JPH07122262A - Electrode and its manufacture and secondary battery using the electrode - Google Patents

Electrode and its manufacture and secondary battery using the electrode

Info

Publication number
JPH07122262A
JPH07122262A JP5268997A JP26899793A JPH07122262A JP H07122262 A JPH07122262 A JP H07122262A JP 5268997 A JP5268997 A JP 5268997A JP 26899793 A JP26899793 A JP 26899793A JP H07122262 A JPH07122262 A JP H07122262A
Authority
JP
Japan
Prior art keywords
electrode
specific surface
active material
surface area
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5268997A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuda
良夫 松田
Mikio Shin
幹雄 新
Jun Tsukamoto
遵 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5268997A priority Critical patent/JPH07122262A/en
Publication of JPH07122262A publication Critical patent/JPH07122262A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve discharge capacity characteristic in a high output by setting a specific surface to 4m<2>/g or more of an electrode for a battery containing at least an active material. CONSTITUTION:In order to eliminate an electrode film thickness of discharge capacity of a secondary battery, a specific surface of an electrode is set to 4m<2>/g or more, preferably 5m<2>/g or more and further preferably 6m<2>/g or more. When the specific surface is decreased smaller than 4m<2>/g, an air gap in an electrode agent is decreased, to impede moving an ion in the electrode, and a diffusion controlled ion can not be eliminated. As a positive pole active material, compound oxide of Li is preferable, and LixCoO2(0<x<=1.0), LiNiO2(0< x<=1.0), LixCOyNi1-yO2 (0<x<=1.0, 0<y<=1.0), etc., are most preferable from the point of high potential, stability and long life. As a negative pole, s carbon material is preferable. As the carbon material, no particular limit is provided, but generally a burned organic object is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電極およびその製造方
法、さらにはその電極を用いた二次電池に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode, a method for manufacturing the electrode, and a secondary battery using the electrode.

【0002】[0002]

【従来の技術】近年、ビデオカメラやノート型パソコン
などのポータブル機器の普及に伴い、小型高容量の二次
電池に対する需要が高まっている。現在使用されている
二次電池のほとんどはアルカリ電解液を用いたニッケル
−カドミウム電池であるが、電池電圧が約1.2Vと低
く、エネルギー密度の向上は困難である。そのため、負
極にリチウム金属を使用するリチウム二次電池が検討さ
れた。
2. Description of the Related Art In recent years, with the widespread use of portable devices such as video cameras and notebook computers, demand for small and high capacity secondary batteries has increased. Most of the secondary batteries currently used are nickel-cadmium batteries using an alkaline electrolyte, but the battery voltage is low at about 1.2 V, and it is difficult to improve the energy density. Therefore, a lithium secondary battery using lithium metal for the negative electrode has been studied.

【0003】ところが、リチウム金属を負極に使用する
二次電池では、充放電の繰り返しによってリチウムが樹
枝状(デンドライト)に成長し、短絡を起こしたり寿命
が短くなるなどの不都合が生じやすかった。そこで、負
極に各種炭素質材料を用いて、リチウムイオンをドーピ
ング、脱ドーピングすることにより使用する二次電池が
提案された。また、このような各種炭素質材料は、アニ
オンをドーピングして正極として用いることも可能であ
る。上記の炭素質材料へのリチウムイオンあるいはアニ
オンのドーピングを利用した電極を利用した二次電池と
しては、特開昭57−208079号公報、特開昭58
−93176号公報、特開昭58−192266号公
報、特開昭62−90863号公報、特開昭62−12
2066号公報、特開平3−66856号公報等が公知
である。
However, in a secondary battery in which lithium metal is used as the negative electrode, lithium tends to grow into dendrites due to repeated charging / discharging, resulting in short circuits and shortened life. Therefore, there has been proposed a secondary battery in which various carbonaceous materials are used for the negative electrode and used by doping and dedoping with lithium ions. Further, such various carbonaceous materials can be used as a positive electrode after being doped with anions. Secondary batteries using electrodes made by doping lithium ions or anions into the above carbonaceous materials are disclosed in JP-A-57-208079 and JP-A-58.
-93176, JP-A-58-192266, JP-A-62-90863, and JP-A-62-12.
Japanese Laid-Open Patent Publication No. 2066 and Japanese Patent Laid-Open No. 3-66856 are known.

【0004】このような炭素質材料としては、粉末の形
状のもの、炭素繊維あるいは炭素繊維構造体など、いず
れの形態で用いてもよい。
Such carbonaceous material may be used in any form such as powder, carbon fiber or carbon fiber structure.

【0005】さらに、最近では、高エネルギー密度化の
要求に応えるべく、電池電圧が4V前後を示すものが現
れ、注目を浴びている。電池電圧の高電圧化は、正極に
高電位を示す活物質の探索、開発によって進められ、ア
ルカリ金属を含む遷移金属酸化物や遷移金属カルコゲン
などの無機化合物が知られている。なかでも、LiX
oO2 (0<x≦1.0)、LiX NiO2 (0<x≦
1.0)およびLiXCoY Ni1-Y 2 (0<x≦
1.0、0<y≦1.0)などが、高電位、安定性、長
寿命という点から最も有望であると考えている。
Further, recently, in order to meet the demand for higher energy density, a battery voltage of around 4V has appeared and has attracted attention. Higher battery voltage has been pursued by searching for and developing an active material exhibiting a high potential in the positive electrode, and inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals are known. Among them, Li X C
oO 2 (0 <x ≦ 1.0), Li X NiO 2 (0 <x ≦
1.0) and Li X Co Y Ni 1-Y O 2 (0 <x ≦
1.0, 0 <y ≦ 1.0) and the like are considered to be the most promising in terms of high potential, stability, and long life.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、正極・
負極に関わらず、粉末状の電極活物質を用いた場合、あ
る程度の膜厚以上になると、特に高出力(または高電
流)放電時において、放電容量が減少することを見出し
た。
[Problems to be Solved by the Invention]
It has been found that when a powdery electrode active material is used regardless of the negative electrode, the discharge capacity decreases at a certain thickness or more, particularly at the time of high output (or high current) discharge.

【0007】[0007]

【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。
The present invention has the following constitution in order to solve the above problems.

【0008】「(1) 少なくとも活物質を含む電池用電極
において、該電極の比表面積が4m2/g以上であるこ
とを特徴とする電極。
[(1) An electrode for a battery containing at least an active material, characterized in that the specific surface area of the electrode is 4 m 2 / g or more.

【0009】(2) 少なくとも活物質を含む電池用電極の
製造方法において、電極に、凸部を押し付けることによ
って、該電極の比表面積を4m2 /g以上とすることを
特徴とする電極の製造方法。
(2) In the method for producing a battery electrode containing at least an active material, the protrusion is pressed against the electrode so that the specific surface area of the electrode is 4 m 2 / g or more. Method.

【0010】(3) 上記1項記載の電極を用いることを特
徴とする二次電池。」本発明の電極は、一次電池、二次
電池、燃料電池など、どのような電池に利用されるかは
特に限定されるものではないが、特に、二次電池の正極
あるいは負極に好ましく用いられる。特に好ましい二次
電池としては、上述のようにアルカリ金属塩を含む非水
電解液を用いた二次電池を挙げることができる。そこ
で、以下、リチウム二次電池を例に取り挙げ、具体例を
挙げながら詳述する。
(3) A secondary battery using the electrode described in the above item 1. The electrode of the present invention is not particularly limited in what kind of battery such as a primary battery, a secondary battery and a fuel cell is used, but it is particularly preferably used as a positive electrode or a negative electrode of a secondary battery. . As a particularly preferable secondary battery, a secondary battery using a non-aqueous electrolytic solution containing an alkali metal salt as described above can be mentioned. Therefore, a lithium secondary battery will be taken as an example and described in detail below with specific examples.

【0011】本発明者らは、放電容量の電極膜厚依存性
について鋭意検討した結果、例えば、前述のLiX Co
2 を正極活物質に用いたリチウム二次電池の場合、電
流密度0.1A/cm2 で放電させた場合、膜厚が約2
0〜40μm以上になると、放電容量が減少しはじめ、
膜厚の増加に伴い放電容量は減少する。この膜厚依存性
は、電流密度によって強く影響を受ける。例えば、0.
02A/cm2 で放電させると、膜厚が100μm以上
でも、放電容量が減少することはなかった。また、1A
/cm2 で放電させると、膜厚が90μm以上では、放
電容量は0であった。
The inventors of the present invention have made earnest studies on the dependence of the discharge capacity on the electrode film thickness. As a result, for example, the above-mentioned Li X Co.
If the O 2 of the lithium secondary battery using the positive electrode active material, when discharged at a current density of 0.1 A / cm 2, thickness of about 2
When it becomes 0-40 μm or more, the discharge capacity starts to decrease,
The discharge capacity decreases as the film thickness increases. This film thickness dependency is strongly influenced by the current density. For example, 0.
When discharged at 02 A / cm 2 , the discharge capacity did not decrease even when the film thickness was 100 μm or more. Also, 1A
The discharge capacity was 0 when the film thickness was 90 μm or more when discharged at / cm 2 .

【0012】図1は、1A/cm2 で放電させたときの
電極膜厚(μm)と、放電容量(mAh)との相関を表
したものである。約40μmまでは電極膜厚の増加に伴
い、放電容量は増えるが、それ以上は急激に放電容量が
減少し、前述のように膜厚が90μm以上では、放電容
量は0であった。
FIG. 1 shows the correlation between the electrode film thickness (μm) when discharged at 1 A / cm 2 and the discharge capacity (mAh). The discharge capacity increased with an increase in the electrode film thickness up to about 40 μm, but the discharge capacity decreased sharply beyond that, and as described above, the discharge capacity was 0 when the film thickness was 90 μm or more.

【0013】本発明者らは、かかる問題を解決すべく、
さらに検討した結果、この放電容量の電極膜厚依存性の
主な原因は、電極内部へのイオンの拡散が律速なためで
あることを見出した。そこで、本発明者らは、イオンの
拡散律速を解消すべく検討を始めた。ここで、放電容量
の減少をもたらす恐れがあるため、(1) 電極の導電性
や、(2) 電極材構成物質どうし、および/または、電極
材と集電体との結着力を損わないことに注意した。そし
て、種々の電極作製技術の検討を行った結果、放電容量
の電極膜厚依存性の解消に有効な電極の構造を見出すこ
とができた。すなわち、比表面積を4m2 /g以上、好
ましくは、5m2 /g以上、さらに好ましくは、6m2
/g以上とするのである。
In order to solve such a problem, the present inventors have
As a result of further study, it was found that the main cause of this electrode capacity dependence of the discharge capacity is that the diffusion of ions into the electrode is rate-determining. Therefore, the present inventors have begun investigations to eliminate the ion diffusion control. Here, the discharge capacity may be reduced, so that (1) the conductivity of the electrode, (2) the constituent materials of the electrode material and / or the binding force between the electrode material and the current collector is not impaired. I was careful. As a result of studying various electrode manufacturing techniques, an electrode structure effective for eliminating the dependence of the discharge capacity on the electrode film thickness was found. That is, a specific surface area 4m 2 / g or more, preferably, 5 m 2 / g or more, more preferably, 6 m 2
/ G or more.

【0014】図2は、図1に用いたのと同様にして作製
した試料の電極膜厚と比表面積との相関を表したもので
ある。図1と対照させると、比表面積が4m2 /g以上
で大きな放電容量を示していることがわかる。比表面積
が4m2 /gよりも小さくなると、電極材中の空隙が減
少し、電極内のイオンの動きが阻害される度合いが比較
的大きくなり、イオンの拡散律速を解消することができ
なくなってしまい、その結果、放電容量が減少してしま
うと考えられる。ここで、電解液の粘性、イオン導電率
などによって、好適な比表面積の範囲が若干変動するも
のであり、任意に特に好適な範囲を選択することができ
る。
FIG. 2 shows the correlation between the electrode film thickness and the specific surface area of the sample prepared in the same manner as that used in FIG. Contrasting with FIG. 1, it can be seen that a large discharge capacity is exhibited at a specific surface area of 4 m 2 / g or more. If the specific surface area is less than 4 m 2 / g, the voids in the electrode material will decrease, and the movement of the ions in the electrode will be impeded to a relatively large extent, making it impossible to eliminate the diffusion rate control of the ions. It is considered that the discharge capacity is reduced as a result. Here, the preferable range of the specific surface area slightly varies depending on the viscosity of the electrolytic solution, the ionic conductivity, and the like, and a particularly preferable range can be arbitrarily selected.

【0015】本発明で規定する比表面積は、BET比表
面積である。BET比表面積は、米国マイクロメリテッ
クス社製2200−02を使用し、1点BET法によっ
て測定した。集電体の片面に電極材を形成した試料を、
そのままガラスセル(ガラスセルは、試料が多量にはい
るように大型にした特注品を使用)にいれて測定したの
で、得られた比表面積は、電極材の空隙の量を反映して
いると考えられる。ここで、ガラスセルおよび集電体片
面の表面積は、予め測定しておき、ブランク値として試
料測定値から差し引いて補正した。
The specific surface area specified in the present invention is the BET specific surface area. The BET specific surface area was measured by a 1-point BET method using 2200-02 manufactured by Micromeritex Co., Ltd. in the United States. A sample with an electrode material formed on one side of the current collector,
Since it was placed in a glass cell (a glass cell is made of a large-scale custom-made product so that a large number of samples can be used) and measured, the specific surface area obtained reflects the amount of voids in the electrode material. Conceivable. Here, the surface areas of the glass cell and the one surface of the current collector were measured in advance, and were corrected by subtracting them from the sample measured values as blank values.

【0016】有効な電極作製技術としては、(1) 機械的
孔開け法、(2) 化学的孔開け法、(3) その他がある。
(1) としては、通常の方法で作成した電極に、剣山、パ
ンチ棒、エンボスロールなど凸部を押し付けて電極に孔
または凹凸を設ける方法であり、このとき集電体に孔を
開けても構わない。むしろ、電極材が集電体の片面だけ
に形成されている場合などは、裏面からのイオン拡散も
イオンの易動度に寄与することができ、有益である。
(2) としては、電極合剤または電極材スラリーに予め添
加しておいたものを、後で取り除くことによって空隙を
形成する方法である。例えば、ポリビニルアルコールや
塩化リチウムなどの水溶性物質を電極材スラリーに添加
し、後で水に溶出させて空隙を形成する方法、発泡剤を
添加したのち発泡させて空隙を形成する方法、また、電
極材スラリーを塗布した集電体を水に浸漬して、1,2-N-
メチルピロリドン(以下、NMPと略称する。)などの
溶媒と水とを置換することによってポリフッ化ビニリデ
ンなどの結着剤を凝固させて空隙を形成する方法などが
ある。(3) としては、レーザーなどの熱線や、高圧の水
などを用いた孔開け法等がある。
Effective electrode fabrication techniques include (1) mechanical perforation, (2) chemical perforation, and (3) others.
As (1), there is a method of forming holes or irregularities in the electrode by pressing a protrusion such as a sword mountain, a punch rod, an embossing roll, etc. to the electrode created by the usual method. I do not care. Rather, when the electrode material is formed on only one surface of the current collector, ion diffusion from the back surface is also useful because it can contribute to the ion mobility.
(2) is a method of forming voids by removing what is previously added to the electrode mixture or the electrode material slurry later. For example, a method of adding a water-soluble substance such as polyvinyl alcohol or lithium chloride to the electrode material slurry, and then eluting it in water to form voids, a method of adding a foaming agent and then foaming to form voids, The current collector coated with the electrode material slurry is immersed in water to remove 1,2-N-
There is a method in which a solvent such as methylpyrrolidone (hereinafter abbreviated as NMP) is replaced with water to solidify a binder such as polyvinylidene fluoride to form voids. As (3), there are a heat ray such as a laser and a perforation method using high pressure water.

【0017】本発明において好ましく用いられる正極の
活物質としては、アルカリ金属を含む遷移金属酸化物や
遷移金属カルコゲンなどの無機化合物、ポリアセチレ
ン、ポリパラフェニレン、ポリフェニレンビニレン、ポ
リアニリン、ポリピロール、ポリチオフェンなどの共役
系高分子、ジスルフィド結合を有する架橋高分子、塩化
チオニルなど、通常の二次電池において用いられる正極
を挙げることができる。これらの中で、リチウム塩を含
む非水電解液を用いた二次電池の場合には、コバルト、
マンガン、モリブデン、バナジウム、クロム、鉄、銅、
チタンなどの遷移金属酸化物や遷移金属カルコゲンが好
ましく用いられる。特に前述のように、LiX CoO2
(0<x≦1.0)、LiX NiO2 (0<x≦1.
0)およびLiX CoY Ni1-Y 2 (0<x≦1.
0、0<y≦1.0)などが、高電位、安定性、長寿命
という点から最も有望であると考えている。
The positive electrode active material preferably used in the present invention is an inorganic compound such as a transition metal oxide or a transition metal chalcogen containing an alkali metal, or a conjugate of polyacetylene, polyparaphenylene, polyphenylenevinylene, polyaniline, polypyrrole, polythiophene or the like. Examples of the positive electrode used in ordinary secondary batteries include polymer-based polymers, cross-linked polymers having disulfide bonds, and thionyl chloride. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, cobalt,
Manganese, molybdenum, vanadium, chromium, iron, copper,
Transition metal oxides such as titanium and transition metal chalcogens are preferably used. In particular, as mentioned above, Li X CoO 2
(0 <x ≦ 1.0), Li X NiO 2 (0 <x ≦ 1.
0) and Li X Co Y Ni 1-Y O 2 (0 <x ≦ 1.
0, 0 <y ≦ 1.0) and the like are considered to be the most promising in terms of high potential, stability, and long life.

【0018】本発明の負極としては、炭素質材料が好ま
しく用いられる。炭素質材料としては、特に限定される
ものではなく、一般に有機物を焼成したものが用いられ
る。炭素質材料の電子伝導性が集電の目的に対して充分
に高い場合は、導電剤を添加する必要はない。炭素繊維
を用いた場合にも特に導電剤を添加する必要はなく、具
体的には、ポリアクリロニトリル(PAN)から得られ
るPAN系炭素繊維、石炭もしくは石油などのピッチか
ら得られるピッチ系炭素繊維、セルロースから得られる
セルロース系炭素繊維、低分子量有機物の気体から得ら
れる気相成長炭素繊維などが挙げられるが、そのほか
に、ポリビニルアルコール、リグニン、ポリ塩化ビニ
ル、ポリアミド、ポリイミド、フェノール樹脂、フルフ
リルアルコールなどを焼成して得られる炭素繊維でも構
わない。これらの炭素繊維の中で、炭素繊維が用いられ
る電極および電池の特性に応じて、その特性を満たす炭
素繊維が適宜選択される。上記炭素繊維の中で、アルカ
リ金属塩を含む非水電解液を用いた二次電池の負極に使
用する場合には、PAN系炭素繊維、ピッチ系炭素繊
維、気相成長炭素繊維が好ましい。特に、アルカリ金属
イオン、特にリチウムイオンのドーピングが良好である
という点で、PAN系炭素繊維やピッチ系炭素繊維が好
ましく、この中でも、東レ(株)製の”トレカ”Tシリ
ーズ、または、”トレカ”MシリーズなどのPAN系炭
素繊維、メゾフェーズピッチコークスを焼成して得られ
るピッチ系炭素繊維がさらに好ましく用いられる。
A carbonaceous material is preferably used for the negative electrode of the present invention. The carbonaceous material is not particularly limited, and a material obtained by firing an organic material is generally used. When the electron conductivity of the carbonaceous material is sufficiently high for the purpose of collecting electricity, it is not necessary to add a conductive agent. It is not necessary to add a conductive agent even when using carbon fibers, specifically, PAN-based carbon fibers obtained from polyacrylonitrile (PAN), pitch-based carbon fibers obtained from pitch of coal or petroleum, Cellulose-based carbon fibers obtained from cellulose, vapor-grown carbon fibers obtained from a gas of a low molecular weight organic substance, and the like can be mentioned. In addition, polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, furfuryl alcohol. A carbon fiber obtained by firing, etc. may be used. Among these carbon fibers, carbon fibers satisfying the characteristics are appropriately selected according to the characteristics of the electrode and the battery in which the carbon fibers are used. Among the above-mentioned carbon fibers, PAN-based carbon fibers, pitch-based carbon fibers, and vapor-grown carbon fibers are preferable when used in the negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt. In particular, PAN-based carbon fibers and pitch-based carbon fibers are preferable in terms of favorable doping with alkali metal ions, particularly lithium ions. Among these, "Torayca" T series or "Torayca" manufactured by Toray Industries, Inc. PAN-based carbon fibers such as "M series" and pitch-based carbon fibers obtained by firing mesophase pitch coke are more preferably used.

【0019】炭素繊維を電極にする際には、どのような
形態をとっても構わないが、一軸方向に配置したり、も
しくは布帛状やフェルト状の構造体にするなどが、好ま
しい形態となる。布帛状あるいはフェルト状などの構造
体としては、織物、編物、組物、レース、網、フェル
ト、紙、不織布、マットなどが挙げられるが、炭素繊維
の性質や電極特性などの点から、織物やフェルトなどが
好ましい。
When the carbon fiber is used as an electrode, it may have any form, but a preferred form is to dispose it in a uniaxial direction, or to form a fabric-like or felt-like structure. Examples of the fabric-like or felt-like structure include woven fabrics, knitted fabrics, braids, laces, nets, felts, papers, non-woven fabrics, mats, and the like. Felt and the like are preferred.

【0020】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート、エチレンカーボネート、γ-ブ
チロラクトン、N- メチルピロリドン、アセトニトリ
ル、N,N−ジメチルホルムアミド、ジメチルスルフォ
キシド、テトラヒドロフラン、1,3−ジオキソラン、
ギ酸メチル、スルホラン、オキサゾリドン、塩化チオニ
ル、1,2−ジメトキシエタン、ジエチレンカーボネー
トや、これらの誘導体や混合物などが好ましく用いられ
る。電解液に含まれる電解質としては、アルカリ金属、
特にリチウムのハロゲン化物、過塩素酸塩、チオシアン
塩、ホウフッ化塩、リンフッ化塩、砒素フッ化塩、アル
ミニウムフッ化塩、トリフルオロメチル硫酸塩などが好
ましく用いられる。
The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional electrolytic solution may be used, and examples thereof include an acid or alkaline aqueous solution or a non-aqueous solvent. Among these, as the electrolytic solution of the secondary battery composed of the above-mentioned non-aqueous electrolytic solution containing an alkali metal salt, propylene carbonate, ethylene carbonate, γ-butyrolactone, N-methylpyrrolidone, acetonitrile, N, N-dimethylformamide, Dimethyl sulfoxide, tetrahydrofuran, 1,3-dioxolane,
Methyl formate, sulfolane, oxazolidone, thionyl chloride, 1,2-dimethoxyethane, diethylene carbonate, derivatives and mixtures of these are preferably used. The electrolyte contained in the electrolytic solution is an alkali metal,
Particularly, lithium halides, perchlorates, thiocyanates, borofluorides, phosphorous fluorides, arsenic fluorides, aluminum fluorides, trifluoromethylsulfates and the like are preferably used.

【0021】本発明の電極を用いた二次電池の用途とし
ては、軽量かつ高容量で高エネルギー密度の特徴を利用
して、ビデオカメラ、パソコン、ワープロ、ラジカセ、
携帯電話などの携帯用小型電子機器に広く利用可能であ
る。
The secondary battery using the electrode of the present invention can be used as a video camera, a personal computer, a word processor, a radio-cassette, by utilizing the features of light weight, high capacity and high energy density.
It is widely applicable to portable small electronic devices such as mobile phones.

【0022】[0022]

【実施例】本発明の具体的実施態様を以下に実施例をも
って述べるが、本発明はこれに限定されるものではな
い。
EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.

【0023】実施例1 市販の炭酸リチウム(Li2 CO3 )と塩基性炭酸コバ
ルト(2CoCO3 ・3Co(OH)2 )をモル比でL
i/Co=1/1となるように秤量、ジルコニア製ボー
ルミルで湿式混合(粉砕溶媒にエタノール使用)後、9
00℃で20時間熱処理してLiCoO2 を合成した。
これを上記ボールミルで粉砕してLiCoO2 粉末を得
た。この粉末に導電剤として人工黒鉛を、結着剤として
ポリフッ化ビニリデン(以下PVDFと略称する)をそ
れぞれ10重量部、3重量部添加し、溶媒のNMPで粘
度調整してペースト状にした。これを、予め#1000
のエメリー紙で擦り表面を粗しておいた厚さ20μmの
アルミ箔上に塗布し、乾燥後、ローラープレスし、さら
に200℃で15分間熱処理して、電極部の幅10m
m,長さ20mmのLiCoO2 電極を作製した。この
LiCoO2 電極に、直径100μmの多数の金属製針
を、200μm間隔に取り付けたものを押し付けて孔開
けを行い、空隙を形成した。この電極について、前述の
方法で比表面積を測定したところ、比表面積は、4.2
2 /gであった。
Example 1 Commercially available lithium carbonate (Li 2 CO 3 ) and basic cobalt carbonate (2CoCO 3 .3Co (OH) 2 ) were used in a molar ratio of L.
Weigh so that i / Co = 1/1, wet mix with a zirconia ball mill (use ethanol as the grinding solvent), then 9
LiCoO 2 was synthesized by heat treatment at 00 ° C. for 20 hours.
This was crushed with the above ball mill to obtain LiCoO 2 powder. Artificial graphite as a conductive agent and 10 parts by weight of polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder were added to the powder, and the viscosity was adjusted with NMP as a solvent to form a paste. # 1000 in advance
Rubbed with emery paper, the surface of which was roughened and coated on an aluminum foil with a thickness of 20 μm, dried, roller pressed, and further heat-treated at 200 ° C. for 15 minutes to obtain a width of the electrode portion of 10 m.
A LiCoO 2 electrode having m and a length of 20 mm was prepared. A large number of metal needles having a diameter of 100 μm attached at intervals of 200 μm were pressed against the LiCoO 2 electrode to punch holes to form voids. When the specific surface area of this electrode was measured by the method described above, the specific surface area was 4.2.
It was m 2 / g.

【0024】次に、電極の放電容量の評価を行った。電
解液は1MLiPF6 を含むプロピレンカーボネート、
対極および参照極には金属リチウム箔を用いる、3極式
セルで評価した。LiCoO2 当たりの電流密度は0.
05mA/gの定電流で、4.3V(vs.Li+ /Li)まで充
電した。充電後に、0.5A/gで3.0V(vs.Li+/L
i)まで放電した電荷量から求められるLiCoO2 電極
の放電容量は、80mAh/gであった。
Next, the discharge capacity of the electrode was evaluated. The electrolyte is propylene carbonate containing 1M LiPF 6 ,
Evaluation was carried out using a three-electrode cell in which metallic lithium foil was used for the counter electrode and the reference electrode. The current density per LiCoO 2 is 0.
The battery was charged to 4.3 V (vs. Li + / Li) with a constant current of 05 mA / g. 3.0V (vs. Li + / L at 0.5A / g after charging)
The discharge capacity of the LiCoO 2 electrode, which was calculated from the amount of charge discharged up to i), was 80 mAh / g.

【0025】比較例1 電極に孔開けを行わないこと以外は、実施例1と同じL
iCoO2 を用いて、実施例1と同様に電極を作製し、
充放電評価を行った。この時の放電容量は、40mAh
/gであった。また、この電極についても、比表面積を
測定したところ、3.0m2 /gであった。
Comparative Example 1 The same L as in Example 1 except that the electrode was not perforated.
An electrode was prepared in the same manner as in Example 1 using iCoO 2 ,
Charge / discharge evaluation was performed. The discharge capacity at this time is 40 mAh.
/ G. The specific surface area of this electrode was also measured and found to be 3.0 m 2 / g.

【0026】実施例2 塩基性炭酸コバルトの代わりに、塩基性炭酸ニッケル
(NiCO3 ・2Ni(OH)2 ・4H2 O)を用いた
ほかは、実施例1と同様にしてLiNiO2 電極を作製
し、充電電位を4.2V(vs.Li+ /Li)とした以外は、実
施例1と同様に充放電評価を行った。この時の放電容量
は、100mAh/gであった。この電極についても、
比表面積を測定したところ、4.5m2 /gであった。
Example 2 A LiNiO 2 electrode was prepared in the same manner as in Example 1 except that basic nickel carbonate (NiCO 3 .2Ni (OH) 2 .4H 2 O) was used instead of basic cobalt carbonate. Then, charge and discharge evaluation was performed in the same manner as in Example 1 except that the charge potential was 4.2 V (vs. Li + / Li). The discharge capacity at this time was 100 mAh / g. Also for this electrode,
When the specific surface area was measured, it was 4.5 m 2 / g.

【0027】比較例2 電極に孔開けを行わないこと以外は、実施例2と同じL
iNiO2 を用いて、実施例2と同様に電極を作製し、
充放電評価を行った。この時の放電容量は、52mAh
/gであった。この電極についても、比表面積を測定し
たところ、2.8m2 /gであった。
Comparative Example 2 The same L as in Example 2 except that the electrode was not perforated.
An electrode was prepared in the same manner as in Example 2 using iNiO 2 ,
Charge / discharge evaluation was performed. The discharge capacity at this time is 52 mAh
/ G. The specific surface area of this electrode was also measured and found to be 2.8 m 2 / g.

【0028】実施例3 実施例1および実施例2で用いた電極活物質原料を用い
て、酸化物換算でLi1.0 (Co0.5 Ni0.5 )O2
なるように、秤量、混合後、実施例2と同様にして孔開
けを行い、充放電評価を行った。この時の放電容量は、
90mAh/gであった。この電極についても、比表面
積を測定したところ、4.3m2 /gであった。
Example 3 The electrode active material raw materials used in Examples 1 and 2 were weighed and mixed to obtain Li 1.0 (Co 0.5 Ni 0.5 ) O 2 in terms of oxide. In the same manner as in 2, the holes were punched and the charge / discharge was evaluated. The discharge capacity at this time is
It was 90 mAh / g. The specific surface area of this electrode was also measured and found to be 4.3 m 2 / g.

【0029】比較例3 電極に孔開けを行わないこと以外は、実施例3と同じL
1.0 (Co0.5 Ni0.5 )O2 を用いて、実施例3と
同様に電極を作製し、充放電評価を行った。この時の放
電容量は、46mAh/gであった。この電極について
も、比表面積を測定したところ、2.5m2 /gであっ
た。
Comparative Example 3 The same L as in Example 3 was used except that the electrode was not perforated.
An electrode was prepared in the same manner as in Example 3 using i 1.0 (Co 0.5 Ni 0.5 ) O 2 , and the charge and discharge was evaluated. The discharge capacity at this time was 46 mAh / g. The specific surface area of this electrode was also measured and found to be 2.5 m 2 / g.

【0030】実施例4 市販のピッチコークスと、結着剤としてPVDFをそれ
ぞれ90重量部、10重量部添加し、溶媒で粘度調整し
てペースト状にした。これを、予め#1000のエメリ
ー紙で擦り表面を粗しておいた厚さ20μmの銅箔上に
塗布し、乾燥後、ローラープレスし、さらに200℃で
15分間熱処理して、電極部の幅10mm,長さ20m
mの電極を作製した。さらに、この電極についても実施
例1と同様の孔開けを行った。
Example 4 90 parts by weight and 10 parts by weight of commercially available pitch coke and PVDF as a binder were added, and the viscosity was adjusted with a solvent to form a paste. This is applied to a 20 μm thick copper foil whose surface has been rubbed with # 1000 emery paper beforehand, dried, roller pressed, and further heat treated at 200 ° C. for 15 minutes to obtain the width of the electrode part. 10 mm, length 20 m
m electrodes were prepared. Further, this electrode was also perforated in the same manner as in Example 1.

【0031】次に、このようにして作製した電極の放電
容量の評価を行った。電解液は1MLiPF6 を含むプ
ロピレンカーボネート、対極および参照極には金属リチ
ウム箔を用いる、3極式セルで評価した。ピッチコーク
ス当たりの電流密度は0.05A/gの定電流で、0.
0V(vs.Li+ /Li)まで充電した。充電後に、0.5A/
gで1.5V(vs.Li+ /Li)まで放電したときの放電容量
は、150mAh/gであった。また、実施例1と同様
にして、比表面積を測定したところ、4.5m2 /gで
あった。
Next, the discharge capacity of the electrode thus manufactured was evaluated. The electrolytic solution was evaluated by a three-electrode type cell using propylene carbonate containing 1M LiPF 6 and metallic lithium foil for the counter electrode and the reference electrode. The current density per pitch coke was a constant current of 0.05 A / g, and was 0.
It was charged to 0 V (vs. Li + / Li). 0.5A / after charging
The discharge capacity when discharged to 1.5 V (vs. Li + / Li) was 150 mAh / g. Further, the specific surface area was measured in the same manner as in Example 1 and found to be 4.5 m 2 / g.

【0032】比較例4 電極に孔開けを行わないこと以外は、実施例4と同様に
してピッチコークス電極を作製した。実施例4と同様に
電極の充放電評価を行った。放電容量は、ピッチコーク
スの重量当たりで80mAh/gであった。この電極に
ついても、比表面積を測定したところ、3.1m2 /g
であった。
Comparative Example 4 A pitch coke electrode was produced in the same manner as in Example 4 except that the electrode was not perforated. The charge and discharge of the electrode was evaluated in the same manner as in Example 4. The discharge capacity was 80 mAh / g per weight of pitch coke. The specific surface area of this electrode was measured and found to be 3.1 m 2 / g.
Met.

【0033】実施例5 実施例1にて作製したLiCoO2 正極に、市販のPA
N系炭素繊維(“トレカ”T−300、東レ(株)製)
1ストランド(3K:3000本)を負極にし、多孔質
ポリプロピレンフィルム(セルガード#2500、ダイ
セル化学(株)製)のセパレータを介して重ね合わせ
て、二次電池を作製した。電解液は、1M過塩素酸リチ
ウムを含むプロピレンカーボネートを用いた。
Example 5 A commercially available PA was added to the LiCoO 2 positive electrode prepared in Example 1.
N-based carbon fiber ("Torayca" T-300, manufactured by Toray Industries, Inc.)
One strand (3K: 3000) was used as a negative electrode, and a secondary battery was produced by stacking the strands with a porous polypropylene film (Celguard # 2500, manufactured by Daicel Chemical Industries, Ltd.) interposed therebetween. As the electrolytic solution, propylene carbonate containing 1M lithium perchlorate was used.

【0034】このようにして作製した二次電池を用い
て、LiCoO2 当たりの電流密度0.05mA/gの
定電流で、4.3Vまで充電した。充電後、0.5A/
gの定電流で放電させた時の放電容量は、正極のLiC
oO2 の重量当たりで82mAh/gであった。
Using the secondary battery thus manufactured, it was charged to 4.3 V at a constant current with a current density of 0.05 mA / g per LiCoO 2 . 0.5A / after charging
The discharge capacity when discharged at a constant current of g is LiC of the positive electrode.
It was 82 mAh / g based on the weight of oO 2 .

【0035】比較例5 比較例1にて作製した電極を正極にする以外は、実施例
5と同様にして二次電池を作製した。実施例4と同様に
二次電池の充放電評価を行った。放電容量は、正極のL
iCoO2 の重量当たりで38mAh/gであった。
Comparative Example 5 A secondary battery was prepared in the same manner as in Example 5, except that the electrode prepared in Comparative Example 1 was used as the positive electrode. The charge / discharge evaluation of the secondary battery was performed in the same manner as in Example 4. Discharge capacity is positive electrode L
It was 38 mAh / g by weight of iCoO 2 .

【0036】実施例6 実施例1で作製したLiCoO2 粉末に導電剤として人
工黒鉛を、結着剤としてPVDFを、それぞれ10重量
部、3重量部添加し、NMPで粘度調整してペースト状
にした。そして、これを、予め#1000のエメリー紙
で擦り表面を粗しておいた厚さ20μmのアルミ箔上に
塗布したのち、水中に5時間浸漬し、NMPと水を置換
させ、PVDFを凝固(湿式凝固)させたのち、乾燥、
ローラープレスして、電極部の幅10mm,長さ20m
mのLiCoO2 電極を作製した。この電極について、
比表面積を測定したところ、比表面積は、4.6m2
gであった。次に、実施例1と同様にして充放電評価を
行ったところ、放電容量は、90mAh/gであった。
Example 6 10 parts by weight and 3 parts by weight of artificial graphite as a conductive agent and PVDF as a binder were added to the LiCoO 2 powder prepared in Example 1, and the viscosity was adjusted by NMP to form a paste. did. Then, this is applied to an aluminum foil having a thickness of 20 μm whose surface has been rubbed with # 1000 emery paper in advance, and then immersed in water for 5 hours to replace NMP with water to solidify PVDF ( (Wet coagulation), then dry,
Roller press and the width of the electrode part is 10mm and the length is 20m.
m LiCoO 2 electrode was prepared. For this electrode,
When the specific surface area was measured, the specific surface area was 4.6 m 2 /
It was g. Next, when charge and discharge evaluation was performed in the same manner as in Example 1, the discharge capacity was 90 mAh / g.

【0037】実施例7 実施例1で作製したLiCoO2 粉末に導電剤として人
工黒鉛を、結着剤としてPVDFを、そして塩化リチウ
ムをそれぞれ10重量部、3重量部、5重量部添加し、
NMPで粘度調整してペースト状にした。そして、これ
を、予め#1000のエメリー紙で擦り表面を粗してお
いた厚さ20μmのアルミ箔上に塗布したのち、水中に
5時間浸漬し、塩化リチウムを除去、かつ、実施例6で
示したPVDFの湿式凝固を行ったのち、乾燥、ローラ
ープレスして、電極部の幅10mm,長さ20mmのL
iCoO2 電極を作製した。この電極について、比表面
積を測定したところ、比表面積は、5.6m2 /gであ
った。次に、実施例1と同様にして充放電評価を行った
ところ、放電容量は、100mAh/gであった。
Example 7 To the LiCoO 2 powder prepared in Example 1, artificial graphite as a conductive agent, PVDF as a binder, and 10 parts by weight, 3 parts by weight, and 5 parts by weight of lithium chloride were added, respectively.
The viscosity was adjusted with NMP to form a paste. Then, this was applied to an aluminum foil having a thickness of 20 μm whose surface was rubbed with # 1000 emery paper in advance and then immersed in water for 5 hours to remove lithium chloride, and in Example 6. After performing the wet coagulation of the PVDF shown, the PVDF is dried and roller-pressed to form an electrode portion having a width of 10 mm and a length of 20 mm.
An iCoO 2 electrode was produced. When the specific surface area of this electrode was measured, the specific surface area was 5.6 m 2 / g. Next, when charge and discharge evaluation was performed in the same manner as in Example 1, the discharge capacity was 100 mAh / g.

【0038】[0038]

【発明の効果】本発明により、特に高出力での放電容量
特性に優れた高性能二次電池の作製が可能になる。
According to the present invention, it is possible to manufacture a high performance secondary battery having excellent discharge capacity characteristics, especially at high output.

【図面の簡単な説明】[Brief description of drawings]

【図1】LiCoO2 電極の電極膜厚と放電容量との相
関を表した図である(放電電流密度1A/cm2 )。
FIG. 1 is a diagram showing a correlation between an electrode film thickness of a LiCoO 2 electrode and a discharge capacity (discharge current density 1 A / cm 2 ).

【図2】LiCoO2 電極の電極膜厚と比表面積との相
関を表した図である。
FIG. 2 is a diagram showing a correlation between an electrode film thickness and a specific surface area of a LiCoO 2 electrode.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】少なくとも活物質を含む電池用電極におい
て、該電極の比表面積が4m2 /g以上であることを特
徴とする電極。
1. A battery electrode containing at least an active material, wherein the specific surface area of the electrode is 4 m 2 / g or more.
【請求項2】該活物質がリチウム複合酸化物であること
を特徴とする請求項1記載の電極。
2. The electrode according to claim 1, wherein the active material is a lithium composite oxide.
【請求項3】該リチウム複合酸化物が、Lix CoO2
(0<x≦1.0)、Lix NiO2 (0<x≦1.
0)およびLiX CoY Ni1-Y 2 (0<x≦1.
0、0<y≦1.0)から選ばれたものであることを特
徴とする請求項2記載の電極。
3. The lithium composite oxide is Li x CoO 2
(0 <x ≦ 1.0), Li x NiO 2 (0 <x ≦ 1.
0) and Li X Co Y Ni 1-Y O 2 (0 <x ≦ 1.
3. The electrode according to claim 2, wherein the electrode is selected from 0, 0 <y ≦ 1.0).
【請求項4】該活物質が炭素質材料であることを特徴と
する請求項1記載の電極。
4. The electrode according to claim 1, wherein the active material is a carbonaceous material.
【請求項5】少なくとも活物質を含む電池用電極の製造
方法において、電極に、凸部を押し付けることによっ
て、該電極の比表面積を4m2 /g以上とすることを特
徴とする電極の製造方法。
5. A method for producing a battery electrode containing at least an active material, wherein a specific surface area of the electrode is set to 4 m 2 / g or more by pressing a convex portion on the electrode. .
【請求項6】少なくとも活物質を含む電池用電極の製造
方法において、電極作製時に混合していた物質を、電極
作製後に取り除くことによって、該電極の比表面積を4
2 /g以上とすることを特徴とする電極の製造方法。
6. A method for producing a battery electrode containing at least an active material, wherein the substances mixed during the production of the electrode are removed after the production of the electrode so that the specific surface area of the electrode becomes 4
m 2 / g or more, a method for manufacturing an electrode.
【請求項7】該物質が水溶性であることを特徴とする請
求項6記載の電極の製造方法。
7. The method for producing an electrode according to claim 6, wherein the substance is water-soluble.
【請求項8】該物質が発泡剤であることを特徴とする請
求項6記載の電極の製造方法。
8. The method for producing an electrode according to claim 6, wherein the substance is a foaming agent.
【請求項9】集電体上に、少なくとも活物質、結着剤お
よび溶媒からなるスラリーを塗布したのち、水に浸漬し
て、溶媒と水を置換することによって結着剤を凝固させ
ることにより、該電極の比表面積を4m2 /g以上とす
ることを特徴とする電極の製造方法。
9. A current collector is coated with a slurry comprising at least an active material, a binder and a solvent, and then immersed in water to replace the solvent with water to solidify the binder. The method for producing an electrode, wherein the specific surface area of the electrode is 4 m 2 / g or more.
【請求項10】該結着剤がポリ弗化ビニリデンであり、
かつ、該溶媒が1,2−N−メチルピロドリンであるこ
とを特徴とする、請求項9記載の電極の製造方法。
10. The binder is polyvinylidene fluoride,
The method for producing an electrode according to claim 9, wherein the solvent is 1,2-N-methylpyrrodoline.
【請求項11】請求項1〜4記載の電極を用いたことを
特徴とする二次電池。
11. A secondary battery using the electrode according to any one of claims 1 to 4.
【請求項12】請求項2または3記載の電極を正極に用
い、かつ、請求項4記載の電極または炭素繊維を負極に
用いることを特徴とする二次電池。
12. A secondary battery, wherein the electrode according to claim 2 or 3 is used as a positive electrode, and the electrode according to claim 4 or carbon fiber is used as a negative electrode.
JP5268997A 1993-10-27 1993-10-27 Electrode and its manufacture and secondary battery using the electrode Pending JPH07122262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268997A JPH07122262A (en) 1993-10-27 1993-10-27 Electrode and its manufacture and secondary battery using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268997A JPH07122262A (en) 1993-10-27 1993-10-27 Electrode and its manufacture and secondary battery using the electrode

Publications (1)

Publication Number Publication Date
JPH07122262A true JPH07122262A (en) 1995-05-12

Family

ID=17466237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268997A Pending JPH07122262A (en) 1993-10-27 1993-10-27 Electrode and its manufacture and secondary battery using the electrode

Country Status (1)

Country Link
JP (1) JPH07122262A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935711A (en) * 1995-07-18 1997-02-07 Sumitomo Chem Co Ltd Lithium secondary battery
JPH09283139A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
JPH10261402A (en) * 1997-03-18 1998-09-29 Toyobo Co Ltd Nonaque0us electrolyte secondary battery and manufacture thereof
KR19980067020A (en) * 1997-01-30 1998-10-15 김광호 Positive electrode active material, manufacturing method thereof, and lithium secondary battery employing the same
KR100578862B1 (en) * 1998-10-30 2006-08-18 삼성에스디아이 주식회사 Pole plate manufacturing method for lithium ion battery
JP2006261041A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Non-aqueous electrolyte battery and manufacturing method of electrode for non-aqueous electrolyte battery
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2010114206A (en) * 2008-11-05 2010-05-20 Hitachi Powdered Metals Co Ltd Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP2011238415A (en) * 2010-05-07 2011-11-24 Toyota Motor Corp Lithium secondary battery and method for manufacturing the same
WO2014030260A1 (en) * 2012-08-24 2014-02-27 日立ビークルエナジー株式会社 Negative electrode for lithium ion secondary cell and method for producing same
WO2015012375A1 (en) 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
CN104508874A (en) * 2012-07-26 2015-04-08 Tdk株式会社 Lithium ion secondary battery
WO2018079821A1 (en) * 2016-10-31 2018-05-03 住友化学株式会社 Lithium secondary battery positive electrode and lithium secondary battery
JP2018120829A (en) * 2017-01-27 2018-08-02 株式会社Gsユアサ Power storage element
JP2018147644A (en) * 2017-03-03 2018-09-20 株式会社Gsユアサ Power storage element
US10950864B2 (en) 2016-11-28 2021-03-16 Murata Manufacturing Co., Ltd. Negative electrode, battery, battery pack, electronic device, electrically driven vehicle, power storage device, and power system

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935711A (en) * 1995-07-18 1997-02-07 Sumitomo Chem Co Ltd Lithium secondary battery
JPH09283139A (en) * 1996-04-09 1997-10-31 Matsushita Electric Ind Co Ltd Lithium secondary battery and manufacture thereof
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
KR19980067020A (en) * 1997-01-30 1998-10-15 김광호 Positive electrode active material, manufacturing method thereof, and lithium secondary battery employing the same
JPH10261402A (en) * 1997-03-18 1998-09-29 Toyobo Co Ltd Nonaque0us electrolyte secondary battery and manufacture thereof
KR100578862B1 (en) * 1998-10-30 2006-08-18 삼성에스디아이 주식회사 Pole plate manufacturing method for lithium ion battery
JP2006261041A (en) * 2005-03-18 2006-09-28 Nissan Motor Co Ltd Non-aqueous electrolyte battery and manufacturing method of electrode for non-aqueous electrolyte battery
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2010114206A (en) * 2008-11-05 2010-05-20 Hitachi Powdered Metals Co Ltd Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP2011238415A (en) * 2010-05-07 2011-11-24 Toyota Motor Corp Lithium secondary battery and method for manufacturing the same
CN104508874A (en) * 2012-07-26 2015-04-08 Tdk株式会社 Lithium ion secondary battery
JP5928591B2 (en) * 2012-07-26 2016-06-01 Tdk株式会社 Lithium ion secondary battery
US9570744B2 (en) 2012-07-26 2017-02-14 Tdk Corporation Lithium ion secondary battery
WO2014030260A1 (en) * 2012-08-24 2014-02-27 日立ビークルエナジー株式会社 Negative electrode for lithium ion secondary cell and method for producing same
JPWO2014030260A1 (en) * 2012-08-24 2016-07-28 日立オートモティブシステムズ株式会社 Negative electrode for lithium ion secondary battery and method for producing the same
WO2015012375A1 (en) 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
US10439224B2 (en) 2013-07-24 2019-10-08 Nissan Motor Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2018073687A (en) * 2016-10-31 2018-05-10 住友化学株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
KR20190070330A (en) * 2016-10-31 2019-06-20 스미또모 가가꾸 가부시끼가이샤 Positive electrode and lithium secondary battery for lithium secondary battery
CN110088946A (en) * 2016-10-31 2019-08-02 住友化学株式会社 Positive electrode for lithium secondary battery and lithium secondary battery
WO2018079821A1 (en) * 2016-10-31 2018-05-03 住友化学株式会社 Lithium secondary battery positive electrode and lithium secondary battery
EP3534438A4 (en) * 2016-10-31 2020-06-17 Sumitomo Chemical Company Limited Lithium secondary battery positive electrode and lithium secondary battery
US10950864B2 (en) 2016-11-28 2021-03-16 Murata Manufacturing Co., Ltd. Negative electrode, battery, battery pack, electronic device, electrically driven vehicle, power storage device, and power system
JP2018120829A (en) * 2017-01-27 2018-08-02 株式会社Gsユアサ Power storage element
JP2018147644A (en) * 2017-03-03 2018-09-20 株式会社Gsユアサ Power storage element

Similar Documents

Publication Publication Date Title
JPH07122262A (en) Electrode and its manufacture and secondary battery using the electrode
WO1995000977A1 (en) Cell electrode, secondary cell using the cell electrode, and method for manufacturing the cell electrode
Yamaura et al. High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material
JP3624578B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPH076752A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JP3658805B2 (en) Negative electrode for lithium battery and lithium battery using the same
KR20190047195A (en) Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
JPH10154531A (en) Secondary battery
JPH08195199A (en) Electrode for battery and secondary battery using it
JPH10116630A (en) Non-aqueous electrolyte secondary battery
JPH08138649A (en) Non-aqueous secondary battery
KR100481229B1 (en) Method of fabricating electrode of Lithium secondary battery and Lithium secondary battery with the electrode
JPH076753A (en) Electrode, manufacture thereof, and secondary battery using this electrode
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4524362B2 (en) Electrode material, electrode manufacturing method, electrode and battery
JPH10106546A (en) Manufacture of electrode for battery
JPH08213013A (en) Electrode and secondary battery using this electrode
JPH076763A (en) Nonaqueous solvent secondary battery
JPH08180866A (en) Battery electrode, and secondary battery using it
JPH09199111A (en) Electrode and its manufacture, and secondary battery with it
JPH0722018A (en) Electrode for battery and secondary battery using same
JPH08102315A (en) Battery electrode and secondary battery using this electrode
JPH09293511A (en) Electrode and nonaqueous secondary battery using it
JPH076762A (en) Electrode and secondary battery using this electrode
JPH0778610A (en) Electrode for secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees