JPH1167201A - Carbon material for lithium ion secondary battery negative electrode and its manufacture - Google Patents
Carbon material for lithium ion secondary battery negative electrode and its manufactureInfo
- Publication number
- JPH1167201A JPH1167201A JP9222343A JP22234397A JPH1167201A JP H1167201 A JPH1167201 A JP H1167201A JP 9222343 A JP9222343 A JP 9222343A JP 22234397 A JP22234397 A JP 22234397A JP H1167201 A JPH1167201 A JP H1167201A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- ion secondary
- lithium ion
- carbon material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウムイオン二
次電池用負極材料に適した炭素材及びその製造方法に関
し、更に詳しくは、初期の充放電効率に優れ、高エネル
ギー密度を有し、且つ充放電サイクル特性に優れたリチ
ウムイオン二次電池を提供しうる負極用炭素材及びその
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon material suitable for a negative electrode material for a lithium ion secondary battery and a method for producing the same, and more particularly, to an excellent initial charge / discharge efficiency, high energy density, and The present invention relates to a carbon material for a negative electrode capable of providing a lithium ion secondary battery having excellent charge / discharge cycle characteristics and a method for producing the same.
【0002】[0002]
【従来の技術】近年、電子機器は小型化・軽量化・高性
能化を目指して急速な技術発展を遂げ、それによりセル
ラー、PHS、カムコーダー、パソコンに代表される携
帯用電子機器の普及が一段と進んだ。これらの新しい機
器の発展に伴い、新たな二次電池として登場したのがニ
ッケル水素電池やリチウムイオン二次電池である。特
に、リチウムイオン二次電池は、高エネルギー密度及び
高起電力である他、非水電解液を用いるため作動温度範
囲が広く、長期保存に優れ、さらに軽量小型である等の
多くの利点を有している。従って、このようなリチウム
イオン二次電池は、携帯用電子機器電源をはじめとし
て、電気自動車、電力貯蔵用などの高性能電池としての
実用化が期待されている。リチウムイオン二次電池の性
能と安全性の向上は、負極に金属リチウムに代わって炭
素系材料を用いることによって実現した。すなわち、炭
素系材料を負極に用いた場合、リチウムイオンが炭素構
造中に取り込まれるためリチウムデンドライトは形成さ
れず、安全性が飛躍的に高められる。この負極に用いら
れる炭素系材料としては、2つの系統があり、現在、フ
ルフリルアルコールの焼成物のような低結晶性炭素質材
料とメソカーボンマイクロビーズ(MCMB)の黒鉛化
処理品や天然黒鉛等の黒鉛質材料とが実用化されてきて
いる。このうち、炭素質材料は、重量当たりのリチウム
の取り入れ量、すなわち重量当たりの容量が大きいこと
が特長的であり、黒鉛の理論容量と言われるC6 Liの
容量に当たる372mAh/gを遥かに超える放電容量
を示す炭素材が種々報告されている。しかし、これらの
炭素質材料は、初回充放電効率(初回放電容量/初回充
電容量)が低く、またサイクル特性が悪く、更には炭素
質材料そのものの密度が小さい等の問題があり、小型の
二次電池に用いるような場合には解決しなければならな
い種々の問題がある。2. Description of the Related Art In recent years, electronic devices have undergone rapid technological development with the aim of miniaturization, weight reduction, and high performance. As a result, portable electronic devices such as cellular phones, PHSs, camcorders, and personal computers have become more widespread. Advanced. With the development of these new devices, nickel-metal hydride batteries and lithium-ion secondary batteries have emerged as new secondary batteries. In particular, a lithium ion secondary battery has many advantages such as a high energy density and a high electromotive force, a wide operating temperature range due to the use of a non-aqueous electrolyte, excellent long-term storage, and light weight and small size. doing. Therefore, such a lithium ion secondary battery is expected to be put to practical use as a high-performance battery for a power source of a portable electronic device, an electric vehicle, a power storage device, and the like. The performance and safety of the lithium ion secondary battery were improved by using a carbon-based material instead of lithium metal for the negative electrode. That is, when the carbon-based material is used for the negative electrode, lithium dendrites are not formed because lithium ions are incorporated into the carbon structure, and safety is dramatically improved. There are two types of carbon-based materials used for the negative electrode. At present, low-crystalline carbonaceous materials such as baked products of furfuryl alcohol, graphitized products of mesocarbon microbeads (MCMB), and natural graphite are available. And other graphitic materials have been put to practical use. Among them, the carbonaceous material is characterized by a large amount of lithium taken in by weight, that is, a large capacity per weight, and far exceeds 372 mAh / g, which is the theoretical capacity of graphite, which is the capacity of C 6 Li. Various carbon materials exhibiting discharge capacity have been reported. However, these carbonaceous materials have problems such as low initial charge / discharge efficiency (initial discharge capacity / initial charge capacity), poor cycle characteristics, and low density of the carbonaceous material itself. There are various problems that need to be solved when used in a secondary battery.
【0003】一方、黒鉛質炭素材の場合は、反応機構が
リチウムの黒鉛層間へのインタカレーション・デインタ
カレーションという単純な反応から成り立っているこ
と、それに伴って初回充放電効率が比較的高いこと、更
には、黒鉛質炭素材そのものの密度が高いこと等から容
積当たり高エネルギーが得られ、この点から期待が高ま
っている。しかし、天然黒鉛にあっては、黒鉛化度が高
く単位重量あたりの充放電可能容量は相当に大きいが、
一方で、高電流密度での充放電を行うと充放電効率やサ
イクル特性が低下するという問題がある。このような材
料は、大電流を取り出す必要があり、かつ充電時間を短
縮するために高電流密度で充電を行うことが望ましい高
負荷電源、例えば駆動モーター等を有する機器用電源の
負極に用いるには適さないものである。このような黒鉛
質炭素材として、特開平5−325967号公報には、
メソフェーズの体積含有率が70%以上のピッチを原料
とした炭素繊維を黒鉛化処理したものが開示され、諸電
池特性が優れることが指摘されている。上記公報によれ
ば、原料とするメソフェーズピッチは黒鉛化性の高いも
のであれば特に制限されるものではなく、また、紡糸条
件、不融化条件等何ら限定されているものではない。し
かし、より高性能な負極材が求められている現状におい
ては、上記炭素材も種々の電池特性において未だ満足し
うるものではなく、更に、特定の原料を用いて特定の製
造条件で製造する等の方法による品質の安定した高性能
な負極材の製造が求められていた。On the other hand, in the case of the graphitic carbon material, the reaction mechanism consists of a simple reaction of intercalation and deintercalation of lithium between graphite layers, and the initial charge / discharge efficiency is relatively high. In addition, since the density of the graphitic carbon material itself is high, high energy per volume can be obtained, and in this respect, expectations are increasing. However, in the case of natural graphite, the degree of graphitization is high and the chargeable / dischargeable capacity per unit weight is considerably large,
On the other hand, there is a problem in that charge / discharge efficiency and cycle characteristics are reduced when charge / discharge is performed at a high current density. Such a material is used for a negative electrode of a high-load power supply that needs to take out a large current and that is preferably charged at a high current density in order to shorten a charging time, for example, a power supply for a device having a drive motor or the like. Is not suitable. JP-A-5-325967 discloses such a graphitic carbon material.
A carbon fiber obtained by graphitizing carbon fibers using a pitch having a volume content of 70% or more of the mesophase as a raw material is disclosed, and it is pointed out that various battery characteristics are excellent. According to the above publication, the mesophase pitch used as a raw material is not particularly limited as long as it has a high graphitization property, and the spinning conditions and the infusibilizing conditions are not limited at all. However, in the current situation where higher performance negative electrode materials are required, the above-mentioned carbon materials are still not satisfactory in various battery characteristics, and are further manufactured under specific manufacturing conditions using specific raw materials. Production of a high-performance negative electrode material with stable quality by the method described above has been demanded.
【0004】[0004]
【発明が解決しようとする課題】本発明はかかる事情下
でなされたものである。すなわち、本発明は、充放電容
量が大きく、初期の充放電効率が高く、また充放電速度
が大きく、さらに充放電サイクル特性に優れたリチウム
イオン二次電池の負極用炭素材並びにその製造方法を提
供することを目的とする。The present invention has been made under such circumstances. That is, the present invention provides a carbon material for a negative electrode of a lithium ion secondary battery having a large charge / discharge capacity, a high initial charge / discharge efficiency, a high charge / discharge rate, and excellent charge / discharge cycle characteristics, and a method for producing the same. The purpose is to provide.
【0005】[0005]
【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を重ねた結果、リチウムイオ
ン二次電池負極用黒鉛系炭素材の製造方法について、種
々の角度から検討を加えた結果、特定の製造条件で上記
炭素材を製造した場合にのみ、上記の目的を達成しうる
負極用黒鉛系炭素材を得ることが可能であることを見出
し本発明を完成するに至った。すなわち、本発明は、Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have studied from various angles a method for producing a graphite-based carbon material for a negative electrode of a lithium ion secondary battery. As a result, it was found that only when the carbon material was manufactured under specific manufacturing conditions, it was possible to obtain a graphite-based carbon material for a negative electrode that could achieve the above object, and completed the present invention. Was. That is, the present invention
【0006】 充填密度0.5〜1.3g/cm3 で容器
に充填された炭素質粉体材料を、室温から1500℃ま
での温度で、初期濃度1×10 -6 〜10×10-6モル/
cm 3 の酸素を含有する雰囲気中にて熱処理した後、引
き続き非酸化性不活性ガス雰囲気中で2400℃以上の
温度で黒鉛化し、その後、300℃以下の温度まで冷却
するリチウムイオン二次電池負極用炭素材の製造方法、 炭素質粉体材料が、易黒鉛化ピッチを溶融状態を経
た後400〜1500℃の温度で焼成した炭素化物を平
均粒径100μm以下に粒度調整したものであることを
特徴とする上記記載のリチウムイオン二次電池負極用
炭素材の製造方法、又は、 炭素質粉体材料が、メソフェーズピッチを溶融紡糸
し、次いで不融化及び400〜1500℃の温度で焼成
した後粉砕し、平均粒径100μm以下に粒度調整した
ものであることを特徴とする上記記載のリチウムイオ
ン二次電池負極用炭素材の製造方法、に関するものであ
り、かつ、本発明は レーザーラマン分光における1580±100cm-1
の波長域におけるスペクトルのピーク強度(I1580)に
対する1360±100cm-1の波長域におけるスペクト
ルのピーク強度(I1360)の比が0.2未満、かつX線回
折による(101)回折ピークと(100)回折ピーク
の強度比が1.0以上であることを特徴とする上記〜
のいずれかに記載の方法で製造されたリチウムイオン二
次電池負極用炭素材、に関するものである。[0006] Packing density 0.5 to 1.3 g / cmThreeIn container
The carbonaceous powder material filled in
At an initial concentration of 1 × 10-6-10 × 10-6Mol /
cm ThreeAfter heat treatment in an atmosphere containing oxygen
Continuously at 2400 ° C or higher in a non-oxidizing inert gas atmosphere
Graphite at temperature, then cooled to below 300 ° C
Method for producing carbon material for negative electrode of lithium ion secondary battery
And then calcined at a temperature of 400 to 1500 ° C.
That the particle size has been adjusted to an average particle size of 100 μm or less.
Characteristic for the negative electrode of the lithium ion secondary battery described above
Manufacturing method of carbon material, or carbonaceous powder material melt spinning mesophase pitch
And then infusibilized and fired at a temperature of 400-1500C
After crushing, the particle size was adjusted to an average particle size of 100 μm or less.
The lithium ion as described above, characterized in that
A method for producing a carbon material for a secondary battery negative electrode.
And the present invention is 1580 ± 100 cm in laser Raman spectroscopy.-1
Peak intensity (I1580)
1360 ± 100cm for-1In the wavelength range of
Peak intensity (I1360) Is less than 0.2 and X-ray times
(101) and (100) diffraction peaks due to fold
Wherein the intensity ratio of the above is not less than 1.0.
A lithium ion secondary battery produced by the method according to any one of
A carbon material for a secondary battery negative electrode.
【0007】[0007]
【発明の実施の形態】以下に、本発明を更に詳細に説明
する。本発明において、リチウムイオン二次電池用負極
材に用いられる黒鉛系炭素材を製造するための炭素材料
としては、黒鉛構造が発達しやすい易黒鉛化性のものが
好ましい。そのためには易黒鉛化性ピッチでも一旦溶融
状態にすることにより、炭素六角網面の配向を促進させ
た後、400〜1500℃の温度で焼成して炭素化する
ことが好ましい。この際、溶融状態で応力を加えること
により強制的に配向を高めることがより好ましい。具体
的には、メソフェーズピッチ系炭素繊維やメソカーボン
マイクロビーズに成形することが好ましく、本発明にお
いては、これをさらに粉砕などの方法で粒度調整するこ
とで均一な粉体が得られ製造の安定化、品質の安定化を
図ることができる。一般的に、炭素質材料として粉体を
用いた場合、黒鉛化処理においてその表面と内部の炭素
構造に差異を生じる。すなわち、粉体の内部は比較的黒
鉛構造の発達した構造となるが、表面は概して外部環境
の影響を受けて、黒鉛構造の発達が抑えられるような構
造となるか、あるいは、黒鉛構造が発達していても黒鉛
のベーサル面が露出し、電池反応においてリチウムイオ
ンの出入りに不利な構造となるのが通常である。更に、
粉体の表面には、電池電解質、電解液やリチウムイオン
と反応する活性点や官能基が多く存在するため、充放電
効率や、サイクル特性に悪影響を及ぼしている。本発明
者らは、これらの欠点を解決すべく鋭意検討した結果、
本発明を完成するに至った。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, as a carbon material for producing a graphite-based carbon material used for a negative electrode material for a lithium ion secondary battery, an easily graphitizable material in which a graphite structure is easily developed is preferable. For this purpose, it is preferable to promote the orientation of the carbon hexagonal mesh plane by once bringing the easily graphitizable pitch into a molten state, and then calcinate at a temperature of 400 to 1500 ° C. to carbonize. At this time, it is more preferable to forcibly increase the orientation by applying a stress in a molten state. Specifically, it is preferable to form into mesophase pitch-based carbon fibers or mesocarbon microbeads. In the present invention, uniform powder can be obtained by further adjusting the particle size by a method such as pulverization, and stable production can be achieved. And stabilization of quality can be achieved. Generally, when powder is used as a carbonaceous material, a difference occurs between the surface and the internal carbon structure in the graphitization treatment. In other words, the inside of the powder has a relatively developed structure with a graphite structure, but the surface is generally affected by the external environment, and the structure is such that the development of the graphite structure is suppressed, or the graphite structure develops. Even if it does, the basal surface of graphite is usually exposed, and it becomes a structure which is disadvantageous for the entrance and exit of lithium ions in the battery reaction. Furthermore,
Since many active sites and functional groups reacting with the battery electrolyte, the electrolytic solution and lithium ions are present on the surface of the powder, the charge-discharge efficiency and the cycle characteristics are adversely affected. The present inventors have conducted intensive studies to solve these disadvantages,
The present invention has been completed.
【0008】(1)原料ピッチについて 炭素質粉体材料製造のための原料としては、樹脂系、石
油系、石炭系、触媒などを用いた合成系の各ピッチのい
ずれに限定されるものではないが、本発明においては、
易黒鉛化性であるメソフェーズ系ピッチであることが望
ましく、特に、芳香族炭素比率faが0.5以上、更には
0.6以上であることが好ましい。ここで芳香族炭素比率
とは全炭素原子に対する芳香環構造を形成する炭素原子
の比率であり、ナフタレンのように全て芳香族炭素の場
合はfa=1である。本発明においては、上記faが0.
5より小さい場合は、メソフェーズを構成する芳香族分
子の平面構造性が低く、このようなピッチを原料として
得られる炭素材は、高温で黒鉛化処理しても黒鉛化が進
み難く、リチウムイオン二次電池の負極としての充放電
容量が大きくならない場合がある。(1) Raw Material Pitch The raw material for producing the carbonaceous powder material is not limited to any of resin-based, petroleum-based, coal-based, and synthetic pitches using a catalyst or the like. However, in the present invention,
It is preferable that the mesophase pitch is easily graphitizable. In particular, the aromatic carbon ratio fa is 0.5 or more, and furthermore,
It is preferably 0.6 or more. Here, the aromatic carbon ratio is a ratio of carbon atoms forming an aromatic ring structure to all carbon atoms, and in the case of all aromatic carbons such as naphthalene, fa = 1. In the present invention, the above fa is 0.
When it is smaller than 5, the planar structure of the aromatic molecules constituting the mesophase is low, and the carbon material obtained from such a pitch is difficult to graphitize even if it is graphitized at a high temperature. In some cases, the charge / discharge capacity of the negative electrode of the secondary battery does not increase.
【0009】(2)炭素質粉体材料について リチウムイオン二次電池用負極材に使用される炭素材
は、シート状に塗布して使用されるので、粉末状である
必要がある。本発明の炭素材に関し、粉末状にする方
法、粒度調整する方法としては、種々の方法が使用可能
であるが、本発明においては、一旦溶融状態にしてから
成形・粉砕することが好ましい。すなわち、例えば、加
熱溶融ピッチを不融化させることなく所定の温度範囲で
炭素化した後、物理的に粉砕する方法、メソフェーズピ
ッチが溶融あるいは溶融分散,析出している状態からメ
ソカーボンマイクロビーズを捕集する方法、更にはそれ
を粉砕,粒度調整する方法、メソフェーズピッチを溶融
紡糸法によって繊維化し、不融化、炭素化した後粉砕す
る方法等が使用できる。溶媒に不溶性の樹脂やピッチあ
るいは熱硬化性の樹脂などを溶融状態を経ずに炭素化し
たものは、本発明の方法を用いても顕著な効果を示さな
い場合がある。これは、溶液あるいは溶融状態を経るこ
とで粉体内部で黒鉛結晶が配向し易くなること、及び内
部とは異質の粉体表面層が形成されることによると考え
られる。(2) Carbonaceous Powder Material Since the carbon material used for the negative electrode material for a lithium ion secondary battery is used after being applied in the form of a sheet, it needs to be in a powder form. With regard to the carbon material of the present invention, various methods can be used as a method for forming a powder and a method for adjusting the particle size, but in the present invention, it is preferable to form and pulverize once in a molten state. That is, for example, a method in which a heated and melted pitch is carbonized within a predetermined temperature range without making it infusible, and then physically pulverized, or the mesocarbon microbeads are captured from a state in which the mesophase pitch is melted or melt-dispersed or precipitated. For example, there may be used a method of pulverizing and granulating the mesophase pitch, a method of forming a mesophase pitch into a fiber by a melt spinning method, making it infusible or carbonized, and then pulverizing. A resin obtained by carbonizing a resin insoluble in a solvent, a pitch or a thermosetting resin without passing through a molten state may not show a remarkable effect even when the method of the present invention is used. This is presumably because the graphite crystal is easily oriented inside the powder by passing through the solution or the molten state, and a powder surface layer different from the inside is formed.
【0010】(3)黒鉛化について 粉体を黒鉛化処理する一般的方法としては、黒鉛質製容
器に炭素質粉体材料を充填し、不活性雰囲気下2400
℃以上の温度で熱処理する方法が挙げられる。リチウム
イオン2次電池用負極材に適した高性能な炭素材を黒鉛
化処理して製造するに際し、その黒鉛化処理条件につい
て種々の検討を行ったところ、黒鉛化処理工程の初期段
階において室温から1500℃,好ましくは300〜1
000℃の温度領域において粉体を酸素と接触させるこ
とにより、粉体表面層に微量存在しているリチウムイオ
ンのインターカレーション、デインターカレーションの
障害となる黒鉛構造をとりにくい炭素や官能基が除去さ
れ、その後、2400℃以上の温度で黒鉛構造を発達さ
せ、更に、冷却の際300℃以下の温度になるまで酸素
と接触させないことにより高容量高効率の材料が得られ
ることを見いだした。(3) Graphitization As a general method of graphitizing a powder, a graphite container is filled with a carbonaceous powder material, and is placed under an inert atmosphere under an inert atmosphere.
A method of performing a heat treatment at a temperature of not less than ° C. Various studies were made on the graphitization conditions when producing a high-performance carbon material suitable for a negative electrode material for a lithium ion secondary battery by graphitization. 1500 ° C, preferably 300 to 1
By bringing the powder into contact with oxygen in the temperature range of 000 ° C, carbon and functional groups that are less likely to have a graphite structure that hinders the intercalation and deintercalation of a small amount of lithium ions in the powder surface layer It was found that a high-capacity, high-efficiency material can be obtained by developing a graphite structure at a temperature of 2400 ° C. or higher and not contacting with oxygen until the temperature reaches 300 ° C. or lower during cooling. .
【0011】黒鉛化処理される炭素質粉体材料は、揮発
分やタールの発生による凝集固着化を防ぐため、その処
理前に400〜1500℃、好ましくは600〜100
0℃の温度で焼成して炭素化されることが望ましい。炭
素化の温度は、時間や量との兼ね合いがあるため一概に
決められないが、400℃より低い温度では黒鉛化処理
されたものに凝集や固着が発生しやすく、粉体の生産歩
留まりが悪くなる傾向がある。また1500℃より高い
温度では炭素化後の粉砕工程で黒鉛のベーサル面の露出
した粉体が多くなり負極特性が損なわれることがある。
また、粉体の平均粒度としては、負極シートを作製する
際のシート密度や取り扱い性の点から平均粒径が100
μm以下、更には50μm以下であることが好ましい。[0011] The carbonaceous powder material to be graphitized is subjected to a temperature of 400 to 1500 ° C, preferably 600 to 100 ° C, prior to the treatment in order to prevent agglomeration and sticking due to generation of volatiles and tar.
Desirably, it is carbonized by firing at a temperature of 0 ° C. The temperature of carbonization cannot be unconditionally determined because there is a trade-off between time and amount. However, at a temperature lower than 400 ° C., agglomeration and sticking are liable to occur in the graphitized material, resulting in poor powder production yield. Tend to be. If the temperature is higher than 1500 ° C., the amount of powder having exposed basal surface of graphite increases in the pulverization step after carbonization, and the negative electrode characteristics may be impaired.
In addition, the average particle size of the powder is 100 from the viewpoint of sheet density and handleability when producing a negative electrode sheet.
μm or less, more preferably 50 μm or less.
【0012】本発明においては、更に、平均粒径100
μm以下の粒度に調整された炭素質粉体材料を黒鉛化処
理するに際し、黒鉛質材料等の耐熱性容器への充填密度
を0.5〜1.3g/cm3 とし、室温から1500℃まで
の熱処理を1×10-6〜10×10-6モル/cm3 の初
期酸素濃度の雰囲気下で行った後、非酸化性不活性ガス
雰囲気中で2400℃以上の温度での黒鉛化を行い、3
00℃以下の温度まで冷却処理することで、本発明の前
記目的が達成される。すなわち、室温から1500℃ま
での熱処理の間に所定初期濃度の酸素は主として炭素質
粉体の表面で反応消費されるので、それ以降の黒鉛化、
冷却処理等の熱処理は減圧雰囲気あるいは酸素を除去し
た空気、窒素やアルゴン等の不活性ガス雰囲気中で行わ
れる。上記酸素含有雰囲気での熱処理温度が1500℃
を超える場合は、粉体の内部まで酸化による消耗が生
じ、生産歩留りが極端に低下するので好ましくない。In the present invention, further, the average particle size is preferably 100
When the carbonaceous powder material adjusted to a particle size of μm or less is graphitized, the packing density of the graphite material or the like in a heat-resistant container is set to 0.5 to 1.3 g / cm 3, and from room temperature to 1500 ° C. Is performed in an atmosphere having an initial oxygen concentration of 1 × 10 −6 to 10 × 10 −6 mol / cm 3 , and then graphitized at a temperature of 2400 ° C. or more in a non-oxidizing inert gas atmosphere. , 3
The object of the present invention is achieved by performing a cooling treatment to a temperature of 00 ° C. or lower. That is, during the heat treatment from room temperature to 1500 ° C., the oxygen at a predetermined initial concentration is mainly consumed by the reaction on the surface of the carbonaceous powder.
The heat treatment such as a cooling treatment is performed in a reduced pressure atmosphere or an inert gas atmosphere such as air from which oxygen has been removed, nitrogen or argon. The heat treatment temperature in the oxygen-containing atmosphere is 1500 ° C.
When the ratio exceeds, the powder is consumed by oxidation to the inside of the powder, and the production yield is extremely lowered, which is not preferable.
【0013】また、上記初期酸素濃度が1×10-6モル
/cm3 より低い場合には、酸素による粉体粒子表面の
改質効果が充分に発揮されず、また、酸素濃度を10×
10 -6モル/cm3 より高い値にすると炭素質粉体材料
の酸化消耗による歩留まりの低下や、また同時に黒鉛質
製の炉材や容器などの酸化消耗も顕著となりコスト的に
不利である。特に、2400℃以上の温度で黒鉛化処理
するに際し、酸素が存在していると炭素質粉体材料の酸
化消耗による歩留まりの低下が顕著となりコスト的に不
利であることから本発明においては初期酸素濃度を管理
することが肝要である。更に、二次電池の容量は黒鉛化
の度合いが高い程大きくなる傾向にあり、黒鉛化処理の
温度が2400℃より低い場合は黒鉛化の進行が低いた
め電池容量が低下するので好ましくない。Further, the initial oxygen concentration is 1 × 10-6Mole
/ CmThreeIf lower, the surface of powder particles by oxygen
The reforming effect is not sufficiently exhibited, and the oxygen concentration is 10 ×
10 -6Mol / cmThreeThe higher the value, the higher the carbonaceous powder material
Decrease in yield due to oxidation consumption of
Oxidation consumption of furnace materials and containers made of steel becomes remarkable and cost
Disadvantageous. In particular, graphitization at a temperature of 2400 ° C or higher
When oxygen is present, the presence of oxygen in the carbonaceous powder material
The yield has been significantly reduced due to
In the present invention, the initial oxygen concentration is controlled
It is important to do it. Furthermore, the capacity of secondary batteries is graphitized.
Tend to increase as the degree of
When the temperature is lower than 2400 ° C., the progress of graphitization is low.
This is not preferable because the battery capacity decreases.
【0014】上記の点から、本発明においては、黒鉛化
処理は2400〜3200℃の温度で行うことが更に好
ましい。3200℃を超えるような温度では、黒鉛化の
コストが保守費を含め極端に高くなる。充填密度に関し
ては、粒度、表面積,炭素化温度の影響が大きいが、4
00〜1500℃の温度で熱処理された平均粒径が10
0μm以下の炭素質粉体材料であれば、0.5から1.3g
/cm3 、更に、0.8〜1.2g/cm3 の範囲が好まし
い。充填密度を1.3g/cm3 より大きい値とするには
充填時に機械的な力を加える等の操作が必要であり作業
性等の観点から不利であり、また、粉体同士の凝集・固
着が生じ品質が一定しなくなるという欠点がある。ま
た、充填密度を0.5g/cm3 より小さい値とすると生
産性に劣り、高コストとなる。また、黒鉛化処理終了後
の300℃以下の温度への冷却過程においても、酸素が
存在すると歩留まり低下や粉体表面での官能基生成、異
質構造炭素の生成によるものと思われる負極材特性の低
下が見られる。すなわち、粉体取り出し操作を300℃
以下に冷却してから行うことが好ましい。室温から15
00℃までの温度で酸素と接触させる時間、2400℃
以上の温度での黒鉛化処理時間及び冷却時間について
は、各々炭素質粉体材料の炭化度、表面積等の物性に依
存し一義的に決められるものではなく、得られる黒鉛質
粉体材料の要求性能も加味して適宜調整することができ
るものである。In view of the above, in the present invention, the graphitization treatment is more preferably performed at a temperature of 2400 to 3200 ° C. At a temperature exceeding 3200 ° C., the cost of graphitization becomes extremely high, including maintenance costs. The packing density is largely affected by the particle size, surface area and carbonization temperature.
The average particle size heat treated at a temperature of 00 to 1500 ° C. is 10
0.5 to 1.3 g for a carbonaceous powder material of 0 μm or less
/ Cm 3 , and more preferably 0.8 to 1.2 g / cm 3 . In order to increase the packing density to a value higher than 1.3 g / cm 3, an operation such as applying a mechanical force is required at the time of filling, which is disadvantageous from the viewpoint of workability and the like. There is a drawback that the quality is not constant due to the occurrence of the problem. On the other hand, if the packing density is less than 0.5 g / cm 3 , the productivity is poor and the cost is high. Also, in the cooling process to a temperature of 300 ° C. or less after the graphitization treatment, if oxygen is present, the yield decreases, the functional groups are formed on the powder surface, and the negative electrode material characteristics considered to be due to the formation of heterogeneous carbon. There is a decrease. That is, the powder removal operation is performed at 300 ° C
It is preferable to carry out after cooling below. Room temperature to 15
Time to contact oxygen with temperature up to 00 ° C, 2400 ° C
The graphitization time and cooling time at the above temperatures are not uniquely determined depending on the properties of the carbonaceous powder material, such as the degree of carbonization and surface area, and are not determined uniquely. It can be appropriately adjusted in consideration of performance.
【0015】本発明の製造方法により黒鉛化処理を施し
た黒鉛質粉体材料は、レーザーラマン分光における15
80±100cm-1の波長域におけるスペクトルのピー
ク強度(I1580)に対する1360±100cm-1の波
長域におけるスペクトルのピーク強度(I1360)の比が
0.2未満、好ましくは0.18以下、かつX線回折(XR
D)による(101)回折ピークと(100)回折ピー
クの強度比が1.0以上、好ましくは1.15以上の特性を
有するものであり、高性能なリチウムイオン2次電池負
極特性を発揮する。すなわち、上記レーザーラマン分光
におけるピーク比が0.2以上であれば、電池のサイクル
特性や充放電容量が劣るものとなり、またXRDのピー
ク比が1.0未満であればやはり充放電容量が劣るものと
なる。The graphitic powder material subjected to the graphitization treatment according to the production method of the present invention has a particle size of 15% by laser Raman spectroscopy.
The ratio of the peak intensity (I 1360 ) of the spectrum in the wavelength range of 1360 ± 100 cm −1 to the peak intensity (I 1580 ) of the spectrum in the wavelength range of 80 ± 100 cm −1 is
Less than 0.2, preferably 0.18 or less, and X-ray diffraction (XR
The intensity ratio between the (101) diffraction peak and the (100) diffraction peak according to D) is 1.0 or more, preferably 1.15 or more, and exhibits high performance lithium ion secondary battery negative electrode characteristics. . That is, when the peak ratio in the laser Raman spectroscopy is 0.2 or more, the cycle characteristics and the charge / discharge capacity of the battery are poor, and when the peak ratio of XRD is less than 1.0, the charge / discharge capacity is also poor. It will be.
【0016】[0016]
【実施例】以下に、本発明を実施例により更に具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1 数平均分子量=280、fa=0.68の石油系接触分解
油を原料とし、このもの1モルに対してフッ化水素を5
モルオートクレーブに仕込み、攪拌下、フッ化硼素を0.
5モル供給した後、300℃で3時間熱処理を行った。
得られたメソフェーズピッチを原料として、幅1.5mm
のスリットの中に直径0.2mmφの紡糸孔を一列に40
0個有する口金を用い、スリットから加熱空気を噴出さ
せて、溶融ピッチ牽引して平均直径13μmのピッチ繊
維を製造した。紡出された繊維を、捕集部分が15メッ
シュのステンレス製金網で出来たベルトの背面から吸引
しつつベルト上に捕集し、引き続き、空気中、170℃
から300℃まで平均昇温速度7℃/分で昇温して不融
化処理を行った。得られた不融化糸を、窒素雰囲気下、
650℃で焼成後粉砕し平均粒径20μmの炭素繊維粉
末を得た。上記得られたメソフェースピッチ系炭素繊維
粉末(CF)及び特開昭60ー51612号公報に記載
されるように、フリーカーボンを除去した沸点200℃
以上のコールタールを温度400℃、圧力8kg/cm
2 Gの条件下で14時間熱処理し遠心分離することによ
り得られた平均粒径15μmの450℃炭素化メソカー
ボンマイクロビーズ(MCMB)を、各々雰囲気ガスが
置換できる黒鉛質製容器に、充填密度が0.8g/cm3
となるように大気中(酸素濃度8.9×10-6モル/cm
3 )で充填し、ガス入り口バルブを閉じ、出口を水シー
ルした状態で1000℃まで熱処理した。ついで入り口
バルブを開き窒素ガスを微量流しつつ2900℃で1時
間黒鉛化処理を行った後、出口水シール部からガスの流
出が確認できる程度に窒素ガス流量を増加させつつ、室
温まで冷却し黒鉛質炭素粉体を得た。得られた黒鉛質炭
素粉体の物性並びにリチウムイオン2次電池負極特性を
下記の方法により測定評価した。結果を下記及び第1表
に示す。EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention. Example 1 A petroleum catalytic cracking oil having a number average molecular weight of 280 and fa = 0.68 was used as a raw material, and 5 mol of hydrogen fluoride was added to 1 mol of the oil.
In a molar autoclave, the boron fluoride was added to 0.
After supplying 5 mol, heat treatment was performed at 300 ° C. for 3 hours.
Using the obtained mesophase pitch as a raw material, a width of 1.5 mm
Spinning holes with a diameter of 0.2 mm in a row of 40
Using a mouthpiece having zero pieces, heated air was blown out from the slits, and the molten pitch was drawn to produce pitch fibers having an average diameter of 13 μm. The spun fibers are collected on the belt while being sucked from the back of a belt made of stainless steel mesh having a mesh of 15 mesh, and then collected at 170 ° C. in air.
To 300 ° C. at an average temperature rising rate of 7 ° C./min to perform infusibility treatment. The obtained infusibilized yarn is placed under a nitrogen atmosphere,
After firing at 650 ° C., the mixture was pulverized to obtain a carbon fiber powder having an average particle diameter of 20 μm. As described in the obtained mesoface pitch-based carbon fiber powder (CF) and JP-A-60-51612, a boiling point of 200 ° C. from which free carbon was removed.
The above coal tar is heated at a temperature of 400 ° C. and a pressure of 8 kg / cm.
Heat-treated under 2 G conditions for 14 hours and centrifuged at 450 ° C. to give carbonized mesocarbon microbeads (MCMB) having an average particle size of 15 μm in a graphite container in which atmosphere gas can be replaced. Is 0.8 g / cm 3
In the atmosphere (oxygen concentration 8.9 × 10 -6 mol / cm
The mixture was filled in 3 ), and the gas inlet valve was closed, and the heat treatment was performed to 1000 ° C. with the outlet sealed with water. Next, the inlet valve is opened and graphitization treatment is performed at 2900 ° C. for 1 hour while flowing a slight amount of nitrogen gas. Then, while increasing the nitrogen gas flow rate to such an extent that gas can be confirmed to flow out from the outlet water seal portion, the mixture is cooled to room temperature and graphite is cooled. A high quality carbon powder was obtained. The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the following methods. The results are shown below and in Table 1.
【0017】 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.15 0.13 XRDピーク比〔K=(101)/(100)〕 1.21 1.22 初期効率(放電量/充電量,1サイクル目)(%) 93 91 放電量(5サイクル目) (mAH/g)*2 319 308 *1: 光源にアルゴンイオンレーザー光を用い、分光器として日本分光工業N RS2000を用いて測定した。 *2: 測定は、陽極及び参照電極に金属リチウムを用い、エチレンカーボネー ト(EC)/ジメチルカーボネート(DMC)を体積比で1/1に調整 した混合炭酸エステル溶媒に、電解質として過塩素酸リチウム(LiC lO4 )を1モルの濃度で溶解させた電解液中で実施し充放電容量特性 を測定した。充放電容量特性の測定は100mA/gの定電流充放電下 で行い、測定電位範囲は0〜1.5V/Li/Li+ (対参照電極)で1 0回繰り返し測定とした。CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.15 0.13 XRD peak ratio [K = (101) / (100)] 1.21 1.22 Initial efficiency (discharge amount) / Charge amount, 1st cycle) (%) 93 91 Discharge amount (5th cycle) (mAH / g) * 2 319 308 * 1: Argon ion laser light was used as the light source, and Nippon Bunko Kogyo NRS2000 was used as the spectroscope. It measured using. * 2: For measurement, use lithium metal for the anode and reference electrode, and mix perchloric acid as the electrolyte in a mixed carbonate ester solvent in which ethylene carbonate (EC) / dimethyl carbonate (DMC) was adjusted to a volume ratio of 1/1. The charge and discharge capacity characteristics were measured in an electrolytic solution in which lithium (LiClO 4 ) was dissolved at a concentration of 1 mol. The measurement of the charge / discharge capacity characteristic was performed under a constant current charge / discharge of 100 mA / g, and the measurement potential range was 0 to 1.5 V / Li / Li + (reference electrode), and the measurement was repeated 10 times.
【0018】実施例2 実施例1と同様にして得られた1500℃焼成の平均粒
度20μmのメソフェーズピッチ系炭素繊維粉末及び平
均粒径15μmの1000℃炭素化メソカーボンマイク
ロビーズを、雰囲気ガスが置換できる黒鉛質製容器に、
充填密度が1.2g/cm3 となるように充填し、酸素濃
度2.0×10-6モル/cm3 の窒素ガスで容器内を置換
した後、ガス入り口バルブを閉じ、出口を水シールした
状態で1500℃まで熱処理した。ついで入り口バルブ
を開き窒素ガスを微量流しつつ2900℃で1時間黒鉛
化処理を行った後、出口水シール部からガスの流出が確
認できる程度に窒素ガス流量を増加させつつ、室温まで
冷却し黒鉛質炭素粉体を得た。得られた黒鉛質炭素粉体
の物性並びにリチウムイオン2次電池負極特性を上記の
方法により測定評価した。結果を下記及び第1表に示
す。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.09 0.10 XRDピーク比〔K=(101)/(100)〕 1.17 1.21 初期効率(放電量/充電量,1サイクル目)(%) 91 90 放電量(5サイクル目) (mAH/g)*2 301 294Example 2 Atmosphere gas was replaced with mesophase pitch-based carbon fiber powder having an average particle size of 20 μm and a carbonized mesocarbon microbead having an average particle size of 15 μm obtained at 1500 ° C. and baked at 1500 ° C. in the same manner as in Example 1. In a graphite container that can be
After filling the container to a packing density of 1.2 g / cm 3 and replacing the inside of the container with nitrogen gas having an oxygen concentration of 2.0 × 10 −6 mol / cm 3 , close the gas inlet valve and seal the outlet with water. In this state, heat treatment was performed to 1500 ° C. Next, the inlet valve is opened and graphitization is performed at 2900 ° C. for 1 hour while flowing a small amount of nitrogen gas. Then, while increasing the flow rate of nitrogen gas to such an extent that the gas can be confirmed to flow out from the outlet water seal portion, it is cooled to room temperature and the graphite is cooled. A high quality carbon powder was obtained. The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.09 0.10 XRD peak ratio [K = (101) / (100)] 1.17 1.21 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 91 90 Discharge amount (5th cycle) (mAH / g) * 2 301 294
【0019】実施例3 実施例1と同じ炭素質粉体材料を、当該材料がこぼれな
い程度の機密性を有する蓋付き黒鉛質製容器に充填密度
が0.8g/cm3 となるように大気中(酸素濃度8.9×
10-6モル/cm3 )で充填し、その周囲を断熱性保持
及び黒鉛化処理中に新たな酸素が侵入しない程度にコー
クス粉で覆い2900℃で1時間黒鉛化処理を行った
後、室温近くまで冷却し黒鉛質炭素粉体を得た。昇温途
中1500℃での容器内部及び冷却途中500℃での容
器外壁部の酸素濃度を測定したところ酸素は検出されな
かった。得られた黒鉛質炭素粉体の物性並びにリチウム
イオン2次電池負極特性を上記の方法により測定評価し
た。結果を下記及び第1表に示す。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.13 0.14 XRDピーク比〔K=(101)/(100)〕 1.23 1.25 初期効率(放電量/充電量,1サイクル目)(%) 93 91 放電量(5サイクル目) (mAH/g)*2 317 311Example 3 The same carbonaceous powder material as in Example 1 was placed in a graphite container with a lid having airtightness to such an extent that the material was not spilled so that the packing density was 0.8 g / cm 3. Medium (oxygen concentration 8.9 ×
10-6 mol / cm 3 ), and the surroundings are covered with coke powder to the extent that new oxygen does not enter during the graphitizing process while maintaining the heat insulating property. The mixture was cooled to near to obtain a graphitic carbon powder. When the oxygen concentration was measured at 1500 ° C. during the temperature rise and inside the container at 500 ° C. during the cooling, no oxygen was detected. The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.13 0.14 XRD peak ratio [K = (101) / (100)] 1.23 1.25 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 93 91 Discharge amount (5th cycle) (mAH / g) * 2 317 311
【0020】比較例1 黒鉛化処理の初期条件において酸素が検出されなくなる
まで、十分アルゴン置換をし、黒鉛化処理、室温まで冷
却後の取り出しまでアルゴン雰囲気を保持した以外は、
実施例1と同様にして黒鉛質炭素粉体を得た。得られた
黒鉛質炭素粉体の物性並びにリチウムイオン2次電池負
極特性を上記の方法により測定評価した。結果を下記及
び第1表に示す。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.22 0.25 XRDピーク比〔K=(101)/(100)〕 0.97 0.92 初期効率(放電量/充電量,1サイクル目)(%) 81 83 放電量(5サイクル目) (mAH/g)*2 264 253COMPARATIVE EXAMPLE 1 Except that the atmosphere was replaced with argon until oxygen was no longer detected under the initial conditions of the graphitization treatment, and the argon atmosphere was maintained until the graphitization treatment and the cooling-out to room temperature.
Graphitic carbon powder was obtained in the same manner as in Example 1. The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.22 0.25 XRD peak ratio [K = (101) / (100)] 0.97 0.92 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 81 83 Discharge amount (5th cycle) (mAH / g) * 2 264 253
【0021】比較例2 黒鉛化処理の初期条件である酸素濃度を0.8×10-6モ
ル/cm3 とした以外は、実施例1と同様にして黒鉛質
炭素粉体を得た。得られた黒鉛質炭素粉体の物性並びに
リチウムイオン2次電池負極特性を上記の方法により測
定評価した。結果を下記及び第1表に示す。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.26 0.23 XRDピーク比〔K=(101)/(100)〕 0.94 0.88 初期効率(放電量/充電量,1サイクル目)(%) 85 85 放電量(5サイクル目) (mAH/g)*2 281 268Comparative Example 2 A graphitic carbon powder was obtained in the same manner as in Example 1 except that the oxygen concentration, which was the initial condition for the graphitization treatment, was 0.8 × 10 −6 mol / cm 3 . The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.26 0.23 XRD peak ratio [K = (101) / (100)] 0.94 0.88 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 85 85 Discharge amount (5th cycle) (mAH / g) * 2 281 268
【0022】比較例3 酸素濃度を15×10-6モル/cm3 とした以外は、実
施例1と同様にして黒鉛質炭素粉体を得た。得られた黒
鉛質炭素粉体の物性並びにリチウムイオン2次電池負極
特性を上記の方法により測定評価した。結果を下記及び
第1表に示す。製品収率が5%低くなった上、塗工性及
び10サイクル目の放電容量の低下が見られサイクル性
などの電池性能も良くなかった。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.15 0.13 XRDピーク比〔K=(101)/(100)〕 1.21 1.22 初期効率(放電量/充電量,1サイクル目)(%) 93 91 放電量(5サイクル目) (mAH/g)*2 300 295 放電量(10サイクル目) (mAH/g)*2 282 265Comparative Example 3 A graphitic carbon powder was obtained in the same manner as in Example 1 except that the oxygen concentration was changed to 15 × 10 −6 mol / cm 3 . The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. The product yield was reduced by 5%, the coating property and the discharge capacity at the 10th cycle were reduced, and the battery performance such as cycle property was not good. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.15 0.13 XRD peak ratio [K = (101) / (100)] 1.21 1.22 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 93 91 Discharge amount (5th cycle) (mAH / g) * 2 300 295 Discharge amount (10th cycle) (mAH / g) * 2 282 265
【0023】比較例4 黒鉛化処理の初期条件において酸素が検出されなくなる
まで、十分アルゴン置換をし、1600℃まで熱処理し
た後、1600℃において1×10-6モル/cm3 の酸
素濃度を有するアルゴンガスを黒鉛質製容器の容積分
(10分間)流した後、再びアルゴンガスに切り替え実
施例1と同様の処理を行った。得られた黒鉛質炭素粉体
について、製品の電池性能は良好であったが、製品収率
が8%低くなった上容器の酸化消耗も顕著であった。COMPARATIVE EXAMPLE 4 Until no oxygen was detected under the initial conditions of the graphitization treatment, the atmosphere was sufficiently replaced with argon, and the mixture was heat-treated to 1600 ° C. and had an oxygen concentration of 1 × 10 −6 mol / cm 3 at 1600 ° C. After flowing argon gas for the volume of the graphite container (10 minutes), the process was switched to argon gas again and the same processing as in Example 1 was performed. Regarding the obtained graphitic carbon powder, the battery performance of the product was good, but the product yield was reduced by 8%, and the oxidative consumption of the upper container was remarkable.
【0024】比較例5 黒鉛化終了後の冷却途中600℃から空気雰囲気に切り
替え室温まで冷却した以外は実施例1に従って、黒鉛質
炭素粉体を得た。得られた黒鉛質炭素粉体の物性並びに
リチウムイオン2次電池負極特性を上記の方法により測
定評価した。結果を下記及び第1表に示す。 CF MCMB ラマンピーク比(R=I1360/I1580)*1 0.42 0.54 XRDピーク比〔K=(101)/(100)〕 1.10 1.16 初期効率(放電量/充電量,1サイクル目)(%) 82 81 放電量(5サイクル目) (mAH/g)*2 276 259Comparative Example 5 Graphitic carbon powder was obtained in the same manner as in Example 1 except that the temperature was changed from 600 ° C. to an air atmosphere and cooled to room temperature after the graphitization. The physical properties and the negative electrode characteristics of the lithium ion secondary battery of the obtained graphitic carbon powder were measured and evaluated by the above-mentioned methods. The results are shown below and in Table 1. CF MCMB Raman peak ratio (R = I 1360 / I 1580 ) * 1 0.42 0.54 XRD peak ratio [K = (101) / (100)] 1.10 1.16 Initial efficiency (discharge amount / charge amount) , 1st cycle) (%) 82 81 Discharge amount (5th cycle) (mAH / g) * 2 276 259
【0025】[0025]
【表1】 [Table 1]
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【発明の効果】以上詳細に述べたように、本発明の製造
方法により、充放電容量が大きく、初期の充放電効率が
高く、また充放電速度が大きく、さらに充放電サイクル
特性に優れたリチウムイオン二次電池の負極用炭素材を
得ることができる。As described above in detail, according to the manufacturing method of the present invention, lithium having a large charge / discharge capacity, a high initial charge / discharge efficiency, a high charge / discharge rate, and excellent charge / discharge cycle characteristics is obtained. A carbon material for a negative electrode of an ion secondary battery can be obtained.
Claims (4)
充填された炭素質粉体材料を、室温から1500℃まで
の温度で、初期濃度1×10-6〜10×10 -6モル/c
m3 の酸素を含有する雰囲気中にて熱処理した後、引き
続き非酸化性不活性ガス雰囲気中で2400℃以上の温
度で黒鉛化し、その後、300℃以下の温度まで冷却す
るリチウムイオン二次電池負極用炭素材の製造方法。1. A packing density of 0.5 to 1.3 g / cm.ThreeIn the container
From the filled carbonaceous powder material to room temperature to 1500 ° C
At an initial concentration of 1 × 10-6-10 × 10 -6Mol / c
mThreeAfter heat treatment in an atmosphere containing oxygen
Subsequently, in a non-oxidizing inert gas atmosphere, a temperature of 2400 ° C. or more
And then cooled to a temperature below 300 ° C.
For producing a carbon material for a negative electrode of a lithium ion secondary battery.
融状態を経た後400〜1500℃の温度で焼成した炭
素化物を平均粒径100μm以下に粒度調整したもので
あることを特徴とする請求項1記載のリチウムイオン二
次電池負極用炭素材の製造方法。2. The carbonaceous powder material is characterized in that a carbonized material obtained by passing a graphitizable pitch through a molten state and then calcining at a temperature of 400 to 1500 ° C. is adjusted to an average particle diameter of 100 μm or less. The method for producing a carbon material for a negative electrode of a lithium ion secondary battery according to claim 1.
を溶融紡糸し、次いで不融化及び400〜1500℃の
温度で焼成した後粉砕し、平均粒径100μm以下に粒
度調整したものであることを特徴とする請求項1記載の
リチウムイオン二次電池負極用炭素材の製造方法。3. The carbonaceous powder material is obtained by melt-spinning a mesophase pitch, then infusibilizing and firing at a temperature of 400 to 1500 ° C., and then pulverizing to adjust the particle size to an average particle size of 100 μm or less. The method for producing a carbon material for a negative electrode of a lithium ion secondary battery according to claim 1.
100cm-1の波長域におけるスペクトルのピーク強度
(I1580)に対する1360±100cm-1の波長域に
おけるスペクトルのピーク強度(I1360)の比が0.2未
満、かつX線回折による(101)回折ピークと(10
0)回折ピークの強度比が1.0以上であることを特徴と
する請求項1〜3のいずれかに記載の方法で製造された
リチウムイオン二次電池負極用炭素材。4. 1580 ± 1 in laser Raman spectroscopy
Ratio is less than 0.2 of the spectrum of the peak intensity at 1360 wavelength range of ± 100 cm -1 to the peak intensity of the spectrum (I 1580) in the wavelength range of 100 cm -1 (I 1360), and by X-ray diffraction (101) diffraction Peak and (10
0) The carbon material for a negative electrode of a lithium ion secondary battery produced by the method according to any one of claims 1 to 3, wherein the intensity ratio of the diffraction peak is 1.0 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9222343A JPH1167201A (en) | 1997-08-19 | 1997-08-19 | Carbon material for lithium ion secondary battery negative electrode and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9222343A JPH1167201A (en) | 1997-08-19 | 1997-08-19 | Carbon material for lithium ion secondary battery negative electrode and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1167201A true JPH1167201A (en) | 1999-03-09 |
Family
ID=16780865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9222343A Pending JPH1167201A (en) | 1997-08-19 | 1997-08-19 | Carbon material for lithium ion secondary battery negative electrode and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1167201A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168432A (en) * | 2001-12-03 | 2003-06-13 | Hitachi Powdered Metals Co Ltd | Graphite particle for negative electrode of nonaqueous secondary battery |
WO2019171796A1 (en) * | 2018-03-07 | 2019-09-12 | Jfeケミカル株式会社 | Method for manufacturing negative electrode material for lithium ion secondary battery |
-
1997
- 1997-08-19 JP JP9222343A patent/JPH1167201A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168432A (en) * | 2001-12-03 | 2003-06-13 | Hitachi Powdered Metals Co Ltd | Graphite particle for negative electrode of nonaqueous secondary battery |
WO2019171796A1 (en) * | 2018-03-07 | 2019-09-12 | Jfeケミカル株式会社 | Method for manufacturing negative electrode material for lithium ion secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7008526B2 (en) | Processes for producing coke, artificial graphite and carbon material for negative electrode of non-aqueous solvent type secondary battery and pitch composition used therefor | |
JP3844495B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3540478B2 (en) | Anode material for lithium ion secondary battery | |
JP2007153661A (en) | Graphite material, carbon material for battery electrode, and battery | |
JPH10326611A (en) | Carbon material for negative electrode of lithium secondary battery | |
WO2016121711A1 (en) | Method for manufacturing graphite powder for negative-electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JPH08315817A (en) | Manufacture of carbon negative electrode material and nonaqueous electrolyte secondary battery | |
JP4107624B2 (en) | Negative electrode active material for lithium secondary battery, lithium secondary battery and method for producing active material for negative electrode of lithium secondary battery | |
JP2004196609A (en) | Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery | |
CN103872292B (en) | Anode for nonaqueous electrolyte secondary battery active material and its manufacture method | |
JPH0927344A (en) | Nonaqueous electrolyte secondary battery | |
US20020160266A1 (en) | Graphite material for negative electrode of lithium ion secondary battery and process for producing the same | |
JP4204720B2 (en) | Negative electrode active material for lithium secondary battery and method for producing the same | |
KR101140866B1 (en) | Anode active material for lithium secondary battery And Lithium secondary battery comprising the same | |
JP2000313609A (en) | Material for lithium ion secondary battery, its production and battery | |
JPH0963584A (en) | Carbon material for lithium secondary battery and manufacture thereof | |
JPH10255799A (en) | Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture | |
JPH1167201A (en) | Carbon material for lithium ion secondary battery negative electrode and its manufacture | |
JP2001015170A (en) | Nonaqueous electrolyte battery | |
JPH0963585A (en) | Carbon material for lithium secondary battery and manufacture thereof | |
JP2002124255A (en) | Nonaqueous solvent secondary battery | |
JP2000251885A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, and secondary battery using the material | |
JP2003077473A (en) | Graphite material for lithium ion secondary battery negative electrode | |
JPH09283145A (en) | Carbon material for lithium secondary battery and manufacture thereof | |
JP2003077472A (en) | Manufacturing method of graphite material for lithium ion secondary battery negative electrode |