JP3849769B2 - Graphite particles for negative electrode of non-aqueous secondary battery - Google Patents

Graphite particles for negative electrode of non-aqueous secondary battery Download PDF

Info

Publication number
JP3849769B2
JP3849769B2 JP2001368812A JP2001368812A JP3849769B2 JP 3849769 B2 JP3849769 B2 JP 3849769B2 JP 2001368812 A JP2001368812 A JP 2001368812A JP 2001368812 A JP2001368812 A JP 2001368812A JP 3849769 B2 JP3849769 B2 JP 3849769B2
Authority
JP
Japan
Prior art keywords
graphite particles
diameter
negative electrode
aqueous secondary
apparent density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001368812A
Other languages
Japanese (ja)
Other versions
JP2003168432A (en
Inventor
克知 大関
豊樹 堀澄
稔 白髭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2001368812A priority Critical patent/JP3849769B2/en
Publication of JP2003168432A publication Critical patent/JP2003168432A/en
Application granted granted Critical
Publication of JP3849769B2 publication Critical patent/JP3849769B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明が属する技術分野】
この発明は、非水系二次電池の負極に使用する黒鉛粒子に関し、特に充放電効率および放電負荷特性を向上させることが可能な負極用黒鉛粒子に関するものである。
【0002】
【従来の技術】
非水系二次電池、例えば、リチウムイオン二次電池はノート形パソコンや携帯電話などの充電可能な電源として普及しているが、使用機器類の軽薄短小化などから電池の高容量化や高電圧化の要求も益々強くなっている。このような要求を満たすためには負極材料を高容量化することが必須である。負極活物質としては、従来から使用されているメソフェーズピッチ焼成炭素材料であるメソフェーズカーボンマイクロビーズ(MCMB)やメソフェーズカーボンファイバー(MCF)に代え、黒鉛粒子を用いる検討が進められている。これは、MCMBやMCFは黒鉛化が不十分であるため放電容量が320mAh/gにとどまっているのに対し、黒鉛粒子は結晶性が高く、理論的な充放電容量である372mAh/gに近い値のものを得ることができ、また電池の高電圧化にも適しているからである。
【0003】
また、非水系二次電池の電解液として、近年、従来から使用されているエチレンカーボネート(EC)にジメチルカーボネート(DMC)やジエチルカーボネート(DEC)を混合した有機溶媒に代え、プロピレンカーボネート(PC)やγ−ブチロラクトン(GBL)などの第3石油類を含有したものが注目を浴びている。これは、ECの融点が39℃と高く(常温で固体の物質)、ECを含有した電解液では低温下でのイオン導電性が低くなり、また、DMCの沸点が90〜91℃、DECの沸点が126℃と低く、何れもが気化し易いので電池の内圧上昇を引き起こす恐れと共に、引火性が高いので安全性でも懸念があるのに対し、PCやGBLは常温において液体で誘電率も大きいため低温化でのイオン導電性が高く、電池を低温環境下で使用する際の放電特性を改善できる点に着目したものである。また、PCやGBL単体の沸点は200℃以上であることから、DMCやDECと混合して電解液とした非水系二次電池を高温環境下で使用しても熱によるガス発生が少なく、電池パッケージの膨張を抑制でき、安全性も向上できる。
【0004】
【発明が解決しようとする課題】
上記した電解液としてPCやGBLを含有した非水系二次電池は従来の非水系二次電池の特性を改善できることは分かっているが、負極活物質として結晶性の高い黒鉛粒子を用いた場合、充電時に黒鉛表面でPCやGBLが分解し、充放電効率が著しく低下してしまう。この発明は、そのような問題を解消して充放電効率および放電負荷特性をより向上することを課題としている。
【0005】
【課題を解決するための手段】
上記課題を解決するために、この発明の非水系二次電池の負極用黒鉛粒子は、プロピレンカーボネート(PC)やγ−ブチロラクトン(GBL)などの第3石油類を含有した電解液下で、リチウムイオンを吸蔵・放出可能な非水系二次電池の負極用黒鉛粒子がリン状またはリン片状の天然黒鉛粒子から構成される塊状黒鉛粒子群であり、該塊状黒鉛粒子群が次の(ア)〜(ウ)の要件を具備していることを特徴としている。
(ア)前記塊状黒鉛粒子群はレーザー光回折法による累積50%径(D50径)が10〜25μm、窒素ガス吸着法による比表面積が2.5〜5m2/g、静置法による見掛け密度が0.45g/cm以上、タップ法による見掛け密度が0.70g/cm以上である。
(イ)前記タップ法による見掛け密度は静置法による見掛け密度の1.3倍〜2.0倍の範囲である。
(ウ)ラマン分光分析の1,350cm−1付近に現れるDピークと1,580cm−1付近に現れるGピークの面積強度比(I/I)が0.1〜0.45の範囲である。
以上の発明は請求項2〜4でより詳細に特定可能である。すなわち、
(エ)前記黒鉛粒子は菱面体晶比率が20〜35%の範囲である。
(オ)前記塊状黒鉛粒子群のレーザー光回折法による累積50%径(D50径)の値は同回析法による累積10%径(D10径)の値の1.5倍〜2.5倍の範囲であり、同回析法による累積90%径(D90径)の値は累積50%径(D50径)の値の1.5倍〜2.5倍の範囲である。
(カ)前記黒鉛粒子群に、C10を基本構造とする澱粉の誘導体、C10を基本構造とする粘性多糖類、C10を基本構造とする水溶性セルロース誘導体、ポリウロニドまたは水溶性合成樹脂からなる群から選ばれる1種以上の界面活性剤を0.1〜5重量%吸着または被覆している。
【0006】
【発明の実施の形態】
以下、以上の発明のリチウムイオンを吸蔵・放出可能な非水系二次電池の負極用黒鉛粒子について説明する。
発明の第1の特徴は、前記黒鉛粒子はリン状またはリン片状の天然黒鉛粒子からなる塊状黒鉛粒子群で構成されて、前記塊状黒鉛粒子群はレーザー光回折法による累積50%径(D50径)が10〜25μm、窒素ガス吸着法による比表面積が2.5〜5m/g、静置法による見掛け密度が0.45g/cm以上、タップ法による見掛け密度が0.70g/cm以上であり、前記タップ法による見掛け密度は静置法による見掛け密度の1.3倍〜2.0倍の範囲であり、さらに、前記塊状黒鉛粒子群はラマン分光分析の1,350cm−1付近に現れるDピークと1,580cm−1付近に現れるGピークの面積強度比(I/I)が0.1〜0.45の範囲になっている。
【0007】
ここで、レーザー光回折法(レーザー回析式粒度分布測定装置による回析法、実施例ではセイシン企業製のPRO7000を使用した)において、発明の塊状黒鉛粒子群としては、D50径(平均粒子径)の値が10μm未満では粒子径として小さすぎ、黒鉛粒子間の接触抵抗が増加して形成した塗膜の導電性が劣化する傾向がある。したがって、得られる電池特性としては充放電容量や充放電負荷特性が低下すると共に、電解液の分解に伴う充放電効率が低下する。逆に、D50径の値が25μmを超えると、黒鉛粒子群の粒子径としては大きすぎ、充放電時のリチウムイオンの黒鉛内部および外部への拡散に時間を要し、充放電負荷特性が低下すると共に、形成した塗膜の平滑性が悪くなり、充電時に局部的にリチウムが析出する恐れがある。
【0008】
また、このD50径(平均粒子径)の値と相関性があるが、窒素ガス吸着法による比表面積が2.5m/g未満では、黒鉛粒子群としては比表面積の値が低く、粗大な粒子群となる。したがって、充放電時のリチウムイオンの黒鉛内部および外部への拡散に時間を要し、充放電負荷特性が低下すると共に、形成した塗膜の平滑性が悪くなり、充電時に局部的にリチウムが析出する恐れがある。逆に、窒素ガス吸着法による比表面積が6m/gを超えると、黒鉛粒子は微細な粒子群となり、黒鉛粒子間の接触抵抗が増加して形成した塗膜の導電性が劣化し、充放電容量や充放電負荷特性が低下すると共に、電解液の分解に伴う充放電効率が低下し、凝集が進んで嵩密度の低い粒子群になる傾向もあり、比表面積がこの値より大きいと好ましくない。
【0009】
前記塊状黒鉛粒子群の静置法による見掛け密度は0.45g/cm以上、タップ法による見掛け密度が0.70g/cm以上である。静置法による見掛け密度およびタップ法による見掛け密度の測定方法は、顔料試験方法(JIS K 5101)に記載されている。この発明における静置法およびタップ法による見掛け密度は、ホソカワミクロン製のパウダーテスターPT−R型を用いて測定したものである。静置法による見掛け密度の測定方法は、篩網を通して受器に試料を入れて、容積が100cmになったときの質量を測定することにより評価する。これに対して、タップ法による見掛け密度の測定方法は、試料を受器に投入しながら受器を180回タッピングした後の容積100cm当たりの質量を測定することにより評価する。静置法による見掛け密度の0.45g/cmおよびタップ法による見掛け密度の0.70g/cmの値は、この発明に適用される黒鉛粒子群の下限値である。リチウムイオン電池の高エネルギー密度化の要求に対しては、活物質の充填密度を高めること、言い換えれば塗膜の高密度化が必須であり、そのためには、できるだけ厚い塗膜を形成することが必要である。発明者らが検討した結果、塗膜を形成するためのスラリー固形分が45質量%以上であれば良好な塗膜を形成できることを見出した。その固形分含量を達成するためには、静置法による見掛け密度が0.45g/cm以上、タップ法による見掛け密度が0.70g/cm以上の値が好ましいことが分かった。また、これらの見掛け密度未満では、塗工時の膜厚の変動が大きくなり、十分な密着強度を得るために必要な結着剤の配合量も多くなり、実効容量の低下を引き起こす懸念がある。上記測定方法のとおり、タップ法による見掛け密度は受器に振動を与える分、受器内の試料は充填が進むため、静置法による見掛け密度と比べるとその値は高くなる。
【0010】
また、タップ法による見掛け密度は、静置法による見掛け密度の1.3倍〜2.0倍の範囲にある。すなわち、タッピングにより受器内の黒鉛粒子群の充填が進まないもの、および進みすぎるものは、この発明の範囲外となる。また、前記密度の比が1.3未満では、タッピングによる充填が進まない材料となり、実際の負極塗膜形成工程では、塗膜のプレスによる密度制御が困難になる。逆に、密度の比が2.0を超えるものは、タッピングによる充填が進みすぎる材料となり、乾燥条件等により塗膜厚さが変動し易く、プレスによる塗膜密度上昇時にも変動が生じ易く、さらにプレスによる残留応力が大きいために、銅箔界面から剥離し易くなる。
【0011】
また、発明の塊状黒鉛粒子群は、ラマン分光分析の1,350cm−1付近に現れるDピークと1,580cm−1付近に現れるGピークの面積強度比(I/I)が0.1〜0.45の範囲とすることである。ラマン分光分析の1,580cm−1付近のピーク(Gピーク)は黒鉛骨格の内面伸縮振動モードに帰属されるもので、黒鉛構造の完全性に対応するパラメーターである。一方、1,350cm−1付近に現れるピーク(Dピーク)は黒鉛本来の結晶構造からは許容されないもので、黒鉛構造の乱れが多くなると増加するパラメーターである。I/Iが0.1未満では黒鉛粒子表面の黒鉛化度が高いと言え、上記した電解液中のPCやGBLによる分解が増加する。一方、I/Iが大きい程、前記PCやGBLによる分解が抑制されるものとなるが、I/Iが0.45を超える黒鉛粒子では、黒鉛の結晶性が悪くなり、高容量化の目的を果たせなくなる。大きな充放電容量を得るために、黒鉛の結晶性は、粉末X線解析の学振法による格子定数aが0.2455〜0.2465nm、cが0.670〜0.672nm、結晶子の大きさLa(110)が100nm以上、Lc(002)が100nm以上であり、特にLc(112)は20nm以上が好ましい。
【0012】
発明の第2の特徴は、黒鉛粒子の菱面体晶比率が20〜35%の範囲になっていることである。菱面体晶は黒鉛結晶の積層構造がABCABCA…となったものであり、もう一つの黒鉛結晶積層構造としてはABABAB…となる六方晶系がある。発明者らは、黒鉛結晶のX線回折分析結果として知ることができる菱面体晶量に関して検討した結果、黒鉛結晶の菱面体晶比率(菱面体晶量/(菱面体晶量+六方晶系量))が20〜35%が好ましく、より好ましくは20〜30%であることを見出した。菱面体晶比率が20%未満では上記したPCやGBLなどの高沸点溶媒を添加した電解液系では、充放電効率が低下してしまう。一方、菱面体晶比率が35%を超えると黒鉛の結晶子の大きさが低下する傾向にあり、容量が低下するので好ましくない。なお、この見解は、PCを含有する非水電解液系での黒鉛の挙動として、菱面体晶量が多くなるほど黒鉛の剥離が少なくなることを論じた Journal of The Electrochemical Society, 146 (10), 3660-3665 (1999)からも裏付けられる。
【0013】
発明の第3の特徴は、塊状黒鉛粒子群のレーザー光回折法によるD50径の値は同法による累積10%径の値D10径の1.5倍〜2.5倍の範囲であり、同法による累積90%径の値D90径はD50径の値の1.5倍〜2.5倍の範囲にすることである。D50径の値がD10径の値の1.5倍未満の場合には、形成した塗膜中の粒子の充填性が悪く、得られる塗膜の電気抵抗値が高くなり、充放電負荷特性が劣化すると共に密着性も低下する。一方、D50径の値がD10径の値の2.5倍を越える場合、粒子の充填性が過度に高まり電解液の浸透性が悪くなり、また充放電サイクルにおいて初回から高い容量を得ることができず、さらに最大容量に達するまでのサイクル数が多くなる。また、D90径の値がD50径の値の1.5倍未満の場合も、前述の理由と同様に、形成した塗膜中の粒子の充填性が悪く、得られる塗膜の電気抵抗値が高くなり、充放電負荷特性が劣化すると共に密着性も低下する。さらに、D90径の値がD50径の値の2.5倍を越える場合には、粗大粒子が多くなり、平滑な塗膜を形成し難く、局部的なリチウムの析出を起こし易くなると共に密着性の低下を引き起こす懸念があるので好ましくない。
【0014】
発明の第4の特徴は、以上の黒鉛粒子群にはC10を基本構造とする澱粉の誘導体、C10を基本構造とする粘性多糖類、C10を基本構造とする水溶性セルロース誘導体、ポリウロニドまたは水溶性合成樹脂からなる群から選ばれる1種以上の界面活性剤0.1〜5重量%が吸着または被覆されていることである。この点は、界面活性剤が黒鉛粒子群表面に吸着または被覆されることで、黒鉛表面のダングリングボンドなどの電解液を分解またはリチウムイオンを捕捉するような活性点を塞ぐため、不可逆容量を低減することが出来る。ここで、界面活性剤が0.1重量部未満では、黒鉛表面の活性点の不活性化が十分でないので、不可逆容量の低減効果が少ない。また、5重量部を超えるとリチウムイオンの出入りを阻害し、さらに電極の導電性が極端に低下するので、充放電容量の低下と負荷特性の低下を引起すので好ましくない。
【0015】
【実施例】
次に、この発明の優位性を実施例および比較例により明らかにする。
<実施例1〜4、比較例1,2>
(試料の調製)下記の表1に示す天然リン状または天然リン片状の黒鉛から構成される塊状黒鉛粒子を、界面活性剤としてカルボキシメチルセルロースナトリウム塩の水溶液中に投入して撹拌して放置した。黒鉛粒子が沈降した後、上澄みを除去して黒鉛スラリーを乾燥、解砕してカルボキシメチルセルロースナトリウム塩が表面に吸着または被覆された黒鉛試料(表1中の試料番号1〜6、つまり実施例1〜4と比較例1と2)を調製した。なお、表1の試料番号1〜6の各塊状黒鉛粒子は、市販のリン状または天然リン片状の塊状黒鉛粒子を用い、加熱処理条件および表面吸着被覆剤の吸着被覆量等を変えることにより実施例および比較例として最適なものを例示したものである。この場合、(I/I)はラマン分光分析のDピークとGピークの面積強度比である。この調整方法では、面積強度比を実施例1のように低く(黒鉛粒子表面の黒鉛化度を高く)するときは、例えば、700〜1500℃程度の温度範囲で適当な時間、当該黒鉛粒子を熱処理して黒鉛化度を上げるようにしたり、逆に、面積強度比を比較例2のように高く(黒鉛粒子表面の黒鉛化度を低く、すなわちアモルファス化)するときは、例えば、当該黒鉛粒子を粉砕処理して表面破壊することで調整する。また、ラマン分光分析に使用した装置はRENISHAW製の顕微ラマンシステムで、光源がArイオンレザーである。菱面体晶比率、格子定数、結晶の大きさはりがく製のX線回析分析装置を使用した。
【0016】
【表1】

Figure 0003849769
【0017】
表1の各黒鉛試料は、黒鉛試料90重量部に対して、10重量部のポリフッ化ビニリデン(PVDF、呉羽化学工業(株)製、商品名:KF1000)を結着剤とし、N−メチル−2−ピロリドン(NMP、試薬特級)を溶媒として用い、混合・分散処理して10Pa・s程度のスラリーを調製した。これらのスラリーを、集電体となる圧延銅箔の上に、ギャップ200μmのドクターブレードを用いて塗布し、120℃で10分間乾燥し、1ton/cmの圧力でプレスを行い負極塗膜とした。下記の表2はその負極塗膜について評価した一覧表である。表2において、試料番号1〜6、つまり実施例1〜4と比較例1と2は表1に対応している。
【0018】
(密着性)前記負極塗膜上に幅18mmのセロファンテープを貼って2kgの荷重で圧着した後、セロファンテープを引き剥がすために必要な荷重をプッシュプルゲージで測定した。また、負極塗膜の剥離(破壊)状態を観察した。なお、スラリー固形分は、スラリー中の黒鉛とPVDFの重量により計算した。塗膜密度は、一定面積の重量と厚さ計測により算出し、前記スラリーを塗布し乾燥した乾燥後とプレス後の各値を示した。
【0019】
(電極特性)前記負極塗膜を銅箔と共にポンチで打ち抜いて電極を作製した。対極として金属リチウムを用い、電解液として1M−LiPF/EC+DMC+PC(1:1:1)を用いたコイン形モデルセルを作製し、0.5mA/cmの電流密度で0.01V(vs.Li/Li)まで定電流でリチウムを負極内に吸蔵(充電)させ充電容量を求めた。また、初回の放電容量は、0.5mA/cmの定電流で1.1V(vs.Li/Li)まで放電させて求めた。さらに、0.5mA/cmで充電を行った後、6mA/cmの電流密度で1.1V(vs.Li/Li)まで放電させたときの放電容量を求め、0.5mA/cmで放電したときの容量との比率を求め、放電負荷特性(放電レート)を評価した。
【0020】
【表2】
Figure 0003849769
【0021】
表1と表2からは、見掛け密度が静置法で0.45g/cm以上、タップ法で0.70g/cm以上であれば、固形分45質量%以上のスラリーを調製することができる。その結果得られる乾燥塗膜の厚さは120μm〜130μmであり、塗膜密度は0.8g/cm程度であった。なお、得られた塗膜をプレスした際の塗膜密度の変化は、静置法およびタップ法による見掛け密度の比率が大きいものほど変化し易いことが分かる。
なお、表2中に記した本発明の範囲となる実施例1〜4の各試料では、得られる塗膜強度および塗膜密度、また電極特性はいずれも良好であった。比較例1においてはI/Iが本発明の範囲外で小さく、電解液の分解により不可逆容量が大きい。比較例2はI/Iが本発明の範囲よりも大きく、黒鉛の結晶性が悪くなり放電容量が小さくなっている。
【0022】
<実施例5〜8、比較例3,4>
(試料の調製)
表3に示す天然リン状および天然リン片状の黒鉛から構成される塊状黒鉛粒子を、界面活性剤としてアルギン酸プロピレングリコールエステルの水溶液中に投入して撹拌して放置した。黒鉛粒子が沈降した後、上澄みを除去して黒鉛スラリーを乾燥、解砕してアルギン酸プロピレングリコールエステルが表面に吸着または被覆された黒鉛試料を調製した。密着性および電極特性等の評価は前述と同様に行った。
【0023】
【表3】
Figure 0003849769
【0024】
各黒鉛試料における、上記の各種評価の結果を表4に示す。
【0025】
【表4】
Figure 0003849769
【0026】
見掛け密度が静置法で0.45g/cm以上、タップ法で0.70g/cm以上であれば、固形分45質量%以上のスラリーを調製することができる。その結果得られる乾燥塗膜の厚さは120μm〜130μmであり、塗膜密度は0.8g/cm程度であった。表中に記した本発明の範囲となる実施例5〜8の各試料では、得られる塗膜強度および塗膜密度、また電極特性はいずれも良好であった。比較例3、4においては菱面体晶比率が本発明の範囲外で小さく、電解液の分解により不可逆容量が大きくなっている。
【0027】
【発明の効果】
以上の実施例から明らかなように、この発明の負極用黒鉛粒子を用いることにより、上記した課題を解消して第一サイクルにおける不可逆容量を低減でき、高容量で安全性の高い電池負極を得ることができる。さらに、電池の塗膜強度および塗膜密度が良好となり、かつ各種電極特性に優れた非水系二次電池の負極を得ることができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to graphite particles used for a negative electrode of a non-aqueous secondary battery, and particularly relates to negative electrode graphite particles capable of improving charge / discharge efficiency and discharge load characteristics.
[0002]
[Prior art]
Non-aqueous secondary batteries, such as lithium-ion secondary batteries, are widely used as rechargeable power sources for notebook computers and mobile phones. There is an increasing demand for conversion. In order to satisfy such a requirement, it is essential to increase the capacity of the negative electrode material. As the negative electrode active material, a study of using graphite particles instead of mesophase carbon microbeads (MCMB) and mesophase carbon fibers (MCF), which are conventionally used mesophase pitch calcined carbon materials, is in progress. This is because MCMB and MCF have insufficient graphitization, so the discharge capacity is only 320 mAh / g, whereas graphite particles have high crystallinity and are close to the theoretical charge / discharge capacity of 372 mAh / g. This is because the value can be obtained and is suitable for increasing the voltage of the battery.
[0003]
In addition, as an electrolyte for a non-aqueous secondary battery, propylene carbonate (PC) is used in place of an organic solvent in which dimethyl carbonate (DMC) or diethyl carbonate (DEC) is mixed with ethylene carbonate (EC), which has been used in the past. Those containing a third petroleum such as γ-butyrolactone (GBL) are attracting attention. This is because the melting point of EC is as high as 39 ° C. (substance that is solid at normal temperature), and the electrolyte containing EC has low ionic conductivity at low temperatures, and the boiling point of DMC is 90 to 91 ° C. The boiling point is as low as 126 ° C, both of which are liable to vaporize, causing an increase in the internal pressure of the battery, and there is a concern about safety because of its high flammability, whereas PC and GBL are liquid at room temperature and have a large dielectric constant Therefore, the ionic conductivity at low temperature is high, and attention is paid to the point that the discharge characteristics when the battery is used in a low temperature environment can be improved. In addition, since the boiling point of PC and GBL alone is 200 ° C. or higher, even when a non-aqueous secondary battery mixed with DMC or DEC and used as an electrolyte is used in a high temperature environment, there is little gas generation due to heat, and the battery Expansion of the package can be suppressed and safety can be improved.
[0004]
[Problems to be solved by the invention]
Although it has been found that non-aqueous secondary batteries containing PC or GBL as the above electrolyte can improve the characteristics of conventional non-aqueous secondary batteries, when using highly crystalline graphite particles as the negative electrode active material, When charging, PC and GBL are decomposed on the graphite surface, and the charge / discharge efficiency is significantly reduced. This invention makes it a subject to eliminate such a problem and to improve charging / discharging efficiency and a discharge load characteristic more.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the graphite particles for the negative electrode of the non-aqueous secondary battery of the present invention are obtained by using lithium in an electrolyte containing a third petroleum such as propylene carbonate (PC) or γ-butyrolactone (GBL). The negative electrode graphite particles of the non-aqueous secondary battery capable of occluding and releasing ions are massive graphite particles composed of phosphorus-like or flake-like natural graphite particles, and the massive graphite particles are the following (a) It is characterized by having the requirements of (c).
(A) The massive graphite particles group has a cumulative 50% diameter (D50 diameter) of 10 to 25 μm by a laser diffraction method, a specific surface area of 2.5 to 5 m 2 / g by a nitrogen gas adsorption method, and an apparent density by a stationary method. There 0.45 g / cm 3 or more, the apparent density by tapping method is 0.70 g / cm 3 or more.
(A) The apparent density by the tap method is in the range of 1.3 to 2.0 times the apparent density by the stationary method.
(C) The area intensity ratio (I D / I G ) between the D peak appearing near 1,350 cm −1 and the G peak appearing near 1,580 cm −1 in the Raman spectroscopic analysis is in the range of 0.1 to 0.45. is there.
The above invention can be specified in more detail in claims 2 to 4. That is,
(D) The graphite particles have a rhombohedral ratio in the range of 20 to 35%.
(E) The value of the cumulative 50% diameter (D50 diameter) of the massive graphite particles by the laser light diffraction method is 1.5 to 2.5 times the value of the cumulative 10% diameter (D10 diameter) by the diffraction method. The cumulative 90% diameter (D90 diameter) value by the diffraction method is in the range of 1.5 to 2.5 times the cumulative 50% diameter (D50 diameter) value.
(F) in the graphite particles, derivatives of starch and C 6 H 10 O 5 as a basic structure, C 6 H 10 O 5 a basic structure to viscous polysaccharide, a C 6 H 10 O 5 as a basic structure One or more surfactants selected from the group consisting of water-soluble cellulose derivatives, polyuronides or water-soluble synthetic resins are adsorbed or coated at 0.1 to 5% by weight.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the graphite particles for a negative electrode of a non-aqueous secondary battery capable of inserting and extracting lithium ions according to the above invention will be described.
The first feature of the present invention is that the graphite particles are composed of massive graphite particles composed of phosphorus-like or flake-like natural graphite particles, and the massive graphite particles are accumulated 50% in diameter (D50) by a laser light diffraction method. Diameter) is 10 to 25 μm, specific surface area by nitrogen gas adsorption method is 2.5 to 5 m 2 / g, apparent density by static method is 0.45 g / cm 3 or more, apparent density by tap method is 0.70 g / cm 3 or more, the apparent density by the tap method is in the range of 1.3 to 2.0 times the apparent density by the stationary method, and the lump graphite particle group is 1,350 cm −1 of Raman spectroscopic analysis. The area intensity ratio (I D / I G ) of the D peak appearing in the vicinity and the G peak appearing in the vicinity of 1,580 cm −1 is in the range of 0.1 to 0.45.
[0007]
Here, in the laser light diffraction method (a diffraction method using a laser diffraction particle size distribution measuring apparatus, in the examples, PRO7000 manufactured by Seishin Enterprise Co., Ltd.) is used, the bulk graphite particle group of the invention has a D50 diameter (average particle diameter). If the value of) is less than 10 μm, the particle diameter is too small, and the contact resistance between the graphite particles tends to increase and the conductivity of the coating film formed tends to deteriorate. Therefore, as the obtained battery characteristics, the charge / discharge capacity and the charge / discharge load characteristics are lowered, and the charge / discharge efficiency accompanying the decomposition of the electrolytic solution is lowered. On the other hand, if the D50 diameter exceeds 25 μm, the particle size of the graphite particles is too large, and it takes time to diffuse lithium ions into and out of the graphite during charging / discharging, resulting in reduced charge / discharge load characteristics. In addition, the smoothness of the formed coating film is deteriorated, and lithium may be locally deposited during charging.
[0008]
Further, although there is a correlation with the value of the D50 diameter (average particle diameter), when the specific surface area by the nitrogen gas adsorption method is less than 2.5 m 2 / g, the specific surface area is low and coarse as the graphite particle group. It becomes a particle group. Therefore, it takes time to diffuse lithium ions into and out of graphite during charging / discharging, and the charge / discharge load characteristics deteriorate, and the smoothness of the formed coating film deteriorates, and lithium is deposited locally during charging. There is a fear. On the contrary, when the specific surface area by the nitrogen gas adsorption method exceeds 6 m 2 / g, the graphite particles become a fine particle group, the contact resistance between the graphite particles is increased, and the conductivity of the formed coating film is deteriorated. While the discharge capacity and charge / discharge load characteristics decrease, the charge / discharge efficiency associated with the decomposition of the electrolytic solution also decreases, and there is a tendency that the aggregation progresses to a particle group having a low bulk density. Absent.
[0009]
Apparent density by the stationary method of the massive graphite particles is 0.45 g / cm 3 or more, the apparent density by tapping method is 0.70 g / cm 3 or more. The method for measuring the apparent density by the stationary method and the apparent density by the tap method is described in the pigment test method (JIS K 5101). The apparent density by the stationary method and the tap method in this invention is measured using a powder tester PT-R type manufactured by Hosokawa Micron. The method for measuring the apparent density by the stationary method is evaluated by putting a sample into a receiver through a sieve screen and measuring the mass when the volume reaches 100 cm 3 . On the other hand, the apparent density measurement method by the tap method is evaluated by measuring the mass per 100 cm 3 volume after tapping the receiver 180 times while putting the sample into the receiver. Value of 0.70 g / cm 3 apparent density by apparent density of 0.45 g / cm 3 and the tap method using the stationary method is the lower limit value of the graphite particles applied to this invention. In response to the demand for higher energy density of lithium ion batteries, it is essential to increase the packing density of the active material, in other words, to increase the density of the coating film. To that end, it is necessary to form a coating film that is as thick as possible. is necessary. As a result of investigations by the inventors, it was found that a good coating film can be formed if the slurry solid content for forming the coating film is 45% by mass or more. As to achieve a solids content, apparent density by the stationary method is 0.45 g / cm 3 or more, the apparent density by tapping method was found to be 0.70 g / cm 3 or more values are preferred. In addition, if the density is less than these apparent densities, the variation in film thickness during coating increases, and the amount of binder necessary to obtain sufficient adhesion strength increases, which may cause a decrease in effective capacity. . As shown in the above measurement method, the apparent density by the tap method is increased by the amount of vibration applied to the receiver, so that the value in the sample in the receiver is higher than the apparent density by the stationary method.
[0010]
Moreover, the apparent density by the tap method is in the range of 1.3 to 2.0 times the apparent density by the stationary method. That is, the case where the filling of the graphite particles in the receiver does not proceed due to the tapping and the case where the filling of the graphite particles does not proceed excessively are outside the scope of the present invention. Further, if the density ratio is less than 1.3, it becomes a material in which filling by tapping does not proceed, and it becomes difficult to control density by pressing the coating film in an actual negative electrode coating film forming step. On the contrary, if the density ratio exceeds 2.0, it becomes a material that is excessively filled by tapping, the coating thickness tends to fluctuate depending on the drying conditions, etc. Furthermore, since the residual stress by press is large, it becomes easy to peel from the copper foil interface.
[0011]
Further, massive graphite particles of the invention, the area intensity ratio of G peak appearing near D peak and 1,580Cm -1 appearing near 1,350Cm -1 Raman spectroscopy (I D / I G) is 0.1 It is to be in the range of ~ 0.45. A peak (G peak) in the vicinity of 1,580 cm −1 in Raman spectroscopic analysis belongs to the internal stretching vibration mode of the graphite skeleton, and is a parameter corresponding to the integrity of the graphite structure. On the other hand, the peak (D peak) appearing in the vicinity of 1,350 cm −1 is unacceptable from the original crystal structure of graphite, and is a parameter that increases as the disorder of the graphite structure increases. When I D / IG is less than 0.1, it can be said that the degree of graphitization on the surface of the graphite particles is high, and decomposition due to PC or GBL in the above-described electrolyte increases. On the other hand, the larger the I D / I G, wherein at the one degradation by PC and GBL is suppressed, the graphite particles greater than I D / I G 0.45, crystallinity of graphite is deteriorated, the high The purpose of capacity cannot be achieved. In order to obtain a large charge / discharge capacity, the crystallinity of graphite is as follows: Lattice constant a 0 of 0.2455 to 0.2465 nm, c 0 of 0.670 to 0.672 nm, crystallite The size La (110) is 100 nm or more, Lc (002) is 100 nm or more, and Lc (112) is preferably 20 nm or more.
[0012]
A second feature of the invention is that the rhombohedral ratio of the graphite particles is in the range of 20 to 35%. The rhombohedral crystal has a graphite crystal laminate structure of ABCABCA ..., and another graphite crystal laminate structure has a hexagonal crystal system of ABABAB .... The inventors have investigated the rhombohedral crystal amount that can be known as the X-ray diffraction analysis result of the graphite crystal. )) Was found to be 20-35%, more preferably 20-30%. When the rhombohedral ratio is less than 20%, the charge / discharge efficiency is lowered in the above-described electrolyte system to which a high-boiling solvent such as PC or GBL is added. On the other hand, if the rhombohedral crystal ratio exceeds 35%, the size of graphite crystallites tends to decrease, and the capacity decreases, which is not preferable. This view is based on the discussion of the behavior of graphite in a non-aqueous electrolyte system containing PC. The Journal of The Electrochemical Society, 146 (10), It is supported by 3660-3665 (1999).
[0013]
The third feature of the invention is that the value of D50 diameter of the massive graphite particles by the laser light diffraction method ranges from 1.5 times to 2.5 times the value of the 10% cumulative D10 diameter by the same method. The cumulative 90% diameter value D90 diameter according to the method is in the range of 1.5 times to 2.5 times the value of D50 diameter. When the value of D50 diameter is less than 1.5 times the value of D10 diameter, the packing property of the particles in the formed coating film is poor, the electric resistance value of the obtained coating film becomes high, and the charge / discharge load characteristics are As well as deterioration, the adhesiveness also decreases. On the other hand, if the value of D50 diameter exceeds 2.5 times the value of D10 diameter, the particle filling property becomes excessively high and the electrolyte permeability deteriorates, and a high capacity can be obtained from the first time in the charge / discharge cycle. The number of cycles until the maximum capacity is reached increases. Moreover, when the value of D90 diameter is less than 1.5 times the value of D50 diameter, the packing property of the particles in the formed coating film is poor as described above, and the electric resistance value of the coating film obtained is low. The charge / discharge load characteristics deteriorate and the adhesion decreases. Furthermore, when the value of D90 diameter exceeds 2.5 times the value of D50 diameter, coarse particles increase, it becomes difficult to form a smooth coating film, local precipitation of lithium is likely to occur, and adhesion is improved. This is not preferable because there is a concern of causing a decrease in the temperature.
[0014]
A fourth aspect of the invention, or derivatives of starch graphite particles having a basic structure of C 6 H 10 O 5, C 6 H 10 O 5 a viscous polysaccharide having a basic structure, C 6 H 10 O That is, 0.1 to 5% by weight of one or more surfactants selected from the group consisting of a water-soluble cellulose derivative having a basic structure of 5 , a polyuronide, or a water-soluble synthetic resin is adsorbed or coated. This is because the surface active agent is adsorbed or coated on the surface of the graphite particle group, so that the active site that decomposes the electrolyte solution such as dangling bonds on the graphite surface or traps lithium ions is blocked. It can be reduced. Here, when the surfactant is less than 0.1 part by weight, the inactivation of the active sites on the graphite surface is not sufficient, so that the effect of reducing the irreversible capacity is small. On the other hand, when the amount exceeds 5 parts by weight, the entry / exit of lithium ions is inhibited, and the conductivity of the electrode is extremely lowered, which causes a decrease in charge / discharge capacity and a decrease in load characteristics.
[0015]
【Example】
Next, the superiority of the present invention will be clarified by examples and comparative examples.
<Examples 1-4, Comparative Examples 1 and 2>
(Preparation of Sample) Bulk graphite particles composed of natural phosphorus-like or natural flake-like graphite shown in Table 1 below were put into an aqueous solution of carboxymethylcellulose sodium salt as a surfactant and stirred and allowed to stand. . After the graphite particles settle, the supernatant is removed, the graphite slurry is dried and crushed, and a graphite sample (sample numbers 1 to 6 in Table 1, that is, Example 1 in which carboxymethylcellulose sodium salt is adsorbed or coated on the surface) -4 and Comparative Examples 1 and 2) were prepared. In addition, each lump graphite particle of the sample numbers 1-6 of Table 1 uses the commercially available phosphorus-like or natural flake-like lump graphite particle, and changes heat-treatment conditions, the adsorption coating amount of a surface adsorption coating agent, etc. Examples that are optimum as examples and comparative examples are illustrated. In this case, (I D / I G ) is the area intensity ratio between the D peak and the G peak in Raman spectroscopic analysis. In this adjustment method, when the area intensity ratio is lowered as in Example 1 (the degree of graphitization of the graphite particle surface is increased), for example, the graphite particles are kept in a temperature range of about 700 to 1500 ° C. for an appropriate time. When heat treatment is performed to increase the degree of graphitization or, conversely, when the area intensity ratio is increased as in Comparative Example 2 (the graphitized particle surface has a low degree of graphitization, that is, amorphization), for example, the graphite particles Is adjusted by crushing the surface and breaking the surface. The apparatus used for Raman spectroscopic analysis is a micro Raman system manufactured by RENISHAW, and the light source is Ar ion leather. Rhombohedral crystal ratio, lattice constant, crystal size An X-ray diffraction analyzer manufactured by HAGAKU was used.
[0016]
[Table 1]
Figure 0003849769
[0017]
Each graphite sample in Table 1 is composed of 10 parts by weight of polyvinylidene fluoride (PVDF, manufactured by Kureha Chemical Industry Co., Ltd., trade name: KF1000) with respect to 90 parts by weight of the graphite sample, and N-methyl- Using 2-pyrrolidone (NMP, reagent grade) as a solvent, a slurry of about 10 Pa · s was prepared by mixing and dispersing. These slurries were applied onto a rolled copper foil serving as a current collector using a doctor blade with a gap of 200 μm, dried at 120 ° C. for 10 minutes, and pressed at a pressure of 1 ton / cm 2 to form a negative electrode coating film did. Table 2 below is a list of the negative electrode coating films evaluated. In Table 2, sample numbers 1 to 6, that is, Examples 1 to 4 and Comparative Examples 1 and 2 correspond to Table 1.
[0018]
(Adhesiveness) A cellophane tape having a width of 18 mm was pasted on the negative electrode coating film and pressure-bonded with a load of 2 kg, and then a load necessary for peeling the cellophane tape was measured with a push-pull gauge. Moreover, the peeling (destruction) state of the negative electrode coating film was observed. The slurry solid content was calculated from the weight of graphite and PVDF in the slurry. The coating film density was calculated by measuring the weight and thickness of a certain area, and each value after drying and pressing after applying the slurry was shown.
[0019]
(Electrode characteristics) The negative electrode coating film was punched out with a copper foil with a punch to produce an electrode. A coin-shaped model cell using metal lithium as a counter electrode and 1M-LiPF 6 / EC + DMC + PC (1: 1: 1) as an electrolyte was prepared, and a current density of 0.5 mA / cm 2 was 0.01 V (vs. Lithium was occluded (charged) in the negative electrode at a constant current up to (Li / Li + ) to determine the charge capacity. The initial discharge capacity was determined by discharging to 1.1 V (vs. Li / Li + ) with a constant current of 0.5 mA / cm 2 . Further, after charging at 0.5 mA / cm 2, determine the discharge capacity when discharged at a current density of 6 mA / cm 2 until 1.1V (vs.Li/Li +), 0.5mA / cm The ratio with the capacity when discharged at 2 was obtained, and the discharge load characteristics (discharge rate) were evaluated.
[0020]
[Table 2]
Figure 0003849769
[0021]
Table 1 and the Table 2, the apparent density of the stationary method with 0.45 g / cm 3 or more, as long as 0.70 g / cm 3 or more tap method, be prepared having a solid content 45 wt% or more of the slurry it can. As a result, the thickness of the dried coating film was 120 μm to 130 μm, and the coating film density was about 0.8 g / cm 3 . In addition, it turns out that the change of the coating-film density at the time of pressing the obtained coating film changes so easily that the ratio of the apparent density by a stationary method and a tap method is large.
In addition, in each sample of Examples 1-4 used as the range of this invention described in Table 2, the coating-film intensity | strength and coating-film density which were obtained, and the electrode characteristic were all favorable. In Comparative Example 1, I D / I G is small outside the scope of the present invention, and the irreversible capacity is large due to decomposition of the electrolytic solution. In Comparative Example 2, I D / I G is larger than the range of the present invention, the crystallinity of graphite is deteriorated, and the discharge capacity is reduced.
[0022]
<Examples 5 to 8, Comparative Examples 3 and 4>
(Sample preparation)
Bulk graphite particles composed of natural phosphorus-like and natural flake-like graphite shown in Table 3 were placed in an aqueous solution of propylene glycol alginate as a surfactant and left to stand with stirring. After the graphite particles settled, the supernatant was removed, and the graphite slurry was dried and crushed to prepare a graphite sample in which propylene glycol alginate was adsorbed or coated on the surface. Evaluation of adhesion, electrode characteristics, and the like was performed as described above.
[0023]
[Table 3]
Figure 0003849769
[0024]
Table 4 shows the results of the various evaluations described above for each graphite sample.
[0025]
[Table 4]
Figure 0003849769
[0026]
An apparent density of 0.45 g / cm 3 or more standing method, if 0.70 g / cm 3 or more tap method, it is possible to prepare the solid content of 45 mass% or more of the slurry. As a result, the thickness of the dry coating film obtained was 120 μm to 130 μm, and the coating film density was about 0.8 g / cm 3 . In each sample of Examples 5 to 8 within the scope of the present invention described in the table, the obtained coating film strength, coating film density, and electrode characteristics were all good. In Comparative Examples 3 and 4, the rhombohedral ratio is small outside the scope of the present invention, and the irreversible capacity is increased due to the decomposition of the electrolytic solution.
[0027]
【The invention's effect】
As is clear from the above examples, by using the graphite particles for negative electrode of the present invention, the above-mentioned problems can be solved, the irreversible capacity in the first cycle can be reduced, and a battery negative electrode having high capacity and high safety can be obtained. be able to. Furthermore, the negative electrode of the non-aqueous secondary battery can be obtained which has good coating strength and coating density of the battery and is excellent in various electrode characteristics.

Claims (4)

プロピレンカーボネート(PC)やγ−ブチロラクトン(GBL)などの第3石油類を含有した電解液下で、リチウムイオンを吸蔵・放出可能な非水系二次電池の負極用黒鉛粒子がリン状またはリン片状の天然黒鉛粒子から構成される塊状黒鉛粒子群であり、該塊状黒鉛粒子群が次の(ア)〜(ウ)の要件を具備していることを特徴とする非水系二次電池の負極用黒鉛粒子。
(ア)前記塊状黒鉛粒子群はレーザー光回折法による累積50%径(D50径)が10〜25μm、窒素ガス吸着法による比表面積が2.5〜5m2/g、静置法による見掛け密度が0.45g/cm以上、タップ法による見掛け密度が0.70g/cm以上である。
(イ)前記タップ法による見掛け密度は静置法による見掛け密度の1.3倍〜2.0倍の範囲である。
(ウ)ラマン分光分析の1,350cm−1付近に現れるDピークと1,580cm−1付近に現れるGピークの面積強度比(I/I)が0.1〜0.45の範囲である。
The graphite particles for the negative electrode of the non-aqueous secondary battery capable of occluding and releasing lithium ions under an electrolyte containing a third petroleum such as propylene carbonate (PC) or γ-butyrolactone (GBL) are in the form of phosphorus or flakes A negative electrode for a non-aqueous secondary battery, characterized in that it is a group of massive graphite particles composed of natural graphite particles having the shape, and the group of massive graphite particles has the following requirements (a) to (c) Graphite particles.
(A) The massive graphite particles group has a cumulative 50% diameter (D50 diameter) of 10 to 25 μm by a laser diffraction method, a specific surface area of 2.5 to 5 m 2 / g by a nitrogen gas adsorption method, and an apparent density by a stationary method. There 0.45 g / cm 3 or more, the apparent density by tapping method is 0.70 g / cm 3 or more.
(A) The apparent density by the tap method is in the range of 1.3 to 2.0 times the apparent density by the stationary method.
(C) The area intensity ratio (I D / I G ) between the D peak appearing near 1,350 cm −1 and the G peak appearing near 1,580 cm −1 in the Raman spectroscopic analysis is in the range of 0.1 to 0.45. is there.
前記黒鉛粒子の菱面体晶比率が20〜35%の範囲である請求項1に記載の非水系二次電池の負極用黒鉛粒子。  The graphite particles for a negative electrode of a non-aqueous secondary battery according to claim 1, wherein the rhombohedral crystal ratio of the graphite particles is in the range of 20 to 35%. 前記塊状黒鉛粒子群のレーザー光回折法による累積50%径(D50径)の値は同回析法による累積10%径(D10径)の値の1.5倍〜2.5倍の範囲であり、同回析法による累積90%径(D90径)の値は累積50%径(D50径)の値の1.5倍〜2.5倍の範囲である請求項1または2に記載の非水系二次電池の負極用黒鉛粒子。  The value of the cumulative 50% diameter (D50 diameter) of the massive graphite particles by the laser light diffraction method is in the range of 1.5 to 2.5 times the value of the cumulative 10% diameter (D10 diameter) by the diffraction method. The cumulative 90% diameter (D90 diameter) value determined by the same diffraction method is in the range of 1.5 to 2.5 times the cumulative 50% diameter (D50 diameter) value. Graphite particles for negative electrode of non-aqueous secondary battery. 前記黒鉛粒子群に、C10を基本構造とする澱粉の誘導体、C10を基本構造とする粘性多糖類、C10を基本構造とする水溶性セルロース誘導体、ポリウロニドまたは水溶性合成樹脂からなる群から選ばれる1種以上の界面活性剤を0.1〜5重量%吸着または被覆している請求項1から3の何れかに記載の非水系二次電池の負極用黒鉛粒子。The graphite particles, water-soluble cellulose derivatives of starch and C 6 H 10 O 5 as a basic structure, C 6 H 10 O 5 a basic structure to viscous polysaccharide, a C 6 H 10 O 5 as a basic structure The non-aqueous secondary according to any one of claims 1 to 3, wherein 0.1 to 5% by weight or more of a surfactant selected from the group consisting of a derivative, a polyuronide or a water-soluble synthetic resin is adsorbed or coated. Graphite particles for negative electrodes of batteries.
JP2001368812A 2001-12-03 2001-12-03 Graphite particles for negative electrode of non-aqueous secondary battery Expired - Lifetime JP3849769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001368812A JP3849769B2 (en) 2001-12-03 2001-12-03 Graphite particles for negative electrode of non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001368812A JP3849769B2 (en) 2001-12-03 2001-12-03 Graphite particles for negative electrode of non-aqueous secondary battery

Publications (2)

Publication Number Publication Date
JP2003168432A JP2003168432A (en) 2003-06-13
JP3849769B2 true JP3849769B2 (en) 2006-11-22

Family

ID=19178335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001368812A Expired - Lifetime JP3849769B2 (en) 2001-12-03 2001-12-03 Graphite particles for negative electrode of non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3849769B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726193B2 (en) * 2005-03-22 2011-07-20 株式会社パイロットコーポレーション Firing pencil lead
JP2006310265A (en) * 2005-03-31 2006-11-09 Mitsubishi Chemicals Corp Negative electrode material for non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid secondary battery using it
JP5157051B2 (en) * 2005-08-18 2013-03-06 三菱化学株式会社 Lithium secondary battery
JP5082221B2 (en) * 2005-10-05 2012-11-28 ソニー株式会社 Negative electrode for secondary battery and secondary battery
JP5076316B2 (en) * 2005-12-27 2012-11-21 ソニー株式会社 Negative electrode for secondary battery and secondary battery
US8697285B2 (en) 2008-10-31 2014-04-15 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary battery
JP5398559B2 (en) * 2010-01-21 2014-01-29 日立マクセル株式会社 Lithium ion secondary battery
KR101837785B1 (en) * 2010-05-12 2018-03-12 미쯔비시 케미컬 주식회사 Nonaqueous-electrolyte secondary battery
KR20120064683A (en) * 2010-09-10 2012-06-19 파나소닉 주식회사 Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP5799752B2 (en) * 2010-10-29 2015-10-28 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP2012049151A (en) * 2011-12-08 2012-03-08 Mitsubishi Chemicals Corp Lithium secondary battery
JP2014011076A (en) * 2012-06-29 2014-01-20 Toyota Motor Corp Nonaqueous electrolyte secondary battery and manufacturing method thereof
KR20140106292A (en) * 2013-02-26 2014-09-03 삼성에스디아이 주식회사 Anode for lithium secondary battery and lithium secondary battery using the same
WO2015118833A1 (en) * 2014-02-04 2015-08-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP6493766B2 (en) * 2015-09-29 2019-04-03 トヨタ自動車株式会社 Lithium ion secondary battery
JPWO2021152778A1 (en) * 2020-01-30 2021-08-05

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3499584B2 (en) * 1993-03-10 2004-02-23 株式会社東芝 Lithium secondary battery
JP3193342B2 (en) * 1997-05-30 2001-07-30 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH1167201A (en) * 1997-08-19 1999-03-09 Petoca:Kk Carbon material for lithium ion secondary battery negative electrode and its manufacture
JP3841611B2 (en) * 1999-03-31 2006-11-01 日立粉末冶金株式会社 Graphite particles for negative electrode of non-aqueous secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP3908890B2 (en) * 2000-04-06 2007-04-25 日立粉末冶金株式会社 Graphite particles for negative electrode of non-aqueous secondary battery
JP3908892B2 (en) * 2000-05-10 2007-04-25 日立粉末冶金株式会社 Graphite material for negative electrode of non-aqueous secondary battery

Also Published As

Publication number Publication date
JP2003168432A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP5270050B1 (en) Composite graphite particles and uses thereof
KR101887952B1 (en) Negative-electrode material for lithium-ion secondary battery
JP3849769B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
TWI533495B (en) Negative-electrode active material for lithium secondary cell
Honbo et al. Electrochemical properties and Li deposition morphologies of surface modified graphite after grinding
EP2469629A2 (en) Amorphous anode active material, preparation method of electrode using same, secondary battery containing same, and hybrid capacitor
Chen et al. Preparation and characterization of ramsdellite Li2Ti3O7 as an anode material for asymmetric supercapacitors
JP2015092462A (en) Positive electrode and lithium ion secondary battery using the same
WO2011080884A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN104737336A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20090104129A (en) Carbon material and process for producing the carbon material
JP5128063B2 (en) Composite graphite and lithium secondary battery using the same
CN104737337A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003132889A (en) Anode material for lithium ion secondary battery and its manufacturing method
JP2003168429A (en) Nonaqueous electrolyte secondary battery
CA2790582C (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US20200227746A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP3841611B2 (en) Graphite particles for negative electrode of non-aqueous secondary battery
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2001143698A (en) Negative electrode material for non-aqueous lithium secondary cell and non-aqueous secondary cell using the same
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP4354723B2 (en) Method for producing graphite particles
JP2003168433A (en) Graphite particle for negative electrode of nonaqueous secondary battery
JP3908892B2 (en) Graphite material for negative electrode of non-aqueous secondary battery
JP4495531B2 (en) Granular composite carbon material and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3849769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term