JP2009277596A - Method of manufacturing electrode group for secondary battery and secondary battery - Google Patents

Method of manufacturing electrode group for secondary battery and secondary battery Download PDF

Info

Publication number
JP2009277596A
JP2009277596A JP2008129987A JP2008129987A JP2009277596A JP 2009277596 A JP2009277596 A JP 2009277596A JP 2008129987 A JP2008129987 A JP 2008129987A JP 2008129987 A JP2008129987 A JP 2008129987A JP 2009277596 A JP2009277596 A JP 2009277596A
Authority
JP
Japan
Prior art keywords
current collector
electrode
plate
positive electrode
terminal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129987A
Other languages
Japanese (ja)
Inventor
Takeshi Hatanaka
剛 畑中
Junji Kanzaki
順二 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008129987A priority Critical patent/JP2009277596A/en
Publication of JP2009277596A publication Critical patent/JP2009277596A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture an electrode group for a secondary battery by reliably, stably, and efficiently connecting a collector end of a positive electrode plate or a negative electrode plate and a collector terminal plate, and obtain a secondary battery suited for large-current charge and discharge with the use of the electrode group. <P>SOLUTION: In the electrode structure 10 including a positive electrode plate 11 and the negative electrode plate 15 as electrode plates, a collector terminal plate is made in contact with a collector exposed part 12a of the positive electrode plate 11 arranged at one end and/or a chip of a collector exposed part 16c of the negative electrode plate 15 arranged at the other end, abutment parts of the collector terminal plates with at least the collector exposed parts 12a, 16a are to be melted, and at the same time, molten parts are pulled into an electrode plate side to have the electrode plates and the collector terminal plates connected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二次電池用電極群の製造方法および二次電池に関する。より詳しくは、本発明は主に、集電体端子板を電極板に取り付ける方法の改良に関する。   The present invention relates to a method for manufacturing a secondary battery electrode group and a secondary battery. More specifically, the present invention mainly relates to an improvement in a method for attaching a current collector terminal plate to an electrode plate.

最近において、駆動用電源などに用いられる二次電池は重要なキーデバイスとしてその開発が進められている。中でもニッケル水素蓄電池やリチウムイオン二次電池は小型かつ軽量で、高エネルギー密度を有することから携帯電話を始めとする民生用機器のみならず、電気自動車や電動工具にまで広く使用されている。特にリチウムイオン二次電池が駆動用電源として注目され、さらなる高容量化、さらなる高出力化に向けた開発が活発に行われている。駆動用電源として用いられる二次電池には、大電流放電が要求される。このため、二次電池の構造、特に、集電構造に工夫を加えた二次電池が提案されている。   Recently, a secondary battery used for a drive power source or the like has been developed as an important key device. Among them, nickel-metal hydride storage batteries and lithium ion secondary batteries are small and light and have high energy density, so they are widely used not only for consumer devices such as mobile phones but also for electric vehicles and power tools. In particular, lithium ion secondary batteries are attracting attention as power sources for driving, and development for higher capacity and higher output is being actively conducted. A secondary battery used as a driving power source is required to discharge a large current. For this reason, secondary batteries have been proposed in which the structure of the secondary battery, in particular, the current collecting structure is modified.

たとえば、タブレス集電構造が知られている。タブレス集電構造とは、正極板、負極板およびセパレータを含む電極群において、電極群の一方の端部に正極板の集電体露出部が配置され、他方の端部に負極板の集電体露出部が配置され、それぞれの集電体露出部にタブを介することなく集電端子板が接続された構造である。タブレス集電構造では、その両端部のほぼ全面に集電体露出部を配置しているので、両端部全面に集電端子板を接続でき、電気抵抗を小さくできる。したがって、タブレス集電構造は大電流放電に適している。タブレス集電構造を効率良く機能させるためには、正極板および負極板の集電体露出部の端部を集電端子板にそれぞれ確実に接続する必要がある。   For example, a tabless current collecting structure is known. The tabless current collecting structure is an electrode group including a positive electrode plate, a negative electrode plate, and a separator, wherein a current collector exposed portion of the positive electrode plate is disposed at one end of the electrode group, and a current collector of the negative electrode plate is disposed at the other end. A body exposed portion is arranged, and a current collector terminal plate is connected to each current collector exposed portion without a tab. In the tabless current collecting structure, the current collector exposed portions are arranged on almost the entire surface of both ends thereof, so that a current collecting terminal plate can be connected to the entire surfaces of both ends, and the electric resistance can be reduced. Therefore, the tabless current collecting structure is suitable for large current discharge. In order for the tabless current collecting structure to function efficiently, it is necessary to securely connect the ends of the current collector exposed portions of the positive electrode plate and the negative electrode plate to the current collecting terminal plate, respectively.

タブレス集電構造を有する電極群については、種々の提案がなされている。たとえば、正極板および負極板の集電体露出部が一方および他方の端部に配置された積層型電極群と、2つの集電端子板とを含み、集電体露出部と集電端子板との接続部分において、集電体露出部の端部の周囲には、集電端子板に含有される金属からなるフィレットが形成される電池が提案されている(たとえば、特許文献1参照)。この電池は、集電端子板の集電体露出部との接続面に凹部を形成し、この凹部に集電体露出部の端部を挿入し、電子ビームまたはレーザ照射により溶接することにより製造される。特許文献1の技術によれば、集電体と集電端子板とを確実に接続できる。   Various proposals have been made for an electrode group having a tabless current collecting structure. For example, the current collector exposed portion and the current collector terminal plate include a stacked electrode group in which the current collector exposed portions of the positive electrode plate and the negative electrode plate are arranged at one and the other end, and two current collector terminal plates. In the connection portion, a battery in which a fillet made of metal contained in the current collector terminal plate is formed around the end of the current collector exposed portion has been proposed (for example, see Patent Document 1). This battery is manufactured by forming a recess in the connection surface of the current collector terminal plate with the current collector exposed portion, inserting the end of the current collector exposed portion into this recess, and welding by electron beam or laser irradiation. Is done. According to the technique of Patent Document 1, the current collector and the current collector terminal plate can be reliably connected.

しかしながら、特許文献1に記載の電池の製造方法では、正極板または負極板の厚みや、セパレータの厚みによって集電体間の距離が変わるため、それに応じて、集電端子板の凹部を形成する必要がある。また、タブレス集電構造を有する電極群では、両端部に正極板および負極板の集電体露出部の端部が複数配置されているため、これらの端部を集電端子板に形成された凹部に挿入するためには、精密な位置合せが必要になる。したがって、製造工程が複雑になり、部分的な接続不良、不良品率の上昇、製造コストの高騰などの問題が発生するおそれがある。   However, in the battery manufacturing method described in Patent Document 1, since the distance between the current collectors varies depending on the thickness of the positive electrode plate or the negative electrode plate or the thickness of the separator, the concave portion of the current collector terminal plate is formed accordingly. There is a need. Further, in the electrode group having a tabless current collecting structure, a plurality of end portions of the current collector exposed portions of the positive electrode plate and the negative electrode plate are arranged at both end portions, so that these end portions are formed on the current collecting terminal plate. In order to insert into the recess, precise alignment is required. Therefore, the manufacturing process becomes complicated, and problems such as a partial connection failure, an increase in defective product rate, and an increase in manufacturing cost may occur.

また、タブレス集電構造を有する捲回型電極群において、該電極群の両端部に配置される正極および負極の集電体露出部の端部を、該電極群の捲回軸方向から押圧して平坦部を形成し、この平坦部と集電端子板とを溶接した二次電池が提案されている(たとえば、特許文献2参照)。特許文献2では、特許文献1のような電極群の集電体露出部と集電端子板との位置合せは不要になり、簡単な方法で集電端子板を集電体の端部に接続できる。   Further, in the wound electrode group having a tabless current collecting structure, the ends of the positive and negative electrode collector exposed portions arranged at both ends of the electrode group are pressed from the winding axis direction of the electrode group. A secondary battery in which a flat portion is formed and the flat portion and a current collecting terminal plate are welded has been proposed (for example, see Patent Document 2). In Patent Document 2, it is not necessary to align the current collector exposed portion of the electrode group and the current collector terminal plate as in Patent Document 1, and the current collector terminal plate is connected to the end of the current collector by a simple method. it can.

しかしながら、現状では、二次電池の大容量化、小型化などを図る上で、正極板および負極板に含まれる集電体をさらに薄肉化することが必須になっている。薄肉化された集電体は十分な機械的強度を有していないため、これを捲回軸方向から押圧すると、折れ曲がり方が不均一になり、平坦部を形成することが困難になる。特にリチウムイオン二次電池では、集電体には厚み20μm程度のアルミニウム箔や銅箔が用いられるため、押圧によって平坦部を形成することはきわめて困難である。平坦部が形成されない場合は、集電体と集電端子板との接続が不十分になるおそれがある。   However, at present, in order to increase the capacity and size of the secondary battery, it is essential to further reduce the thickness of the current collectors included in the positive electrode plate and the negative electrode plate. Since the thinned current collector does not have sufficient mechanical strength, when it is pressed from the winding axis direction, the bending method becomes uneven and it becomes difficult to form a flat portion. In particular, in a lithium ion secondary battery, an aluminum foil or copper foil having a thickness of about 20 μm is used as a current collector, so that it is very difficult to form a flat portion by pressing. If the flat portion is not formed, the connection between the current collector and the current collector terminal plate may be insufficient.

特開2006−172780号公報JP 2006-172780 A 特開2000−294222号公報JP 2000-294222 A

本発明の目的は、正極板または負極板の集電体端部と集電端子板とを確実にかつ効率よく接続できる二次電池用電極群の製造方法、および該製造方法により作製される電極群を含み、大電流放電に適した二次電池を提供することである。   An object of the present invention is to provide a method for producing a secondary battery electrode group capable of reliably and efficiently connecting a current collector end of a positive electrode plate or a negative electrode plate and a current collector terminal plate, and an electrode produced by the production method. A secondary battery including a group and suitable for high-current discharge is provided.

本発明は、正極板の集電体露出部が一方の端部に配置されかつ負極板の集電体露出部が他方の端部に配置されている電極構成体を作製する電極構成体作製工程と、
正極板および負極板から選ばれる少なくとも1つの電極板の集電体露出部に集電端子板を当接させ、集電端子板の少なくとも集電体露出部への当接部分を溶融させると共に、溶融部分を電極板側に引き込んで、電極板と集電端子板とを接続する電極接続工程とを含む二次電池用電極群の製造方法に係る。
The present invention provides an electrode structure manufacturing step for manufacturing an electrode structure in which a current collector exposed portion of a positive electrode plate is disposed at one end and a current collector exposed portion of a negative electrode plate is disposed at the other end. When,
The current collector terminal plate is brought into contact with the current collector exposed portion of at least one electrode plate selected from the positive electrode plate and the negative electrode plate, and at least the contact portion of the current collector terminal plate with the current collector exposed portion is melted. The present invention relates to a method for manufacturing an electrode group for a secondary battery including an electrode connecting step of drawing a molten portion toward the electrode plate and connecting the electrode plate and a current collecting terminal plate.

電極接続工程においては、アーク溶接により、集電端子板の少なくとも集電体露出部への当接部分を溶融させることが好ましい。
電極接続工程においては、電極構成体の内部を減圧状態にすることにより、集電端子板の溶融部分を電極板側に引き込むことが好ましい。
集電端子板に、それぞれ厚み方向の貫通孔が形成されていることが好ましい。
正極用の集電端子板は、比重が銅と同等かまたは銅よりも小さい金属からなることが好ましい。
In the electrode connection step, it is preferable to melt at least a contact portion of the current collector terminal plate with the current collector exposed portion by arc welding.
In the electrode connection step, it is preferable to draw the molten portion of the current collector terminal plate toward the electrode plate side by reducing the pressure inside the electrode structure.
It is preferable that through holes in the thickness direction are formed in the current collecting terminal plate.
The current collector terminal plate for the positive electrode is preferably made of a metal having a specific gravity equal to or smaller than that of copper.

また、本発明は、本発明の二次電池用電極群の製造方法により製造された二次電池用電極群を含む二次電池に係る。
本発明の二次電池は、リチウムイオン二次電池またはニッケル水素蓄電池であることが好ましい。
Moreover, this invention relates to the secondary battery containing the electrode group for secondary batteries manufactured by the manufacturing method of the electrode group for secondary batteries of this invention.
The secondary battery of the present invention is preferably a lithium ion secondary battery or a nickel hydride storage battery.

本発明によれば、電極群の端部に配置される集電体の露出部と集電体端子板とを、簡易な方法で確実にかつ安定的に接続でき、二次電池用電極群を少ない工程で効率的に製造できる。また、集電体露出部と集電端子板との接続面積を大きくすることが可能である。したがって、本発明の製造方法により製造された二次電池用電極群を含む二次電池は、低抵抗で安定した出力特性を持ち、特に大電流放電に適している。   According to the present invention, the exposed portion of the current collector disposed at the end of the electrode group and the current collector terminal plate can be reliably and stably connected by a simple method, and the secondary battery electrode group can be It can be manufactured efficiently with few steps. In addition, the connection area between the current collector exposed portion and the current collector terminal plate can be increased. Therefore, the secondary battery including the electrode group for the secondary battery manufactured by the manufacturing method of the present invention has low resistance and stable output characteristics, and is particularly suitable for large current discharge.

本発明の二次電池用電極群の製造方法は、電極構成体作製工程および電極接続工程を含む。
[電極構成体作製工程]
本工程では、電極構成体10を作製する。図1は、電極構成体10の構成を簡略化して示す図面である。図1(a)は、電極構成体10に含まれる正極板11の平面図である。図1(b)は、電極構成体10に含まれる負極板15の平面図である。図1(c)は電極構成体10の外観を示す斜視図である。
The manufacturing method of the electrode group for secondary batteries of this invention includes an electrode structure preparation process and an electrode connection process.
[Electrode structure manufacturing process]
In this step, the electrode assembly 10 is produced. FIG. 1 is a drawing showing a simplified configuration of an electrode structure 10. FIG. 1A is a plan view of the positive electrode plate 11 included in the electrode structure 10. FIG. 1B is a plan view of the negative electrode plate 15 included in the electrode structure 10. FIG. 1C is a perspective view showing the appearance of the electrode structure 10.

電極構成体10は、正極板11、負極板15および図示しないセパレータを含む捲回型電極群である。電極構成体10の捲回軸(軸心)が延びる方向において、電極構成体10の一方の端部に正極板11の集電体露出部12aが配置され、他方の端部に負極板15の集電体露出部16aが配置されている。正極板11の集電体露出部12aは、電極構成体10の一方の端部全面において、渦巻状に配置されている。負極板15の集電体露出部16aも、電極構成体10の他方の端部全面において、渦巻状に配置されている。   The electrode structure 10 is a wound electrode group including a positive electrode plate 11, a negative electrode plate 15, and a separator (not shown). In the direction in which the winding axis (axial center) of the electrode structure 10 extends, the current collector exposed portion 12a of the positive electrode plate 11 is disposed at one end of the electrode structure 10, and the negative electrode plate 15 is disposed at the other end. A current collector exposed portion 16a is disposed. The current collector exposed portion 12 a of the positive electrode plate 11 is disposed in a spiral shape over the entire surface of one end of the electrode structure 10. The current collector exposed portion 16 a of the negative electrode plate 15 is also arranged in a spiral shape on the entire surface of the other end of the electrode structure 10.

また、電極構成体10は、その捲回軸に沿って延びる中空部10aを有している。中空部10aは、電極構成体10の捲回軸が延びる方向において、電極構成体10を貫通している。なお、電極構成体10の捲回軸が延びる方向は、電極構成体10の長手方向と同じである。   Moreover, the electrode structure 10 has the hollow part 10a extended along the winding axis | shaft. The hollow portion 10a penetrates the electrode structure 10 in the direction in which the winding axis of the electrode structure 10 extends. The direction in which the winding axis of the electrode structure 10 extends is the same as the longitudinal direction of the electrode structure 10.

正極板11は、集電体12および正極活物質層13を含む。集電体12は、長手方向と短手方向とを有する長尺状の金属シートである。金属シートとは、具体的には、金属箔、金属フィルムなどである。正極活物質層13は、集電体12の厚み方向の両面に形成される。但し、正極板11の短手方向の一端には、正極活物質層13が形成されない集電体露出部12aが存在する。集電体露出部12aは、正極板11の短手方向の一端において、正極板11の長手方向に帯状に延びる部分である。   The positive electrode plate 11 includes a current collector 12 and a positive electrode active material layer 13. The current collector 12 is a long metal sheet having a long direction and a short direction. Specifically, the metal sheet is a metal foil, a metal film, or the like. The positive electrode active material layer 13 is formed on both surfaces of the current collector 12 in the thickness direction. However, a current collector exposed portion 12 a where the positive electrode active material layer 13 is not formed is present at one end of the positive electrode plate 11 in the short direction. The current collector exposed portion 12 a is a portion extending in a strip shape in the longitudinal direction of the positive electrode plate 11 at one end in the short direction of the positive electrode plate 11.

負極板15は、集電体16および負極活物質層17を含む。集電体16は、長手方向と短手方向とを有する長尺状の金属シートである。金属シートとは、具体的には、金属箔、金属フィルムなどである。負極活物質層17は、集電体16の厚み方向の両面に形成される。但し、負極板15の短手方向の一端には、負極活物質層17が形成されない集電体露出部16aが存在する。集電体露出部16aは、負極板15の短手方向の一端において、負極板15の長手方向に帯状に延びる部分である。   The negative electrode plate 15 includes a current collector 16 and a negative electrode active material layer 17. The current collector 16 is a long metal sheet having a longitudinal direction and a lateral direction. Specifically, the metal sheet is a metal foil, a metal film, or the like. The negative electrode active material layer 17 is formed on both surfaces of the current collector 16 in the thickness direction. However, the current collector exposed portion 16 a where the negative electrode active material layer 17 is not formed is present at one end of the negative electrode plate 15 in the short direction. The current collector exposed portion 16 a is a portion extending in a strip shape in the longitudinal direction of the negative electrode plate 15 at one end in the short direction of the negative electrode plate 15.

セパレータには、たとえば、多孔質フィルム、多孔質絶縁膜、多孔質フィルムと多孔質絶縁膜との積層体などを使用できる。多孔質フィルムは、たとえば、合成樹脂からなる微多孔フィルムである。合成樹脂には、たとえば、ポリエチレン、ポリプロピレンなどのポリオレフィンを使用できる。多孔質絶縁膜は、金属酸化物などの無機フィラーと合成樹脂などの結着材とから形成される。結着材として用いられる合成樹脂は、活物質層を形成するための結着材と同様のものを使用できる。   As the separator, for example, a porous film, a porous insulating film, a laminate of a porous film and a porous insulating film, or the like can be used. The porous film is, for example, a microporous film made of a synthetic resin. As the synthetic resin, for example, polyolefin such as polyethylene and polypropylene can be used. The porous insulating film is formed from an inorganic filler such as a metal oxide and a binder such as a synthetic resin. As the synthetic resin used as the binder, the same resin as the binder for forming the active material layer can be used.

電極構成体10は、たとえば、正極板11と負極板15とをセパレータを介して重ね合わせ、これを捲回することにより作製できる。このとき、正極活物質層13と負極活物質層17とがセパレータを介して対向し、集電体露出部12a、16aが重ね合わせ物の短手方向においてそれぞれ一方および他方の端部に位置するように、正極板11と負極板15とを重ね合わせる。これにより、電極構成体10の捲回軸が延びる方向の両端部において、集電体露出部12a、16aが、セパレータとセパレータとの間から渦巻状に突出する。   The electrode assembly 10 can be produced, for example, by stacking the positive electrode plate 11 and the negative electrode plate 15 with a separator interposed therebetween and winding the same. At this time, the positive electrode active material layer 13 and the negative electrode active material layer 17 face each other with a separator interposed therebetween, and the current collector exposed portions 12a and 16a are positioned at one and the other end portions in the lateral direction of the stacked product, respectively. Thus, the positive electrode plate 11 and the negative electrode plate 15 are overlapped. Thereby, current collector exposed portions 12a and 16a protrude in a spiral shape from between the separators at both ends of the electrode assembly 10 in the direction in which the winding shaft extends.

本実施の形態では、電極構成体10はほぼ円形の捲回型電極群として形成されるが、それに限定されず、平板状または扁平状の捲回型電極群として形成してもよい。また、捲回型電極群に限定されず、電極構成体10を積層型電極群として形成してもよい。積層型電極群は、正極板11と負極板15とをセパレータを介して積層することにより作製される。たとえば、積層型電極群の形状が長方形である場合、集電体露出部12aは長方形の一辺に相当する端部に配置され、集電体露出部16aは前記長方形の一辺に対向する辺に相当する端部に配置される。   In the present embodiment, the electrode assembly 10 is formed as a substantially circular wound electrode group, but is not limited thereto, and may be formed as a flat or flat wound electrode group. Moreover, it is not limited to a wound type electrode group, You may form the electrode structure 10 as a laminated type electrode group. The stacked electrode group is produced by stacking the positive electrode plate 11 and the negative electrode plate 15 with a separator interposed therebetween. For example, when the shape of the stacked electrode group is a rectangle, the current collector exposed portion 12a is disposed at an end corresponding to one side of the rectangle, and the current collector exposed portion 16a corresponds to a side facing one side of the rectangle. It is arranged at the end.

[電極接続工程]
本工程では、電極構成体10の捲回軸が延びる方向の両端部にそれぞれ配置される集電体露出部12a、16aの先端部分に、集電端子板を接続する。電極接続工程は、正極板および負極板のいずれか一方に対して実施しても良く、両方に実施しても良い。両方に実施するのが好ましい。また、いずれか一方に実施する場合は、正極板に対して実施するのが好ましい。
[Electrode connection process]
In this step, the current collector terminal plate is connected to the tip portions of the current collector exposed portions 12a and 16a respectively disposed at both ends of the electrode assembly 10 in the direction in which the winding axis extends. An electrode connection process may be implemented with respect to any one of a positive electrode plate and a negative electrode plate, and may be implemented to both. It is preferable to carry out both. Moreover, when implementing to either one, it is preferable to implement with respect to a positive electrode plate.

正極と正極集電端子板とは、たとえば、当接工程と、溶融工程と、接合工程とを含む方法により接続できる。当接工程では、集電体露出部12aの先端部分に図示しない正極集電端子板の一方の表面を当接させ。溶融工程では、正極集電端子板を部分的に溶融させる。接合工程では、正極集電端子板の溶融部分を正極板11側に引き込んで、集電体露出部12aと正極集電端子板とを接合する。これにより、正極板11と正極集電端子板とが安定的にかつ強固に接続される。   The positive electrode and the positive electrode current collector terminal plate can be connected by, for example, a method including a contact process, a melting process, and a bonding process. In the contact step, one surface of a positive current collector terminal plate (not shown) is brought into contact with the tip of the current collector exposed portion 12a. In the melting step, the positive electrode current collector terminal plate is partially melted. In the joining step, the melted portion of the positive electrode current collector terminal plate is drawn to the positive electrode plate 11 side, and the current collector exposed portion 12a and the positive electrode current collector terminal plate are joined. Thereby, the positive electrode plate 11 and the positive electrode current collector terminal plate are stably and firmly connected.

負極と負極集電端子板との接続も、集電体露出部16aの先端部分に図示しない負極集電端子板の一方の表面を当接させ(当接工程)、以下正極接続工程と同様に溶融工程および接合工程を実施し、負極板15と負極集電端子板とを接合する。正極の接続および負極の接続は、どちらを先に実施してもよい。   For connection between the negative electrode and the negative electrode current collector terminal plate, one surface of the negative electrode current collector terminal plate (not shown) is brought into contact with the tip of the current collector exposed portion 16a (contact process). The melting step and the joining step are performed to join the negative electrode plate 15 and the negative electrode current collector terminal plate. Either the positive electrode connection or the negative electrode connection may be performed first.

図2は、電極接続工程の一例を示す斜視図である。図2(a)〜図2(c)では、当接工程が実施される。図2(d)では、溶融工程および接合工程が実施される。本実施の形態では、図2は、正極接続工程を示している。   FIG. 2 is a perspective view illustrating an example of an electrode connection process. In FIG. 2A to FIG. 2C, the contact step is performed. In FIG.2 (d), a melting process and a joining process are implemented. In the present embodiment, FIG. 2 shows a positive electrode connection step.

図2(a)に示す工程では、電極構成体10を減圧器20に収容する。減圧器20は、収容容器21、第1配管22、第2配管23、三方コック24およびOリング25を含む。収容容器21は円筒状容器であり、電極構成体10の捲回軸が延びる方向と鉛直方向とが一致するように、電極構成体10を収容する。このとき、電極構成体10の上端部(集電体露出部12aまたは集電体露出部16a先端部分)が、収容容器21の上端部よりも5mm程度上方に位置するように、電極構成体10を収容するのが好ましい。本実施の形態では、集電体露出部12aを上にして電極構成体10を収容容器21内に収容している。   In the step shown in FIG. 2A, the electrode assembly 10 is accommodated in the decompressor 20. The decompressor 20 includes a storage container 21, a first pipe 22, a second pipe 23, a three-way cock 24, and an O-ring 25. The storage container 21 is a cylindrical container and stores the electrode structure 10 so that the direction in which the winding axis of the electrode structure 10 extends matches the vertical direction. At this time, the electrode structure 10 is arranged such that the upper end portion (the current collector exposed portion 12a or the current collector exposed portion 16a tip portion) of the electrode structure 10 is positioned about 5 mm above the upper end portion of the storage container 21. Is preferably accommodated. In the present embodiment, the electrode assembly 10 is housed in the housing container 21 with the current collector exposed portion 12a facing upward.

第1配管22は、一端が収容容器21に接続され、他端が図示しない真空ポンプに連結されている。第1配管22の内部空間と収容容器21の内部空間とが連通している。真空ポンプにより吸引を行うと、収容容器21の内部空間は、気流が鉛直方向下方に向かう減圧状態になる。これにより、収容容器21の内部に収容された電極構成体10の内部も、減圧状態になる。   The first pipe 22 has one end connected to the storage container 21 and the other end connected to a vacuum pump (not shown). The internal space of the first pipe 22 communicates with the internal space of the storage container 21. When suction is performed by the vacuum pump, the internal space of the container 21 is in a decompressed state in which the airflow is directed downward in the vertical direction. Thereby, the inside of the electrode structure 10 accommodated in the container 21 is also in a reduced pressure state.

第2配管23は、一端が第1配管22に接続され、他端が開放されている。三方コック24は、第1配管22と第2配管23との接続部分に装着されている。三方コック24の向きを適宜調整することにより、収容容器21の内部空間の減圧度を調節し、または、内部空間の減圧状態を解消する。本実施の形態では、収容容器21の内部空間の減圧度を、800hPa〜500hPa程度の範囲で調節する。Oリング25は収容容器21の上端部に沿って配置され、図2(c)に示す工程で、収容容器21の上端部と溶接用台座26の水平台27とを当接させる際に、収容容器21と水平台27との密着性を向上させる。   The second pipe 23 has one end connected to the first pipe 22 and the other end opened. The three-way cock 24 is attached to a connection portion between the first pipe 22 and the second pipe 23. By appropriately adjusting the direction of the three-way cock 24, the degree of decompression of the internal space of the container 21 is adjusted, or the decompressed state of the internal space is eliminated. In this Embodiment, the pressure reduction degree of the internal space of the storage container 21 is adjusted in the range of about 800 hPa-500 hPa. The O-ring 25 is disposed along the upper end portion of the storage container 21 and is stored when the upper end portion of the storage container 21 and the horizontal base 27 of the welding base 26 are brought into contact with each other in the step shown in FIG. The adhesion between the container 21 and the horizontal base 27 is improved.

図2(b)に示す工程では、電極構成体10を収容した減圧器20を昇降手段29の上に載置した状態で、溶接用台座26の下に配置する。溶接用台座26は、水平台27および支持部材28を含む。水平台27は本実施の形態ではほぼ方形の板状部材であり、その中央部分に穴27aが形成されている。穴27aには、電極構成体10の集電体露出部12aが挿通される。したがって、穴27aは、集電体露出部12aの断面形状に対応する形状を有することが好ましい。   In the step shown in FIG. 2B, the decompressor 20 containing the electrode structure 10 is placed under the welding base 26 in a state where it is placed on the elevating means 29. The welding base 26 includes a horizontal base 27 and a support member 28. The horizontal base 27 is a substantially rectangular plate-like member in the present embodiment, and a hole 27a is formed at the center thereof. The current collector exposed portion 12a of the electrode assembly 10 is inserted through the hole 27a. Therefore, the hole 27a preferably has a shape corresponding to the cross-sectional shape of the current collector exposed portion 12a.

4つの支持部材28は、水平台27の四隅の下面に取り付けられ、水平台27を水平方向に支持する。昇降手段29は、減圧器20を鉛直方向に上下動させる。昇降手段29には、たとえば、油圧プレスなどが用いられる。なお、減圧器20を上昇させた時に、電極構成体10の集電体露出部12aを水平台27の穴27aに挿通可能にするように、溶接用台座26の下に配置される。   The four support members 28 are attached to the lower surfaces of the four corners of the horizontal table 27 and support the horizontal table 27 in the horizontal direction. The elevating means 29 moves the decompressor 20 up and down in the vertical direction. For the elevating means 29, for example, a hydraulic press or the like is used. When the decompressor 20 is raised, the current collector exposed portion 12a of the electrode assembly 10 is disposed under the welding base 26 so that the current collector exposed portion 12a can be inserted into the hole 27a of the horizontal base 27.

図2(c)に示す工程では、まず、昇降手段29により減圧器20を上昇させ、電極構成体10の集電体露出部12aを水平台27の穴27aに挿通させる。このとき、集電体露出部12aの少なくとも先端部分が水平台27の上面よりも上に位置するように減圧器20を上昇させる。また、減圧器20の収容容器21の上端部に配置されているOリング25と水平台27の下面とが密着している。これにより、収容容器21内部の減圧状態が効率良く保持される。   In the step shown in FIG. 2C, first, the decompressor 20 is raised by the elevating means 29, and the current collector exposed portion 12a of the electrode structure 10 is inserted into the hole 27a of the horizontal base 27. At this time, the decompressor 20 is raised so that at least the tip of the current collector exposed portion 12 a is positioned above the upper surface of the horizontal base 27. In addition, the O-ring 25 disposed at the upper end of the storage container 21 of the decompressor 20 and the lower surface of the horizontal table 27 are in close contact with each other. Thereby, the decompression state inside the container 21 is efficiently maintained.

次に、集電体露出部12aの先端部分に正極集電端子板30を載せ、押え板31により、集電体露出部12aの先端部分と正極集電端子板30の一方の表面とが当接した状態で、正極集電端子板30を固定する。さらに、真空ポンプを稼動させ、収容容器21の内部を減圧状態にする。本実施の形態では、収容容器21内部を、好ましくは800hPa〜500hPa程度の減圧状態にする。   Next, the positive electrode current collector terminal plate 30 is placed on the front end portion of the current collector exposed portion 12a, and the presser plate 31 causes the front end portion of the current collector exposed portion 12a and one surface of the positive electrode current collector terminal plate 30 to contact each other. The positive electrode current collector terminal plate 30 is fixed in the contact state. Furthermore, a vacuum pump is operated and the inside of the storage container 21 is made into a pressure reduction state. In the present embodiment, the inside of the container 21 is preferably in a reduced pressure state of about 800 hPa to 500 hPa.

図3は、正極集電端子板30の構成を示す斜視図である。正極集電端子板30は、集電体露出部12aの断面形状に対応する形状を有する金属製板状部材である。本実施の形態では、正極集電端子板30は、ほぼ円形である。また、正極集電端子板30には、該端子板30を集電体露出部12aの先端部分に載せたときに、電極構成体10の中空部10aに連通するように、貫通孔30aが形成されている。これにより、正極集電端子板30を接続した後でも、電極構成体10の中空部10aの通気性が保持される。その結果、後の負極接続工程において、電極構成体10内の減圧度の調整が容易になり、負極接続工程を容易に実施できる。また、正極集電端子板30には、予め、正極リード33が接続されている。なお、図2においては、正極リード33の図示を省略する。   FIG. 3 is a perspective view showing the configuration of the positive electrode current collector terminal plate 30. The positive electrode current collector terminal plate 30 is a metal plate-like member having a shape corresponding to the cross-sectional shape of the current collector exposed portion 12a. In the present embodiment, the positive electrode current collector terminal plate 30 is substantially circular. The positive current collector terminal plate 30 is formed with a through hole 30a so as to communicate with the hollow portion 10a of the electrode structure 10 when the terminal plate 30 is placed on the tip of the current collector exposed portion 12a. Has been. Thereby, even after the positive electrode current collector terminal plate 30 is connected, the air permeability of the hollow portion 10a of the electrode assembly 10 is maintained. As a result, in the subsequent negative electrode connection step, it is easy to adjust the degree of reduced pressure in the electrode assembly 10, and the negative electrode connection step can be easily performed. A positive electrode lead 33 is connected to the positive electrode current collector terminal plate 30 in advance. In FIG. 2, the positive electrode lead 33 is not shown.

正極集電端子板30の材質は金属であれば特に制限されないが、比重が銅と同等かまたは銅より低い金属が好ましく、比重が銅よりも低い金属がさらに好ましい。正極集電端子板30が銅や鉄程度の比重を有する金属で構成されている場合は、それ自体の重みにより、正極板11側への垂れ込み(引き込み)量が多くなる。また、引き込まれた溶融部分は集電体露出部12a表面で弾かれることなく拡がっていく。したがって、減圧度を小さくしても、十分な接合面積が得られる。   The material of the positive electrode current collector terminal plate 30 is not particularly limited as long as it is a metal, but a metal having a specific gravity equal to or lower than that of copper is preferable, and a metal having a specific gravity lower than that of copper is more preferable. When the positive electrode current collector terminal plate 30 is made of a metal having a specific gravity similar to copper or iron, the amount of sag (pulling) toward the positive electrode plate 11 increases due to its own weight. Further, the drawn melted portion expands without being bounced on the surface of the current collector exposed portion 12a. Therefore, even if the degree of decompression is reduced, a sufficient bonding area can be obtained.

一方、比重が銅と同程度かまたは銅よりも比重の小さい金属であれば、溶融部分が正極集電端子板30の表面に拡がり、正極板11側に引き込まれる量が少なくなる。また、引き込まれた溶融部分が集電体露出部12a表面で弾かれ易い。したがって、減圧度を大きくし、正極板11側に引き込まれる量を多くすることにより、十分な接合面積を確保できる。このようにして、正極板11と正極集電端子板30とが安定的にかつ確実に接続される。   On the other hand, if the specific gravity is the same as that of copper or a metal having a specific gravity smaller than copper, the molten portion spreads on the surface of the positive electrode current collector terminal plate 30, and the amount drawn into the positive electrode plate 11 side is reduced. In addition, the drawn melted portion is easily repelled on the surface of the current collector exposed portion 12a. Therefore, a sufficient bonding area can be secured by increasing the degree of decompression and increasing the amount drawn into the positive electrode plate 11 side. In this way, the positive electrode plate 11 and the positive electrode current collector terminal plate 30 are connected stably and reliably.

なお、銅よりも比重の大きい金属を用いても、正極板11と正極集電端子板30との接続は可能である。しかしながら、そのような金属は溶融すると自重が重いために、溶融した部分が脱落して、内部短絡の原因となりやすいという不具合を生じるおそれがある。   The positive electrode plate 11 and the positive electrode current collector terminal plate 30 can be connected even when a metal having a specific gravity greater than that of copper is used. However, when such a metal is melted, its own weight is heavy, so that there is a possibility that the melted portion falls off, which may cause an internal short circuit.

本実施の形態では、正極集電端子板30はアルミニウムで構成されている。正極集電端子板30がアルミニウムのような表面張力の小さい金属からなる場合は、溶融金属は鉛直方向よりも水平方向に流動しやすいので、集電体露出部12aの先端部分と正極集電端子板30との接合が不十分になるおそれがある。しかしながら、本発明では、電極構成体10の内部を、気流が鉛直方向下方に向かうような減圧状態にすることにより、溶融金属が鉛直方向に押され、正極板11側に引き込まれる。したがって、表面張力に関係なく、十分量の溶融金属が集電体露出部12aの先端部分周辺に付着し、固化する。その結果、集電体露出部12aと正極集電端子板30とが安定的にかつ確実に接合される。   In the present embodiment, the positive electrode current collector terminal plate 30 is made of aluminum. When the positive electrode current collector terminal plate 30 is made of a metal having a low surface tension such as aluminum, the molten metal flows more easily in the horizontal direction than in the vertical direction, so the tip of the current collector exposed portion 12a and the positive electrode current collector terminal There is a possibility that the bonding with the plate 30 becomes insufficient. However, in the present invention, the molten metal is pushed in the vertical direction and drawn to the positive electrode plate 11 side by bringing the inside of the electrode structure 10 into a reduced pressure state in which the airflow is directed downward in the vertical direction. Therefore, regardless of the surface tension, a sufficient amount of molten metal adheres to the periphery of the tip portion of the current collector exposed portion 12a and solidifies. As a result, the current collector exposed portion 12a and the positive electrode current collector terminal plate 30 are stably and reliably joined.

図4は、集電体露出部12aの先端部分と正極集電端子板30との当接状態を示す断面図である。図4に示すように、集電体露出部12aの先端部分の全てが、正極集電端子板30の表面に当接している。これにより、正極板11と正極集電端子板30との接続部分の抵抗が低くなり、大電流放電が可能な二次電池用電極群が得られる。   FIG. 4 is a cross-sectional view showing a contact state between the front end portion of the current collector exposed portion 12 a and the positive electrode current collector terminal plate 30. As shown in FIG. 4, the entire tip of the current collector exposed portion 12 a is in contact with the surface of the positive electrode current collector terminal plate 30. Thereby, the resistance of the connection part of the positive electrode plate 11 and the positive electrode current collection terminal plate 30 becomes low, and the electrode group for secondary batteries which can discharge a large current is obtained.

図2の説明に戻る。図2(d)に示す工程では、集電体露出部12aの先端部分と正極集電端子板30とを接合し、正極板11と正極集電端子板30とを接続する。これは、たとえば、アーク溶接法、好ましくはTIG(Tungsten Inert Gas)溶接法で常用される溶接用電極を用いて行われる。   Returning to the description of FIG. In the step shown in FIG. 2D, the tip portion of the current collector exposed portion 12a and the positive electrode current collector terminal plate 30 are joined, and the positive electrode plate 11 and the positive electrode current collector terminal plate 30 are connected. This is performed, for example, using a welding electrode commonly used in arc welding, preferably TIG (Tungsten Inert Gas) welding.

具体的には、図2(d)に示すように、正極集電端子板30の集電体露出部12aへの当接面とは反対側の表面(以下「反対面」とする)に、溶接用電極32からエネルギーを照射する。このとき、反対面の全面にエネルギーを照射する必要はなく、たとえば、集電体露出部12aの間隔などに応じて、部分的にエネルギーを照射しても良い。たとえば、反対面における、集電体露出部12aへの当接部分に対応する部分にエネルギーを照射すればよい。これにより、正極集電端子板30が厚み方向に溶融し、少なくとも、集電体露出部12aの先端部分との当接部分が溶融する。   Specifically, as shown in FIG. 2D, on the surface opposite to the contact surface of the positive electrode current collector terminal plate 30 to the current collector exposed portion 12a (hereinafter referred to as "opposite surface"), Energy is irradiated from the welding electrode 32. At this time, it is not necessary to irradiate the entire opposite surface with energy, and for example, energy may be partially irradiated according to the interval between the current collector exposed portions 12a. For example, energy may be applied to a portion of the opposite surface corresponding to the contact portion with the current collector exposed portion 12a. Thereby, the positive electrode current collector terminal plate 30 is melted in the thickness direction, and at least the contact portion with the tip portion of the current collector exposed portion 12a is melted.

このとき、電極構成体10の内部は気流が鉛直方向下方に向かう減圧状態になっているので、正極集電端子板30の溶融部分は正極板11側に引き込まれ、集電体露出部12aの先端部分周辺に付着して固化する。電極構成体10の内部を前記のような減圧状態にすることにより、正極集電端子板30の溶融部分が正極板11側に引き込まれる量が多くなり、集電体露出部12aと正極集電端子板30との接合面積を大きくすることが可能になる。これにより、集電体露出部12aの先端部分と正極集電端子板30とが確実にかつ安定的に接合される。   At this time, since the inside of the electrode assembly 10 is in a depressurized state in which the airflow is directed downward in the vertical direction, the molten portion of the positive electrode current collector terminal plate 30 is drawn to the positive electrode plate 11 side, and the current collector exposed portion 12a It sticks around the tip and solidifies. By making the inside of the electrode assembly 10 in a reduced pressure state as described above, the amount of the melted portion of the positive electrode current collector terminal plate 30 drawn into the positive electrode plate 11 side increases, and the current collector exposed portion 12a and the positive electrode current collector are increased. It is possible to increase the bonding area with the terminal board 30. Thereby, the front-end | tip part of the collector exposed part 12a and the positive electrode current collection terminal board 30 are joined reliably and stably.

図5は、集電体露出部12aの先端部分と正極集電端子板30との接合状態を示す断面図である。図5によれば、正極集電端子板30を溶融させることにより、その溶融部分が集電体露出部12a(正極板11)側に引き込まれ、集電体露出部12aの先端部分周辺に付着し、集電体露出部12aの先端部分と正極集電端子板30とが接合されている。
これにより、正極接続工程が終了し、電極構成体10と正極集電端子板30との接合体(以下「正極接合体」とする)が得られる。
FIG. 5 is a cross-sectional view showing a joined state between the tip portion of the current collector exposed portion 12 a and the positive electrode current collector terminal plate 30. According to FIG. 5, by melting the positive electrode current collector terminal plate 30, the melted portion is drawn to the current collector exposed portion 12a (positive electrode plate 11) side and adheres to the periphery of the tip portion of the current collector exposed portion 12a. And the front-end | tip part of the collector exposed part 12a and the positive electrode current collection terminal board 30 are joined.
Thereby, a positive electrode connection process is complete | finished and the joined body (henceforth "a positive electrode joined body") of the electrode structure 10 and the positive electrode current collection terminal board 30 is obtained.

負極接続工程は、正極接続工程と同様にして実施できる。すなわち、図2(a)に示すように、集電体露出部16aが鉛直方向上方に位置するように、正極接合体を再度減圧器20に収容する。次に、図2(b)に示すように、正極接合体を収容した減圧器20を昇降手段29の上に載置した状態で、溶接用台座26の下に配置する。さらに、図2(c)に示すように、集電体露出部16aの先端部分に図6に示す負極集電端子板35を載置し、押え板31により負極集電端子板35を固定する。このとき、集電体露出部16aの先端部分と負極集電端子板35の一方の表面との当接状態は、図4に示すのと同様である。   The negative electrode connection step can be performed in the same manner as the positive electrode connection step. That is, as shown in FIG. 2A, the positive electrode assembly is accommodated in the decompressor 20 again so that the current collector exposed portion 16a is positioned upward in the vertical direction. Next, as shown in FIG. 2 (b), the decompressor 20 containing the positive electrode assembly is placed under the welding base 26 in a state where it is placed on the lifting means 29. Further, as shown in FIG. 2 (c), the negative electrode current collector terminal plate 35 shown in FIG. 6 is placed on the tip of the current collector exposed portion 16 a, and the negative electrode current collector terminal plate 35 is fixed by the presser plate 31. . At this time, the contact state between the tip of the current collector exposed portion 16a and one surface of the negative electrode current collector terminal plate 35 is the same as shown in FIG.

図6は、負極集電端子板35の構成を示す斜視図である。負極集電端子板35は、集電体露出部16aの断面形状に対応する形状を有する金属製板状部材である。本実施の形態では、負極集電端子板35の形状はほぼ円形である。また、負極集電端子板35には、貫通孔35aが形成されている。貫通孔35aはU字状の形状を有し、U字の両端にある2本の直線の間隔が、電極構成体10の中空部10aの最大径よりも僅かに大きくなるように形成するのが好ましい。これにより、電極構成体10内部において、気流の方向が鉛直方向下方である減圧状態を作り易くなる。   FIG. 6 is a perspective view showing the configuration of the negative electrode current collector terminal plate 35. The negative electrode current collector terminal plate 35 is a metal plate-like member having a shape corresponding to the cross-sectional shape of the current collector exposed portion 16a. In the present embodiment, the shape of the negative electrode current collector terminal plate 35 is substantially circular. The negative electrode current collector terminal plate 35 has a through hole 35a. The through-hole 35a has a U-shape, and is formed so that the distance between two straight lines at both ends of the U-shape is slightly larger than the maximum diameter of the hollow portion 10a of the electrode structure 10. preferable. Thereby, it becomes easy to create a reduced pressure state in which the direction of the airflow is downward in the vertical direction inside the electrode structure 10.

本実施の形態では、貫通孔35aはU字状の形状を有しているが、それに限定されず、任意の形状にすることができる。また、負極集電端子板35を正極集電端子板30よりも先に接合する場合には、負極集電端子板35に、正極集電端子板30の貫通孔30aと同様の貫通孔を形成し、正極集電端子板30に、負極集電端子板35の貫通孔35aを形成すればよい。また、本実施の形態では、負極集電端子板35には、銅からなるものを用いている。   In the present embodiment, the through-hole 35a has a U-shape, but is not limited to this, and can have any shape. When the negative electrode current collector terminal plate 35 is joined before the positive electrode current collector terminal plate 30, a through hole similar to the through hole 30 a of the positive electrode current collector terminal plate 30 is formed in the negative electrode current collector terminal plate 30. The through hole 35 a of the negative electrode current collector terminal plate 35 may be formed in the positive electrode current collector terminal plate 30. In the present embodiment, the negative electrode current collector terminal plate 35 is made of copper.

引き続き、図2(d)に示すように、負極集電端子板35を溶融させ、集電体露出部16aと負極集電端子板35とを接合する。接合状態は、図5に示すのと同様である。溶融および接合時において、電極構成体10内部は、900hPa〜700hPa程度の減圧状態にするのが好ましい。   Subsequently, as shown in FIG. 2D, the negative electrode current collector terminal plate 35 is melted, and the current collector exposed portion 16a and the negative electrode current collector terminal plate 35 are joined. The joining state is the same as that shown in FIG. At the time of melting and bonding, the inside of the electrode structure 10 is preferably in a reduced pressure state of about 900 hPa to 700 hPa.

これにより、負極集電端子板35が電極構成体10に接続され、負極板15と負極集電端子板35とが接続され、タブレス集電構造を有する本発明の二次電池用電極群が得られる。本発明の二次電池用電極群は、二次電池に用いるのが好ましい。また、本発明の二次電池用電極群は、二次電池と同様の集電構造を有する電気化学素子に用いてもよい。このような電気化学素子としては、たとえば、コンデンサなどが挙げられる。   Thereby, the negative electrode current collector terminal plate 35 is connected to the electrode structure 10, the negative electrode plate 15 and the negative electrode current collector terminal plate 35 are connected, and the secondary battery electrode group of the present invention having a tabless current collection structure is obtained. It is done. The electrode group for a secondary battery of the present invention is preferably used for a secondary battery. Moreover, you may use the electrode group for secondary batteries of this invention for the electrochemical element which has the current collection structure similar to a secondary battery. Examples of such electrochemical elements include capacitors.

図7は、本発明の実施形態の1つである二次電池1の構成を簡略化して示す縦断面図である。二次電池1は、本発明の二次電池用電極群の製造方法により製造されるタブレス集電構造の二次電池用電極群2を含むことを特徴とする。
二次電池1は、電極群2、封口板3、ガスケット4および電池缶5を含む。
FIG. 7 is a vertical cross-sectional view showing a simplified configuration of a secondary battery 1 that is one embodiment of the present invention. The secondary battery 1 includes a secondary battery electrode group 2 having a tabless current collecting structure manufactured by the method for manufacturing a secondary battery electrode group of the present invention.
The secondary battery 1 includes an electrode group 2, a sealing plate 3, a gasket 4 and a battery can 5.

電極群2は、電極構成体10、正極集電端子30および負極集電端子35を含む。電極構成体10は、前記したように、正極板11と負極板15とをセパレータ34を介して重ね合わせ、さらに捲回することにより作製される。電極構成体10の捲回軸が延びる方向において、電極構成体10の一方の端部には正極板11の集電体露出部12aが配置され、他方には負極板15の集電体露出部16aが配置されている。集電体露出部12aの先端部分は、タブを介することなく、正極集電端子板30の表面に直接接合されている。集電体露出部16aの先端部分は、タブを介することなく、負極集電端子板35の表面に直接接合されている。電極構成体10には、二次電池1の電池種に応じて、適切な電解液が含浸される。   The electrode group 2 includes an electrode structure 10, a positive electrode current collector terminal 30, and a negative electrode current collector terminal 35. As described above, the electrode assembly 10 is produced by stacking the positive electrode plate 11 and the negative electrode plate 15 with the separator 34 interposed therebetween and further winding the electrode plate 10 and the negative electrode plate 15. In the direction in which the winding axis of the electrode structure 10 extends, the current collector exposed portion 12a of the positive electrode plate 11 is disposed at one end of the electrode structure 10, and the current collector exposed portion of the negative electrode plate 15 is disposed at the other end. 16a is arranged. The tip end portion of the current collector exposed portion 12a is directly joined to the surface of the positive electrode current collector terminal plate 30 without using a tab. The tip of the current collector exposed portion 16a is directly joined to the surface of the negative electrode current collector terminal plate 35 without using a tab. The electrode assembly 10 is impregnated with an appropriate electrolyte depending on the battery type of the secondary battery 1.

電極構成体10に含まれるセパレータ34には、合成樹脂製多孔質フィルム、金属酸化物および結着材を含有する多孔質絶縁膜、前記合成樹脂製多孔質フィルムと前記多孔質絶縁膜との積層体などを使用できる。   The separator 34 included in the electrode assembly 10 includes a synthetic resin porous film, a porous insulating film containing a metal oxide and a binder, and a laminate of the synthetic resin porous film and the porous insulating film. The body can be used.

正極集電端子板30は、円盤状の金属板であり、その中央部には電極群2の捲回軸に沿って延びる中空部10aに連通する貫通孔30aが形成されている。正極集電端子板30には、正極リード33の一端が接続されている。正極リード33の他端は正極端子を有する封口板3に接続されている。本実施の形態では、正極集電端子板30はアルミニウム製である。一方、負極集電端子板35は円盤状の金属板であり、電池缶5の負極端子になる底部の内壁に直接接続されている。本実施の形態では、負極集電端子板35は銅製である。   The positive electrode current collector terminal plate 30 is a disk-shaped metal plate, and a through hole 30 a communicating with the hollow portion 10 a extending along the winding axis of the electrode group 2 is formed at the center thereof. One end of a positive electrode lead 33 is connected to the positive electrode current collecting terminal plate 30. The other end of the positive electrode lead 33 is connected to a sealing plate 3 having a positive electrode terminal. In the present embodiment, the positive electrode current collector terminal plate 30 is made of aluminum. On the other hand, the negative electrode current collecting terminal plate 35 is a disk-shaped metal plate, and is directly connected to the inner wall of the bottom portion that becomes the negative electrode terminal of the battery can 5. In the present embodiment, the negative electrode current collector terminal plate 35 is made of copper.

封口板3は、電池缶5の内部に電極群2を収納した後に、ガスケット4を介して電池缶5の開口に装着され、電池缶5を封口するとともに、その頂部に正極端子となる突起を有している。ガスケット4には、たとえば、合成樹脂製のものが用いられる。電池缶5は、有底円筒状の容器部材であり、その内部に電極群2および電解液を収容する。電池缶5の底面が負極端子になる。電池缶5には、たとえば、鉄製のものが用いられる。   After the electrode group 2 is housed inside the battery can 5, the sealing plate 3 is attached to the opening of the battery can 5 through the gasket 4 to seal the battery can 5, and has a protrusion serving as a positive electrode terminal on the top. Have. The gasket 4 is made of, for example, a synthetic resin. The battery can 5 is a bottomed cylindrical container member that accommodates the electrode group 2 and the electrolytic solution therein. The bottom surface of the battery can 5 is a negative electrode terminal. The battery can 5 is made of, for example, iron.

二次電池1は、たとえば、次のようにして作製される。まず、電池缶5内に電極群2を収容する。このとき、負極集電端子板35を電池缶5の下面内壁に接触させ、抵抗溶接によって負極集電端子板35と電池缶5とを接合する。また、正極集電端子板30に取り付けられた正極リード33を介して正極集電端子板30を封口板3に接続する。そして、非水電解質溶液を電池缶5内に注入した後、電池缶5の開口を、ガスケット4を介して封口板3で封口する。これにより、二次電池1を製造することができる。
本発明の二次電池は、特に制限はないが、リチウムイオン二次電池、ニッケル水素蓄電池などに適用するのが好ましい。
The secondary battery 1 is produced, for example, as follows. First, the electrode group 2 is accommodated in the battery can 5. At this time, the negative electrode current collector terminal plate 35 is brought into contact with the inner wall of the lower surface of the battery can 5, and the negative electrode current collector terminal plate 35 and the battery can 5 are joined by resistance welding. Further, the positive electrode current collector terminal plate 30 is connected to the sealing plate 3 through the positive electrode lead 33 attached to the positive electrode current collector terminal plate 30. Then, after the nonaqueous electrolyte solution is injected into the battery can 5, the opening of the battery can 5 is sealed with the sealing plate 3 through the gasket 4. Thereby, the secondary battery 1 can be manufactured.
The secondary battery of the present invention is not particularly limited, but is preferably applied to a lithium ion secondary battery, a nickel metal hydride storage battery, and the like.

以下に、実施例および比較例を挙げ、本発明をより具体的に説明する。
(実施例1)
(1)正極板の作製
コバルト酸リチウム粉末(正極活物質)85重量部、炭素粉末(導電剤)10重量部およびポリフッ化ビニリデン(PVDF、結着材)5重量部を適量のN−メチル−2−ピロリドンに溶解または分散させ、正極合剤スラリーを調製した。この正極合剤スラリーを、厚み15μm、幅56mmのアルミニウム箔(正極集電体)の両面に短手方向の幅50mmで塗布し、正極合剤スラリーを乾燥して圧延し、正極板を作製した。正極板の短手方向の一端には、幅6mmにわたって正極合剤スラリーを塗布せず、帯状の集電体露出部とした。正極板の正極活物質層が形成された部分の厚みは100μmであった。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1
(1) Production of positive electrode plate 85 parts by weight of lithium cobaltate powder (positive electrode active material), 10 parts by weight of carbon powder (conductive agent) and 5 parts by weight of polyvinylidene fluoride (PVDF, binder) are added in appropriate amounts of N-methyl- A positive electrode mixture slurry was prepared by dissolving or dispersing in 2-pyrrolidone. This positive electrode mixture slurry was applied to both sides of an aluminum foil (positive electrode current collector) having a thickness of 15 μm and a width of 56 mm with a width of 50 mm in the short direction, and the positive electrode mixture slurry was dried and rolled to produce a positive electrode plate. . The positive electrode mixture slurry was not applied to one end in the short direction of the positive electrode plate over a width of 6 mm to form a strip-shaped current collector exposed portion. The thickness of the portion of the positive electrode plate where the positive electrode active material layer was formed was 100 μm.

(2)負極板の作製
人造黒鉛粉末(負極活物質)95重量部およびPVDF(結着材)5重量部を適量のN−メチル−2−ピロリドンに分散または溶解させ、負極合剤スラリーを調製した。この負極合剤スラリーを、厚み10μm、幅57mmの銅箔(負極集電体)の両面に短手方向の幅52mmで塗布し、負極合剤を乾燥して圧延して、負極板を作製した。負極板の短手方向の一端には、幅5mmにわたって負極合剤スラリーを塗布せず、帯状の集電体露出部とした。負極板の負極活物質層が形成された部分の厚みは100μmであった。
(2) Production of negative electrode plate 95 parts by weight of artificial graphite powder (negative electrode active material) and 5 parts by weight of PVDF (binder) are dispersed or dissolved in an appropriate amount of N-methyl-2-pyrrolidone to prepare a negative electrode mixture slurry. did. This negative electrode mixture slurry was applied to both sides of a copper foil (negative electrode current collector) having a thickness of 10 μm and a width of 57 mm with a width of 52 mm in the short direction, and the negative electrode mixture was dried and rolled to prepare a negative electrode plate. . A negative electrode mixture slurry was not applied to one end in the short direction of the negative electrode plate over a width of 5 mm to form a strip-shaped current collector exposed portion. The thickness of the portion of the negative electrode plate on which the negative electrode active material layer was formed was 100 μm.

(3)電極構成体の作製
正極板と負極板とをセパレータを介して重ね合わせ、これを渦巻状に捲回して電極構成体を作製した。セパレータには、幅53mm、厚み25μmのポリプロピレン樹脂製微多孔フィルムを用いた。セパレータは、正極板の正極活物質層と負極板の負極活物質層との間に配置した。電極構成体の捲回軸が延びる方向において、電極構成体の一端には正極板の集電体露出部が渦巻状に配置され、多端には負極板の集電体露出部が渦巻状に配置されていた。
(3) Preparation of electrode structure The positive electrode plate and the negative electrode plate were overlapped via a separator, and this was wound in a spiral shape to prepare an electrode structure. As the separator, a microporous film made of polypropylene resin having a width of 53 mm and a thickness of 25 μm was used. The separator was disposed between the positive electrode active material layer of the positive electrode plate and the negative electrode active material layer of the negative electrode plate. In the direction in which the winding axis of the electrode structure extends, the current collector exposed portion of the positive electrode plate is spirally arranged at one end of the electrode structure, and the current collector exposed portion of the negative electrode plate is spirally arranged at multiple ends. It had been.

(4)集電端子板の作製
アルミニウム板を、厚み1mm、直径24mmの円盤状に成型し、このアルミニウム板をプレスで打ち抜いて、円盤の中央に直径7mmの貫通孔を形成した。
同様に、銅板を、厚み0.5mm、直径24mmの円盤状に成型し、この銅板をプレスで打ち抜いて、中央にU字形の貫通孔を形成した。この貫通孔にはU字の2つの先端を結ぶ直線の中点と曲線部分の先端とを結ぶ直線の中点が円盤状集電端子板の中心になるように加工した。またU字の2つの先端間距離は5mmで、2つの先端を結ぶ直線の中点とR部先端までの距離は5mmでU字形貫通口の幅は幅1mmである。
(4) Production of current collector terminal plate An aluminum plate was molded into a disk shape having a thickness of 1 mm and a diameter of 24 mm, and this aluminum plate was punched out by a press to form a through hole having a diameter of 7 mm in the center of the disk.
Similarly, a copper plate was molded into a disk shape having a thickness of 0.5 mm and a diameter of 24 mm, and this copper plate was punched out with a press to form a U-shaped through hole in the center. The through hole was processed so that the midpoint of the straight line connecting the two U-shaped ends and the end of the curved portion was the center of the disk-shaped current collector terminal plate. The distance between the two U-shaped tips is 5 mm, the distance from the midpoint of the straight line connecting the two tips to the tip of the R portion is 5 mm, and the width of the U-shaped through hole is 1 mm.

(5)電極群の作製
電極構成体の一端に配置される正極板の集電板露出部の先端部分に正極集電端子板を当接させ、TIG溶接により前記先端部分と正極集電端子板とを接合した。TIG溶接は、電流値150A、溶接時間100msで行った。また、電極構成体内部を600hPaの減圧状態にしてTIG溶接を行った。
(5) Production of electrode group The positive electrode current collector terminal plate is brought into contact with the front end portion of the current collector plate exposed portion of the positive electrode plate disposed at one end of the electrode structure, and the front end portion and the positive electrode current collector terminal plate are subjected to TIG welding. And joined. TIG welding was performed at a current value of 150 A and a welding time of 100 ms. In addition, TIG welding was performed with the inside of the electrode structure in a reduced pressure state of 600 hPa.

次に、電極構成体の多端に配置された負極板の集電露出部の先端部分に負極集電端子板を当接させ、TIG溶接により前記先端部分と負極集電端子板とを接合した。TIG溶接は、電流値200A、溶接時間50msで行った。また、電極構成体内部を800hPaの減圧状態にしてTIG溶接を行った。   Next, the negative electrode current collector terminal plate was brought into contact with the tip portion of the current collector exposed portion of the negative electrode plate arranged at the multi-end of the electrode structure, and the tip portion and the negative electrode current collector terminal plate were joined by TIG welding. TIG welding was performed at a current value of 200 A and a welding time of 50 ms. In addition, TIG welding was performed with the inside of the electrode structure in a reduced pressure state of 800 hPa.

(6)円筒型リチウムイオン二次電池の作製
上記で得られた電極群を、長手方向の一端部が開口した円筒型電池缶に挿入した。その後、負極集電端子板を電池缶の底部内壁に抵抗溶接した。引き続き、正極集電端子板に取り付けられたアルミニウム製正極リードの他端を封口板にレーザ溶接した。このとき、正極集電端子板と負極集電端子板との間に500Vの電圧を印加し、電極群の絶縁抵抗を測定し、50MΩ以下の電極群は絶縁不良と判断した。
(6) Production of Cylindrical Lithium Ion Secondary Battery The electrode group obtained above was inserted into a cylindrical battery can whose one end in the longitudinal direction was opened. Thereafter, the negative electrode current collector terminal plate was resistance-welded to the bottom inner wall of the battery can. Subsequently, the other end of the aluminum positive electrode lead attached to the positive electrode current collector terminal plate was laser welded to the sealing plate. At this time, a voltage of 500 V was applied between the positive electrode current collector terminal plate and the negative electrode current collector terminal plate, the insulation resistance of the electrode group was measured, and the electrode group of 50 MΩ or less was determined to be poorly insulated.

引き続き、電池缶を加熱して乾燥させ、電池缶内に非水電解質を注液した後、封口板の周縁部にガスケットを装着した状態で封口板を電池缶の開口に嵌めこみ、電池缶の開口端部をかしめ付けて電池缶を封口した。こうして、直径26mm、高さ65mmの本発明の円筒型リチウムイオン二次電池を作製した。この電池は、設計容量が2600mAhであった。   Subsequently, after heating and drying the battery can, injecting a non-aqueous electrolyte into the battery can, the sealing plate was fitted into the opening of the battery can with the gasket attached to the peripheral edge of the sealing plate. The battery can was sealed by crimping the open end. Thus, a cylindrical lithium ion secondary battery of the present invention having a diameter of 26 mm and a height of 65 mm was produced. This battery had a design capacity of 2600 mAh.

なお、非水電解質には、非水溶媒としてエチレンカーボネートとエチルメチルカーボネートを体積比1:1で混合して調製し、この非水溶媒に六フッ化リン酸リチウム(LiPF6、溶質)を1.2モル/リットルの割合で溶解させたものを用いた。 The non-aqueous electrolyte was prepared by mixing ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 1 as a non-aqueous solvent, and lithium hexafluorophosphate (LiPF 6 , solute) 1 A solution dissolved at a rate of 2 mol / liter was used.

(実施例2)
負極集電端子板を電極構成体に接合する際に、電極構成体内部を減圧状態にしない以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(実施例3)
正極集電端子板を電極構成体に接合する際に、電極構成体内部を減圧状態にしない以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(比較例1)
正極集電端子板および負極集電端子板を電極構成体に接合する際に、電極構成体内部を減圧状態にしない以外は実施例1と同様にして、リチウムイオン二次電池を作製した。
(Example 2)
When joining the negative electrode current collector terminal plate to the electrode structure, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the inside of the electrode structure was not put under reduced pressure.
(Example 3)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that when the positive electrode current collector terminal plate was joined to the electrode structure, the inside of the electrode structure was not put under reduced pressure.
(Comparative Example 1)
When joining the positive electrode current collector terminal plate and the negative electrode current collector terminal plate to the electrode structure, a lithium ion secondary battery was produced in the same manner as in Example 1 except that the inside of the electrode structure was not put under reduced pressure.

(7)集電端子板の接合強度評価
実施例1〜3および比較例1で作製される電極群(電極構成体に正極集電端子板および負極集電端子板が接合されたもの)をそれぞれ10個ずつ用い、正極集電端子板および負極集電端子板の接合強度を測定するため、引張り試験を実施した。試験には引張り試験機(商品名:オートグラフAG−IS、(株)島津製作所製)を使用した。1mm/分の速度で電極群から集電端子板が完全に外れるまで引張り、その時の最大値をデータとした。
表1に正極(正極集電端子板)および負極(負極集電端子板)の引張り強度を示す。
(7) Evaluation of bonding strength of current collecting terminal plate Electrode groups prepared in Examples 1 to 3 and Comparative Example 1 (a positive current collecting terminal plate and a negative current collecting terminal plate joined to an electrode structure) Ten pieces were used, and a tensile test was performed to measure the bonding strength of the positive electrode current collector terminal plate and the negative electrode current collector terminal plate. A tensile tester (trade name: Autograph AG-IS, manufactured by Shimadzu Corporation) was used for the test. The electrode terminal group was pulled at a speed of 1 mm / min until the current collector terminal plate was completely removed, and the maximum value at that time was used as data.
Table 1 shows the tensile strength of the positive electrode (positive electrode current collector terminal plate) and the negative electrode (negative electrode current collector terminal plate).

表1から、実施例の電池は比較例の電池に比べて、集電端子板の接合強度が強く、強度のバラツキも小さいことがわかった。これは、TIG溶接時に減圧処理を行ったことで電極板側への溶け込みが深くなり、集電体露出部と集電端子板とがより広い範囲で強固に接合したことを表すものと考えられる。全般に、正極よりも負極の引張り強度が高いのは、正極集電板にはアルミニウムを、負極集電板には銅を使用しており、この材料の強度の差が現れたものであると考えられる。   From Table 1, it was found that the battery of the example had stronger bonding strength of the current collector terminal plate and less variation in strength than the battery of the comparative example. This is considered to indicate that the pressure treatment during TIG welding deepened the penetration into the electrode plate side, and the current collector exposed portion and the current collector terminal plate were firmly joined in a wider range. . In general, the tensile strength of the negative electrode is higher than that of the positive electrode because aluminum is used for the positive electrode current collector plate and copper is used for the negative electrode current collector plate. Conceivable.

正極側の引張り強度が、実施例では比較例に比べて大きく改善されている。実施例3や比較例1では正極集電端子板の原料であるアルミニウムの比重が軽く、かつ減圧処理を行わないため、TIG溶接によって集電端子板が溶融しても、集電体露出部側に垂れ込み難いものと考えられる。これに対し、実施例1、2のように減圧処理を行うと、比重の軽いアルミニウムであっても、垂れ込み量が多くなり、その結果、接合面積も大きくなるためであると考えられる。   The tensile strength on the positive electrode side is greatly improved in the example compared to the comparative example. In Example 3 and Comparative Example 1, since the specific gravity of aluminum, which is a raw material for the positive electrode current collector terminal plate, is light and no pressure reduction treatment is performed, even if the current collector terminal plate is melted by TIG welding, the current collector exposed portion side It is thought that it is hard to sag. On the other hand, when the decompression process is performed as in Examples 1 and 2, it is considered that the amount of sagging increases even with aluminum having a low specific gravity, and as a result, the bonding area also increases.

負極側のTIG溶接時に減圧処理をする効果としては、溶接強度が増すことに加え、溶接強度のバラツキが減圧処理をしていない場合に比べ非常に小さく抑えられていることが挙げられる。銅は元々比重が大きいので、溶融すると垂れ込みが大きくなる金属ではある。しかしながら、集電体露出部が鉛直方向下方に位置するため、集電体露出部の先端部分によって弾かれることがあり、接合強度が安定しないものと考えられる。これに対し、本発明の方法によって溶融金属が強制的に集電体露出部側に垂れ込むことになり、接合強度が安定するものと考えられる。   As an effect of reducing the pressure at the time of TIG welding on the negative electrode side, in addition to increasing the welding strength, it can be mentioned that the variation in welding strength is suppressed to be very small as compared with the case where the pressure reducing treatment is not performed. Copper is a metal whose specific gravity is originally large, so that when it is melted, the sag increases. However, since the current collector exposed portion is positioned vertically downward, it may be repelled by the tip portion of the current collector exposed portion, and the bonding strength is considered to be unstable. On the other hand, the molten metal is forced to sag to the current collector exposed portion side by the method of the present invention, and it is considered that the bonding strength is stabilized.

(8)初期充放電
実施例1〜3および比較例1で得られた電池について、室温下で、下記(a)〜(d)の初期充放電を3回繰り返して実施した。
(a)650mAの定電流で電池電圧が4.2Vに達するまでの充電
(b)20分間の無負荷状態
(c)650mAの定電流で電池電圧が3.0Vに達するまでの放電
(c)20分間の無負荷状態
(8) Initial charging / discharging About the battery obtained in Examples 1-3 and Comparative Example 1, the following initial charging / discharging of (a)-(d) was repeated 3 times at room temperature.
(A) Charging until the battery voltage reaches 4.2V at a constant current of 650 mA (b) No load for 20 minutes (c) Discharging until the battery voltage reaches 3.0 V at a constant current of 650 mA (c) 20 minutes no load

(9)エージング
実施例1〜3および比較例1で得られた電池について、上記の初期充放電を行った後、上記の(a)の充電をもう一度行い、電池を充電状態にした。この電池を、温度45℃の環境下で7日間放置するエージングした。
(9) Aging The batteries obtained in Examples 1 to 3 and Comparative Example 1 were subjected to the above initial charge / discharge, and then the above charge (a) was performed once again to bring the battery into a charged state. The battery was aged by being left for 7 days in an environment at a temperature of 45 ° C.

(10)電池の評価
(初期容量)
エージングが終了した電池を25℃の環境下で10時間放置した後、下記(e)〜(h)を1サイクルとして充放電を行い、3サイクル目の放電容量を電池容量とした。
(e)650mAの定電流で電池電圧が3.0Vに達するまで放電
(f)20分間の無負荷状態
(g)650mAの定電流で電池電圧が4.2Vに達するまで充電
(h)20分間の無負荷状態
(10) Battery evaluation (initial capacity)
The battery after aging was allowed to stand for 10 hours in an environment of 25 ° C., and then charged and discharged with the following (e) to (h) as one cycle, and the discharge capacity at the third cycle was defined as the battery capacity.
(E) Discharge until battery voltage reaches 3.0 V at a constant current of 650 mA (f) No load for 20 minutes (g) Charge until battery voltage reaches 4.2 V at a constant current of 650 mA (h) 20 minutes No load condition

(DC−IR)
実施例1〜3および比較例1で得られた電池を、650mAの定電流充電によって、その電池容量の60%分だけ充電した。これを25℃の環境下で10時間放置した後、下記(i)〜(t)の手順で定電流充放電を行った。なお放電中に電池電圧が2.0Vを下回った場合、試験を終了してさらなる放電は行わないようにした。
(DC-IR)
The batteries obtained in Examples 1 to 3 and Comparative Example 1 were charged by 60% of the battery capacity by constant current charging of 650 mA. This was left for 10 hours in an environment of 25 ° C., and then charged and discharged at a constant current according to the following procedures (i) to (t). When the battery voltage fell below 2.0V during discharge, the test was terminated and no further discharge was performed.

(i)1時間率(2.6A)で10秒間放電、その後30秒間の無負荷状態
(j)1時間率(2.6A)で10秒間充電、その後30秒間の無負荷状態
(k)1/2時間率(5.2A)で10秒間放電、その後30秒間の無負荷状態
(l)1/2時間率(5.2A)で10秒間充電、その後30秒間の無負荷状態
(m)1/5時間率(13A)で10秒間放電、その後30秒間の無負荷状態
(n)1/5時間率(13A)で10秒間充電、その後30秒間の無負荷状態
(o)1/10時間率(26A)で10秒間放電、その後60秒間の無負荷状態
(p)1/5時間率(13A)で20秒間充電、その後60秒間の無負荷状態
(q)1/20時間率(52A)で10秒間放電、その後60秒間の無負荷状態
(r)1/5時間率(13A)で40秒間充電、その後60秒間の無負荷状態
(s)1/30時間率(78A)で10秒間放電、その後60秒間の無負荷状態
(t)1/5時間率(13A)で60秒間、その後60秒間の無負荷状態
(I) Discharge for 10 seconds at 1 hour rate (2.6A), then no load for 30 seconds (j) Charge for 10 seconds at 1 hour rate (2.6A), then no load for 30 seconds (k) 1 / 2 hour rate (5.2A) 10 seconds discharge, then 30 seconds no load condition (l) 1/2 hour rate (5.2A) 10 seconds charge, then 30 seconds no load condition (m) 1 Discharged for 10 seconds at / 5 hour rate (13A), then unloaded for 30 seconds (n) Charged for 10 seconds at 1/5 hour rate (13A), then unloaded for 30 seconds (o) 1/10 hour rate (26A) 10 seconds discharge, then 60 seconds unloaded condition (p) 1/5 hour rate (13A) 20 seconds charged, then 60 seconds unloaded condition (q) 1/20 hour rate (52A) 10 seconds of discharge, then 60 seconds of no load (r) 1/5 hour rate (13A Charged for 40 seconds, then unloaded for 60 seconds (s) discharged for 10 seconds at 1/30 hour rate (78A), then unloaded for 60 seconds (t) 60 seconds at 1/5 hour rate (13A), No load for 60 seconds

上述した条件での放電において、各電流値で電流が印加されてから10秒後の電圧を読み取り、電流−電圧特性(I−V特性)図を作成した。このI−V特性図のグラフの傾きをDC−IRとした。おのおの10セルの初期容量とDC−IR値を表2に示す。

In the discharge under the above-described conditions, the voltage 10 seconds after the current was applied at each current value was read to create a current-voltage characteristic (IV characteristic) diagram. The slope of the graph of this IV characteristic diagram was DC-IR. Table 2 shows the initial capacity and DC-IR value of each 10 cells.

表2から、実施例1〜3の電池は、比較例1の電池に比べて、初期容量は同等であり差は見られないが、DC−IRが削減されていることがわかった。これは、TIG溶接時に減圧処理することによって、集電端子板と集電体露出部との接合面積が広くなり、界面での電気抵抗が小さく抑えられたことによる効果であると考えられる。実施例2および実施例3も比較例1に比べてDC−IRが低下していることから、正極または負極どちらか一方だけに、本発明の製造方法を適用しても、抵抗の低減に有効であることが明らかである。   From Table 2, it was found that the batteries of Examples 1 to 3 had the same initial capacity and no difference compared to the battery of Comparative Example 1, but the DC-IR was reduced. This is considered to be due to the effect of reducing the electrical resistance at the interface by increasing the bonding area between the current collector terminal plate and the current collector exposed portion by reducing the pressure during TIG welding. Since Example 2 and Example 3 also have lower DC-IR than Comparative Example 1, even if the production method of the present invention is applied to only one of the positive electrode and the negative electrode, it is effective for reducing the resistance. It is clear that

本発明の製造方法により得られる二次電池用電極群は、大電流充放電に適した集電構造を有している。したがって、この二次電池用電極群を含む二次電池は、たとえば、高出力を必要とする電動工具、電気自動車などの駆動用電源、大容量のバックアップ用電源、蓄電用電源などとして有用である。   The electrode group for secondary batteries obtained by the production method of the present invention has a current collecting structure suitable for large current charge / discharge. Therefore, the secondary battery including the electrode group for the secondary battery is useful as, for example, an electric power tool that requires high output, a driving power source for an electric vehicle, a large-capacity backup power source, a power storage power source, and the like. .

電極構成体の構成を簡略化して示す図面である。図1(a)は正極板の平面図である。図1(b)は負極板の平面図である。図1(c)は電極構成体の斜視図である。It is drawing which simplifies and shows the structure of an electrode structure. FIG. 1A is a plan view of the positive electrode plate. FIG. 1B is a plan view of the negative electrode plate. FIG.1 (c) is a perspective view of an electrode structure. 電極接続工程の一例を示す斜視図である。It is a perspective view which shows an example of an electrode connection process. 正極集電端子板の構成を示す斜視図である。It is a perspective view which shows the structure of a positive electrode current collection terminal plate. 集電体露出部の先端部分と正極集電端子板との当接状態を示す断面図である。It is sectional drawing which shows the contact state of the front-end | tip part of an electrical power collector exposure part, and a positive electrode current collection terminal plate. 集電体露出部の先端部分と正極集電端子板との接合状態を示す断面図である。It is sectional drawing which shows the joining state of the front-end | tip part of an electrical power collector exposure part, and a positive electrode current collection terminal plate. 負極集電端子板の構成を示す斜視図である。It is a perspective view which shows the structure of a negative electrode current collection terminal plate. 本発明の実施形態の1つである二次電池の構成を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the structure of the secondary battery which is one of the embodiment of this invention.

符号の説明Explanation of symbols

1 二次電池
2 電極群
3 封口板
4 ガスケット
5 電池缶
10 電極構成体
11 正極板
12a,16a 集電体露出部
15 負極板
20 減圧器
26 溶接用台座
29 昇降手段
30 正極集電端子板
35 負極集電端子板
DESCRIPTION OF SYMBOLS 1 Secondary battery 2 Electrode group 3 Sealing plate 4 Gasket 5 Battery can 10 Electrode structure 11 Positive electrode plate 12a, 16a Current collector exposed part 15 Negative electrode plate 20 Depressurizer 26 Welding base 29 Lifting means 30 Positive electrode current collecting terminal plate 35 Negative current collector terminal board

Claims (7)

正極板の集電体露出部が一方の端部に配置されかつ負極板の集電体露出部が他方の端部に配置されている電極構成体を作製する電極構成体作製工程と、
正極板および負極板から選ばれる少なくとも1つの電極板の集電体露出部に集電端子板を当接させ、集電端子板の少なくとも集電体露出部への当接部分を溶融させると共に、溶融部分を電極板側に引き込んで、電極板と集電端子板とを接続する電極接続工程とを含む二次電池用電極群の製造方法。
An electrode assembly producing step for producing an electrode assembly in which the current collector exposed portion of the positive electrode plate is disposed at one end and the current collector exposed portion of the negative electrode plate is disposed at the other end;
The current collector terminal plate is brought into contact with the current collector exposed portion of at least one electrode plate selected from the positive electrode plate and the negative electrode plate, and at least the contact portion of the current collector terminal plate with the current collector exposed portion is melted. A manufacturing method of an electrode group for a secondary battery including an electrode connecting step of drawing a molten portion toward the electrode plate and connecting the electrode plate and the current collector terminal plate.
アーク溶接により、集電端子板の少なくとも集電体露出部への当接部分を溶融させる請
求項1に記載の二次電池用電極群の製造方法。
The manufacturing method of the electrode group for secondary batteries of Claim 1 which fuse | melts the contact part to the collector exposed part at least of a collector terminal board by arc welding.
電極構成体の内部を減圧状態にすることにより、集電端子板の溶融部分を電極板側に引き込む請求項1または2に記載の二次電池用電極群の製造方法。   The manufacturing method of the electrode group for secondary batteries of Claim 1 or 2 which draws in the molten part of a current collection terminal plate to the electrode plate side by making the inside of an electrode structure into a pressure-reduced state. 集電端子板に、厚み方向の貫通孔が形成されている請求項1〜3のいずれか1つに記載の二次電池用電極群の製造方法。   The manufacturing method of the electrode group for secondary batteries as described in any one of Claims 1-3 by which the through-hole of the thickness direction is formed in the current collection terminal board. 正極用の集電端子板は、比重が銅と同等かまたは銅よりも小さい金属からなる請求項1〜3のいずれか1つに記載の二次電池用電極群の製造方法。   The method for producing an electrode group for a secondary battery according to any one of claims 1 to 3, wherein the positive electrode current collector terminal plate is made of a metal having a specific gravity equal to or smaller than copper. 請求項1〜5のいずれか1つの二次電池用電極群の製造方法により製造される二次電池用電極群を含む二次電池。   The secondary battery containing the electrode group for secondary batteries manufactured by the manufacturing method of the electrode group for secondary batteries as described in any one of Claims 1-5. リチウムイオン二次電池またはニッケル水素蓄電池である請求項6に記載の二次電池。   The secondary battery according to claim 6, which is a lithium ion secondary battery or a nickel metal hydride storage battery.
JP2008129987A 2008-05-16 2008-05-16 Method of manufacturing electrode group for secondary battery and secondary battery Pending JP2009277596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129987A JP2009277596A (en) 2008-05-16 2008-05-16 Method of manufacturing electrode group for secondary battery and secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129987A JP2009277596A (en) 2008-05-16 2008-05-16 Method of manufacturing electrode group for secondary battery and secondary battery

Publications (1)

Publication Number Publication Date
JP2009277596A true JP2009277596A (en) 2009-11-26

Family

ID=41442822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129987A Pending JP2009277596A (en) 2008-05-16 2008-05-16 Method of manufacturing electrode group for secondary battery and secondary battery

Country Status (1)

Country Link
JP (1) JP2009277596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044250A (en) * 2016-02-05 2021-03-18 株式会社Gsユアサ Power storage element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044250A (en) * 2016-02-05 2021-03-18 株式会社Gsユアサ Power storage element
JP7211405B2 (en) 2016-02-05 2023-01-24 株式会社Gsユアサ Storage element

Similar Documents

Publication Publication Date Title
JP5137918B2 (en) Secondary battery manufacturing method and secondary battery
US7976979B2 (en) Secondary battery and method for manufacturing secondary battery
US20100316897A1 (en) Secondary battery
US20230275331A1 (en) Energy storage cell and production method
EP2065954A1 (en) Battery electrode structure
JP5470142B2 (en) Secondary battery and manufacturing method thereof
JP5137516B2 (en) Sealed battery
US20090098446A1 (en) Secondary battery
CN105009326B (en) Charge storage element
JP3877619B2 (en) Sealed battery
JPH11307076A (en) Secondary battery
KR101222284B1 (en) Battery and method for producing the same
JP5224083B2 (en) Secondary battery and manufacturing method thereof
JP5179103B2 (en) Secondary battery and method for manufacturing secondary battery
KR20090108633A (en) Secondary battery and method for manufacturing secondary battery
WO2009153962A1 (en) Secondary cell manufacturing method and secondary cell
KR101833609B1 (en) Method of manufacturing electric power storage device, and electric power storage device
JP2012169063A (en) Cylindrical secondary battery
JP2009224070A (en) Lithium secondary battery
JP2010061893A (en) Non-aqueous secondary battery and method of manufacturing the same
JP2010244865A (en) Laminated battery
JP2009277596A (en) Method of manufacturing electrode group for secondary battery and secondary battery
JP2012185912A (en) Cylindrical secondary cell
JP5419811B2 (en) Non-aqueous secondary battery
JP5377472B2 (en) Lithium ion secondary battery