JP2010114206A - Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition - Google Patents

Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition Download PDF

Info

Publication number
JP2010114206A
JP2010114206A JP2008284445A JP2008284445A JP2010114206A JP 2010114206 A JP2010114206 A JP 2010114206A JP 2008284445 A JP2008284445 A JP 2008284445A JP 2008284445 A JP2008284445 A JP 2008284445A JP 2010114206 A JP2010114206 A JP 2010114206A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode film
coating
graphite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284445A
Other languages
Japanese (ja)
Inventor
Minoru Shirohige
稔 白髭
Eikazu Yamada
栄和 山田
Yoshito Kanega
由人 金賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2008284445A priority Critical patent/JP2010114206A/en
Publication of JP2010114206A publication Critical patent/JP2010114206A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode film for lithium-ion capacitor, which is suitably used for a capacitor with high output density by increased energy density per unit volume and reduction of internal resistance, the capacitor responding to power use for an automobile, a crane or the like; and to provide an electrode film-forming coating material composition. <P>SOLUTION: The negative electrode film for lithium-ion capacitor is obtained by applying, onto a metal foil, an electrode film-forming coating material composition containing graphite, a conductive aid and a binder in an aqueous medium containing a dispersant, and by heating and drying the coating material composition to coat the metal foil. The conductive aid is composed of at least any one of Ketjen black, acetylene black and graphite. The particle size distribution of component particles in the negative electrode film is composed of D<SB>10</SB>particle size of 0.3 μm or more, D<SB>50</SB>particle size of 0.5-15 μm, and D<SB>90</SB>particle size of 30 μm or less. The specific surface area of the negative electrode film ranges from 7 to 75 m<SP>2</SP>/g, and the surface roughness of the negative electrode film ranges from 0.1 to 1.5 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用やクレーンなど、パワー用途に対応する単位体積あたりの高エネル
ギー密度と内部抵抗の低減による高出力密度のキャパシターに適するリチウムイオンキャ
パシターの負極被膜及び電極被膜形成用塗料組成物に関する。
The present invention relates to a coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor suitable for a capacitor having a high output density by reducing a high energy density and internal resistance per unit volume, such as for automobiles and cranes. .

電気二重層キャパシター(Electric Double Layer Capacitor:EDLC)は容量が大きく、高出力でメンテナンスフリーなどの特長により、自発光式道路鋲、瞬間電圧低下補償装置や太陽電池の平滑化電源、クレーンなどの回生電源、自動車のアイドリングストップ電源などで使用が開始され、今後、更なる拡大が期待されている。また、負極にリチウムイオンのインターカレーション反応を利用するリチウムイオンキャパシター(Lithium- Ion Capacitor:LIC)はEDLCよりエネルギー密度を約4倍高くできるため、高容量化が望まれる産業用や自動車用などの電源としての展開が期待されている。   Electric Double Layer Capacitor (EDLC) has a large capacity, high output and maintenance-free features. Regeneration of self-luminous road fences, instantaneous voltage drop compensation devices, smoothing power supplies for solar cells, cranes, etc. It has been used for power supplies and idling stop power supplies for automobiles, and further expansion is expected in the future. Lithium-Ion Capacitor (LIC), which uses lithium ion intercalation reaction for the negative electrode, can make the energy density about 4 times higher than that of EDLC. Development as a power source is expected.

例えば、特許文献1には、エネルギー密度や出力密度に関し、室温での特性と同時に、低温での特性、特に静電容量が低下することのない改良された蓄電装置を提供することを目的に、負極の50%体積累積径(D50)が0.1〜2.0μmである負極活物質粒子から形成し、さらに負極活物質粒子の全メソ孔容積が0.005〜1.0cm/gで、比表面積が0.01〜1000m/gである炭素材料又はポリアセン系物質を負極とするリチウムイオンキャパシターが開示されている。 For example, in Patent Document 1, with respect to energy density and output density, at the same time as characteristics at room temperature, characteristics at low temperature, in particular, to provide an improved power storage device in which capacitance does not decrease. A negative electrode active material particle having a 50% volume cumulative diameter (D 50 ) of 0.1 to 2.0 μm is formed, and the total mesopore volume of the negative electrode active material particle is 0.005 to 1.0 cm 3 / g. A lithium ion capacitor having a negative electrode made of a carbon material or a polyacene-based material having a specific surface area of 0.01 to 1000 m 2 / g is disclosed.

また、特許文献2には、低温特性、エネルギー密度のさらなる向上及び高出力化が図られた蓄電デバイス用負極活物質を提供することを目的に、コアとなる炭素粒子と、炭素粒子の表面及び/又は内部に形成されたグラフェン構造を有する繊維状炭素との炭素複合体からなり、全メソ孔容積が0.005〜1.0cm/g、細孔径100〜400Åのメソ孔が全メソ孔容積の25%以上を占めるように構成し、さらに炭素複合体の比表面積が0.01〜2000m/gである負極材料、また炭素粒子が易黒鉛化性炭素、難黒鉛化性炭素、黒鉛及びポリアセン系物質のうちの少なくとも一つからなる負極活物質が開示されている。 Patent Document 2 also discloses a core carbon particle, a surface of the carbon particle, and a carbon particle surface for the purpose of providing a negative electrode active material for an electricity storage device that is further improved in low temperature characteristics, energy density, and high output. / Or consisting of a carbon composite with fibrous carbon having a graphene structure formed inside, and mesopores having a total mesopore volume of 0.005 to 1.0 cm 3 / g and a pore diameter of 100 to 400 mm are all mesopores A negative electrode material that occupies 25% or more of the volume, and the carbon composite has a specific surface area of 0.01 to 2000 m 2 / g, and the carbon particles are graphitizable carbon, non-graphitizable carbon, graphite And a negative electrode active material made of at least one of polyacene-based materials.

また、特許文献3には、リチウムイオンキャパシターにおいて高いエネルギー密度、高い出力密度、高い耐久性が得られる負極材料を提供することを目的に、負極活物質にd002の平均格子面間隔が0.335〜0.337nmの黒鉛を使用し、さらに負極活物質には90%体積累積径(D90)と10%体積累積径(D10)の差(D90−D10)≦7.0μmの黒鉛、また50%体積累積径(D50)がD50≦4.0μmであるリチウムイオンキャパシターが開示されている。 Patent Document 3 discloses that a negative electrode active material has an average lattice spacing of d 002 of 0.00 for the purpose of providing a negative electrode material capable of obtaining high energy density, high output density, and high durability in a lithium ion capacitor. 335-0.337 nm of graphite is used, and the negative electrode active material has a difference (D 90 -D 10 ) ≦ 7.0 μm between 90% volume cumulative diameter (D 90 ) and 10% volume cumulative diameter (D 10 ). Graphite and a lithium ion capacitor having a 50% volume cumulative diameter (D 50 ) of D 50 ≦ 4.0 μm are disclosed.

特開2006−303330号公報JP 2006-303330 A 特開2008−66053号公報JP 2008-66053 A 特開2008−103596号公報JP 2008-103596 A

しかしながら、自動車用やクレーンなど、パワー用途に対しては単位体積あたりの高エネルギー密度と内部抵抗の低減による高出力密度のキャパシターが要求され、リチウムイオンキャパシターの用途拡大にあたっては、さらなる内部抵抗の低減とコストの低減が重要な課題となっている。   However, for power applications such as automobiles and cranes, high energy density per unit volume and high output density capacitors by reducing internal resistance are required. Further expansion of lithium ion capacitor applications further reduces internal resistance. And cost reduction is an important issue.

黒鉛は、炭素原子からなる六角網面が積層された構造を有し、積層された層間内に規則的にリチウムイオン吸蔵サイトを有する。リチウムイオン電池の負極材料として使用する場合、容量が高く、電圧低下の少ない電池が設計でき、PC用、携帯電話用などの民生用途で広く使用されている。しかしながら、容量が高い結晶性の高い黒鉛ほど被膜内で黒鉛が配向しやすく、出力を必要とする用途には改善が必要であった。またリチウムイオンキャパシターの負極被膜としては微粒子化して使用することが提案されているが、被膜構造の最適化と抵抗値低減の検討が不十分であり、内部抵抗が高く、また容量がばらつくなどの問題があった。   Graphite has a structure in which hexagonal network surfaces made of carbon atoms are stacked, and regularly has lithium ion storage sites in the stacked layers. When used as a negative electrode material for a lithium ion battery, a battery having a high capacity and a small voltage drop can be designed and widely used in consumer applications such as for PCs and mobile phones. However, graphite having a higher capacity and higher crystallinity is more easily oriented in the film, so that it is necessary to improve applications that require output. In addition, it has been proposed to use fine particles as a negative electrode coating for lithium ion capacitors. However, the investigation of the optimization of the coating structure and the reduction of the resistance value is insufficient, the internal resistance is high, and the capacitance varies. There was a problem.

黒鉛を用いたリチウムイオン二次電池の負極形成用塗料としては、バインダーをポリフッ化ビニリデン粉末、媒体をN−メチルピロリドンなどとした有機溶剤系スラリーのタイプがあるものの、リチウムイオン二次電池より検討の浅いリチウムイオンキャパシターにおいては、負極形成用塗料についての検討は殆どされていないものと、本発明者らは考えている。   As a paint for forming a negative electrode of a lithium ion secondary battery using graphite, although there is a type of organic solvent-based slurry in which the binder is polyvinylidene fluoride powder and the medium is N-methylpyrrolidone, it is examined from the lithium ion secondary battery In the shallow lithium ion capacitor, the present inventors consider that the negative electrode forming paint is hardly studied.

さらに、リチウムイオンキャパシターでは、負極にリチウムイオンをプレドープする必要があるために、負極材料の設計は、リチウムイオン電池用負極材の設計方法とは方向性が異なる。具体的には、内部抵抗の低減と容量の向上が最優先になり、不可逆容量の許容範囲は大きくなる。このため、リチウムイオンキャパシター用負極電極の設計にあたっては、高比表面積化、小粒径化、塗膜構造の最適化など、従来にはない設計が必要になる。   Furthermore, in a lithium ion capacitor, since it is necessary to pre-dope lithium ions in the negative electrode, the design of the negative electrode material is different in direction from the design method of the negative electrode material for lithium ion batteries. Specifically, reduction of internal resistance and improvement of capacity are given top priority, and the allowable range of irreversible capacity is increased. For this reason, when designing a negative electrode for a lithium ion capacitor, an unprecedented design such as a high specific surface area, a small particle size, and an optimized coating film structure is required.

リチウムイオンキャパシターを普及化させるためには、キャパシターの容量の向上と内部抵抗の低減を達成する電極被膜を得る必要がある。そこで、本発明の課題は、負極被膜中の構成粒子の粒度、特に被膜の主構成材である黒鉛の粒度を最適化し、電極被膜形成用塗料組成物の塗工条件を最適化し、得られる被膜の膜構造を最適化することによって、単位体積あたりの高エネルギー密度と内部抵抗の低減による高出力密度のキャパシターに適するリチウムイオンキャパシターの負極被膜及び電極被膜形成用塗料組成物を提供することにある。   In order to popularize lithium ion capacitors, it is necessary to obtain an electrode coating that achieves an increase in the capacitance of the capacitor and a reduction in internal resistance. Accordingly, an object of the present invention is to optimize the particle size of the constituent particles in the negative electrode coating, particularly the particle size of graphite, which is the main constituent material of the coating, to optimize the coating conditions of the coating composition for forming the electrode coating, and to obtain the coating It is an object to provide a coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor suitable for a high power density capacitor by reducing a high energy density per unit volume and internal resistance by optimizing the film structure of .

前記課題を解決するために、本発明は、分散剤を含む水媒体中に、黒鉛、導電助剤及びバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗工法で塗布した後、60〜180℃の加熱温度で被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記導電助剤が少なくともケッチェンブラック、アセチレンブラック及び黒鉛のいずれかからなり、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲で、D90粒子径が30μm以下であり、
前記負極被膜の比表面積が7〜75m/gの範囲であり、
負極被膜の表面粗さが0.1〜1.5μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜とする。
ここで「前記負極被膜中の構成粒子」は、前記負極被膜を主に構成する粒状配合材である黒鉛及び導電助剤を含む粒子を言い、負極被膜を構成する粒子を微細化することにより、リチウムイオンの拡散抵抗が低減し内部抵抗の低減、すなわち、出力の向上に寄与する。また、電被膜形成用ペースト(塗料組成物)の塗工性が被膜の平滑さと密度に影響を及ぼし、被膜の平滑さが優れた負極被膜を形成するために重要な要件となる。
In order to solve the above-mentioned problems, the present invention applied an electrode film-forming coating composition containing graphite, a conductive additive and a binder onto a metal foil by a coating method in an aqueous medium containing a dispersant. And a negative electrode film of a lithium ion capacitor formed into a film at a heating temperature of 60 to 180 ° C.
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.3μm or more, D range 50 particle size of 0.5 to 15 m, and a D 90 particle size is 30μm or less,
The specific surface area of the negative electrode film is in the range of 7 to 75 m 2 / g,
The negative electrode film of the lithium ion capacitor is characterized in that the surface roughness of the negative electrode film is in the range of 0.1 to 1.5 μm.
Here, the “constituent particles in the negative electrode coating” refer to particles containing graphite and a conductive additive, which are the granular compounding materials mainly constituting the negative electrode coating, and by refining the particles constituting the negative electrode coating, The diffusion resistance of lithium ions is reduced, which contributes to reduction of internal resistance, that is, improvement of output. Also, the coatability of the electrocoat forming paste (coating composition) affects the smoothness and density of the coating, which is an important requirement for forming a negative electrode coating with excellent coating smoothness.

また、前記課題を解決するために、本発明は、分散剤を含む水媒体中に、黒鉛及びバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗布し、加熱乾燥して被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、
前記負極被膜の比表面積が7〜20m/gの範囲であり、
前記負極被膜の表面粗さが0.1〜1.5μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜とする。
In order to solve the above-mentioned problems, the present invention applies an electrode film-forming coating composition containing graphite and a binder to an aqueous medium containing a dispersant on a metal foil, followed by drying by heating. A negative electrode film of a lithium ion capacitor formed into a film,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.3μm or more, D 50 ranging particle size of 0.5 to 15 m, and a D 90 particle size is 30μm or less,
The specific surface area of the negative electrode coating is in the range of 7 to 20 m 2 / g,
The negative electrode film of the lithium ion capacitor is characterized in that the surface roughness of the negative electrode film is in the range of 0.1 to 1.5 μm.

また、前記課題を解決するために、本発明は、前記負極被膜のラマン分光スペクトルのR値が0.4〜1.3の範囲であり、Dバンドの半値幅W値が17〜40の範囲である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。負極被膜構成粒子の中で特に黒鉛粒子の微粒子化により固有の構造が劣化していないことが重要である。   In order to solve the above-mentioned problem, the present invention provides the negative electrode film having a Raman spectrum spectrum in which the R value is in the range of 0.4 to 1.3 and the half-width W value of the D band is in the range of 17 to 40. It is preferable to use the negative electrode film of the lithium ion capacitor. It is important that the specific structure of the negative electrode film constituting particles is not deteriorated by the fine particles of the graphite particles.

また、前記課題を解決するために、本発明は、前記負極被膜の膜厚40μmのシート抵抗値が80Ω以下である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。内部抵抗を低減するためには電気抵抗を低減することが重要である。   Moreover, in order to solve the said subject, it is preferable to set this invention as the negative electrode film of the said lithium ion capacitor whose sheet resistance value of the film thickness of the said negative electrode film is 40 ohms or less. In order to reduce internal resistance, it is important to reduce electrical resistance.

また、前記課題を解決するために、本発明は、前記負極被膜の塗膜密度が0.8〜1.2g/cm範囲である前記のリチウムイオンキャパシターの負極被膜とすることが好ましい。リチウムイオンキャパシターの容量を向上するためには塗膜密度を高くする必要がある。前記構成とすることにより、容量と出力がともに優れたリチウムイオンキャパシターが得られる機序による。 Moreover, in order to solve the said subject, it is preferable to set this invention as the negative electrode film of the said lithium ion capacitor whose coating film density of the said negative electrode film is 0.8-1.2 g / cm < 3 > range. In order to improve the capacity of the lithium ion capacitor, it is necessary to increase the coating density. By adopting the above-described configuration, the lithium ion capacitor having an excellent capacity and output is obtained.

また、前記課題を解決するために、本発明は、分散剤を含む水媒体中に、黒鉛、導電助剤及びバインダーを含有してなる電極被膜形成用塗料組成物であって、
前記導電助剤がケッチェンブラック、アセチレンブラック及び黒鉛のいずれかからなり、
粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、且つ、ラマン分光スペクトルのR値が0.25〜0.7の範囲であり、
Dバンドの半値幅W値が17〜30の範囲である前記黒鉛と、
ラマン分光スペクトルのR 値が0.2〜1.65の範囲であり、Dバンドの半値幅W値が17〜95の範囲である前記導電助剤とを添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物とする。
In order to solve the above-mentioned problems, the present invention provides a coating composition for forming an electrode film comprising graphite, a conductive aid and a binder in an aqueous medium containing a dispersant,
The conductive auxiliary agent is composed of any of ketjen black, acetylene black and graphite,
The particle size distribution is such that the D 10 particle diameter is 0.3 μm or more, the D 50 particle diameter is in the range of 0.5 to 15 μm, the D 90 particle diameter is 30 μm or less, and the R value of the Raman spectrum is 0.25 to 0.25. A range of 0.7,
The graphite having a half-width W value of D band in the range of 17 to 30;
Lithium obtained by adding the conductive auxiliary agent having an R value in the Raman spectrum of 0.2 to 1.65 and a half-width W value of D band in the range of 17 to 95 A coating composition for forming an electrode film of an ion capacitor is provided.

また、前記課題を解決するために、本発明は、分散剤を含む水媒体中に、黒鉛及びバインダーを含有してなる電極被膜形成用塗料組成物であって、
粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、且つ、ラマン分光スペクトルのR値が0.25〜0.7の範囲であり、
Dバンドの半値幅W値が17〜30の範囲である前記黒鉛を添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物とする。
In order to solve the above-mentioned problems, the present invention provides a coating composition for forming an electrode film comprising graphite and a binder in an aqueous medium containing a dispersant,
The particle size distribution is such that the D 10 particle diameter is 0.3 μm or more, the D 50 particle diameter is in the range of 0.5 to 15 μm, the D 90 particle diameter is 30 μm or less, and the R value of the Raman spectrum is 0.25 to 0.25. A range of 0.7,
A coating composition for forming an electrode film of a lithium ion capacitor, wherein the graphite having a half-width W value of D band in the range of 17 to 30 is added.

本発明のリチウムイオンキャパシターの負極被膜を前記のように構成したことにより、リチウムイオンキャパシターの容量向上、出力向上、コスト低減が可能となった。また、負極被膜を構成する活物質材は、黒鉛の微粒子化による粒径と構造の最適化が重要であることから、係る黒鉛の構造を規定することによって最適で安定した品質の負極被膜が得られる。その他の配合材である導電助剤、水溶性分散剤及び水系バインダーの最適配合で高品位なリチウムイオンキャパシター用負極被膜が得られる。更に、本発明に係る負極被膜形成用ペーストは水媒体品であるため作業環境が良くなり、製造コストの低減にも寄与する効果を奏する。   By configuring the negative electrode film of the lithium ion capacitor of the present invention as described above, it is possible to improve the capacity, output and cost of the lithium ion capacitor. In addition, since it is important to optimize the particle size and structure of the active material constituting the negative electrode film by making the fine particles of graphite, an optimum and stable quality negative electrode film can be obtained by defining the structure of the graphite. It is done. A high-quality negative electrode film for a lithium ion capacitor can be obtained by an optimal blend of a conductive additive, a water-soluble dispersant, and an aqueous binder, which are other blending materials. Furthermore, since the negative electrode film-forming paste according to the present invention is an aqueous medium product, the working environment is improved, and the production cost can be reduced.

この発明の第一の特徴は、主に黒鉛及び導電助剤から構成されるリチウムイオンキャパシターの負極被膜において、負極被膜中の構成粒子の粒度分布は、D10粒子径が 0.3μm以上、D50粒子径が0.5〜15μmの範囲で、D90粒子径が30μm以下で、負極被膜の比表面積が7〜75m/gの範囲で、負極被膜の表面粗さが0.1〜1.5μmの範囲とする。負極被膜中の粒度分布は、走査型電子顕微鏡(SEM)による被膜断面を観察する方法により行う。また、事前に負極被膜形成用ペーストを試料対象にして、レーザー回折式粒度分布測定によって粒度分布を特定することが可能であり、係る測定によって特定された粒度分布も本発明の構成粒子の粒度分布として含まれる。 The first feature of the invention mainly in the negative electrode coating lithium-ion capacitor composed of graphite and conductive auxiliary agent, the particle size distribution of the constituent particles of the negative electrode in the coating is D 10 particle size of 0.3μm or more, D When the 50 particle diameter is in the range of 0.5 to 15 μm, the D 90 particle diameter is 30 μm or less, the specific surface area of the negative electrode film is in the range of 7 to 75 m 2 / g, and the surface roughness of the negative electrode film is 0.1 to 1 The range is 5 μm. The particle size distribution in the negative electrode film is determined by a method of observing a film cross section with a scanning electron microscope (SEM). In addition, it is possible to specify the particle size distribution by laser diffraction particle size distribution measurement using the negative electrode film forming paste in advance as a sample object, and the particle size distribution specified by such measurement is also the particle size distribution of the constituent particles of the present invention. Included as

10%体積累積径のD10粒子径、すなわち構成粒子の粒子径下限に近い方の値は0.3μm以上、好ましくは0.4μm以上である。D10粒子径が0.3μm未満では、黒鉛の結晶性が低下し、容量が大きく低下することから好ましくない。換言すれば、0.3μm未満の体積基準粒子量は負極被膜中に10%未満とすることが好ましい。 The 10% volume cumulative diameter D 10 particle diameter, that is, the value closer to the lower limit of the particle diameter of the constituent particles is 0.3 μm or more, preferably 0.4 μm or more. D The 10 particle size of less than 0.3 [mu] m, lowers the crystallinity of graphite is not preferable because the capacity is greatly reduced. In other words, the volume-based particle amount of less than 0.3 μm is preferably less than 10% in the negative electrode coating.

いわゆる平均粒子径であるD50粒子径(50%体積累積径)は、0.5〜15μmの範囲、好ましくは1〜7μmの範囲、特に好ましくは1.5〜5μmの範囲である。D50粒子径が0.5μm未満では微粒子が多くなるため、粒子間の接触抵抗が大きくなり、負極被膜の電気抵抗値が上昇するので好ましくない。一方、負極被膜構成粒子の平均粒子径が15μmを越えると粒子径が大きすぎるためにリチウムイオンの細孔内拡散抵抗が高くなり目標とする内部抵抗の電極を得ることが困難となる。 The so-called average particle diameter D 50 particle diameter (50% volume cumulative diameter) is in the range of 0.5 to 15 μm, preferably in the range of 1 to 7 μm, particularly preferably in the range of 1.5 to 5 μm. When the D 50 particle diameter is less than 0.5 μm, the number of fine particles increases, so that the contact resistance between the particles increases and the electric resistance value of the negative electrode coating increases, which is not preferable. On the other hand, if the average particle diameter of the negative electrode coating-constituting particles exceeds 15 μm, the particle diameter is too large, so that the diffusion resistance of lithium ions in the pores is increased and it is difficult to obtain an electrode having a target internal resistance.

また、D90粒子径(90%体積累積径)、すなわち構成粒子の粒子径上限に近い方の値は30μm未満、好ましくは20μm以下、特に好ましくは10μm以下である。D90粒子径が30μm以上となると、膜厚60μm以下の塗工においてスジむらなどの塗膜欠陥が生じやすくなり、塗工時の歩留まりを低下させ好ましくない。 The D 90 particle diameter (90% volume cumulative diameter), that is, the value closer to the upper limit of the particle diameter of the constituent particles is less than 30 μm, preferably 20 μm or less, particularly preferably 10 μm or less. When the D 90 particle diameter is 30 μm or more, coating defects such as stripe unevenness are liable to occur in coating with a film thickness of 60 μm or less, which is not preferable because the yield during coating is reduced.

次に、負極被膜の比表面積は7〜75m/gの範囲、好ましくは7〜50m/gの範囲、特に好ましくは8〜25m/gの範囲である。被膜の比表面積は、容量と出力(内部抵抗)を最適化するのに重要で、比表面積が7〜75m/gの場合に容量、内部抵抗ともに優れた特性を示す。被膜の比表面積が75m/gを超えると、主構成材である黒鉛粒子では構造が劣化し容量低下を引き起こすおそれがある。被膜の電気抵抗値や被膜の密度は、比表面積が増加するほど低下する傾向がある。この傾向から負極被膜の比表面積は7〜75m/gの範囲が好ましい。 Next, the specific surface area of the negative electrode film is in the range of 7 to 75 m 2 / g, preferably in the range of 7 to 50 m 2 / g, particularly preferably in the range of 8 to 25 m 2 / g. The specific surface area of the coating film is important for optimizing the capacity and output (internal resistance). When the specific surface area is 7 to 75 m 2 / g, both the capacity and the internal resistance are excellent. When the specific surface area of the coating exceeds 75 m 2 / g, the structure of the graphite particles as the main constituent material may be deteriorated and the capacity may be reduced. The electrical resistance value of the coating and the density of the coating tend to decrease as the specific surface area increases. From this tendency, the specific surface area of the negative electrode film is preferably in the range of 7 to 75 m 2 / g.

また、被膜の比表面積は、主構成材の黒鉛粒子の比表面積と相関がある。一方、黒鉛粒子の粒度と黒鉛粒子の比表面積に相関はない。この理由は以下のとおりである。黒鉛粒子をビーズを媒体とした乾式粉砕機で粉砕処理すると、粒子の粉砕と同時に粒子同士の凝集も発生し、粒子径約1μm以下の粒子を得るのは難しくなる。乾式粉砕処理を進めることで一次粒子の集合体からなる比表面積の大きな粒子となってしまうが、このような方法で調整された粒子は粒子径が大きく、比表面積の大きい黒鉛となる。もちろんこのような黒鉛粒子も本発明に使用できる。   Further, the specific surface area of the coating has a correlation with the specific surface area of the graphite particles of the main constituent material. On the other hand, there is no correlation between the particle size of the graphite particles and the specific surface area of the graphite particles. The reason for this is as follows. When the graphite particles are pulverized by a dry pulverizer using beads as a medium, the particles are aggregated at the same time as the particles are pulverized, making it difficult to obtain particles having a particle diameter of about 1 μm or less. By proceeding with the dry pulverization treatment, particles having a large specific surface area composed of aggregates of primary particles become particles, but the particles prepared by such a method have a large particle diameter and become graphite having a large specific surface area. Of course, such graphite particles can also be used in the present invention.

負極被膜の表面粗さは、0.1〜1.5μmの範囲、特に好ましくは0.2〜0.6μmの範囲である。被膜の表面粗さは、塗工の均一性や得られる被膜の密度及び被膜の硬さに影響する。被膜の表面粗さが1.5μm以上では、被膜の密度が小さくなり容量の低下を招く。また、表面粗さが0.1μm以下の場合は、黒鉛粒子の微細化が進み、固有の構造が崩壊し、容量が低下する。また、被膜中に微細な黒鉛粒子が充填されるために被膜の硬度が高くなりすぎ、電極加工工程のスリット時や捲回時に問題を発生するおそれがある。   The surface roughness of the negative electrode film is in the range of 0.1 to 1.5 μm, particularly preferably in the range of 0.2 to 0.6 μm. The surface roughness of the coating affects the uniformity of coating, the density of the resulting coating, and the hardness of the coating. When the surface roughness of the film is 1.5 μm or more, the density of the film becomes small, resulting in a decrease in capacity. On the other hand, when the surface roughness is 0.1 μm or less, the graphite particles become finer, the inherent structure collapses, and the capacity decreases. In addition, since the fine graphite particles are filled in the coating, the hardness of the coating becomes too high, which may cause a problem during slitting or winding in the electrode processing step.

以上よりペースト粒度をD10粒径が0.3μm以上、D50粒径が0.5〜15μm、D90粒径が30μm以下に規定することは、塗工性能向上、塗膜特性向上、電極特性向上のために重要である。また、黒鉛を用いたリチウムイオンキャパシターの負極被膜としての容量や出力(内部抵抗)を最適化する上で、負極被膜構成粒子の粒度分布と負極被膜の比表面積及び表面粗さが重要である。 The paste particle size D 10 particle size of 0.3μm or more from the above, the D 50 particle size is 0.5 to 15 m, D 90 particle size prescribed in 30μm or less, coating performance improved, film properties improve, the electrode This is important for improving the characteristics. Further, in optimizing the capacity and output (internal resistance) as a negative electrode film of a lithium ion capacitor using graphite, the particle size distribution of the negative electrode film constituting particles, the specific surface area and the surface roughness of the negative electrode film are important.

リチウムイオンキャパシターの高容量と内部抵抗を低減するためには、黒鉛の微粒子化により構造が劣化していないことと、導電助剤が最適に分散されていることが必要であり、被膜としてのラマン分光スペクトルのR値が0.4〜1.3の範囲で、Dバンドの半値幅W値が17〜40の範囲とすることが重要である。被膜は黒鉛と導電助剤及び分散剤とバインダーから構成されるが、本発明者らは、被膜のラマン分光特性が被膜中の黒鉛と導電助剤との配合量、それら粒子の分散状態で変化することを見出し、黒鉛粒子の周辺にどの様に導電助剤が分散しているかを被膜のラマン分光特性で測定し、最適な被膜構成状態を数値化した。   In order to reduce the high capacity and internal resistance of lithium ion capacitors, it is necessary that the structure is not deteriorated due to the fine particles of graphite, and that the conductive assistant is optimally dispersed. It is important that the R value of the spectral spectrum is in the range of 0.4 to 1.3, and the half width W value of the D band is in the range of 17 to 40. The coating is composed of graphite, conductive aid, and dispersant and binder, but the inventors have determined that the Raman spectral characteristics of the coating vary depending on the blending amount of graphite and conductive aid in the coating and the dispersion state of these particles. As a result, it was measured by the Raman spectroscopic characteristics of the coating how the conductive assistant was dispersed around the graphite particles, and the optimum coating composition state was quantified.

すなわち、被膜としてのラマンスペクトルのR値が0.4以下となるのは、使用する黒鉛のR値が小さくなり過ぎるか、導電助剤量が少な過ぎるときに発生する。黒鉛のR値が小さ過ぎる場合、リチウムイオンがインターカラントするサイトが少なくなり、内部抵抗の増加を招く。また、導電助剤量が少な過ぎる場合は、塗膜のシート抵抗が上昇し内部抵抗の増加を招く。逆に被膜としてのラマンスペクトルのR値が1.3以上では、黒鉛の微細化により構造が劣化すると共にエッジサイトが増加した被膜構成になっており、不可逆容量の増加や容量の低下が生じる。すなわち、被膜のラマンスペクトルのR値は、被膜の内部抵抗及び容量と相関があり、0.4〜1.3の範囲であることが重要であり好ましい。   That is, the R value of the Raman spectrum as a film becomes 0.4 or less when the R value of the graphite used is too small or the amount of the conductive assistant is too small. When the R value of graphite is too small, the number of sites where lithium ions intercalant decreases, leading to an increase in internal resistance. Moreover, when there are too few amounts of conductive support agents, the sheet resistance of a coating film rises and an internal resistance increases. On the other hand, when the R value of the Raman spectrum as the film is 1.3 or more, the film structure is deteriorated due to the refinement of graphite and the edge sites are increased, resulting in an increase in irreversible capacity and a decrease in capacity. That is, the R value of the Raman spectrum of the film has a correlation with the internal resistance and capacity of the film, and is important and preferable in the range of 0.4 to 1.3.

一方、Dバンドの半値幅W値が17以下では、黒鉛表面の結晶性がよく規則的な層間が多いことに起因すると考えるが、リチウムイオンの放電時の抵抗が高くなると推定され、内部抵抗が高くなる。逆に、Dバンドの半値幅W値が40以上になると、黒鉛の微細化によりアモルファス化が進行した状態になるので、黒鉛の固有の構造が劣化し、容量の低下を生じる。また、導電助剤量を多くした場合にもDバンドの半値幅W値が40以上になるが、黒鉛の配合量が減少することになり容量の低下を招く。   On the other hand, when the half width W value of the D band is 17 or less, it is considered that the graphite surface has good crystallinity and there are many regular layers. However, it is estimated that the resistance during lithium ion discharge increases, and the internal resistance is Get higher. On the other hand, when the half width W value of the D band is 40 or more, since the amorphous state is advanced due to the refinement of the graphite, the inherent structure of the graphite is deteriorated and the capacity is reduced. Further, when the amount of the conductive assistant is increased, the half-value width W value of the D band becomes 40 or more, but the compounding amount of graphite is reduced and the capacity is reduced.

負極被膜の膜厚40μm時のシート抵抗値は80Ω以下であり、好ましくは10〜60Ω、さらに好ましくは15Ω〜40Ωの範囲である。負極被膜の内部抵抗を低減するには電気抵抗を低減する必要がある。黒鉛の結晶構造の最適化と導電助剤の配合量を最適化することにより、シート抵抗値が10Ω程度になることが分かっている。黒鉛の結晶性を上げて、粒度を大きくし、さらに導電助剤の配合量を増加することによりシート抵抗値を10Ω以下にすることを達成できるが、内部抵抗の上昇及び容量低下を招く。また、黒鉛の微細化、比表面積の増加などによりシート抵抗値が上昇するが、80Ω以上になると、電気抵抗が高くなり過ぎ内部抵抗を低減する効果が認められない。   The sheet resistance value when the film thickness of the negative electrode film is 40 μm is 80Ω or less, preferably 10 to 60Ω, more preferably 15Ω to 40Ω. In order to reduce the internal resistance of the negative electrode coating, it is necessary to reduce the electrical resistance. It has been found that by optimizing the crystal structure of graphite and optimizing the compounding amount of the conductive aid, the sheet resistance value becomes about 10Ω. Although the sheet resistance can be reduced to 10Ω or less by increasing the crystallinity of graphite, increasing the particle size, and further increasing the blending amount of the conductive additive, it causes an increase in internal resistance and a decrease in capacity. Further, the sheet resistance value increases due to the refinement of graphite and the increase in specific surface area. However, when the resistance value is 80Ω or more, the electrical resistance becomes too high and the effect of reducing the internal resistance is not recognized.

さらに、容量の向上には被膜密度が高いことが必要で、本発明に基づく被膜形成用ペーストを塗布し、乾燥後の被膜の密度は0.8〜1.2cm/gの範囲であることが必要で、好ましくは0.95〜1.2cm/gの範囲である。以上、負極被膜の特性値について述べてきたが、これらを達成する個々の因子は、用いる材料に起因する。すなわち主に黒鉛からなる構成粒子のD10粒子径は0.3μm以上、D50粒子径が0.5〜15μm、D90粒子径が30μm以下の範囲である。この点は負極被膜の特性値と同じである。 Furthermore, the coating density needs to be high in order to improve the capacity, the coating film forming paste according to the present invention is applied, and the density of the coating film after drying is in the range of 0.8 to 1.2 cm 3 / g. Is required, preferably in the range of 0.95 to 1.2 cm 3 / g. As described above, the characteristic values of the negative electrode coating have been described, but individual factors for achieving these are attributable to the material used. That mainly D 10 particle size of constituent particles consisting of graphite 0.3μm or more, the range D 50 particle size of 0.5 to 15 m, D 90 particle size of less 30 [mu] m. This point is the same as the characteristic value of the negative electrode film.

黒鉛粒子のラマンスペクトルにおけるR値は0.25〜0.7、W値は17〜30の範囲である。この要件は、活物質の構造を規定したもので、微粒子化によりR値、W値は増加することとなるが、この範囲においては容量の低下がなく問題が認められない。なお、特に好ましくは黒鉛のD10粒子径が0.3μm以上、D50粒子径が1〜8μmの範囲、D90粒子径が15μm以下で、ラマンスペクトルにおけるR値が0.25〜0.6、W値が18〜28の範囲である。 The R value in the Raman spectrum of the graphite particles is in the range of 0.25 to 0.7, and the W value is in the range of 17 to 30. This requirement stipulates the structure of the active material, and the R value and W value are increased by making the particles fine. However, in this range, there is no decrease in capacity and no problem is recognized. Particularly preferably, the graphite has a D 10 particle diameter of 0.3 μm or more, a D 50 particle diameter of 1 to 8 μm, a D 90 particle diameter of 15 μm or less, and an R value in a Raman spectrum of 0.25 to 0.6. , W value is in the range of 18-28.

また、導電助剤としてラマン分光スペクトルのR値が0.2〜1.6の範囲で、Dバンドの半値幅W値が17〜95の範囲のケッチェンブラック、アセチレンブラック及び黒鉛のいずれかを用いることが好ましい。ケッチェンブラックは、R値が1.5〜1.6、W値が68前後の構造を有し、黒鉛化が進んだ中空のカーボンブラックであると言える。アセチレンブラックはR値が1.0〜1.1、W値が90前後の構造を有する。また、導電助剤で用いる黒鉛はD50粒子径が4μm前後で結晶性が良く、R値が0.25前後、W値が18前後のものが高い導電性を示すことから好ましい。 Further, any one of ketjen black, acetylene black, and graphite having an R value of the Raman spectrum of 0.2 to 1.6 and a half-width W value of the D band of 17 to 95 as the conductive assistant is used. It is preferable to use it. Ketjen black can be said to be a hollow carbon black having a structure with an R value of 1.5 to 1.6 and a W value of around 68 and having advanced graphitization. Acetylene black has a structure with an R value of 1.0 to 1.1 and a W value of around 90. Further, graphite used as a conductive aid is preferable because it has a D 50 particle size of about 4 μm and good crystallinity, and an R value of about 0.25 and a W value of about 18 exhibit high conductivity.

導電助剤の配合量は最少に留めて低い抵抗値にすることが重要であるが、最少の添加量にするためには嵩密度が低く、微粒子材料が効果的である。嵩密度の最も低いケッチェンブラックは最少の配合量で効果が得られる。アセチレンブラックは、ケチェンブラックよりは嵩密度が高いが、他の配合材料との相性が良く、高密度の被膜が得られる。導電助剤としてケッチェンブラック、アセチレンブラックを配合した負極被膜は、黒鉛活物質粒子間の接触抵抗を低減でき、電気抵抗が低減している。また、結晶性の良い鱗片状黒鉛は嵩密度が低く導電性もよいことから、導電助剤としても効果がある。   Although it is important to keep the blending amount of the conductive auxiliary agent to a minimum and to have a low resistance value, in order to make the addition amount the minimum, the bulk density is low and the particulate material is effective. Ketjen black with the lowest bulk density is effective with the minimum amount. Although acetylene black has a higher bulk density than Ketjen black, it has good compatibility with other compounding materials, and a high-density coating can be obtained. A negative electrode film containing ketjen black and acetylene black as a conductive auxiliary agent can reduce the contact resistance between graphite active material particles, and the electrical resistance is reduced. In addition, scaly graphite having good crystallinity is effective as a conductive aid because of its low bulk density and good conductivity.

さらに、分散剤が、カルボキシメチルセルロースのナトリウム塩又はアンモニウム塩であり、またバインダーが、スチレンブタジエン系エラストマー又はアクリル系エラストマーのいずれかのエマルションであることも有効である。カルボキシメチルセルロースとしては、カルボキシメチルセルロースナトリウム塩やカルボキシメチルセルロースアンモニウム塩、カルボキシメチルセルロースカルシウム塩が代表的である。本発明においては、カルボキシメチルセルロースのナトリウム塩又はアンモニウム塩を用いる。特に、カルボキシメチルセルロースのナトリウム塩を用いた場合は、黒鉛や導電助剤の分散安定性がよく、ペースト(塗料組成物)が一部乾燥しても、水への再溶解性が良く、塗工前の攪拌により未溶解物の無い塗料が作製できる。   Further, it is also effective that the dispersant is a sodium salt or ammonium salt of carboxymethyl cellulose, and the binder is an emulsion of either a styrene butadiene elastomer or an acrylic elastomer. Representative examples of carboxymethylcellulose include carboxymethylcellulose sodium salt, carboxymethylcellulose ammonium salt, and carboxymethylcellulose calcium salt. In the present invention, sodium salt or ammonium salt of carboxymethyl cellulose is used. In particular, when sodium salt of carboxymethyl cellulose is used, the dispersion stability of graphite and conductive aid is good, and even if the paste (coating composition) is partially dried, it has good re-solubility in water and coating. A paint with no undissolved material can be produced by the previous stirring.

バインダーとしては(メタ)アクリル酸エステル(共)重合体、スチレン・(メタ)アクリル酸エステル共重合体などのアクリル系エラストマー、スチレン・ブタジエン共重合体などのスチレンブタジエン系エラストマー、アクリロニトリル・ブタジエン共重合体、ポリブタジエンなどが使用できる。バインダーはそれぞれ単体で或いは2種以上を組み合わせて使用することができる。これらを調整することにより、塗布・被膜化後の塗膜密度の向上、膜構造の最適化が可能となり、容量の向上、内部抵抗の低減が達成できる。さらに、黒鉛粒子を微細化したことにより、塗工時の塗布ムラなどの欠陥が改善でき、歩留まり向上に寄与できる。なお、水系のペーストによりペースト製造時、塗工時の作業環境及び安全性に優れ、また導電助剤、分散剤、バインダーの最適化により、低抵抗で密着性の良い被膜が得られる。   Binders include (meth) acrylic acid ester (co) polymers, acrylic elastomers such as styrene / (meth) acrylic acid ester copolymers, styrene butadiene elastomers such as styrene / butadiene copolymers, and acrylonitrile / butadiene copolymers. Combined, polybutadiene, etc. can be used. Each binder can be used alone or in combination of two or more. By adjusting these, the coating density after coating and coating can be improved and the film structure can be optimized, and the capacity can be improved and the internal resistance can be reduced. Further, by reducing the size of the graphite particles, defects such as coating unevenness during coating can be improved, which can contribute to an increase in yield. A water-based paste is excellent in working environment and safety during paste production and coating, and a coating with low resistance and good adhesion can be obtained by optimizing the conductive aid, dispersant, and binder.

また、ペースト(塗料組成物)の粘度構成としては、25℃におけるB型粘度計による30rpmの粘度値が600〜2400mPa・s 、60rpmでの粘度値が500〜2300mPa・sとすることが好ましい。塗工法で負極被膜を形成する場合、被膜の膜厚は20μm〜80μm程度に設定するのが一般的で、塗工機としてはダイコーター、ブレードコーター、コンマコーター、リップコーター、リバースロールコーターなどが用いられるが、最近は、リチウムイオン電池用電極の形成に用いられるダイコーターが用いられている。ダイコーターは、膜厚が均一な被膜が形成でき、また回路的な要素のパターン塗工も可能である。ダイコーターを用いてすじムラなどの塗膜欠陥が少なく、均一な塗工を行うためには、特にD90粒子径を小さくし、ダイのエッジやマニフォールド内に粗粒子や異物が付着すること、又は詰まりの発生を防止する必要がある。この点では、本発明の第一点目でも規定したように、被膜のD90粒子径を30μm以下に調整することが必要である。なお、回転子30rpmでの粘度が600〜2500mPa・s 、60rpmでの粘度が500〜2300mPa・sにすることで、ダイコーターでの均一塗工が可能になる。 Moreover, as a viscosity structure of paste (coating composition), it is preferable that the viscosity value of 30 rpm by a B-type viscometer at 25 ° C. is 600 to 2400 mPa · s, and the viscosity value at 60 rpm is 500 to 2300 mPa · s. When a negative electrode film is formed by a coating method, the film thickness is generally set to about 20 μm to 80 μm. As a coating machine, there are a die coater, a blade coater, a comma coater, a lip coater, a reverse roll coater, and the like. Recently, a die coater used for forming an electrode for a lithium ion battery has been used. The die coater can form a film with a uniform film thickness, and can also apply a pattern of circuit elements. In order to carry out uniform coating with few coating film defects such as streak unevenness using a die coater, in particular, the D 90 particle diameter should be reduced, and coarse particles and foreign substances should adhere to the die edge and manifold, It is also necessary to prevent clogging. In this respect, as defined in the first aspect of the present invention, it is necessary to adjust the D 90 particle diameter of the coating to 30 μm or less. By setting the viscosity at the rotor 30 rpm to 600 to 2500 mPa · s and the viscosity at 60 rpm to 500 to 2300 mPa · s, uniform coating with a die coater becomes possible.

以下に、この発明の実施例について説明するが、この発明はこれらの実施例に限定されるものではない。
(塗料及び試料の調整)
カルボキシメチルセルロース(CMC)を純水に溶解した水溶液中に粒子径、比表面積、構造の異なる黒鉛粒子と、導電助剤としてケッチェンブラック、アセチレンブラック又は黒鉛を配合してボールミルで3時間分散させた。その後アクリル系エマルジョン又はSBR系エマルジョンを所定量配合し30分間攪拌した。検討に用いた配合を表1及び表2に示す。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Adjustment of paint and sample)
Graphite particles having different particle diameters, specific surface areas, and structures, and ketjen black, acetylene black, or graphite were blended in an aqueous solution in which carboxymethyl cellulose (CMC) was dissolved in pure water and dispersed with a ball mill for 3 hours. . Thereafter, a predetermined amount of acrylic emulsion or SBR emulsion was blended and stirred for 30 minutes. Tables 1 and 2 show the formulations used for the study.

(塗料の粘度評価)
作製した塗料の粘度をBL型粘度計を用いて、回転数30rpm、60rpm時の粘度を測定した。測定温度は25℃とした。粘度の測定に際しては、塗料をプロペラ型の攪拌翼を有する攪拌機を用い、1000prmの攪拌条件で30分間攪拌してから行った。
(Viscosity evaluation of paint)
The viscosity of the prepared paint was measured at 30 rpm and 60 rpm using a BL type viscometer. The measurement temperature was 25 ° C. The viscosity was measured using a stirrer having a propeller-type stirring blade and stirring for 30 minutes under a stirring condition of 1000 prm.

(塗料の粒度分布)
レーザー回折式粒度分布計を用いて測定した。屈折率は2.00−0.1iを用いた。
(Particle size distribution of paint)
It measured using the laser diffraction type particle size distribution analyzer. The refractive index was 2.00-0.1i.

(被膜の作製)
作製した塗料を、ギャップ100μmのブレードコーターを用い、厚さ19μmの銅箔上に塗工した。その後、100℃で30分間の熱風乾燥後、75℃で30分間、真空乾燥機で乾燥し、厚さ40μmの電極被膜を作製した。
(Preparation of coating)
The prepared paint was applied onto a 19 μm thick copper foil using a blade coater with a gap of 100 μm. Thereafter, it was dried with hot air at 100 ° C. for 30 minutes, and then dried with a vacuum dryer at 75 ° C. for 30 minutes to produce an electrode film having a thickness of 40 μm.

(被膜、活物質の比表面積)
作製した電極被膜及びペースト材料として用いた黒鉛粒子や導電助剤粒子の比表面積及び細孔構造は、Micromeritics社製ASAP2010を用い、窒素吸着によりBET法で測定した。
(Specific surface area of coating and active material)
The specific surface area and pore structure of graphite particles and conductive auxiliary particles used as the electrode coating and paste material thus prepared were measured by BET method by nitrogen adsorption using ASAP2010 manufactured by Micromeritics.

(被膜の表面粗さ)
表面粗さ形状測定機を用いて、作製した電極被膜の中心線平均粗さを計測した。測定の際、触針径は2μmを用い、測定速度0.3mm/s、測定長さ4mm、カットオフ値0.8mmとした。
(Surface roughness of coating)
The center line average roughness of the produced electrode coating was measured using a surface roughness profile measuring machine. In the measurement, the stylus diameter was 2 μm, the measurement speed was 0.3 mm / s, the measurement length was 4 mm, and the cut-off value was 0.8 mm.

(被膜、活物質のラマン分光特性)
作製した電極被膜及び炭素材料の表面構造の分析手法として、ラマン分光法(Renishow社製のNRS-2100)により、Gバンド(1580cm−1付近)とDバンド(1360cm−1付近)のピークの面積比であるR値(I1360/I1580)を求めた。測定には波長514nmのアルゴン(Ar)レーザー光を用いた。面積の測定にあたっては、Gバンド近傍とDバンド近傍の2つのピークの曲線の形がローレンツ関数に近似すると仮定し、これにフィッテイングさせて書き直し、面積比よりR値を求めた。
活物質のラマン分光特性は、使用する活物質をスライドグラス上に適量採取し、上記方法でR値を測定した。
(Raman spectral characteristics of coatings and active materials)
As analysis method of the surface structure of the manufactured electrode coating and a carbon material, the area of the peak of the Raman spectroscopy by (NRS-2100 of Renishow Ltd.), G-band (1580 cm -1 vicinity) and D-band (1360 cm around -1) The R value (I 1360 / I 1580 ), which is the ratio, was determined. An argon (Ar) laser beam having a wavelength of 514 nm was used for the measurement. In measuring the area, it was assumed that the shape of the curve of the two peaks near the G band and the D band approximated to the Lorentz function, rewritten by fitting to this, and the R value was obtained from the area ratio.
For the Raman spectral characteristics of the active material, an appropriate amount of the active material to be used was collected on a slide glass, and the R value was measured by the above method.

(被膜の密度評価)
乾燥後の電極をφ13mmの大きさに打ち抜き、電極重量を測定した。下地の銅箔の重量を差し引き、被膜の密度を算出した。
(Evaluation of coating density)
The dried electrode was punched out to a size of φ13 mm, and the electrode weight was measured. The density of the coating was calculated by subtracting the weight of the underlying copper foil.

(被膜のシート抵抗値)
作製した電極被膜を四端針法にてシート抵抗値を測定した。
(Sheet resistance value of coating)
The sheet resistance value of the produced electrode film was measured by a four-end needle method.

(容量、内部抵抗評価)
フェノール系のアルカリ賦活活性炭を活物質とする正極活物質ペーストを40μmのアルミニウム箔にブレードコーターを用いて塗布・造膜化し、被膜厚さ100μm、φ20mmの正極電極を作製した。
次に、黒鉛を活物質とする負極活物質ペーストをブレードコーターで厚さ19μmの銅箔に塗布・造膜化し、被膜厚さ50μm、φ20mmの負極電極を作製した。
なお、正極・負極電極の造膜化は以下のとおりである。
ペースト塗工膜の乾燥は100℃で30分熱風乾燥後、減圧下120℃で12時間乾燥後した。その後、アルゴン雰囲気のグローブボックス中に移し、黒鉛による負極へのリチウムイオンドープを行った。まず、φ20mm黒鉛電極にセパレータを介してリチウム金属を重ね、単極セルを作成した。電解液は、エチレンカーボネート(EC)/ジメチルカーボネート(DMC)/プロピレンカーボネート(PC)(但し、容量比がEC:DMC:PC=30:30:40である)からなる溶媒に溶質の六フッ化リン酸リチウム(LiPF)が1.2モル/リットル(M/l)のモル濃度で溶解されたものを使用した。負極への充電は充電容量が350mAh/gになった時に停止し、半充電の負極を作成した。その後活性炭よりなる正極を半充電の負極とセパレータを介して対向させ、試験用セルを作成した。
測定温度25℃、放電電流20mAとして、充電電圧が3.8Vから2.2Vに低下するまでの静電容量(F)を求めた。また、放電電流20mA時の容量[mAh/g]を求めた。さらに、放電電流20mAのときの初期の電圧低下より内部抵抗(Ω)を求めた。
(Capacity and internal resistance evaluation)
A positive electrode active material paste using phenol-based alkali activated carbon as an active material was applied and formed into a film on a 40 μm aluminum foil using a blade coater to prepare a positive electrode having a film thickness of 100 μm and φ20 mm.
Next, a negative electrode active material paste using graphite as an active material was applied to a 19 μm thick copper foil with a blade coater to form a negative electrode having a film thickness of 50 μm and φ20 mm.
The film formation of the positive and negative electrodes is as follows.
The paste coating film was dried at 100 ° C. for 30 minutes with hot air and then under reduced pressure at 120 ° C. for 12 hours. Then, it moved in the glove box of argon atmosphere, and lithium ion dope to the negative electrode by graphite was performed. First, lithium metal was stacked on a φ20 mm graphite electrode via a separator to prepare a monopolar cell. The electrolyte is a hexafluoride solute in a solvent consisting of ethylene carbonate (EC) / dimethyl carbonate (DMC) / propylene carbonate (PC) (where the volume ratio is EC: DMC: PC = 30: 30: 40). A solution in which lithium phosphate (LiPF 6 ) was dissolved at a molar concentration of 1.2 mol / liter (M / l) was used. Charging to the negative electrode was stopped when the charge capacity reached 350 mAh / g, and a half-charged negative electrode was created. Thereafter, a positive electrode made of activated carbon was opposed to the half-charged negative electrode via a separator to prepare a test cell.
The capacitance (F) until the charging voltage decreased from 3.8 V to 2.2 V was determined at a measurement temperature of 25 ° C. and a discharge current of 20 mA. Further, the capacity [mAh / g] at a discharge current of 20 mA was determined. Furthermore, the internal resistance (Ω) was determined from the initial voltage drop when the discharge current was 20 mA.

Figure 2010114206
Figure 2010114206

実施例は分散剤を含む水媒体中に、黒鉛、導電助剤及びバインダーを含有してなる電極被膜形成用ペーストを用いた例である。容量の向上と内部抵抗の低減のためには黒鉛の適性構造と導電助剤の組合わせが重要である。実施例は、黒鉛の物性を比表面積12〜150m/g、ラマン分光分析のR値0.25〜0.70、W値17〜30と変化させて検討した結果を示す。 The example is an example in which an electrode film forming paste containing graphite, a conductive additive and a binder in an aqueous medium containing a dispersant is used. In order to improve the capacity and reduce the internal resistance, it is important to combine a suitable graphite structure with a conductive additive. An Example shows the result of having examined the physical property of graphite, changing the specific surface area 12-150 m < 2 > / g, R value 0.25-0.70 of Raman spectroscopic analysis, and W value 17-30.

比較例1は活物質として難黒鉛化炭素を用いた例である。難黒鉛化炭素は、内部抵抗が低く、容量も比較的高くリチウムイオンキャパシタ用負極として使用されている。しかし、さらなる容量向上や、コスト低減のためには、黒鉛を負極で用いることが重要であり、黒鉛を用いて内部抵抗を低減するための検討を行った。比較例1、3及び実施例1から4は被膜中の構成粒子の粒度分布であるD10粒子径、D50粒子径及びD90粒子径を変化させ、また被膜の比表面積及び表面粗さの最適化を検討した結果を示す。
ここで、粒子径と比表面積とは必ずしも相関がなく、微粒子が造粒又は凝集して、粒子径が大きくなった黒鉛も使用できる。
Comparative Example 1 is an example using non-graphitizable carbon as an active material. Non-graphitizable carbon has low internal resistance and relatively high capacity, and is used as a negative electrode for lithium ion capacitors. However, for further capacity improvement and cost reduction, it is important to use graphite in the negative electrode, and studies were conducted to reduce internal resistance using graphite. Comparative Examples 1 and 3 and Example 1 4 of constituent particles in the coating D 10 particle size is a particle size distribution, D 50 particle size and D 90 to change the particle size, also the specific surface area and surface roughness of the film The result of examining optimization is shown.
Here, the particle diameter and the specific surface area do not necessarily have a correlation, and graphite having a large particle diameter by granulating or agglomerating fine particles can also be used.

比較例2は、被膜構成粒子のD50粒径が8.2μmであって発明の範囲内にあるが、塗膜比表面積が5m/gと小さく、発明の範囲外にある。また塗膜のラマン分光分析のR値は0.38、W値が17.5で何れも小さく発明の範囲外にある。すなわち黒鉛の結晶性がよく、黒鉛のエッジ面の少ない構造となり、内部抵抗が6.3Ωと高い。また、比較例3はD50粒径が18μmと大きく発明の範囲外にある例であり、被膜厚さが60μmの塗工性において、塗布ムラが大きく、塗布品質及び生産性の点で問題がある。また、被膜の平滑度(塗膜表面粗さ)が2.1μmであり、塗膜の均一性の点で信頼性に問題がある。 In Comparative Example 2, the D 50 particle size of the coating-constituting particles is 8.2 μm and is within the scope of the invention, but the coating specific surface area is as small as 5 m 2 / g and is outside the scope of the invention. Further, the R value of Raman spectroscopic analysis of the coating film is 0.38, and the W value is 17.5, both of which are small and out of the scope of the invention. That is, the crystallinity of graphite is good, the graphite has a few edge surfaces, and the internal resistance is as high as 6.3Ω. Comparative Example 3 is an example in which the D 50 particle size is as large as 18 μm, which is outside the scope of the invention. In the coating property with a film thickness of 60 μm, the coating unevenness is large, and there is a problem in terms of coating quality and productivity. is there. Moreover, the smoothness (coating surface roughness) of the coating is 2.1 μm, and there is a problem in reliability in terms of the uniformity of the coating.

実施例1〜4は被膜のD50粒径が1〜15μm、比表面積が7〜75m2/gの例であるが、塗布性がよく、また、被膜の平滑度(塗膜表面粗さ)は0.1から1.4μmであり、均一な被膜を形成できる。さらに容量、内部抵抗ともに良好な結果を示す。 Examples 1 to 4 are examples in which the D 50 particle size of the coating is 1 to 15 μm and the specific surface area is 7 to 75 m 2 / g, but the coatability is good, and the smoothness of the coating (coating surface roughness) is The thickness is 0.1 to 1.4 μm, and a uniform film can be formed. In addition, both the capacitance and internal resistance are good.

また、実施例1はD10粒子径が0.3μm、D50粒子径が1.0μm、D90粒子径が2.1μmで、被膜の比表面積が17m/gの例である。均一に分散されているため、塗膜表面粗さは0.1μmであり、平滑な被膜を形成でき、薄膜電極の形成が可能である。微粒子化が進んでいるため塗膜密度は0.81g/ccで低下傾向があるため、容量は22mAhで低下傾向であるが内部抵抗が低い特徴がある。 Example 1 is an example in which the D 10 particle diameter is 0.3 μm, the D 50 particle diameter is 1.0 μm, the D 90 particle diameter is 2.1 μm, and the specific surface area of the coating is 17 m 2 / g. Since it is uniformly dispersed, the coating film surface roughness is 0.1 μm, a smooth coating film can be formed, and a thin film electrode can be formed. Since the fine particle formation is progressing, the coating density tends to decrease at 0.81 g / cc. Therefore, the capacity tends to decrease at 22 mAh, but the internal resistance is low.

また実施例2は被膜の比表面積が7m/ccで下限の例であるが、黒鉛の結晶性が良いため容量は25mAh/gと高い値を示すが、内部抵抗が高く、本発明の上限である。 In Example 2, the specific surface area of the coating is 7 m 2 / cc, which is the lower limit. However, since the crystallinity of graphite is good, the capacity is as high as 25 mAh / g, but the internal resistance is high, and the upper limit of the present invention is high. It is.

実施例3は被膜の比表面積が75m/gの例であるが、内部抵抗が低く良好である。しかし、黒鉛の結晶構造の劣化があり、目標容量をクリアしているものの容量の低下が確認できる。 Example 3 is an example in which the specific surface area of the coating is 75 m 2 / g, but the internal resistance is low and good. However, there is deterioration of the crystal structure of graphite, and although the target capacity is cleared, a decrease in capacity can be confirmed.

実施例4は被膜のD50粒径が15μmであり、比表面積が47μmの例である。微粒子の凝集でD50粒子は大きくなっているが、被膜の比表面積が大きく内部抵抗、容量ともに良好であった。60μmの膜厚においても塗膜の平滑度は1.4μmであり、塗布ムラがなく問題は認められなかった。 Example 4 is an example in which the D 50 particle size of the coating is 15 μm and the specific surface area is 47 μm. Although D 50 particle in the aggregation of particles is larger, the specific surface area of the film is large internal resistance was good in capacity both. Even at a film thickness of 60 μm, the smoothness of the coating film was 1.4 μm, there was no coating unevenness, and no problem was observed.

実施例1〜4で示したが、分散剤としてはCMC−Na、CMC−NHが使用でき、バインダーとしてはSBR系エラストマー又はアクリル系エラストマーのエマルジョンが使用可能である。 It has been shown in Examples 1 to 4, as a dispersing agent CMC-Na, may be used CMC-NH 3, as a binder emulsion SBR elastomer or an acrylic elastomer can be used.

以上の結果より、負極被膜中の構成粒子の粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.8〜15μmの範囲、D90粒子径が30μm以下で、該負極被膜の比表面積が7〜75m/gの範囲で、該負極被膜の表面粗さが0.1〜1.5μmの範囲であることが重要でることが確認できた。 These results, the particle size distribution of the constituent particles of the negative electrode in the coating, D 10 particle size of 0.3μm or more, D 50 range of particle size 0.8~15Myuemu, at D 90 particle size is 30μm or less, the negative electrode It was confirmed that it was important that the specific surface area of the film was in the range of 7 to 75 m 2 / g and the surface roughness of the negative electrode film was in the range of 0.1 to 1.5 μm.

Figure 2010114206
Figure 2010114206

表2は、活物質として黒鉛を用い、導電助剤としてアセチレンブラック、ケッチェンブラック及び黒鉛を用いて被膜構造の最適化について検討した実施例と、発明の範囲外の材料を用いた比較例を示す。
比較例4は、負極被膜中の構成粒子の微細化を進めた例である。活物質としての黒鉛をD50粒径が0.7μmになるまで微粒子化を進めることにより塗膜密度は0.79g/ccまで低下しており、容量も21mAh/g以下になった。
Table 2 shows an example in which optimization of the coating structure was examined using graphite as an active material and acetylene black, ketjen black and graphite as a conductive additive, and a comparative example using a material outside the scope of the invention. Show.
Comparative Example 4 is an example in which the constituent particles in the negative electrode coating were further refined. By increasing the particle size of graphite as an active material until the D 50 particle size became 0.7 μm, the coating density was reduced to 0.79 g / cc, and the capacity was 21 mAh / g or less.

比較例5は導電助剤としてケッチェンブラックを用い、粘度の高い例を示す。30rpmの粘度が2550mPa・s、60rpmの粘度が2400mPa・sのペーストは、塗料の広がりが低下し、60μmの均一被膜の形成が難しいことを確認した。
また、嵩密度の低いケッチェンブラックの配合量が多いため、塗膜密度の低下をきたし、容量が低下することを確認した。塗膜のラマン分光分析のR値及びW値はケッチェンブラックを増加させることで増大する。本実施例の塗膜はR値が1.4、W値が41であるが、塗膜構造の最適化のためにはR値、W値を本値よりも小さい数値の範囲に設定する必要があることが確認された。
Comparative Example 5 uses Ketjen Black as a conductive additive and shows a high viscosity example. It was confirmed that the paste with a viscosity of 30 rpm of 2550 mPa · s and a viscosity of 60 rpm of 2400 mPa · s had a reduced spread of the paint and it was difficult to form a uniform film of 60 μm.
Moreover, since there were many compounding quantities of ketjen black with a low bulk density, the coating-film density fell and it confirmed that a capacity | capacitance fell. The R and W values of the Raman spectroscopic analysis of the coating increase with increasing ketjen black. The coating film of this example has an R value of 1.4 and a W value of 41. However, in order to optimize the coating film structure, it is necessary to set the R value and the W value within a range of numerical values smaller than this value. It was confirmed that there is.

実施例5は導電助剤としてアセチレンブラック、ケッチェンブラックを用い、シート抵抗値の低減を図った例である。塗膜密度は0.82まで低下したが、シート抵抗は20Ωまで低減でき、容量、静電容量、内部抵抗ともに良好な結果が得られた。   Example 5 is an example in which acetylene black and ketjen black are used as conductive assistants to reduce the sheet resistance value. Although the coating film density was reduced to 0.82, the sheet resistance could be reduced to 20Ω, and good results were obtained for the capacity, capacitance, and internal resistance.

また、実施例6は実施例3と同様に活物質として比表面積の大きな黒鉛を用いた例であるが、結晶性の良い黒鉛助剤を用いて電気抵抗値の低減を検討した例である。実施例3と比較し内部抵抗は高いものの、容量が高くなり良好な結果を示した。   Further, Example 6 is an example in which graphite having a large specific surface area is used as an active material in the same manner as in Example 3. However, Example 6 is an example in which reduction of the electric resistance value was examined using a graphite auxiliary having good crystallinity. Although the internal resistance was higher than that of Example 3, the capacity was increased and good results were shown.

実施例7は導電助剤を用いず活物質として黒鉛を用いて被膜を形成した例である。被膜の比表面積を20m/gに抑えたために、被膜のシート抵抗は80Ωになり、内部抵抗が5Ωで容量も良好であった。 Example 7 is an example in which a film was formed using graphite as an active material without using a conductive additive. Since the specific surface area of the film was suppressed to 20 m 2 / g, the sheet resistance of the film was 80Ω, the internal resistance was 5Ω, and the capacity was good.

比較例6は被膜の比表面積が85m/gの例である。内部抵抗は3.5Ωで良好であるが容量が20mAh/gまで低下し、黒鉛の結晶構造の劣化が進んでいる。 Comparative Example 6 is an example in which the specific surface area of the coating is 85 m 2 / g. The internal resistance is good at 3.5Ω, but the capacity is reduced to 20 mAh / g, and the crystal structure of graphite is progressing.

以上のようにリチウムイオンキャパシター用負極電極は、比表面積やラマン分光特性で塗膜構造を規定し、また使用材料の構造を規定することで容量、内部抵抗に優れた、負極被膜が得られることが確認された。
As described above, the negative electrode for a lithium ion capacitor should have a coating film structure defined by specific surface area and Raman spectroscopic characteristics, and a negative electrode coating excellent in capacity and internal resistance can be obtained by defining the structure of the material used. Was confirmed.

Claims (7)

分散剤を含む水媒体中に、黒鉛、導電助剤及びバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗布し、加熱乾燥して被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記導電助剤が少なくともケッチェンブラック、アセチレンブラック及び黒鉛のいずれかからなり、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、
前記負極被膜の比表面積が7〜75m/gの範囲であり、
前記負極被膜の表面粗さが0.1〜1.5μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜。
A negative electrode film for a lithium ion capacitor in which a coating composition for forming an electrode film comprising graphite, a conductive additive and a binder is applied onto a metal foil in an aqueous medium containing a dispersant, and is heated and dried to form a film. Because
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.3μm or more, D 50 ranging particle size of 0.5 to 15 m, and a D 90 particle size is 30μm or less,
The specific surface area of the negative electrode film is in the range of 7 to 75 m 2 / g,
A negative electrode film for a lithium ion capacitor, wherein the negative electrode film has a surface roughness in the range of 0.1 to 1.5 μm.
分散剤を含む水媒体中に、黒鉛及びバインダーを含有してなる電極被膜形成用塗料組成物を金属箔上に塗布し、加熱乾燥して被膜化させたリチウムイオンキャパシターの負極被膜であって、
前記負極被膜中の構成粒子の粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、
前記負極被膜の比表面積が7〜20m/gの範囲であり、
前記負極被膜の表面粗さが0.1〜1.5μmの範囲であることを特徴とするリチウムイオンキャパシターの負極被膜。
A coating composition for forming an electrode film comprising graphite and a binder in an aqueous medium containing a dispersant is applied on a metal foil, and is a negative electrode film for a lithium ion capacitor that is formed by heating and drying,
The particle size distribution of the constituent particles in the negative electrode coating, D 10 particle size of 0.3μm or more, D 50 ranging particle size of 0.5 to 15 m, and a D 90 particle size is 30μm or less,
The specific surface area of the negative electrode coating is in the range of 7 to 20 m 2 / g,
A negative electrode film for a lithium ion capacitor, wherein the negative electrode film has a surface roughness in the range of 0.1 to 1.5 μm.
前記負極被膜のラマン分光スペクトルのR値が0.4〜1.3の範囲であり、Dバンドの半値幅W値が17〜40の範囲である請求項1又は2に記載のリチウムイオンキャパシターの負極被膜。   3. The lithium ion capacitor according to claim 1, wherein an R value of a Raman spectrum of the negative electrode film is in a range of 0.4 to 1.3, and a full width at half maximum W of a D band is in a range of 17 to 40. 4. Negative electrode coating. 前記負極被膜の膜厚40μmのシート抵抗値が80Ω以下である請求項1〜3の何れかに記載のリチウムイオンキャパシターの負極被膜。   The negative electrode film for a lithium ion capacitor according to any one of claims 1 to 3, wherein the negative electrode film has a sheet resistance value of 80? 前記負極被膜の塗膜密度が0.8〜1.2g/cmの範囲である請求項1〜4の何れかに記載のリチウムイオンキャパシターの負極被膜。 The coating film density of the negative electrode film is in the range of 0.8 to 1.2 g / cm 3 , The negative electrode film of the lithium ion capacitor according to claim 1. 分散剤を含む水媒体中に、黒鉛、導電助剤及びバインダーを含有してなる電極被膜形成用塗料組成物であって、
前記導電助剤が少なくともケッチェンブラック、アセチレンブラック及び黒鉛のいずれかからなり、
粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、且つ、ラマン分光スペクトルのR値が0.25〜0.7の範囲であり、
Dバンドの半値幅W値が17〜30の範囲である前記黒鉛と、
ラマン分光スペクトルのR 値が0.2〜1.65の範囲であり、Dバンドの半値幅W値が17〜95の範囲である前記導電助剤とを添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物。
In an aqueous medium containing a dispersant, a coating composition for forming an electrode film comprising graphite, a conductive aid and a binder,
The conductive auxiliary agent comprises at least one of ketjen black, acetylene black and graphite,
The particle size distribution is such that the D 10 particle diameter is 0.3 μm or more, the D 50 particle diameter is in the range of 0.5 to 15 μm, the D 90 particle diameter is 30 μm or less, and the R value of the Raman spectrum is 0.25 to 0.25. A range of 0.7,
The graphite having a half-width W value of D band in the range of 17 to 30;
Lithium obtained by adding the conductive assistant having an R value of Raman spectrum of 0.2 to 1.65 and a half-width W value of D band of 17 to 95 A coating composition for forming an electrode film of an ion capacitor.
分散剤を含む水媒体中に、黒鉛及びバインダーを含有してなる電極被膜形成用塗料組成物であって、
粒度分布は、D10粒子径が0.3μm以上、D50粒子径が0.5〜15μmの範囲、D90粒子径が30μm以下であり、且つ、ラマン分光スペクトルのR値が0.25〜0.7の範囲であり、
Dバンドの半値幅W値が17〜30の範囲である前記黒鉛を添加してなることを特徴とするリチウムイオンキャパシターの電極被膜形成用塗料組成物。
An electrode film-forming coating composition comprising graphite and a binder in an aqueous medium containing a dispersant,
The particle size distribution is such that the D 10 particle diameter is 0.3 μm or more, the D 50 particle diameter is in the range of 0.5 to 15 μm, the D 90 particle diameter is 30 μm or less, and the R value of the Raman spectrum is 0.25 to 0.25. A range of 0.7,
A coating composition for forming an electrode film of a lithium ion capacitor, wherein the graphite having a half-width W value of D band in the range of 17 to 30 is added.
JP2008284445A 2008-11-05 2008-11-05 Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition Pending JP2010114206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284445A JP2010114206A (en) 2008-11-05 2008-11-05 Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284445A JP2010114206A (en) 2008-11-05 2008-11-05 Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition

Publications (1)

Publication Number Publication Date
JP2010114206A true JP2010114206A (en) 2010-05-20

Family

ID=42302554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284445A Pending JP2010114206A (en) 2008-11-05 2008-11-05 Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition

Country Status (1)

Country Link
JP (1) JP2010114206A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013101825A (en) * 2011-11-08 2013-05-23 Toyota Motor Corp Sealed lithium secondary battery
WO2014057909A1 (en) * 2012-10-09 2014-04-17 イビデン株式会社 Carbon material for electricity storage device, process for manufacturing same, and electricity storage device using same
JPWO2012086340A1 (en) * 2010-12-20 2014-05-22 Jsr株式会社 Electric storage device, lithium ion capacitor, and negative electrode for lithium ion capacitor
US9761876B2 (en) 2012-12-04 2017-09-12 Gs Yuasa International Ltd. Energy storage device and energy storage unit
CN107731563A (en) * 2017-06-21 2018-02-23 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 A kind of preparation method of various dimensions conductive agent composite conducting slurry
JP2018081753A (en) * 2016-11-14 2018-05-24 マクセルホールディングス株式会社 Negative electrode for nonaqueous electrolyte solution based electrochemical element, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
JP2019021805A (en) * 2017-07-19 2019-02-07 Jsr株式会社 Electrode body and electric storage device
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
JP2019102425A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet thereof, battery and application thereof
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle
WO2022092050A1 (en) * 2020-10-27 2022-05-05 パナソニックIpマネジメント株式会社 Electrochemical device
WO2023238495A1 (en) * 2022-06-08 2023-12-14 デンカ株式会社 Slurry, method for producing electrodes, and method for producing batteries
WO2024048182A1 (en) * 2022-08-31 2024-03-07 パナソニックIpマネジメント株式会社 Electrochemical device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237949A (en) * 1991-01-22 1992-08-26 Mitsubishi Petrochem Co Ltd Electrode material
JPH07122262A (en) * 1993-10-27 1995-05-12 Toray Ind Inc Electrode and its manufacture and secondary battery using the electrode
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
JP2006073480A (en) * 2004-09-06 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery and its manufacturing method
JP2007184127A (en) * 2006-01-05 2007-07-19 Nissan Motor Co Ltd Secondary battery, electrode therefor, and manufacturing method thereof
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2008091678A (en) * 2006-10-03 2008-04-17 Hitachi Chem Co Ltd Binder resin emulsion for hybrid capacitor electrode, hybrid capacitor electrode using binder resin emulsion, and hybrid capacitor including hybrid capacitor electrode
JP2008103569A (en) * 2006-10-19 2008-05-01 Nec Electronics Corp Semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237949A (en) * 1991-01-22 1992-08-26 Mitsubishi Petrochem Co Ltd Electrode material
JPH07122262A (en) * 1993-10-27 1995-05-12 Toray Ind Inc Electrode and its manufacture and secondary battery using the electrode
JP2002075364A (en) * 2000-08-30 2002-03-15 Sony Corp Positive electrode active material, its manufacturing method, nonaqueous electrolyte battery, and manufacturing method of battery
JP2006073480A (en) * 2004-09-06 2006-03-16 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery and its manufacturing method
JP2007184127A (en) * 2006-01-05 2007-07-19 Nissan Motor Co Ltd Secondary battery, electrode therefor, and manufacturing method thereof
JP2008047458A (en) * 2006-08-18 2008-02-28 Kri Inc Electrode for power storage device, and power storage device using it
JP2008091678A (en) * 2006-10-03 2008-04-17 Hitachi Chem Co Ltd Binder resin emulsion for hybrid capacitor electrode, hybrid capacitor electrode using binder resin emulsion, and hybrid capacitor including hybrid capacitor electrode
JP2008103569A (en) * 2006-10-19 2008-05-01 Nec Electronics Corp Semiconductor device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012086340A1 (en) * 2010-12-20 2014-05-22 Jsr株式会社 Electric storage device, lithium ion capacitor, and negative electrode for lithium ion capacitor
JP2013101825A (en) * 2011-11-08 2013-05-23 Toyota Motor Corp Sealed lithium secondary battery
WO2014057909A1 (en) * 2012-10-09 2014-04-17 イビデン株式会社 Carbon material for electricity storage device, process for manufacturing same, and electricity storage device using same
JPWO2014057909A1 (en) * 2012-10-09 2016-09-05 イビデン株式会社 Carbon material for power storage device, method for producing the same, and power storage device using the same
US9761876B2 (en) 2012-12-04 2017-09-12 Gs Yuasa International Ltd. Energy storage device and energy storage unit
JP2018081753A (en) * 2016-11-14 2018-05-24 マクセルホールディングス株式会社 Negative electrode for nonaqueous electrolyte solution based electrochemical element, method for manufacturing the same, lithium ion secondary battery, and method for manufacturing the same
CN107731563A (en) * 2017-06-21 2018-02-23 中国科学院苏州纳米技术与纳米仿生研究所南昌研究院 A kind of preparation method of various dimensions conductive agent composite conducting slurry
JP2019021805A (en) * 2017-07-19 2019-02-07 Jsr株式会社 Electrode body and electric storage device
CN111033816A (en) * 2017-08-28 2020-04-17 株式会社村田制作所 Nonaqueous electrolyte battery and communication device
WO2019044771A1 (en) * 2017-08-28 2019-03-07 株式会社村田製作所 Nonaqueous electrolyte battery and communication equipment
JPWO2019044771A1 (en) * 2017-08-28 2020-08-27 株式会社村田製作所 Non-aqueous electrolyte battery and communication equipment
CN111033816B (en) * 2017-08-28 2022-09-13 株式会社村田制作所 Nonaqueous electrolyte battery and communication device
US11811048B2 (en) 2017-08-28 2023-11-07 Murata Manufacturing Co., Ltd. Non-aqueous electrolyte solution battery and communication device
JP2019102425A (en) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet thereof, battery and application thereof
KR20210068497A (en) * 2018-10-10 2021-06-09 후난 진예 하이-테크 컴퍼니 리미티드 Lithium ion battery negative active material, lithium ion battery negative electrode, lithium ion battery, battery pack and battery power vehicle
JP2022502827A (en) * 2018-10-10 2022-01-11 フーナン ジンイェ ハイ−テック カンパニー リミテッドHunan Jinye High−Tech Co., Ltd. Lithium Ion Battery Negative Active Material, Lithium Ion Battery Negative, Lithium Ion Battery, Battery Pack, and Battery Powered Vehicle
JP7128961B2 (en) 2018-10-10 2022-08-31 フーナン ジンイェ ハイ-テック カンパニー リミテッド Lithium-ion battery negative electrode active material, lithium-ion battery negative electrode, lithium-ion battery, battery pack, and battery-powered vehicle
KR102620780B1 (en) 2018-10-10 2024-01-05 후난 진예 하이-테크 컴퍼니 리미티드 Lithium-ion battery cathode active material, lithium-ion battery cathode, lithium-ion battery, battery pack and battery power vehicle
WO2022092050A1 (en) * 2020-10-27 2022-05-05 パナソニックIpマネジメント株式会社 Electrochemical device
WO2023238495A1 (en) * 2022-06-08 2023-12-14 デンカ株式会社 Slurry, method for producing electrodes, and method for producing batteries
WO2024048182A1 (en) * 2022-08-31 2024-03-07 パナソニックIpマネジメント株式会社 Electrochemical device

Similar Documents

Publication Publication Date Title
JP5261127B2 (en) Coating composition for forming a negative electrode film and an electrode film of a lithium ion capacitor
JP2010114206A (en) Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP7042589B2 (en) Negative electrode
KR102650390B1 (en) Anode electrode compositions and aqueous dispersions for battery applications
Honbo et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding
US9722248B2 (en) Electrode formulations comprising graphenes
US20120099244A1 (en) Electrode of high-density super capacitor and method for manufacturing same
JP6185984B2 (en) Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
CN103107338A (en) Method for manufacturing lithium secondary battery
EP2811550B1 (en) Composition for forming secondary cell electrode, secondary cell electrode, and secondary cell
JP2011253620A (en) Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
JP5736928B2 (en) Conductive base paint for capacitor, electrode for capacitor, electric double layer capacitor and lithium ion capacitor
JP6871167B2 (en) Negative electrode material, negative electrode and lithium ion secondary battery
JP6543428B1 (en) Negative electrode active material for secondary battery and secondary battery
WO2019156031A1 (en) Lithium ion secondary battery electrode, production method for same, and lithium ion secondary battery
JP2010034300A (en) Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
JP3849769B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
KR101591712B1 (en) Binders in anode materials of lithium secondary battery
KR101519979B1 (en) Anode materials of lithium secondary ion battery
Song et al. An effective approach to improve electrochemical performance of thick electrodes
WO2013154176A1 (en) Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2003123754A (en) Graphite particles for negative electrode of nonaqueous secondary battery
JP2009266910A (en) Paste composition for forming electrode of electric double layer capacitor
JP6874283B2 (en) Conductive compositions, grounded current collectors for power storage devices, electrodes for power storage devices, and power storage devices
JP2019117725A (en) Conductive composition, power collector with ground layer for electricity storage device, electrode for electricity storage device, and electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016