JP2019140126A - Manufacturing method of current collector for lithium ion secondary battery - Google Patents

Manufacturing method of current collector for lithium ion secondary battery Download PDF

Info

Publication number
JP2019140126A
JP2019140126A JP2019101169A JP2019101169A JP2019140126A JP 2019140126 A JP2019140126 A JP 2019140126A JP 2019101169 A JP2019101169 A JP 2019101169A JP 2019101169 A JP2019101169 A JP 2019101169A JP 2019140126 A JP2019140126 A JP 2019140126A
Authority
JP
Japan
Prior art keywords
current collector
active material
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019101169A
Other languages
Japanese (ja)
Other versions
JP6886153B2 (en
Inventor
陽介 雨宮
Yosuke Amamiya
陽介 雨宮
信一 本島
Shinichi Motojima
信一 本島
中山 鶴雄
Tsuruo Nakayama
鶴雄 中山
昌宏 柳田
Masahiro Yanagida
昌宏 柳田
境 哲男
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
NBC Meshtec Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
NBC Meshtec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, NBC Meshtec Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019101169A priority Critical patent/JP6886153B2/en
Publication of JP2019140126A publication Critical patent/JP2019140126A/en
Application granted granted Critical
Publication of JP6886153B2 publication Critical patent/JP6886153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

To provide a manufacturing method of a current collector for a lithium ion secondary battery that can suppress the performance (particularly, the full charge capacity) of the lithium ion secondary battery from being lowered in addition to being hard to break.SOLUTION: A current collector (11, 21) for a lithium ion secondary battery is formed on the surface in contact with at least an active material layer (12, 22) by weaving stainless steel wires in the vertical and horizontal directions. At least a part of the active material layer has a mesh structure embedded therein. Calendar processing is performed on a stainless steel wire woven in the vertical and horizontal directions such that a ratio of an initial elastic modulus in the longitudinal direction of the current collector to an initial elastic modulus in the horizontal direction of the current collector is 0.8 or more and 1.2 or less.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用の集電体の製造方法に関する。   The present invention relates to a method for producing a current collector for a lithium ion secondary battery.

携帯電話やノート型パソコンに代表されるモバイル電子機器用途の蓄電池としては、リチウムイオン二次電池が広く普及している。近年は、ハイブリッド自動車や電気自動車の駆動用電源に使用できる程度の比較的大型の蓄電池としてもリチウムイオン二次電池が普及している。また、環境にやさしい太陽光発電や風力発電といった自然エネルギーを利用した発電方法が普及しつつあるが、自然エネルギーを利用した発電手法は天候の影響を受けやすく、出力が不安定となりやすい。そこで、将来的には自然エネルギーの蓄電にも比較的大型の蓄電池として、リチウムイオン二次電池の適用が考えられる。   Lithium ion secondary batteries are widely used as storage batteries for mobile electronic devices such as mobile phones and laptop computers. In recent years, lithium ion secondary batteries have become widespread as relatively large storage batteries that can be used as power sources for driving hybrid vehicles and electric vehicles. In addition, power generation methods using natural energy, such as environmentally friendly solar power generation and wind power generation, are becoming widespread, but power generation methods using natural energy are easily affected by the weather and output is likely to be unstable. Therefore, in the future, a lithium ion secondary battery can be considered as a relatively large storage battery for storing natural energy.

リチウムイオン二次電池の電極の構造としては、集電体の表面に活物質が塗布されており、集電体には金属箔が用いられている。(特許文献1)   As the electrode structure of the lithium ion secondary battery, an active material is applied to the surface of the current collector, and a metal foil is used for the current collector. (Patent Document 1)

特開2008−311171号公報JP 2008-31171 A

しかしながら、金属箔は、強度が低いため、金属箔に活物質を塗布する製造ラインにおいて金属箔の変形が生じやすく、形状精度の高い電極を得るためには高度な管理が要求される。管理が不十分である場合には、製造ライン内で金属箔の帯が破断することもある。また、電極が大型化した際、金属箔の自重で破断しやすくなったりするなど、強度が問題である。   However, since the strength of the metal foil is low, the metal foil is likely to be deformed in a production line for applying an active material to the metal foil, and high management is required to obtain an electrode with high shape accuracy. If the management is insufficient, the metal foil strip may break in the production line. In addition, when the electrode is enlarged, the strength is a problem such that the metal foil is easily broken by its own weight.

本発明は、上記の課題を解決するためになされたものであって、実用的なリチウムイオン二次電池用の集電体の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a practical method for producing a current collector for a lithium ion secondary battery.

本発明の要旨は以下のとおりである。
[1] リチウムイオン二次電池用の集電体の製造方法であって、
前記集電体が、少なくとも活物質層と接触する表面において、ステンレス製ワイヤを縦方向および横方向に織り込むことにより形成され、前記活物質層の少なくとも一部が内部に埋め込まれるメッシュ構造を有しており、前記集電体の前記縦方向の初期弾性率と前記集電体の前記横方向の初期弾性率の比が0.8以上、1.2以下となるように、縦方向および横方向に織り込まれた前記ステンレス製ワイヤに対してカレンダー加工を行うことを特徴とするリチウムイオン二次電池用の集電体の製造方法。
[2] 前記ステンレス製ワイヤの径が20μm以下であり、かつ前記集電体のメッシュ数が290以上であることを特徴とする[1]に記載のリチウムイオン二次電池用の集電体の製造方法。
[3] 前記集電体の厚さが5μm以上25μm以下であることを特徴とする[1]または[2]に記載のリチウムイオン二次電池用の集電体の製造方法。
The gist of the present invention is as follows.
[1] A method for producing a current collector for a lithium ion secondary battery, comprising:
The current collector is formed by weaving stainless steel wires in the vertical and horizontal directions at least on the surface in contact with the active material layer, and has a mesh structure in which at least a part of the active material layer is embedded inside And the longitudinal direction and the transverse direction so that the ratio between the initial elastic modulus in the longitudinal direction of the current collector and the initial elastic modulus in the transverse direction of the current collector is 0.8 or more and 1.2 or less. A method for producing a current collector for a lithium ion secondary battery, wherein calendar processing is performed on the stainless steel wire woven into the battery.
[2] The current collector for a lithium ion secondary battery according to [1], wherein a diameter of the stainless steel wire is 20 μm or less and a mesh number of the current collector is 290 or more. Production method.
[3] The method for producing a current collector for a lithium ion secondary battery according to [1] or [2], wherein the current collector has a thickness of 5 μm or more and 25 μm or less.

本発明によれば、破断し難いことに加えて、リチウムイオン二次電池の性能(特に、満充電容量)が低下することを抑制できるリチウムイオン二次電池用の集電体を提供することが可能となる。   According to the present invention, in addition to being hard to break, it is possible to provide a current collector for a lithium ion secondary battery that can suppress a decrease in performance (particularly, a full charge capacity) of the lithium ion secondary battery. It becomes possible.

本実施形態の発電要素の構成を示す概略図である。It is the schematic which shows the structure of the electric power generation element of this embodiment. 本実施形態の変形例において、電極板の断面構造を示す概略図である。In the modification of this embodiment, it is the schematic which shows the cross-section of an electrode plate. 発電要素にリチウムイオンを補充するときの説明図である。It is explanatory drawing when replenishing lithium ion to a power generation element.

以下に、本発明の実施形態であるリチウムイオン二次電池用の集電体について詳細に説明する。   Below, the collector for lithium ion secondary batteries which is embodiment of this invention is demonstrated in detail.

図1は、リチウムイオン二次電池の発電要素の構造を示す概略図である。発電要素1とは、充放電を行う要素であり、発電要素1は、電池ケース(図示せず)に収容される。   FIG. 1 is a schematic diagram showing the structure of a power generation element of a lithium ion secondary battery. The power generation element 1 is an element that charges and discharges, and the power generation element 1 is accommodated in a battery case (not shown).

発電要素1は、正極板10と、負極板20と、正極板10および負極板20の間に配置されるセパレータ30とを有する。正極板10は、集電体11と、集電体11に付着した正極活物質層12とを有する。正極活物質層12の表面は、セパレータ30と接触している。正極活物質層12には、正極活物質、バインダおよび導電助剤が含まれる。正極活物質としては、例えば、コバルト酸リチウム、マンガン酸リチウム、コバルト・ニッケル・マンガン酸リチウム、ニッケル酸リチウム、リン酸鉄リチウムを用いることができる。   The power generation element 1 includes a positive electrode plate 10, a negative electrode plate 20, and a separator 30 disposed between the positive electrode plate 10 and the negative electrode plate 20. The positive electrode plate 10 includes a current collector 11 and a positive electrode active material layer 12 attached to the current collector 11. The surface of the positive electrode active material layer 12 is in contact with the separator 30. The positive electrode active material layer 12 includes a positive electrode active material, a binder, and a conductive additive. As the positive electrode active material, for example, lithium cobaltate, lithium manganate, cobalt / nickel / lithium manganate, lithium nickelate, or lithium iron phosphate can be used.

負極板20は、集電体21と、集電体21に付着した負極活物質層22とを有する。負極活物質層22の表面は、セパレータ30と接触している。負極活物質層22には、負極活物質、バインダおよび導電助剤が含まれる。負極活物質としては、例えば、シリコンやカーボンを用いることができる。   The negative electrode plate 20 includes a current collector 21 and a negative electrode active material layer 22 attached to the current collector 21. The surface of the negative electrode active material layer 22 is in contact with the separator 30. The negative electrode active material layer 22 includes a negative electrode active material, a binder, and a conductive additive. As the negative electrode active material, for example, silicon or carbon can be used.

正極活物質層12、負極活物質層22およびセパレータ30には、電解液が染み込んでいる。なお、電解液が染み込んだセパレータ30の代わりに、固体電解質を用いることができる。   The positive electrode active material layer 12, the negative electrode active material layer 22, and the separator 30 are infiltrated with an electrolytic solution. A solid electrolyte can be used in place of the separator 30 soaked with the electrolytic solution.

集電体11,21は、ステンレスによって形成されたワイヤ(ステンレス製ワイヤ)を織り上げることによって形成されており、メッシュ構造を有する。具体的には、各集電体11,21は、縦方向に延び、横方向に並んで配置された複数のステンレス製ワイヤ(縦方向のステンレス製ワイヤという)と、横方向に延び、縦方向に並んで配置された複数のステンレス製ワイヤ(横方向のステンレス製ワイヤという)とによって構成されている。   The current collectors 11 and 21 are formed by weaving wires made of stainless steel (stainless steel wires) and have a mesh structure. Specifically, each of the current collectors 11 and 21 extends in the vertical direction, and extends in the horizontal direction and a plurality of stainless steel wires arranged in the horizontal direction (referred to as a vertical stainless steel wire). And a plurality of stainless steel wires (referred to as lateral stainless steel wires) arranged side by side.

集電体11のメッシュ構造の内部には、正極活物質層12の一部が埋め込まれており、集電体21のメッシュ構造の内部には、負極活物質層22の一部が埋め込まれている。なお、本実施形態では、集電体11,21の両方がメッシュ構造を有しているが、集電体11,21の一方だけがメッシュ構造を有していてもよい。この場合、集電体11,21の他方は、平板状に形成された金属箔を用いることができる。   A part of the positive electrode active material layer 12 is embedded inside the mesh structure of the current collector 11, and a part of the negative electrode active material layer 22 is embedded inside the mesh structure of the current collector 21. Yes. In this embodiment, both the current collectors 11 and 21 have a mesh structure, but only one of the current collectors 11 and 21 may have a mesh structure. In this case, the other of the current collectors 11 and 21 can be a metal foil formed in a flat plate shape.

本実施形態では、集電体11の表面および、集電体11のメッシュ構造の内部に、正極活物質層12が設けられているが、これに限るものではない。具体的には、図2に示すように、集電体11のメッシュ構造の内部だけに、正極活物質層12を設けることができる。また、本実施形態では、集電体21の表面および、集電体21のメッシュ構造の内部に、負極活物質層22が設けられているが、これに限るものではない。具体的には、図2に示す構造と同様に、集電体21のメッシュ構造の内部だけに、負極活物質層22を設けることができる。   In the present embodiment, the positive electrode active material layer 12 is provided on the surface of the current collector 11 and the mesh structure of the current collector 11. However, the present invention is not limited to this. Specifically, as shown in FIG. 2, the positive electrode active material layer 12 can be provided only inside the mesh structure of the current collector 11. In the present embodiment, the negative electrode active material layer 22 is provided on the surface of the current collector 21 and the mesh structure of the current collector 21, but is not limited thereto. Specifically, similarly to the structure shown in FIG. 2, the negative electrode active material layer 22 can be provided only inside the mesh structure of the current collector 21.

集電体11,21をステンレス製ワイヤによって構成することにより、集電体11,21の強度を確保しやすくなり、集電体11,21の破断を抑制できる。集電体11,21として金属箔を用いると、金属箔の端部の破断によって、金属箔の内部まで破断してしまうおそれがある。本実施形態のように、ステンレス製ワイヤによって集電体11,21を構成することにより、集電体11,21の端部が破断してしまっても、集電体11,21の内部まで破断が進行してしまうことを抑制できる。   By configuring the current collectors 11 and 21 with stainless steel wires, the strength of the current collectors 11 and 21 can be easily secured, and breakage of the current collectors 11 and 21 can be suppressed. When a metal foil is used as the current collectors 11 and 21, there is a possibility that the metal foil may be broken to the inside due to breakage of the end of the metal foil. By configuring the current collectors 11 and 21 with stainless steel wires as in this embodiment, even if the ends of the current collectors 11 and 21 are broken, the current collectors 11 and 21 are broken. Can be suppressed.

集電体11,21は、メッシュ構造を有しているため、電気伝導を担うリチウムイオンが集電体11,21の内部を通過することが可能である。このような集電体11,21を備えた発電要素1では、発電要素1に対してリチウムイオンを容易に補充することができる。   Since the current collectors 11 and 21 have a mesh structure, lithium ions responsible for electrical conduction can pass through the current collectors 11 and 21. In the power generation element 1 including such current collectors 11 and 21, lithium ions can be easily supplemented to the power generation element 1.

リチウムイオンを補充するとき、図3に示すように、発電要素1の集電体11に、セパレータ40を介してリチウム箔50を配置する。リチウム箔50および負極板20の集電体21に電源60を接続して電流を流すと、リチウム箔50から脱離したリチウムイオンが、セパレータ40、正極板10およびセパレータ30を通過して、負極活物質層22に挿入される。これにより、発電要素1にリチウムイオンを補充することができる。例えば、金属リチウムの析出によって、発電要素1の充放電に関与するリチウムイオンが減少しても、リチウムイオンの補充によって、発電要素1の電池性能(満充電容量)が低下することを抑制できる。   When replenishing lithium ions, as shown in FIG. 3, a lithium foil 50 is disposed on the current collector 11 of the power generation element 1 via the separator 40. When a power source 60 is connected to the current collector 21 of the lithium foil 50 and the negative electrode plate 20 and current is passed, lithium ions desorbed from the lithium foil 50 pass through the separator 40, the positive electrode plate 10, and the separator 30, and the negative electrode It is inserted into the active material layer 22. Thereby, lithium ion can be replenished to the power generation element 1. For example, even if the lithium ions involved in charging / discharging of the power generation element 1 decrease due to the deposition of metallic lithium, it is possible to suppress the battery performance (full charge capacity) of the power generation element 1 from decreasing due to the replenishment of lithium ions.

集電体として多く用いられている金属箔の場合、電気伝導を担うリチウムイオンは、集電体を通過することはできないため、集電体としての金属箔に、リチウムイオンを通過させるための貫通孔を形成する必要がある。しかし、金属箔に貫通孔を設けると、金属箔の強度が低下しやすくなる。特に、貫通孔を形成した部分から金属箔が破断しやすくなってしまう。本実施形態のように、ステンレス製ワイヤを織り上げて集電体11,21を形成すれば、集電体11,21に貫通孔(すなわち、メッシュ構造の開口部)を形成しながら、集電体11,21の強度を確保しやすくなる。   In the case of a metal foil often used as a current collector, lithium ions responsible for electrical conduction cannot pass through the current collector. It is necessary to form holes. However, when a through-hole is provided in the metal foil, the strength of the metal foil is likely to decrease. In particular, the metal foil easily breaks from the portion where the through hole is formed. If the current collectors 11 and 21 are formed by weaving stainless steel wires as in this embodiment, the current collectors 11 and 21 are formed with through holes (that is, openings having a mesh structure) while the current collectors are formed. It becomes easy to ensure the strength of 11 and 21.

本実施形態の集電体11,21では、縦方向の初期弾性率(E1)と横方向の初期弾性率(E2)の比が0.8以上、1.2以下である。ここで、縦方向の初期弾性率(E1)と横方向の初期弾性率(E2)の比とは、縦方向の初期弾性率(E1)に対する横方向の初期弾性率(E2)の比(E2/E1)または、横方向の初期弾性率(E2)に対する縦方向の初期弾性率(E1)の比(E1/E2)のことである。初期弾性率とは、後述するように、集電体11,21の強伸度曲線において、伸長の初期の傾きから算出される弾性率である。これにより、発電要素1の充放電を繰り返しても、集電体11,21のメッシュ構造の内部に活物質層12,22を留めておくことができ、活物質層12,22の一部が集電体11,21から剥離することを抑制できる。縦方向の初期弾性率と横方向の初期弾性率の比が0.8以上、1.2以下とする加工方法は、適宜選択できるが、カレンダー加工を用いることが好ましい。   In the current collectors 11 and 21 of the present embodiment, the ratio between the initial elastic modulus (E1) in the longitudinal direction and the initial elastic modulus (E2) in the horizontal direction is 0.8 or more and 1.2 or less. Here, the ratio between the initial elastic modulus (E1) in the longitudinal direction and the initial elastic modulus (E2) in the transverse direction is the ratio of the initial elastic modulus (E2) in the transverse direction to the initial elastic modulus (E1) in the longitudinal direction (E2 / E1) or the ratio (E1 / E2) of the initial elastic modulus (E1) in the longitudinal direction to the initial elastic modulus (E2) in the transverse direction. As will be described later, the initial elastic modulus is an elastic modulus calculated from an initial inclination of elongation in the strong elongation curves of the current collectors 11 and 21. Thereby, even if charging / discharging of the electric power generation element 1 is repeated, the active material layers 12 and 22 can be kept inside the mesh structure of the current collectors 11 and 21, and a part of the active material layers 12 and 22 can be retained. Peeling from the current collectors 11 and 21 can be suppressed. A processing method in which the ratio between the initial elastic modulus in the vertical direction and the initial elastic modulus in the horizontal direction is 0.8 or more and 1.2 or less can be selected as appropriate, but calendering is preferably used.

正極板10において、充電の際は、リチウムイオンが正極活物質から脱離することにより、正極活物質が収縮し、放電の際は、リチウムイオンが正極活物質に挿入することにより、正極活物質が膨張する。このように、発電要素1の充放電を繰り返すことにより、正極活物質が膨張および収縮を繰り返す。ここで、正極板10の集電体11において、縦方向の初期弾性率と横方向の初期弾性率の比が0.8未満あるいは1.2よりも大きいと、正極活物質の膨張および収縮によって、正極活物質層12の一部が集電体11から剥離しやすくなり、集電体11から剥離した正極活物質層12は、発電要素1の充放電に関与しなくなる。正極活物質層12の一部が発電要素1の充放電に関与しなくなると、発電要素1の電池性能(特に、満充電容量)が低下してしまう。   In the positive electrode plate 10, when lithium ions are desorbed from the positive electrode active material during charging, the positive electrode active material contracts, and during discharge, lithium ions are inserted into the positive electrode active material, thereby positive electrode active material. Expands. Thus, by repeating charging / discharging of the power generation element 1, the positive electrode active material repeatedly expands and contracts. Here, in the current collector 11 of the positive electrode plate 10, when the ratio of the initial elastic modulus in the longitudinal direction to the initial elastic modulus in the horizontal direction is less than 0.8 or greater than 1.2, the positive electrode active material expands and contracts. Part of the positive electrode active material layer 12 is easily peeled off from the current collector 11, and the positive electrode active material layer 12 peeled off from the current collector 11 does not participate in charging / discharging of the power generation element 1. When a part of the positive electrode active material layer 12 is not involved in charging / discharging of the power generation element 1, the battery performance (particularly, the full charge capacity) of the power generation element 1 is reduced.

負極板20において、充電の際は、リチウムイオンが負極活物質に挿入することにより、負極活物質が膨張し、放電の際は、リチウムイオンが負極活物質から脱離することにより、負極活物質が収縮する。このように、発電要素1の充放電を繰り返すことにより、負極活物質が膨張および収縮を繰り返す。ここで、負極板20の集電体21において、縦方向の初期弾性率と横方向の初期弾性率の比が0.8未満あるいは1.2よりも大きいと、負極活物質の膨張および収縮によって、負極活物質層22の一部が集電体21から剥離しやすくなり、集電体11から剥離した負極活物質層22は、発電要素1の充放電に関与しなくなる。負極活物質層22の一部が発電要素1の充放電に関与しなくなると、発電要素1の電池性能(特に、満充電容量)が低下してしまう。   In the negative electrode plate 20, when the lithium ion is inserted into the negative electrode active material during charging, the negative electrode active material expands, and during the discharge, the lithium ion is desorbed from the negative electrode active material. Contracts. Thus, by repeating charging / discharging of the power generation element 1, the negative electrode active material repeatedly expands and contracts. Here, in the current collector 21 of the negative electrode plate 20, if the ratio of the initial elastic modulus in the vertical direction to the initial elastic modulus in the horizontal direction is less than 0.8 or greater than 1.2, the negative electrode active material expands and contracts. A part of the negative electrode active material layer 22 is easily peeled off from the current collector 21, and the negative electrode active material layer 22 peeled off from the current collector 11 does not participate in charging / discharging of the power generation element 1. When a part of the negative electrode active material layer 22 is not involved in charging / discharging of the power generation element 1, the battery performance (particularly, the full charge capacity) of the power generation element 1 is reduced.

本実施形態の集電体11のメッシュ数は、290以上であることが好ましい。メッシュ数が290未満である場合、上述したようにリチウムイオンを補充するとき、リチウムイオンが集電体11を通過し難くなる。また、メッシュ数が290以上であればいいというものではなく、メッシュ(開口部)の大きさも考慮する必要がある。例えば、メッシュ数を固定値としたとき、ステンレス製ワイヤの径が大きいほど、開口部の面積は小さくなり、ステンレス製ワイヤの径が小さいほど、開口部の面積は大きくなる。そこで、本実施形態のステンレス製ワイヤの径は、20μm以下であることが好ましい。ステンレス製ワイヤの径が20μmより大きくなると、開口部の面積が小さくなりやすく、リチウムイオンが集電体11を通過し難くなる。   The number of meshes of the current collector 11 of the present embodiment is preferably 290 or more. When the number of meshes is less than 290, it becomes difficult for lithium ions to pass through the current collector 11 when replenishing lithium ions as described above. In addition, the number of meshes is not limited to 290 or more, and the size of the mesh (opening) needs to be considered. For example, when the number of meshes is a fixed value, the larger the diameter of the stainless steel wire, the smaller the area of the opening, and the smaller the diameter of the stainless steel wire, the larger the area of the opening. Therefore, the diameter of the stainless steel wire of this embodiment is preferably 20 μm or less. When the diameter of the stainless steel wire is larger than 20 μm, the area of the opening is likely to be small, and lithium ions are difficult to pass through the current collector 11.

本実施形態の集電体11,21では、上述したように、縦方向の初期弾性率と横方向の初期弾性率の比を1.2以下とするために、カレンダー加工によって集電体11,21を形成することが好ましい。カレンダー加工を行う上では、集電体11,21の厚さが5μm以上、25μm以下であることが好ましい。集電体11,21の厚さが25μmを超える場合、カレンダー加工の効果が小さく、縦方向の初期弾性率と横方向の初期弾性率の比が1.2以下になりにくい。   In the current collectors 11 and 21 of the present embodiment, as described above, the current collectors 11 and 21 are formed by calendering so that the ratio between the initial elastic modulus in the vertical direction and the initial elastic modulus in the horizontal direction is 1.2 or less. 21 is preferably formed. In performing the calendar process, it is preferable that the current collectors 11 and 21 have a thickness of 5 μm or more and 25 μm or less. When the thickness of the current collectors 11 and 21 exceeds 25 μm, the effect of calendering is small, and the ratio between the initial elastic modulus in the vertical direction and the initial elastic modulus in the horizontal direction is less than 1.2.

また、集電体11の厚さが5μm未満である場合、メッシュ(開口部)が小さくなりやすく、上述したようにリチウムイオンを補充するとき、リチウムイオンが集電体11を通過し難くなる。リチウムイオンの補充時にリチウムイオンの通過を確保する上では、集電体11の厚さを5μm以上にすればよいが、集電体11,21を共用するときには、集電体11の厚さと同様に、集電体21の厚さも5μm以上にすることができる。   Further, when the thickness of the current collector 11 is less than 5 μm, the mesh (opening) is likely to be small, and when lithium ions are replenished as described above, the lithium ions are difficult to pass through the current collector 11. In order to ensure the passage of lithium ions during replenishment of lithium ions, the thickness of the current collector 11 may be set to 5 μm or more. However, when the current collectors 11 and 21 are shared, the thickness is similar to that of the current collector 11. In addition, the thickness of the current collector 21 can also be 5 μm or more.

なお、本実施形態では、集電体11,21の全体を、ステンレス製ワイヤによって構成しているが、これに限るものではない。具体的には、集電体11,21の表面だけを、ステンレス製ワイヤによって構成することができる。すなわち、金属箔の表面に、縦方向および横方向のステンレス製ワイヤを配置することにより、集電体11,21を構成することができる。ここで、ステンレス製ワイヤは、活物質層12,22と接触する面に設ければよい。金属箔およびステンレス製ワイヤを組み合わせて、集電体11,21を構成することにより、集電体11,21の強度を確保しやすくなる。   In the present embodiment, the entire current collectors 11 and 21 are made of stainless steel wires, but are not limited thereto. Specifically, only the surfaces of the current collectors 11 and 21 can be formed of stainless steel wires. That is, the current collectors 11 and 21 can be configured by disposing stainless steel wires in the vertical and horizontal directions on the surface of the metal foil. Here, the stainless steel wire may be provided on the surface in contact with the active material layers 12 and 22. By configuring the current collectors 11 and 21 by combining the metal foil and the stainless steel wire, the strength of the current collectors 11 and 21 can be easily secured.

次に実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

(実施例1)
ステンレス製ワイヤの径が19μm、メッシュ数が400であるステンレスメッシュにカレンダー加工を施し、厚さを21μmに加工した。このステンレスメッシュを集電体21として用い、リチウムイオン二次電池の作製を行った。リチウムイオン二次電池の作製は、以下の通りに実施した。
Example 1
A stainless steel mesh having a diameter of 19 μm and a mesh number of 400 was calendered to a thickness of 21 μm. Using this stainless steel mesh as the current collector 21, a lithium ion secondary battery was produced. The production of the lithium ion secondary battery was performed as follows.

負極活物質粉末としてのシリコン(Si)、バインダとしてのポリイミド(PI)、導電助剤としてのアセチレンブラック(AB)を、負極活物質粉末:バインダ:導電助剤=80:2:18(重量比)の割合となるように秤量し、N−メチルピロリドン(NMP)に分散した後、自転・公転ミキサーで十分に撹拌してスラリー化した。得られたスラリーを、上述したように加工した集電体(ステンレスメッシュ)21上に塗布し、80℃で乾燥後,360℃で1.5h熱処理し負極シートを作製した。この負極シートを電極打ち抜き機で直径11mmの円板状に打ち抜き、負極板20を得た。このようにして得た負極板20と、対極としてのLi箔と、セパレータ30としてのガラスフィルターを用いて、「CR2032」と呼ばれるコイン型のリチウムイオン二次電池を作製した。電解液としては、EC(エチレンカーボネート)およびDEC(ジエチルカーボネート)が1:1(vol%)である溶媒にLiPF(1M)を混合したものを用いた。なお、コイン型のリチウムイオン二次電池の作製は露点温度−60℃以下の環境で行った。 Silicon (Si) as a negative electrode active material powder, polyimide (PI) as a binder, and acetylene black (AB) as a conductive auxiliary agent, negative electrode active material powder: binder: conductive auxiliary agent = 80: 2: 18 (weight ratio) ) And was dispersed in N-methylpyrrolidone (NMP), and then sufficiently stirred with a rotation / revolution mixer to form a slurry. The obtained slurry was applied onto a current collector (stainless mesh) 21 processed as described above, dried at 80 ° C., and then heat-treated at 360 ° C. for 1.5 h to prepare a negative electrode sheet. This negative electrode sheet was punched into a disk shape having a diameter of 11 mm with an electrode punching machine, whereby a negative electrode plate 20 was obtained. A coin-type lithium ion secondary battery called “CR2032” was manufactured using the negative electrode plate 20 thus obtained, the Li foil as the counter electrode, and the glass filter as the separator 30. As the electrolytic solution, a mixture of EC (ethylene carbonate) and DEC (diethyl carbonate) in 1: 1 (vol%) and LiPF 6 (1M) was used. The coin-type lithium ion secondary battery was manufactured in an environment with a dew point temperature of −60 ° C. or lower.

(実施例2)
ステンレス製ワイヤの径が20μm、メッシュ数が290であるステンレスメッシュ(厚さ25μm)を集電体21として用いた以外は実施例1と同様にリチウムイオン二次電池の作製を行った。
(Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that a stainless mesh (thickness 25 μm) having a diameter of stainless steel wire of 20 μm and a mesh number of 290 was used as the current collector 21.

(比較例1)
ステンレス製ワイヤの径が19μm、メッシュ数が400であるステンレスメッシュ(厚さ39μm)を集電体21として用いた以外は実施例1と同様にリチウムイオン二次電池の作製を行った。
(評価)
(Comparative Example 1)
A lithium ion secondary battery was fabricated in the same manner as in Example 1 except that a stainless steel mesh (thickness: 39 μm) having a diameter of 19 μm and a mesh number of 400 was used as the current collector 21.
(Evaluation)

(強伸度評価)
各集電体21の縦方向及び横方向における引張試験を実施し、強伸度曲線(強度[g/d]および伸長[%]の関係を示す曲線)を得た。強伸度曲線において、伸長の初期の傾きから初期弾性率を算出し、集電体21の縦方向の初期弾性率に対する集電体21の横方向の初期弾性率の比を算出した。下記表1に示すように、実施例1、2の集電体21においては、縦方向の初期弾性率に対する横方向の初期弾性率の比はそれぞれ、1.0及び8.3 x 10−1であった。また、実施例1,2の集電体21において、横方向の初期弾性率に対する縦方向の初期弾性率の比はそれぞれ、1.0及び1.2となる。
(Strong elongation evaluation)
Tensile tests in the longitudinal direction and the transverse direction of each current collector 21 were carried out to obtain a strong elongation curve (curve showing the relationship between strength [g / d] and elongation [%]). In the strong elongation curve, the initial elastic modulus was calculated from the initial slope of elongation, and the ratio of the initial elastic modulus in the lateral direction of the current collector 21 to the initial initial elastic modulus of the current collector 21 was calculated. As shown in Table 1 below, in the current collectors 21 of Examples 1 and 2, the ratio of the initial elastic modulus in the transverse direction to the initial elastic modulus in the longitudinal direction is 1.0 and 8.3 × 10 −1 , respectively. Met. In the current collectors 21 of Examples 1 and 2, the ratios of the initial elastic modulus in the longitudinal direction to the initial elastic modulus in the horizontal direction are 1.0 and 1.2, respectively.

一方で、比較例1の集電体21においては、縦方向の初期弾性率に対する横方向の初期弾性率の比は2.9であった。また、比較例1の集電体21において、横方向の初期弾性率に対する縦方向の初期弾性率の比は0.3となる。   On the other hand, in the current collector 21 of Comparative Example 1, the ratio of the initial elastic modulus in the transverse direction to the initial elastic modulus in the longitudinal direction was 2.9. In the current collector 21 of Comparative Example 1, the ratio of the initial elastic modulus in the longitudinal direction to the initial elastic modulus in the horizontal direction is 0.3.

(充放電挙動評価)
実施例1、2および比較例1であるリチウムイオン二次電池に対して、充放電のサイクル試験を行い、電池容量の評価を行った。サイクル試験では、充放電レートを0.1C、カットオフ電圧を0.001−1.0Vとして、充放電を繰り返した。
(Evaluation of charge / discharge behavior)
The lithium ion secondary batteries of Examples 1 and 2 and Comparative Example 1 were subjected to a charge / discharge cycle test, and the battery capacity was evaluated. In the cycle test, charging / discharging was repeated at a charge / discharge rate of 0.1 C and a cut-off voltage of 0.001-1.0 V.

下記表2には、実施例1、2において作製したリチウムイオン二次電池について、サイクル試験の結果を示す。下記表2は、サイクル数と、各サイクル数の後の電池容量(単位質量当たりの容量[mAh/g])との関係を示す。一方で、比較例1においては、サイクル試験後の電池容量を測定できなかった。これは、縦方向と横方向における集電体21の初期弾性率が大きく異なる場合、充放電時に生じる活物質の体積変化による集電体(ステンレスメッシュ)21の変形が一様にならず、集電体21からの活物質の剥離が生じたためと考えられる。   Table 2 below shows the results of the cycle test for the lithium ion secondary batteries produced in Examples 1 and 2. Table 2 below shows the relationship between the number of cycles and the battery capacity (capacity per unit mass [mAh / g]) after each number of cycles. On the other hand, in Comparative Example 1, the battery capacity after the cycle test could not be measured. This is because when the initial elastic modulus of the current collector 21 in the vertical direction and the horizontal direction is greatly different, the deformation of the current collector (stainless mesh) 21 due to the volume change of the active material that occurs during charging and discharging is not uniform. It is considered that the active material was peeled off from the electric body 21.

1:発電要素、10:正極板、11:集電体、12:正極活物質層、20:負極板、
21:集電体、22:負極活物質層、30:セパレータ、40:セパレータ、
50:リチウム箔、60:電源
1: power generation element, 10: positive electrode plate, 11: current collector, 12: positive electrode active material layer, 20: negative electrode plate,
21: current collector, 22: negative electrode active material layer, 30: separator, 40: separator
50: Lithium foil, 60: Power supply

Claims (3)

リチウムイオン二次電池用の集電体の製造方法であって、
前記集電体が、少なくとも活物質層と接触する表面において、ステンレス製ワイヤを縦方向および横方向に織り込むことにより形成され、前記活物質層の少なくとも一部が内部に埋め込まれるメッシュ構造を有しており、
前記集電体の前記縦方向の初期弾性率と前記集電体の前記横方向の初期弾性率の比が0.8以上、1.2以下となるように、縦方向および横方向に織り込まれた前記ステンレス製ワイヤに対してカレンダー加工を行うことを特徴とするリチウムイオン二次電池用の集電体の製造方法。
A method for producing a current collector for a lithium ion secondary battery, comprising:
The current collector is formed by weaving stainless steel wires in the vertical and horizontal directions at least on the surface in contact with the active material layer, and has a mesh structure in which at least a part of the active material layer is embedded inside And
It is woven in the longitudinal direction and the lateral direction so that the ratio between the initial elastic modulus in the longitudinal direction of the current collector and the initial elastic modulus in the lateral direction of the current collector is 0.8 or more and 1.2 or less. A method of manufacturing a current collector for a lithium ion secondary battery, wherein calendar processing is performed on the stainless steel wire.
前記ステンレス製ワイヤの径が20μm以下であり、かつ前記集電体のメッシュ数が290以上であることを特徴とする請求項1に記載のリチウムイオン二次電池用の集電体の製造方法。   2. The method of manufacturing a current collector for a lithium ion secondary battery according to claim 1, wherein the diameter of the stainless steel wire is 20 μm or less and the number of meshes of the current collector is 290 or more. 前記集電体の厚さが5μm以上25μm以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池用の集電体の製造方法。   3. The method for producing a current collector for a lithium ion secondary battery according to claim 1, wherein the current collector has a thickness of 5 μm to 25 μm.
JP2019101169A 2019-05-30 2019-05-30 Manufacturing method of current collector for lithium ion secondary battery Active JP6886153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101169A JP6886153B2 (en) 2019-05-30 2019-05-30 Manufacturing method of current collector for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101169A JP6886153B2 (en) 2019-05-30 2019-05-30 Manufacturing method of current collector for lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015073139A Division JP2016192380A (en) 2015-03-31 2015-03-31 Collector for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2019140126A true JP2019140126A (en) 2019-08-22
JP6886153B2 JP6886153B2 (en) 2021-06-16

Family

ID=67694316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101169A Active JP6886153B2 (en) 2019-05-30 2019-05-30 Manufacturing method of current collector for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6886153B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035458A (en) * 1983-08-04 1985-02-23 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPH03127455A (en) * 1989-10-06 1991-05-30 Matsushita Electric Ind Co Ltd Flat type cell
JPH0461753A (en) * 1990-06-28 1992-02-27 Matsushita Electric Ind Co Ltd Flat cell
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012094292A (en) * 2010-10-25 2012-05-17 Jx Nippon Mining & Metals Corp Rolled copper foil, negative electrode collector using the same, negative electrode plate and secondary battery
WO2013047379A1 (en) * 2011-09-26 2013-04-04 日本電気株式会社 Lithium secondary battery and method for producing same
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JP2014049388A (en) * 2012-09-03 2014-03-17 Toyota Industries Corp Power storage device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035458A (en) * 1983-08-04 1985-02-23 Seiko Instr & Electronics Ltd Nonaqueous electrolyte battery
JPH03127455A (en) * 1989-10-06 1991-05-30 Matsushita Electric Ind Co Ltd Flat type cell
JPH0461753A (en) * 1990-06-28 1992-02-27 Matsushita Electric Ind Co Ltd Flat cell
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012094292A (en) * 2010-10-25 2012-05-17 Jx Nippon Mining & Metals Corp Rolled copper foil, negative electrode collector using the same, negative electrode plate and secondary battery
WO2013047379A1 (en) * 2011-09-26 2013-04-04 日本電気株式会社 Lithium secondary battery and method for producing same
JP2013241662A (en) * 2012-05-22 2013-12-05 Furukawa Electric Co Ltd:The Rolled copper foil for collector of secondary battery and method for producing the same
JP2014015657A (en) * 2012-07-06 2014-01-30 Furukawa Electric Co Ltd:The Copper alloy rolled foil for secondary battery collector and its manufacturing method
JP2014049388A (en) * 2012-09-03 2014-03-17 Toyota Industries Corp Power storage device

Also Published As

Publication number Publication date
JP6886153B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
CN112670516B (en) Three-dimensional composite current collector and preparation method thereof
US20080220329A1 (en) Negative electrode active material for an electricity storage device and method for manufacturing the same
JP2008186704A (en) Positive electrode plate for non-aqueous secondary battery and non-aqueous secondary battery
Liu et al. Pre-planted nucleation seeds for rechargeable metallic lithium anodes
CN112736277A (en) Solid electrolyte-lithium negative electrode complex, method for producing same, and all-solid-state lithium secondary battery
JP2016192380A (en) Collector for lithium ion secondary battery
CN108878893B (en) Modified current collector for negative electrode of quick-charging lithium ion battery and preparation method thereof
Di et al. Dendrites‐Free Lithium Metal Anode Enabled by Synergistic Surface Structural Engineering
CN103035925A (en) Lithium-ion power battery, lithium-ion power battery current collecting body, negative electrode pole piece
KR20160113981A (en) Negative electrode active material and method for preparing the same
KR20140142576A (en) Manufacturing method of electrode for secondary battery and secondary battery comprising electrode manufactured by the method
JP2005108521A (en) Thin film electrode, manufacturing method of the same, and lithium secondary battery using the thin film electrode
CN111900412A (en) Flexible current collector, lithium ion battery pole piece and preparation method thereof
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof
WO2011024414A1 (en) Lithium secondary battery and method for manufacturing same
JP6886153B2 (en) Manufacturing method of current collector for lithium ion secondary battery
KR101977973B1 (en) Negative electrode for fast charging, battery comprising the same and fabricating methods thereof
JPWO2014156068A1 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008060028A (en) Power storage device
JP6921037B2 (en) Lead-acid battery
US20210296634A1 (en) Aqueous zinc lithium-ion battery and method for making same
US20190221812A1 (en) Method for Manufacturing Fast Charging and Long Life Li-S Batteries
CN107591249B (en) Electrochemical energy storage device
CN114600279A (en) Use of silicon with impurities in silicon dominated anode cells
KR20210068163A (en) Method of preparing a lithium secondary battery and lithium secondary battery prepared by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210430

R150 Certificate of patent or registration of utility model

Ref document number: 6886153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250