above 4. Discharge under the conditions of 2. above. After charging under the conditions of (1), a constant current discharge of 8C1 [A] was performed, and the current value A4 and the voltage value V4 1 second after the start of the discharge were measured.
8. Above 4. Discharge under the conditions of 2. above. After charging under the conditions of (1), a constant current discharge of 10C1 [A] was performed, and the current value A5 and the voltage value V5 1 second after the start of the discharge were measured.
9. The measured A1 to A5 were plotted on the X-axis and V1 to V5 were plotted on the Y-axis, and the slope was calculated by the least squares method. From the relationship of V = IR, the calculated slope was defined as the direct current resistance R (DCR).

<繰り返し充放電試験(サイクル試験)の方法>
電池を25℃において、5A定電流で、終止電圧2.4Vの条件で放電した。
初期容量の20%相当の電気量(SOC20%)から、初期容量の80%相当の電気量(SOC80%)の範囲において、55℃、8C1[A]の条件で充放電サイクルを1000時間行った。
<Repeated charge / discharge test (cycle test) method>
The battery was discharged at 25 ° C. with a constant current of 5 A under the condition of a final voltage of 2.4 V.
The charge / discharge cycle was carried out for 1000 hours at 55 ° C. and 8C1 [A] in the range from the amount of electricity equivalent to 20% of the initial capacity (SOC 20%) to the amount of electricity equivalent to 80% of the initial capacity (SOC 80%). ..

各試験例で製造した電池について、繰り返し充放電試験の前の直流抵抗に対して、試験の後の直流抵抗を除することにより、出力保持率を算出した。結果を表1に示す。また、表1の評価結果のうち、試験例9〜18の結果をグラフにしたものを図8に示す。 For the batteries manufactured in each test example, the output retention rate was calculated by dividing the DC resistance after the test with respect to the DC resistance before the repeated charge / discharge test. The results are shown in Table 1. Further, among the evaluation results in Table 1, the graphs of the results of Test Examples 9 to 18 are shown in FIG.

表1及び図8から把握されるように、内部に空孔が形成された二次粒子を活物質として含む正極活物質層のBET比表面積が2.5m/g以上であり、黒鉛のアスペクト比が3以上15以下である各試験例では、充放電を繰り返した後に出力性能が低下することが抑制されている。 As can be seen from Table 1 and FIG. 8, the BET specific surface area of the positive electrode active material layer containing the secondary particles having pores formed therein as the active material is 2.5 m 2 / g or more, and the aspect ratio of graphite is In each test example in which the ratio is 3 or more and 15 or less, the decrease in output performance after repeated charging and discharging is suppressed.

1:蓄電素子(非水電解質二次電池)、
2:電極体、
26:非被覆積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、
6:絶縁カバー、
7:外部端子、 71:面、
11:正極、
111:正極の金属箔(集電箔)、 112:正極活物質層、
12:負極、
121:負極の金属箔(集電箔)、 122:負極活物質層、
91:バスバ部材、
100:蓄電装置。
1: Power storage element (non-aqueous electrolyte secondary battery),
2: Electrode body,
26: Uncoated laminated part,
3: Case, 31: Case body, 32: Lid plate,
4: Separator,
5: Current collector, 50: Clip member,
6: Insulation cover,
7: External terminal, 71: Surface,
11: Positive electrode,
111: Positive electrode metal foil (current collector foil), 112: Positive electrode active material layer,
12: Negative electrode,
121: Negative electrode metal foil (current collector foil), 122: Negative electrode active material layer,
91: Bus bar member,
100: Power storage device.

Claims (1)

正極と負極とを含む電極体を備え、
前記正極は、正極活物質と黒鉛とを含有する正極活物質層を有し、
前記正極活物質は、Li Ni Mn Co の化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)であり、
前記正極活物質は、前記正極活物質の一次粒子が凝集した二次粒子を含み、前記二次粒子の内部には、前記一次粒子よりも大きい空孔が形成され、
前記正極活物質層の比表面積は、2.5m/g以上であり、
前記黒鉛のアスペクト比は、3以上15以下である、リチウムイオン二次電池
Equipped with an electrode body including a positive electrode and a negative electrode,
The positive electrode, have a positive active material layer containing a graphite cathode active material,
The positive active material, Li p Ni q Mn r Co s O lithium-metal composite oxide represented by the chemical composition of the t (where a 0 <p ≦ 1.3 are q + r + s = 1, 0 ≦ q ≦ 1, 0 ≦ r ≦ 1, 0 ≦ s ≦ 1, 1.7 ≦ t ≦ 2.3).
The positive electrode active material layer, the comprises secondary particles formed by aggregation of primary particles of the positive electrode active material, in the interior of the secondary particles, larger pores than the primary particles are formed,
The specific surface area of the positive electrode active material layer is 2.5 m 2 / g or more,
A lithium ion secondary battery having an aspect ratio of graphite of 3 or more and 15 or less.
JP2017013415A 2017-01-27 2017-01-27 Lithium ion secondary battery Active JP6770716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013415A JP6770716B2 (en) 2017-01-27 2017-01-27 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013415A JP6770716B2 (en) 2017-01-27 2017-01-27 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018120829A JP2018120829A (en) 2018-08-02
JP6770716B2 true JP6770716B2 (en) 2020-10-21

Family

ID=63045290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013415A Active JP6770716B2 (en) 2017-01-27 2017-01-27 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6770716B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116417719B (en) * 2023-06-05 2023-08-08 厦门海辰储能科技股份有限公司 End cover unit, energy storage device, electric equipment and assembly method of energy storage device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122262A (en) * 1993-10-27 1995-05-12 Toray Ind Inc Electrode and its manufacture and secondary battery using the electrode
JP3769291B2 (en) * 2004-03-31 2006-04-19 株式会社東芝 Non-aqueous electrolyte battery
JP5527597B2 (en) * 2010-05-07 2014-06-18 トヨタ自動車株式会社 Method for manufacturing lithium secondary battery
CN103155238B (en) * 2010-10-15 2015-07-15 丰田自动车株式会社 Secondary battery
JP5598716B2 (en) * 2010-11-26 2014-10-01 トヨタ自動車株式会社 Lithium secondary battery and manufacturing method thereof
JP4894969B1 (en) * 2011-06-07 2012-03-14 住友金属鉱山株式会社 Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
JP5880956B2 (en) * 2012-04-09 2016-03-09 トヨタ自動車株式会社 SECONDARY BATTERY ELECTRODE, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY HAVING THE SECONDARY BATTERY ELEMENT
WO2014024571A1 (en) * 2012-08-07 2014-02-13 日産自動車株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018120829A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2018043375A1 (en) Electricity storage element and method for producing same
JP7085156B2 (en) Power storage element
JP6770713B2 (en) Power storage element
JP2017191651A (en) Power storage element
CN106025169B (en) Electric storage element
WO2017098716A1 (en) Power storage element
JP6770701B2 (en) Power storage element
JP6688483B2 (en) Storage element output recovery method
JP6770716B2 (en) Lithium ion secondary battery
CN109075317B (en) Electric storage element and method for manufacturing same
JP2016186886A (en) Electricity storage element
JP6947182B2 (en) Power storage element and manufacturing method of power storage element
JP2017168302A (en) Power storage device
JP2017183082A (en) Power storage device
JP6950532B2 (en) Power storage element
JP6667142B2 (en) Storage element
JP6853950B2 (en) Lithium ion secondary battery
JP6946617B2 (en) Power storage element
JP6853944B2 (en) Power storage element
JP6579422B2 (en) Electricity storage element
JP6880488B2 (en) Lithium ion secondary battery
JP6726405B2 (en) Storage element
JP7008275B2 (en) Power storage element
JP2017174738A (en) Power storage element
JPWO2019103019A1 (en) Power storage element and power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200910

R150 Certificate of patent or registration of utility model

Ref document number: 6770716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150