JP2015130245A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2015130245A
JP2015130245A JP2014000279A JP2014000279A JP2015130245A JP 2015130245 A JP2015130245 A JP 2015130245A JP 2014000279 A JP2014000279 A JP 2014000279A JP 2014000279 A JP2014000279 A JP 2014000279A JP 2015130245 A JP2015130245 A JP 2015130245A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
storage device
electrolyte
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014000279A
Other languages
Japanese (ja)
Other versions
JP6349730B2 (en
Inventor
田中 義久
Yoshihisa Tanaka
義久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2014000279A priority Critical patent/JP6349730B2/en
Publication of JP2015130245A publication Critical patent/JP2015130245A/en
Application granted granted Critical
Publication of JP6349730B2 publication Critical patent/JP6349730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device capable of improving supply performance of an electrolyte to an electrode, capable of improving the exhaustion of an electrolyte by the expansion and contraction of an electrode due to charging/discharging, and capable of suppressing deterioration in battery performance due to the exhaustion.SOLUTION: A power storage device 100 accommodates a positive electrode 1 and a negative electrode 3 within an exterior member 7, the positive electrode 1 and a negative electrode 3 being arranged to sandwich a porous separator 5 including a nonaqueous electrolyte 9, as an electrolyte, impregnated therein. The power storage device includes electrolyte reservoirs 20 surrounding a side peripheral part 1a of the positive electrode 1 and a side peripheral part 3a of the negative electrode 3, respectively.

Description

本発明は、蓄電デバイスに関する。   The present invention relates to an electricity storage device.

リチウムイオン電池などの蓄電デバイスは、携帯電話やノートパソコン、電気自動車やハイブリッド自動車などの電源として使用されている。   Power storage devices such as lithium ion batteries are used as power sources for mobile phones, notebook computers, electric vehicles, hybrid vehicles, and the like.

特許文献1に開示されている電気二重層キャパシタは、交互に積層した正極と負極との間及びその積層方向両端に多孔質のセパレータを配置した電極群を、外装ケース内に収容して構成される。セパレータは、正極と負極とを仕切り、外装ケースとの間も仕切る。このため、両電極の絶縁性が確保されるとともに、外装ケースとの間の絶縁性も確保される。   The electric double layer capacitor disclosed in Patent Document 1 is configured by housing an electrode group in which porous separators are disposed between alternately stacked positive and negative electrodes and at both ends in the stacking direction in an outer case. The The separator partitions the positive electrode and the negative electrode, and also partitions the exterior case. For this reason, while ensuring the insulation of both electrodes, the insulation between exterior cases is also ensured.

充電時には、セパレータに含浸された電解液に含まれるアニオンやカチオンなどのイオンが電極(正極及び負極)に挿入などされることによって電極が膨張する。また、放電時には、電極に挿入などされた電解液に含まれるアニオンやカチオンなどのイオンが電極外部に放出されることによって電極が収縮する。   At the time of charging, ions such as anions and cations contained in the electrolytic solution impregnated in the separator are inserted into the electrodes (positive electrode and negative electrode) to expand the electrodes. Further, at the time of discharging, ions such as anions and cations contained in the electrolytic solution inserted into the electrode are released to the outside of the electrode, so that the electrode contracts.

電極の膨張・収縮は、主として電極の積層方向に起こる。このため、外装ケースの内面のうち、電極の積層方向にあたる箇所に、電解液リザーバを配設している。電解液リザーバは、充電時に電極が膨張する際に、セパレータに電解液を供給し、セパレータ内の電解液の不足を補う。また、電解液リザーバは、放電時に電極が収縮する際に、セパレータから溢れる電解液を吸収し、外装ケースに設けられた放出弁などから電解液が外部に溢れ出すことを防止する。   The expansion / contraction of the electrode mainly occurs in the stacking direction of the electrodes. For this reason, the electrolyte reservoir is disposed in the inner surface of the exterior case at a location corresponding to the electrode stacking direction. The electrolytic solution reservoir supplies the electrolytic solution to the separator when the electrode expands during charging, and compensates for the shortage of the electrolytic solution in the separator. In addition, the electrolyte reservoir absorbs the electrolyte overflowing from the separator when the electrode contracts during discharge, and prevents the electrolyte from overflowing from a discharge valve or the like provided in the exterior case.

特開2007−220841号公報JP 2007-220841 A

特許文献1に開示されている構成では、電解液リザーバが、電極群の両端に位置するセパレータの外側に配置されている。つまり、電極群の両端の電極と中央の電極とでは電解液リザーバまでの距離が大きく異なっている。このため、電極群の中央の電極への電解液の供給量は、両端の電極に比べて少なく、電極への電解液の供給性能が低いという問題がある。また、充放電による電極の膨張・収縮に伴う電解液の枯渇が局部的に発現する。電極液の枯渇は、例えば電極群の中央の電極などの電解液リザーバから遠い電極において発現し易いと考えられる。蓄電デバイスは、電解液の枯渇があると内部抵抗が増加し、容量が低下し、電池性能が低下するという問題がある。   In the configuration disclosed in Patent Document 1, the electrolyte reservoir is disposed outside the separator located at both ends of the electrode group. That is, the distance to the electrolyte reservoir is greatly different between the electrodes at both ends of the electrode group and the center electrode. For this reason, there is a problem that the supply amount of the electrolytic solution to the center electrode of the electrode group is smaller than the electrodes at both ends, and the performance of supplying the electrolytic solution to the electrodes is low. In addition, electrolyte depletion due to expansion / contraction of the electrode due to charge / discharge is locally expressed. It is considered that the depletion of the electrode solution is likely to occur at an electrode far from the electrolyte reservoir, such as the center electrode of the electrode group. The electricity storage device has a problem that when the electrolyte is depleted, the internal resistance increases, the capacity decreases, and the battery performance decreases.

本発明は、上記課題を解決するためになされたものであり、電極への電解液の供給性能を向上でき、充放電による電極の膨張・収縮に伴う電解液の枯渇を改善でき、枯渇による電池性能の低下を抑制できる蓄電デバイスを提供することを目的とする。   The present invention has been made to solve the above-described problems, and can improve the supply performance of the electrolyte solution to the electrode, can improve the depletion of the electrolyte solution due to the expansion / contraction of the electrode due to charge / discharge, and the battery due to the depletion It aims at providing the electrical storage device which can suppress the fall of performance.

上記目的を達成するため、本発明に係る蓄電デバイスは、
電解液を含浸した多孔質のセパレータを挟んで配置される正極及び負極をケース内に収容した蓄電デバイスであって、
前記正極と前記負極のうち少なくとも一方の電極の側周部を囲む電解液リザーバを備える。
In order to achieve the above object, an electricity storage device according to the present invention includes:
An electricity storage device in which a positive electrode and a negative electrode arranged in a case sandwiching a porous separator impregnated with an electrolytic solution are housed in a case,
An electrolyte reservoir is provided that surrounds a side periphery of at least one of the positive electrode and the negative electrode.

本発明によれば、電極への電解液の供給性能を向上でき、充放電による電極の膨張・収縮に伴う電解液の枯渇を改善でき、枯渇による電池性能の低下を抑制できる蓄電デバイスを提供することができる。   According to the present invention, there is provided an electricity storage device that can improve the supply performance of an electrolyte solution to an electrode, can improve the depletion of the electrolyte solution due to the expansion / contraction of the electrode due to charge / discharge, and can suppress the decrease in battery performance due to the depletion be able to.

本発明の実施の形態1に係る蓄電デバイスの構成図である。It is a block diagram of the electrical storage device which concerns on Embodiment 1 of this invention. (a)は蓄電デバイスの積層体内の正極の主面を見たときの図、(b)は蓄電デバイスの積層体の一部の積層関係を示す図、(c)は積層体の一部の断面図である。(A) is a figure when the main surface of the positive electrode in the laminated body of an electrical storage device is seen, (b) is a figure which shows the lamination | stacking relationship of a part of laminated body of an electrical storage device, (c) is a part of laminated body It is sectional drawing. 比較例の蓄電デバイスの構成図である。It is a block diagram of the electrical storage device of a comparative example. 実施例及び比較例の蓄電デバイスの容量変化を示す図である。It is a figure which shows the capacity | capacitance change of the electrical storage device of an Example and a comparative example. (a)〜(g)は本発明の実施の形態3のセパレータ及び電解液リザーバの製造方法を示す図である。(A)-(g) is a figure which shows the manufacturing method of the separator and electrolyte reservoir of Embodiment 3 of this invention. 変形例に係る蓄電デバイスの構成図である。It is a block diagram of the electrical storage device which concerns on a modification. 変形例に係る蓄電デバイスの構成図である。It is a block diagram of the electrical storage device which concerns on a modification. 変形例に係る蓄電デバイスの構成図である。It is a block diagram of the electrical storage device which concerns on a modification.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施の形態1)
本発明の実施の形態1に係る蓄電デバイス100は、図1に示すように、交互に積層された正極1と負極3との間に多孔質のセパレータ5を介装し、且つ、正極1の側周部1aと負極3の側周部3aの周囲にそれぞれ電解液リザーバ20を配置した積層体6と、リチウムイオン供給源15とを、蓄電デバイス用セル8内に収容して構成される。正極1は正極集電体2に形成され、負極3は負極集電体4に形成されている。
(Embodiment 1)
As shown in FIG. 1, an electricity storage device 100 according to Embodiment 1 of the present invention includes a porous separator 5 interposed between alternately stacked positive electrodes 1 and negative electrodes 3, and The laminated body 6 in which the electrolyte reservoir 20 is disposed around the side peripheral portion 1a and the side peripheral portion 3a of the negative electrode 3 and the lithium ion supply source 15 are housed in the storage device cell 8. The positive electrode 1 is formed on the positive electrode current collector 2, and the negative electrode 3 is formed on the negative electrode current collector 4.

蓄電デバイス用セル8は、ケースとしての外装部材7により外装が構成される。蓄電デバイス用セル8は、内部に非水電解液9が充填された状態で密封されている。なお、非水電解液9は積層体6内にも充填されている。   The electricity storage device cell 8 has an exterior formed by an exterior member 7 as a case. The electricity storage device cell 8 is sealed with the nonaqueous electrolyte 9 filled therein. The non-aqueous electrolyte 9 is also filled in the laminate 6.

積層体6は、最外層を負極集電体4とし、セパレータ5を介して正極集電体2及び負極集電体4を合わせて5層積層して構成される。詳しくは、正極集電体2の両面には、正極1が形成されている。一方、最外層に位置する負極集電体4の片面(正極1に対向する方の面)と、最外層よりも内側に位置する負極集電体4の両面には、負極3が形成されている。正極1と負極3との間にセパレータ5が介装されていることにより、正極1と負極3とが非接触となっている。   The laminated body 6 is configured by stacking five layers including the negative electrode current collector 4 as the outermost layer and the positive electrode current collector 2 and the negative electrode current collector 4 through the separator 5. Specifically, the positive electrode 1 is formed on both surfaces of the positive electrode current collector 2. On the other hand, the negative electrode 3 is formed on one surface of the negative electrode current collector 4 positioned on the outermost layer (the surface facing the positive electrode 1) and on both surfaces of the negative electrode current collector 4 positioned on the inner side of the outermost layer. Yes. Since the separator 5 is interposed between the positive electrode 1 and the negative electrode 3, the positive electrode 1 and the negative electrode 3 are not in contact with each other.

図1では、理解を容易にするため、正極1と負極3とセパレータ5と電解液リザーバ20とを、積層方向に間隔を空けて図示しているが、これらは、図2(c)に示すように積層状態において互いに接触して積層方向に隙間が無い状態となっている。   In FIG. 1, for easy understanding, the positive electrode 1, the negative electrode 3, the separator 5, and the electrolyte reservoir 20 are illustrated at intervals in the stacking direction, which are illustrated in FIG. 2 (c). In this way, they are in contact with each other in the stacked state and there is no gap in the stacking direction.

以下に、蓄電デバイス100の各構成を個別に説明する。   Below, each structure of the electrical storage device 100 is demonstrated separately.

<正極1>
正極1は、表裏面(両側の主面)を貫通する貫通孔を有する正極集電体2上に形成される。正極1は、アニオンを挿入、脱離し得る層状構造を有する炭素材料(例えば人造黒鉛)を、正極活物質として含む。正極集電体2の貫通孔は、アニオンやカチオンなどのイオンが通過可能である。
<Positive electrode 1>
The positive electrode 1 is formed on a positive electrode current collector 2 having a through-hole penetrating the front and back surfaces (main surfaces on both sides). The positive electrode 1 includes a carbon material (for example, artificial graphite) having a layered structure that can insert and desorb anions as a positive electrode active material. Ions such as anions and cations can pass through the through holes of the positive electrode current collector 2.

正極集電体2は、図2(a)に示すように主面が正方形状(縦横の長さW1が10cmの正方形)であり、図2(b)に示すように薄板形状である。正極集電体2は、厚みが20μmであり、両側の主面上に、縦横の長さW1が10cmの正方形で且つ厚みが80μmの正極1が形成されている。また、正極集電体2には、長板状の取り出し電極部10が接続されている。図1に示すように、2つの取り出し電極部10は、正極用外部端子16に接続されている。   The positive electrode current collector 2 has a main surface having a square shape (a square having a vertical and horizontal length W1 of 10 cm) as shown in FIG. 2 (a), and a thin plate shape as shown in FIG. 2 (b). The positive electrode current collector 2 has a thickness of 20 μm, and a positive electrode 1 having a square shape with a vertical and horizontal length W1 of 10 cm and a thickness of 80 μm is formed on both main surfaces. The positive electrode current collector 2 is connected to a long plate-shaped extraction electrode portion 10. As shown in FIG. 1, the two extraction electrode portions 10 are connected to the positive external terminal 16.

<負極3>
負極3は、表裏面(両側の主面)を貫通する貫通孔を有する負極集電体4上に形成される。負極集電体4の貫通孔は、アニオンやカチオンなどのイオンが通過可能である。負極3は、カチオンとしてのリチウムイオンを挿入、脱離し得る層状構造を有する炭素材料を、負極活物質として含む。負極3の炭素材料としては、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、活性炭等が好ましい。
<Negative electrode 3>
The negative electrode 3 is formed on a negative electrode current collector 4 having a through-hole penetrating the front and back surfaces (main surfaces on both sides). Ions such as anions and cations can pass through the through holes of the negative electrode current collector 4. The negative electrode 3 includes a carbon material having a layered structure that can insert and desorb lithium ions as cations as a negative electrode active material. As the carbon material of the negative electrode 3, natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, activated carbon and the like are preferable.

負極集電体4は、主面が正方形状(縦横の長さW1が10cmの正方形)とした薄板形状である。中央の負極集電体4は、厚みが15μmであり、両側の主面上に、縦横の長さW1が10cmの正方形で且つ厚みが90μmの負極3が形成されている。最外層の負極集電体4には、内側を向く方の主面(片面)のみに、10cm×10cmの正方形で厚みが90μmの負極3が形成されている。また、負極集電体4には、長板状の取り出し電極部11が接続されている。図1に示すように、3つの取り出し電極部11は、負極用外部端子17に接続されている。   The negative electrode current collector 4 has a thin plate shape in which the main surface has a square shape (a square whose length W1 is 10 cm in length and width). The central negative electrode current collector 4 has a thickness of 15 μm, and a negative electrode 3 having a vertical and horizontal length W1 of 10 cm and a thickness of 90 μm is formed on the main surfaces on both sides. In the outermost negative electrode current collector 4, the negative electrode 3 having a square of 10 cm × 10 cm and a thickness of 90 μm is formed only on the main surface (one surface) facing inward. The negative electrode current collector 4 is connected to a long plate-shaped extraction electrode portion 11. As shown in FIG. 1, the three extraction electrode portions 11 are connected to the negative external terminal 17.

<非水電解液9>
非水電解液9は、リチウム塩を含む電解質(溶質)を有機溶媒に溶解した有機電解液である。また、リチウム塩以外に他の電解質を含んでいてもよい。
<Nonaqueous electrolyte 9>
The nonaqueous electrolytic solution 9 is an organic electrolytic solution in which an electrolyte (solute) containing a lithium salt is dissolved in an organic solvent. Moreover, other electrolytes may be included in addition to the lithium salt.

リチウム塩としては、LiPF、LiBF、LiCIO、LiN(CFSO、LiN(SO、LiCFSO、LiC(SOCF、LIAsF、及びLiSbFからなる群から選ばれる一種以上の塩が好ましい。本実施の形態では、リチウム塩としてLiPFを用いる。また、非水電解液9におけるリチウム塩の濃度(電解質濃度)は、0.5〜5.0mol/L(0.5〜5.0M)が好ましく、1.0〜1.5mol/Lがより好ましい。 Lithium salts include LiPF 6 , LiBF 4 , LiCIO 4 , LiN (CF 3 SO 2 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LIAsF 6 And one or more salts selected from the group consisting of LiSbF 6 are preferred. In this embodiment, LiPF 6 is used as the lithium salt. Further, the concentration of the lithium salt (electrolyte concentration) in the non-aqueous electrolyte 9 is preferably 0.5 to 5.0 mol / L (0.5 to 5.0 M), more preferably 1.0 to 1.5 mol / L. preferable.

有機溶媒としては、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン等が好ましい。これら有機溶媒は、単独溶媒として用いてもよく、二種以上の混合溶媒として用いてもよい。混合溶媒としては、エチレンカーボネートとジメチルカーボネートとの混合溶媒が好ましく、エチレンカーボネートとジメチルカーボネートとを重量比1:1で混合してなる混合溶媒がより好ましい。   As the organic solvent, ethylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, dimethoxyethane and the like are preferable. These organic solvents may be used as a single solvent or as a mixed solvent of two or more. As the mixed solvent, a mixed solvent of ethylene carbonate and dimethyl carbonate is preferable, and a mixed solvent obtained by mixing ethylene carbonate and dimethyl carbonate at a weight ratio of 1: 1 is more preferable.

<セパレータ5>
セパレータ5は、図1に示すように正極1と負極3との間に配置される。セパレータ5は、正極1と負極3との接触を防止する多孔質の膜であり、積層体6内に充填された非水電解液9が含浸されている。セパレータ5は、絶縁性を確保しつつ、アニオンやカチオンのイオン透過を許容する観点から、例えば厚さ50μmで気孔率70%程度の膜としている。セパレータ5は、セルロース系の重合体からなる多孔質の膜である。なお、セパレータ5として、ポリエチレン等のポリオレフィン系等の重合体からなる多孔質の膜であってもよい。
<Separator 5>
As shown in FIG. 1, the separator 5 is disposed between the positive electrode 1 and the negative electrode 3. The separator 5 is a porous film that prevents contact between the positive electrode 1 and the negative electrode 3, and is impregnated with a nonaqueous electrolytic solution 9 filled in the laminate 6. The separator 5 is, for example, a film having a thickness of about 50 μm and a porosity of about 70% from the viewpoint of permitting anion and cation ion permeation while ensuring insulation. The separator 5 is a porous film made of a cellulose polymer. The separator 5 may be a porous film made of a polyolefin-based polymer such as polyethylene.

<外装部材7>
外装部材7は、蓄電デバイス用セル8の外装を形成する。外装部材7としては、例えばアルミニウムからなるラミネートフィルムが好ましい。
<Exterior member 7>
The exterior member 7 forms an exterior of the electricity storage device cell 8. As the exterior member 7, for example, a laminate film made of aluminum is preferable.

<電解液リザーバ20>
電解液リザーバ20は、積層体6内に充填された非水電解液9を含浸可能で、保液性を有する。
<Electrolyte reservoir 20>
The electrolyte reservoir 20 can be impregnated with the non-aqueous electrolyte 9 filled in the laminate 6 and has a liquid retention property.

電解液リザーバ20は、セパレータ5と同一材料で形成されている。つまり、電解液リザーバ20は、セルロース系の重合体からなる多孔質の膜である。そのため、気孔率は70%程度である。なお、ポリエチレン等のポリオレフィン系等の重合体からなる多孔質の膜であってもよい。   The electrolyte reservoir 20 is made of the same material as the separator 5. That is, the electrolyte reservoir 20 is a porous film made of a cellulose polymer. Therefore, the porosity is about 70%. A porous film made of a polyolefin-based polymer such as polyethylene may also be used.

電解液リザーバ20は、図1、図2(b)に示すように、正極1の側周部1aと負極3の側周部3aとの周囲にそれぞれ配設されている。   As shown in FIG. 1 and FIG. 2B, the electrolyte reservoir 20 is disposed around the side peripheral portion 1 a of the positive electrode 1 and the side peripheral portion 3 a of the negative electrode 3, respectively.

詳しくは、正極1の側周部1aを囲む電解液リザーバ20は、図2(a)に示すように外形が正方形状であり、中央に正方形状の開口部21が形成され、図2(b)に示すように2枚重ねに配置されている。開口部21は、正極1の主面領域を含む大きさである。負極3の側周部3aを囲む電解液リザーバ20も、外形が正方形状であり、中央に正方形状の開口部21が形成され、2枚重ねに配置されている。この開口部21も、負極3の主面領域を含む大きさである。   Specifically, the electrolyte reservoir 20 surrounding the side peripheral portion 1a of the positive electrode 1 has a square outer shape as shown in FIG. 2A, and a square-shaped opening 21 is formed at the center. As shown in FIG. The opening 21 has a size including the main surface region of the positive electrode 1. The electrolyte reservoir 20 surrounding the side periphery 3a of the negative electrode 3 also has a square outer shape, and a square-shaped opening 21 is formed at the center, and is arranged in two layers. The opening 21 also has a size including the main surface region of the negative electrode 3.

図2(a)に示すように、開口部21の各辺の長さW3は、正極1及び負極3の縦横の各長さW1よりも大きくしている(W3>W1)。このため、電解液リザーバ20は、開口部21に正極1又は負極3を挿入した状態において、開口部21と側周部1aとの間に隙間を有する。これにより、正極1及び負極3を開口部21に挿入し易く、開口部21の開口端部が正極1及び負極3に乗り上げた状態で積層されることがない。   As shown in FIG. 2A, the length W3 of each side of the opening 21 is larger than the vertical and horizontal lengths W1 of the positive electrode 1 and the negative electrode 3 (W3> W1). For this reason, the electrolytic solution reservoir 20 has a gap between the opening 21 and the side peripheral portion 1 a in a state where the positive electrode 1 or the negative electrode 3 is inserted into the opening 21. Thereby, it is easy to insert the positive electrode 1 and the negative electrode 3 into the opening portion 21, and the opening end portion of the opening portion 21 is not stacked in a state where the positive electrode 1 and the negative electrode 3 run over the positive electrode 1 and the negative electrode 3.

なお、開口部21の各辺の長さW3は、例えば、膨張した正極1及び負極3が当接しない長さとしてもよい。この場合には、正極1及び負極3が膨張したとしても、開口部21の開口端部が正極1及び負極3に押圧されて厚み方向に変形することがない。   Note that the length W3 of each side of the opening 21 may be, for example, a length at which the expanded positive electrode 1 and negative electrode 3 do not contact each other. In this case, even if the positive electrode 1 and the negative electrode 3 expand, the opening end portion of the opening 21 is not pressed by the positive electrode 1 and the negative electrode 3 and deformed in the thickness direction.

電解液リザーバ20は、一枚当たりの厚さが例えば50μmであり、2枚重ねとすることで全体厚さが100μmとなる。このため、2枚重ねの電解液リザーバ20の厚み(100μm)は、正極1の厚み(80μm)及び負極3の厚み(90μm)よりも大きい。このようにすることで、図2(b)に示す正極集電体2又は負極集電体4の厚み分の隙間CL1並びにセパレータ5と電解液リザーバ20との隙間CL2を、正極1と負極3とセパレータ5と電解液リザーバ20との積層状態において、図2(c)に示すように隙間が無い状態や、隙間を低減した状態とすることができる。   The electrolyte reservoir 20 has a thickness of 50 μm per sheet, for example, and the total thickness becomes 100 μm by stacking two sheets. For this reason, the thickness (100 μm) of the two electrolyte reservoirs 20 is larger than the thickness of the positive electrode 1 (80 μm) and the thickness of the negative electrode 3 (90 μm). By doing so, the gap CL1 corresponding to the thickness of the positive electrode current collector 2 or the negative electrode current collector 4 shown in FIG. 2B and the gap CL2 between the separator 5 and the electrolyte reservoir 20 are changed into the positive electrode 1 and the negative electrode 3. In the stacked state of the separator 5 and the electrolyte reservoir 20, there can be no gap or a reduced gap as shown in FIG.

<リチウムイオン供給源15>
リチウムイオン供給源15は、図1に示すように、金属リチウム12を備えた金属箔13(例えば銅箔)からなり、蓄電デバイス用セル8の内部に配置されている。金属箔13には、取り出し電極部14が接続されている。
<Lithium ion source 15>
As shown in FIG. 1, the lithium ion supply source 15 is made of a metal foil 13 (for example, a copper foil) including a metal lithium 12 and is disposed inside the electricity storage device cell 8. An extraction electrode portion 14 is connected to the metal foil 13.

さらに、セパレータ5は、積層体6とリチウムイオン供給源15との間、積層体6と外装部材7との間、リチウムイオン供給源15と外装部材7との間にも配置されている。これにより、積層体6とリチウムイオン供給源15と外装部材7とが互いに接触しないようになっている。   Furthermore, the separator 5 is also disposed between the laminate 6 and the lithium ion supply source 15, between the laminate 6 and the exterior member 7, and between the lithium ion supply source 15 and the exterior member 7. Thereby, the laminated body 6, the lithium ion supply source 15, and the exterior member 7 do not contact each other.

以上説明したように、本発明の実施の形態1に係る蓄電デバイス100によれば、電解液リザーバ20は、正極1の側周部1aと負極3の側周部3aとをそれぞれ囲むように配設されている。その結果、セパレータ5に含浸された非水電解液9が正極1及び負極3の表面に供給されることに加えて、電解液リザーバ20に含浸された非水電解液9が正極1及び負極3の側周部1a、3aに供給される。従って、正極1及び負極3への非水電解液9の供給性能が向上する。また、電解液リザーバ20が正極1及び負極3の側周部1a、3aに対して非水電解液9を授受したり、電解液リザーバ20がセパレータ5に対して非水電解液9を授受したりする。このため、充放電による電極(正極1及び負極3)の膨張・収縮に伴う非水電解液9の枯渇を改善できる。よって、蓄電デバイス100は、電池性能の低下を抑制でき、その電池性能を従来に比べてより長い期間発揮できる。   As described above, according to the electricity storage device 100 according to Embodiment 1 of the present invention, the electrolyte reservoir 20 is arranged so as to surround the side peripheral portion 1a of the positive electrode 1 and the side peripheral portion 3a of the negative electrode 3, respectively. It is installed. As a result, in addition to the nonaqueous electrolyte 9 impregnated in the separator 5 being supplied to the surfaces of the positive electrode 1 and the negative electrode 3, the nonaqueous electrolyte 9 impregnated in the electrolyte reservoir 20 is the positive electrode 1 and the negative electrode 3. To the side peripheral portions 1a and 3a. Therefore, the supply performance of the non-aqueous electrolyte 9 to the positive electrode 1 and the negative electrode 3 is improved. Further, the electrolyte reservoir 20 delivers and receives the nonaqueous electrolyte 9 to the side peripheral portions 1 a and 3 a of the positive electrode 1 and the negative electrode 3, and the electrolyte reservoir 20 delivers and receives the nonaqueous electrolyte 9 to the separator 5. Or For this reason, the depletion of the non-aqueous electrolyte 9 accompanying the expansion / contraction of the electrodes (the positive electrode 1 and the negative electrode 3) due to charge / discharge can be improved. Therefore, the electricity storage device 100 can suppress a decrease in battery performance, and can exhibit the battery performance for a longer period than in the past.

また、正極1の電解液リザーバ20は、正極1の主面領域を含む大きさの開口部21を備える。負極3の電解液リザーバ20は、負極3の主面領域を含む大きさの開口部21を備える。このため、電解液リザーバ20の開口部21に正極1を挿入すると、電解液リザーバ20の開口部21が正極1の側周部1aを周方向全体にわたって囲む状態となる。負極3の電解液リザーバ20の開口部21に負極3を挿入すると、電解液リザーバ20の開口部21が負極3の側周部3aを周方向全体にわたって囲む状態となる。よって、電解液リザーバ20と正極1の側周部1aとの間、及び電解液リザーバ20と負極3の側周部3aとの間で非水電解液9を効率良く授受できる。   The electrolyte reservoir 20 of the positive electrode 1 includes an opening 21 having a size including the main surface region of the positive electrode 1. The electrolyte reservoir 20 of the negative electrode 3 includes an opening 21 having a size including the main surface region of the negative electrode 3. For this reason, when the positive electrode 1 is inserted into the opening 21 of the electrolytic solution reservoir 20, the opening 21 of the electrolytic solution reservoir 20 surrounds the side peripheral portion 1a of the positive electrode 1 over the entire circumferential direction. When the negative electrode 3 is inserted into the opening 21 of the electrolyte reservoir 20 of the negative electrode 3, the opening 21 of the electrolyte reservoir 20 surrounds the side circumferential portion 3 a of the negative electrode 3 over the entire circumferential direction. Therefore, the non-aqueous electrolyte 9 can be efficiently exchanged between the electrolyte reservoir 20 and the side periphery 1a of the positive electrode 1 and between the electrolyte reservoir 20 and the side periphery 3a of the negative electrode 3.

また、電解液リザーバ20の厚みを電極(正極1又は負極3)の厚みよりも大きくしているので、正極1の側周部1a及び負極3の側周部3aの厚み方向全体に電解液リザーバ20の非水電解液9を供給でき、電極への非水電解液9の供給性能を向上できる。   In addition, since the thickness of the electrolytic solution reservoir 20 is larger than the thickness of the electrode (positive electrode 1 or negative electrode 3), the electrolytic solution reservoir extends in the entire thickness direction of the side peripheral portion 1a of the positive electrode 1 and the side peripheral portion 3a of the negative electrode 3. 20 non-aqueous electrolytes 9 can be supplied, and the performance of supplying the non-aqueous electrolyte 9 to the electrodes can be improved.

また、蓄電デバイス100の一例であるデュアルカーボン電池は、正極1の正極活物質として、層状構造の層間にアニオンが挿入脱離する炭素材料を用い、負極3の負極活物質として、層状構造の層間にカチオンが挿入脱離すると共に予めカチオンとしてリチウムイオンを挿入した炭素材料を用いる。正極集電体2及び負極集電体4は、両側の主面を貫通する貫通孔を備える。使用される電解液は、リチウム塩を溶解した非水電解液9である。このようなデュアルカーボン電池の場合にも、電解液リザーバ20を用いることにより、正極1及び負極3への非水電解液9の供給性能を向上でき、充放電による正極1及び負極3の膨張・収縮に伴う非水電解液9の枯渇を改善でき、電池性能の低下を抑制できる。   In addition, the dual carbon battery which is an example of the electricity storage device 100 uses a carbon material in which anions are inserted and desorbed between layers of a layered structure as a positive electrode active material of the positive electrode 1, and a layered structure of an interlayer A carbon material in which lithium ions are inserted as cations in advance while cations are inserted and desorbed is used. The positive electrode current collector 2 and the negative electrode current collector 4 include through holes that penetrate the main surfaces on both sides. The electrolyte used is a non-aqueous electrolyte 9 in which a lithium salt is dissolved. Also in the case of such a dual carbon battery, by using the electrolyte reservoir 20, the supply performance of the nonaqueous electrolyte 9 to the positive electrode 1 and the negative electrode 3 can be improved, and the positive electrode 1 and the negative electrode 3 can be expanded and charged by charging and discharging. It is possible to improve the depletion of the non-aqueous electrolyte 9 due to the shrinkage and to suppress the battery performance from being lowered.

ここで、図1に示す電解液リザーバ20を備える実施例の蓄電デバイス100と、電解液リザーバ20を備えない図3に示す比較例の蓄電デバイス200との電気性能の優劣を、次に示す実験により確認した。   Here, the superiority or inferiority of the electrical performance of the electricity storage device 100 of the example having the electrolyte reservoir 20 shown in FIG. 1 and the electricity storage device 200 of the comparative example shown in FIG. Confirmed by

実施例の蓄電デバイス100と比較例の蓄電デバイス200とを、次の通り作製した。   The electricity storage device 100 of the example and the electricity storage device 200 of the comparative example were manufactured as follows.

<実施例の蓄電デバイス100の作製>
<正極1の作製>
正極1は、バインダであるポリフッ化ビニリデンを溶媒であるN−メチル−2−ピロリドンに溶解した溶液に、正極活物質として人造黒鉛(KS6:Timcal社製)を分散させたスラリー(分散液)を、正極集電体2である多孔アルミニウム箔(市販品;厚さ20μm、開口率20%)の両側の主面(表裏面)にドクターブレードを用いて塗工し、乾燥させて作製される。塗工されたスラリーの乾燥後の厚さ、即ち、正極1の片面の厚さは、80μmであった。また、人造黒鉛とポリフッ化ビニリデンとの重量比は、90:10であった。
<Preparation of electricity storage device 100 of example>
<Preparation of positive electrode 1>
The positive electrode 1 is a slurry (dispersion liquid) in which artificial graphite (KS6: manufactured by Timcal) is dispersed as a positive electrode active material in a solution in which polyvinylidene fluoride as a binder is dissolved in N-methyl-2-pyrrolidone as a solvent. The porous aluminum foil (commercial product; thickness: 20 μm, opening ratio: 20%), which is the positive electrode current collector 2, is applied to both main surfaces (front and back surfaces) using a doctor blade and dried. The thickness of the coated slurry after drying, that is, the thickness of one surface of the positive electrode 1 was 80 μm. The weight ratio of artificial graphite to polyvinylidene fluoride was 90:10.

<負極3の作製>
負極3は、バインダであるポリフッ化ビニリデンを溶媒であるN−メチル−2−ピロリドンに溶解した溶液に負極活物質として人造黒鉛(MAGD;日立化成社製)を分散させたスラリー(分散液)を、負極集電体4である多孔銅箔(市販品;厚さ15μm、開口率40%)の両側の主面(表裏面)又は片面にドクターブレードを用いて塗工し、乾燥させて負極3を作製される。塗工されたスラリーの乾燥後の厚さ、即ち、負極3の片面の厚さは、90μmであった。また、人造黒鉛とポリフッ化ビニリデンとの重量比は、90:10であった。
<Preparation of negative electrode 3>
The negative electrode 3 is a slurry (dispersion) in which artificial graphite (MAGD; manufactured by Hitachi Chemical Co., Ltd.) is dispersed as a negative electrode active material in a solution obtained by dissolving polyvinylidene fluoride as a binder in N-methyl-2-pyrrolidone as a solvent. The negative electrode current collector 4 was coated with a doctor blade on both main surfaces (front and back surfaces) or one surface of a porous copper foil (commercially available product: thickness 15 μm, aperture ratio 40%) or one surface, and dried to form a negative electrode 3 Is made. The thickness of the coated slurry after drying, that is, the thickness of one surface of the negative electrode 3 was 90 μm. The weight ratio of artificial graphite to polyvinylidene fluoride was 90:10.

<非水電解液9の作製>
非水電解液9は、エチレンカーボネートとジメチルカーボネートとを重量比1:1で混合してなる混合溶媒に、リチウム塩としてのリチウムヘキサフルオロフォスフェート(LiPF6)を、その濃度(電解質濃度)が1.5mol/L(1.5M)となるように溶解することにより、作製される。
<Preparation of non-aqueous electrolyte 9>
Nonaqueous electrolyte 9 is a mixed solvent obtained by mixing ethylene carbonate and dimethyl carbonate at a weight ratio of 1: 1, lithium hexafluorophosphate (LiPF6) as a lithium salt, and its concentration (electrolyte concentration) is 1. It is prepared by dissolving to 5 mol / L (1.5 M).

<セパレータ5の作製>
セパレータ5は、セルロース系の重合体からなる多孔質の膜であり、各辺が長さW4である正方形状の外形で且つ厚さが50μmに作製される。
<Preparation of separator 5>
The separator 5 is a porous film made of a cellulose-based polymer, and has a square outer shape with a length of W4 on each side and a thickness of 50 μm.

<電解液リザーバ20の作製>
電解液リザーバ20は、セルロース系の重合体からなる多孔質の膜であり、各辺が長さW4である正方形状の外形であり、中央に正方形状の開口部21が形成され、厚さが50μmに作製される。
<Production of Electrolyte Reservoir 20>
The electrolyte reservoir 20 is a porous film made of a cellulose-based polymer, has a square outer shape with each side having a length W4, a square opening 21 is formed at the center, and the thickness is Made to 50 μm.

<蓄電デバイス100の作製>
蓄電デバイス100は、ドライ雰囲気下で作製される。まず、積層体6は、作製した正極1及び負極3を、最外層が負極3になるようにして、セパレータ5を介して5層積層するとともに、正極1の側周部1aと負極3の側周部3aをそれぞれ囲う電解液リザーバ20を2枚重ねして配設することによって作製される。
<Production of power storage device 100>
The electricity storage device 100 is manufactured under a dry atmosphere. First, the laminate 6 is formed by laminating five layers of the produced positive electrode 1 and negative electrode 3 through the separator 5 so that the outermost layer is the negative electrode 3, and the side periphery 1 a of the positive electrode 1 and the negative electrode 3 side. It is produced by arranging two electrolyte reservoirs 20 surrounding each of the peripheral portions 3a.

さらに、積層体6にセパレータ5を介して、金属リチウム12を備えた金属箔13からなる市販品のリチウムイオン供給源15を積層して外装部材7内に収容するとともに、この外装部材7内に非水電解液9を充填した。続いて、外装部材7を密閉した蓄電デバイス用セル8を作製した。   Further, a commercially available lithium ion supply source 15 made of a metal foil 13 provided with metallic lithium 12 is laminated on the laminated body 6 via the separator 5 and accommodated in the exterior member 7. A non-aqueous electrolyte solution 9 was filled. Then, the cell 8 for electrical storage devices which sealed the exterior member 7 was produced.

負極用外部端子17とリチウムイオン供給源15の取り出し電極部14とを、図示省略の外部回路を通して短絡させることにより、負極3にリチウムイオンを吸蔵させる。リチウムがイオン化するプロセスにより生じる、外部回路の短絡線に流れる電流を、例えばクーロンメータにより計測する。   The negative electrode 3 and the extraction electrode portion 14 of the lithium ion supply source 15 are short-circuited through an external circuit (not shown) to cause the negative electrode 3 to occlude lithium ions. The current flowing through the short circuit line of the external circuit, which is generated by the process of ionizing lithium, is measured by, for example, a coulomb meter.

金属リチウム12の重量は、負極3が吸蔵し得るリチウムイオンの最大重量(理論重量)の70重量%となる量に設定している。つまり、金属リチウム12は、吸蔵終了時に、リチウムイオン供給源15から消失する量としている。このため、クーロンメータの計測値により、負極3へのリチウムイオンの吸蔵が完了したと判断することができる。   The weight of the metallic lithium 12 is set to 70% by weight of the maximum weight (theoretical weight) of lithium ions that can be occluded by the negative electrode 3. That is, the amount of metallic lithium 12 disappears from the lithium ion supply source 15 at the end of occlusion. For this reason, it can be judged from the measured value of the coulomb meter that occlusion of lithium ions into the negative electrode 3 is completed.

次に、正極用外部端子16と負極用外部端子17との間に、電圧5.3Vになるまで一定電流を流して充電し、その後放電する、充放電サイクルを1回行った。   Next, a charge / discharge cycle was performed once, in which a constant current was passed between the positive electrode external terminal 16 and the negative electrode external terminal 17 until a voltage of 5.3 V was applied, followed by discharge.

以上の工程により、実施例1に係る蓄電デバイス100が作製される。   Through the above steps, the electricity storage device 100 according to Example 1 is manufactured.

<比較例の蓄電デバイス200の作製>
比較例の蓄電デバイス200は、本実施の形態1の電解液リザーバ20を備えない点を除いて、前記と同様の工程により、作製される。
<Production of Power Storage Device 200 of Comparative Example>
The electricity storage device 200 of the comparative example is manufactured by the same process as described above except that the electrolyte reservoir 20 of the first embodiment is not provided.

実施例の蓄電デバイス100及び比較例の蓄電デバイス200を、25℃の恒温槽中で3Vから5.3Vの電圧範囲で、5C-CC(1C-CCの5倍速)充電及び5C-CC放電による100サイクルの充放電サイクル試験を行った。実施例の蓄電デバイス100及び比較例の蓄電デバイス200の充放電サイクル試験後の容量変化を図4に示す。図4の容量は試験前の初期を「100」とした時の値である。   The electricity storage device 100 of the example and the electricity storage device 200 of the comparative example were charged by 5C-CC (5 times the speed of 1C-CC) and 5C-CC discharge in a constant temperature bath at 25 ° C. in a voltage range of 3V to 5.3V. A charge / discharge cycle test of 100 cycles was performed. The capacity change after the charge / discharge cycle test of the electricity storage device 100 of the example and the electricity storage device 200 of the comparative example is shown in FIG. The capacity in FIG. 4 is a value when the initial stage before the test is “100”.

図4に示すように、実施例の蓄電デバイス100では、サイクル試験後の容量は「100」であり、変化していない。比較例の蓄電デバイス200では、サイクル試験後の容量は「96」に低下した。つまり、実施例の蓄電デバイス100は、充放電を繰り返しても容量低下が少ないという優れた効果を有していることが判る。比較例の蓄電デバイス200において、容量低下が実施例の蓄電デバイス100に比べて大きくなった要因は、充放電を繰り返すことにより、非水電解液9の枯渇が局部的に発現し、その結果、活物質の有効利用率が低下したためと考えられる。   As shown in FIG. 4, in the electricity storage device 100 of the example, the capacity after the cycle test is “100”, which is not changed. In the electricity storage device 200 of the comparative example, the capacity after the cycle test was reduced to “96”. That is, it turns out that the electrical storage device 100 of an Example has the outstanding effect that there is little capacity | capacitance fall even if charging / discharging is repeated. In the power storage device 200 of the comparative example, the factor that the capacity decrease is larger than that of the power storage device 100 of the embodiment is that the non-aqueous electrolyte 9 is locally depleted by repeating charge and discharge. This is thought to be due to a decrease in the effective utilization rate of the active material.

(実施の形態2)
実施の形態1では、電解液リザーバ20は、セパレータ5と同じ気孔率としていたが、実施の形態2では、セパレータ5よりも気孔率が高い多孔質の膜を用いる。例えば、電解液リザーバ20は、気孔率が80%の多孔質の膜であり、セパレータ5の気孔率(70%)よりも大きい。
(Embodiment 2)
In the first embodiment, the electrolyte reservoir 20 has the same porosity as that of the separator 5, but in the second embodiment, a porous film having a higher porosity than the separator 5 is used. For example, the electrolyte reservoir 20 is a porous film having a porosity of 80% and is larger than the porosity (70%) of the separator 5.

セパレータ5は、正極1・負極3間の短絡を防止するものである。よって、セパレータ5は、正極1と負極3の絶縁性を確保する気孔率とする必要がある。これに対して、電解液リザーバ20は、絶縁性が要求されないので、気孔率をセパレータ5の気孔率よりも大きくすることができる。よって、実施の形態2では、電解液リザーバ20をセパレータ5よりも保液性を高めることができ、電極への非水電解液9の供給性能をさらに向上できる。   The separator 5 prevents a short circuit between the positive electrode 1 and the negative electrode 3. Therefore, the separator 5 needs to have a porosity that ensures insulation between the positive electrode 1 and the negative electrode 3. On the other hand, since the electrolyte reservoir 20 is not required to have insulating properties, the porosity can be made larger than the porosity of the separator 5. Therefore, in the second embodiment, the electrolyte reservoir 20 can be more liquid retaining than the separator 5, and the performance of supplying the non-aqueous electrolyte 9 to the electrode can be further improved.

(実施の形態3)
続いて、本発明の実施の形態3に係る蓄電デバイス100について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付す。
(Embodiment 3)
Then, the electrical storage device 100 which concerns on Embodiment 3 of this invention is demonstrated. In the following description, the same reference numerals are given to components and the like that are common to the first embodiment.

セパレータ5と電解液リザーバ20とを同一材料で作製する場合であっても、通常、セパレータ5と電解液リザーバ20とはそれぞれ別のシート体から作製される。その理由は以下の通りである。   Even when the separator 5 and the electrolytic solution reservoir 20 are made of the same material, the separator 5 and the electrolytic solution reservoir 20 are usually made of different sheet bodies. The reason is as follows.

電解液リザーバ用のシート体の中央部分を正極1又は負極3の主面領域よりも大きくくり抜いて電解液リザーバ20を作製する。くり抜かれた中央部分は正極1又は負極3と同じ大きさであるため、これをセパレータ5として使用することはできない。この中央部分は、無駄に廃棄されることになる。正極1又は負極3と同じ大きさのセパレータ5では、正極1・負極3間の絶縁性が確保できないからである。   The central portion of the electrolyte reservoir sheet is cut out larger than the main surface area of the positive electrode 1 or the negative electrode 3 to produce the electrolyte reservoir 20. Since the hollowed central portion is the same size as the positive electrode 1 or the negative electrode 3, it cannot be used as the separator 5. This central part is wasted. This is because the separator 5 having the same size as the positive electrode 1 or the negative electrode 3 cannot ensure insulation between the positive electrode 1 and the negative electrode 3.

これに対して、実施の形態3では、図5に示すように、同一のシート体31からセパレータ5及び電解液リザーバ20を効率的に製造することができる。この製造方法を以下に説明する。   In contrast, in the third embodiment, as shown in FIG. 5, the separator 5 and the electrolyte reservoir 20 can be efficiently manufactured from the same sheet body 31. This manufacturing method will be described below.

図5(a)に示すように、横幅が長さW5(=W4+2×W2)である破線で示す長尺シート体30から、一辺が長さW5である正方形状のシート体31を切り出す。   As shown in FIG. 5A, a square sheet 31 having a side W5 is cut out from a long sheet 30 indicated by a broken line having a width W5 (= W4 + 2 × W2).

そして、シート体31の中央部分を一点鎖線で示すように一辺が長さW4(=W3+2×W2)である正方形状に切り取ることにより、図5(b)に示す中央体32が作製される。この中央体32は、セパレータ5として用いられる。   And the center body 32 shown in FIG.5 (b) is produced by cutting out into the square shape whose one side is length W4 (= W3 + 2 * W2) so that the center part of the sheet | seat body 31 may be shown with a dashed-dotted line. This central body 32 is used as the separator 5.

図5(c)に示すように、セパレータ5の上面には、一辺が長さW1の正方形状の正極1が形成された正極集電体2が配置される。セパレータ5の下面には、一辺が長さW1の正方形状の負極3が形成された負極集電体4が配置される。セパレータ5の各辺の長さW4は、正極1の各辺の長さW1よりも大きい。このため、セパレータ5は、正極1及び負極3の主面領域よりも大きくなっているので、正極1と負極3との絶縁性を確保できる。   As shown in FIG. 5C, a positive electrode current collector 2 on which a square positive electrode 1 having a side W1 is formed is disposed on the upper surface of the separator 5. On the lower surface of the separator 5, a negative electrode current collector 4 in which a square negative electrode 3 having a length W1 on one side is formed. The length W4 of each side of the separator 5 is larger than the length W1 of each side of the positive electrode 1. For this reason, since the separator 5 is larger than the main surface regions of the positive electrode 1 and the negative electrode 3, the insulation between the positive electrode 1 and the negative electrode 3 can be secured.

図5(d)に示すように、シート体31から中央体32を切り取った後の開口周縁体33を、一点鎖線で示す切り取り線34に従って切断し、図5(e)に示すように、2つのL字状分割体35と、廃棄される2つのL字状分割体36とが作製される。L字状分割体35の外辺が長さW4である。   As shown in FIG. 5 (d), the opening peripheral body 33 after cutting the central body 32 from the sheet body 31 is cut according to the cut line 34 shown by a one-dot chain line, and as shown in FIG. Two L-shaped divided bodies 35 and two L-shaped divided bodies 36 to be discarded are produced. The outer side of the L-shaped divided body 35 has a length W4.

図5(e)に示す2つのL字状分割体35の切断面34a同士を付き合わせて、図5(f)に示す結合周縁体37が作製される。この結合周縁体37は電解液リザーバ20として用いられる。なお、開口周縁体33の切り取り線34の位置及びその形状は、2つのL字状分割体35を切断面34aで付き合わせたときに、その中央に開口部21が形成されるように定められる。   By combining the cut surfaces 34a of the two L-shaped divided bodies 35 shown in FIG. 5 (e), a combined peripheral body 37 shown in FIG. 5 (f) is produced. This combined peripheral body 37 is used as the electrolyte reservoir 20. The position and shape of the cut line 34 of the opening peripheral body 33 are determined so that the opening 21 is formed at the center when the two L-shaped divided bodies 35 are brought together at the cutting surface 34a. .

図5(f)に示すように、電解液リザーバ20は、一辺が長さW4とする正方形状の外形となる。また、中央の開口部21は、一辺が長さW3とする正方形状の開口であり、一辺が長さW1とする正方形状の正極1及び負極3よりも大きい。つまり、開口部21は、正極1及び負極3よりも大きい。   As shown in FIG. 5 (f), the electrolyte reservoir 20 has a square outer shape with one side having a length W4. The central opening 21 is a square-shaped opening whose one side has a length W3 and is larger than the square-shaped positive electrode 1 and negative electrode 3 whose one side has a length W1. That is, the opening 21 is larger than the positive electrode 1 and the negative electrode 3.

このようにして、図5(a)に示す1枚のシート体31から、図5(c)に示すセパレータ5と、図5(f)に示す電解液リザーバ20とが作製される。図5(g)に示すように、セパレータ5及び電解液リザーバ20は外形が同じである。セパレータ5は、正極1及び負極3よりも大きい。正極1側の電解液リザーバ20は、開口部21内に正極1が挿入された状態において、正極1の側周部1aを囲む。負極3側の電解液リザーバ20は、開口部21内に負極3が挿入された状態において、負極3の側周部1aを囲む。   In this way, the separator 5 shown in FIG. 5C and the electrolyte reservoir 20 shown in FIG. 5F are produced from the single sheet body 31 shown in FIG. As shown in FIG. 5G, the separator 5 and the electrolyte reservoir 20 have the same external shape. The separator 5 is larger than the positive electrode 1 and the negative electrode 3. The electrolyte reservoir 20 on the positive electrode 1 side surrounds the side peripheral portion 1 a of the positive electrode 1 in a state where the positive electrode 1 is inserted into the opening 21. The electrolyte reservoir 20 on the negative electrode 3 side surrounds the side peripheral portion 1 a of the negative electrode 3 in a state where the negative electrode 3 is inserted into the opening 21.

実施の形態3によれば、セパレータ5は、シート体31の中央部分を、正極1又は負極3の主面領域よりも大きく切り取った中央体32により形成される。また、電解液リザーバ20は、シート体31から中央体32を切り取った後の開口周縁体33を分割した2つのL字状分割体35を付き合わせて正極1の側周部1a又は負極3の側周部3aを囲う大きさに形成した結合周縁体37により形成される。このため、単一のシート体31から、セパレータ5と電解液リザーバ20とを効率良く作製でき、無駄に廃棄される部分を大幅に削減できる。よって、セパレータ5及び電解液リザーバ20の生産性を向上させることができる。   According to the third embodiment, the separator 5 is formed by the central body 32 obtained by cutting the central portion of the sheet body 31 larger than the main surface region of the positive electrode 1 or the negative electrode 3. In addition, the electrolyte reservoir 20 includes two L-shaped divided bodies 35 obtained by dividing the opening peripheral body 33 after the central body 32 is cut from the sheet body 31, and the side peripheral portion 1 a of the positive electrode 1 or the negative electrode 3. It is formed by a combined peripheral body 37 formed to have a size surrounding the side peripheral portion 3a. For this reason, the separator 5 and the electrolyte reservoir 20 can be efficiently manufactured from the single sheet member 31, and the portion that is wasted can be greatly reduced. Therefore, the productivity of the separator 5 and the electrolyte reservoir 20 can be improved.

なお、本発明は、上記各実施の形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。   Note that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

なお、前述した実施の形態1では、積層体6における正極集電体2及び負極集電体4は、合わせて5層積層しているが、これに限定されない。例えば、正極集電体2及び負極集電体4は、2層以上積層されていればよい。また、3層以上積層する場合において、積層体6の最外層を負極3とすることで、外装部材7に対してセパレータ5を介して負極3が位置しており、外的ストレスがかかった場合でも外装部材7に正極1が接触することを防止できる。   In Embodiment 1 described above, the positive electrode current collector 2 and the negative electrode current collector 4 in the multilayer body 6 are laminated in a total of five layers, but the present invention is not limited to this. For example, the positive electrode current collector 2 and the negative electrode current collector 4 may be laminated in two or more layers. In the case where three or more layers are laminated, the outermost layer of the laminate 6 is the negative electrode 3, so that the negative electrode 3 is positioned via the separator 5 with respect to the exterior member 7 and external stress is applied. However, the positive electrode 1 can be prevented from contacting the exterior member 7.

なお、前述した実施の形態1では、負極3を負極活物質として人造黒鉛を用いているが、これに限定されない。例えば、天然黒鉛としてもよい。   In Embodiment 1 described above, artificial graphite is used as the negative electrode 3 as the negative electrode active material, but the present invention is not limited to this. For example, natural graphite may be used.

なお、前述した各実施の形態では、電解液リザーバ20を2枚重ねとしているが、1枚としてもよいし、3枚以上重ねるようにしてもよい。また、電解液リザーバ20の厚みは、正極1及び負極3の厚みと同じ又は小さいとしてもよい。   In each of the above-described embodiments, two electrolyte reservoirs 20 are stacked, but may be one or three or more. Further, the thickness of the electrolyte reservoir 20 may be the same as or smaller than the thickness of the positive electrode 1 and the negative electrode 3.

なお、前述した実施の形態1では、セパレータ5及び電解液リザーバ20の気孔率を70%としているが、この値に限定されない。例えば、セパレータ5及び電解液リザーバ20の気孔率を30〜90%の範囲内の値としてもよい。   In the first embodiment described above, the porosity of the separator 5 and the electrolyte reservoir 20 is 70%, but is not limited to this value. For example, the porosity of the separator 5 and the electrolyte reservoir 20 may be a value within the range of 30 to 90%.

また、前述した実施の形態2では、電解液リザーバ20の気孔率を80%、セパレータ5の気孔率を70%としているが、この値に限定されない。電解液リザーバ20の気孔率が、セパレータ5の気孔率よりも大きい値であれば好ましい。   Further, in the second embodiment described above, the porosity of the electrolyte reservoir 20 is 80% and the porosity of the separator 5 is 70%, but it is not limited to this value. It is preferable if the porosity of the electrolyte reservoir 20 is a value larger than the porosity of the separator 5.

なお、前述した各実施の形態の蓄電デバイス100は、正極1の側周部1aを囲む電解液リザーバ20と、負極3の側周部3aを囲む電解液リザーバ20とを備えているが、何れか一方の電解液リザーバ20のみとしてもよい。   The power storage device 100 according to each embodiment described above includes the electrolyte reservoir 20 surrounding the side periphery 1a of the positive electrode 1 and the electrolyte reservoir 20 surrounding the side periphery 3a of the negative electrode 3. Only one of the electrolyte reservoirs 20 may be used.

図6に示すように、正極1の側周部1aを囲む電解液リザーバ20のみとしてもよい。また、図7に示すように、負極3の側周部3aを囲む電解液リザーバ20のみとしてもよい。図6及び図7に示す蓄電デバイス100A、100Bは、積層体6の内部にも電解液リザーバ20が配置されているので、積層体の両端にのみ電解液リザーバを配置した従来の蓄電デバイスに比べて、正極1又は負極3への非水電解液9の供給性能が向上する。また、充放電による正極1又は負極3の膨張・収縮に伴う非水電解液9の枯渇を改善できる。   As shown in FIG. 6, only the electrolyte reservoir 20 surrounding the side peripheral portion 1a of the positive electrode 1 may be used. Moreover, as shown in FIG. 7, it is good also as only the electrolyte solution reservoir 20 surrounding the side peripheral part 3a of the negative electrode 3. FIG. 6 and 7, since the electrolyte reservoir 20 is also disposed inside the multilayer body 6, the electrical storage devices 100 </ b> A and 100 </ b> B are compared with the conventional electrical storage device in which the electrolyte reservoir is disposed only at both ends of the multilayer body. Thus, the supply performance of the non-aqueous electrolyte 9 to the positive electrode 1 or the negative electrode 3 is improved. Moreover, the depletion of the non-aqueous electrolyte 9 accompanying expansion / contraction of the positive electrode 1 or the negative electrode 3 due to charge / discharge can be improved.

また、積層体6の中央側の少なくとも1つ以上の電極(正極1又は負極3)の側周部1a、3aを囲むように電解液リザーバ20を配置してもよい。   Further, the electrolyte reservoir 20 may be disposed so as to surround the side peripheral portions 1a and 3a of at least one electrode (positive electrode 1 or negative electrode 3) on the center side of the multilayer body 6.

また、図8に示すように、外装部材7とそれに最も近いセパレータ5との間に、平板形状の電解液リザーバ40を配置してもよい。電解液リザーバ40は、例えばセパレータ5と同一形状又は相似形状としてもよい。また、電解液リザーバ40は、金属リチウム12を備えた金属箔13よりも内側に配置してもよい。   Further, as shown in FIG. 8, a plate-shaped electrolyte reservoir 40 may be disposed between the exterior member 7 and the separator 5 closest thereto. The electrolyte reservoir 40 may have, for example, the same shape as the separator 5 or a similar shape. Further, the electrolyte reservoir 40 may be disposed inside the metal foil 13 provided with the metal lithium 12.

また、正極1の側周部1aを囲む電解液リザーバ20は、側周部1aを側周方向に完全に囲っているが、側周部1aの側周方向の一部を囲わないものとしてもよい。負極3の側周部3aを囲む電解液リザーバ20は、側周部3aを側周方向に完全に囲っているが、側周部3aの側周方向の一部を囲わないものとしてもよい。   Further, the electrolyte reservoir 20 surrounding the side peripheral portion 1a of the positive electrode 1 completely surrounds the side peripheral portion 1a in the lateral circumferential direction, but may not surround a part of the side peripheral portion 1a in the lateral circumferential direction. Good. The electrolyte reservoir 20 surrounding the side peripheral portion 3a of the negative electrode 3 completely surrounds the side peripheral portion 3a in the lateral peripheral direction, but may not surround a part of the side peripheral portion 3a in the lateral peripheral direction.

なお、前述した各実施の形態では、蓄電デバイス100はデュアルカーボン電池としているが、これに限定されない。例えば、リチウムイオン電池、電気二重層キャパシタ、リチウムイオンキャパシタなどの各種の二次電池としてもよい。また、金属リチウム12を蓄電デバイス用セル8内に収容しない構成としてもよい。   In each embodiment described above, the power storage device 100 is a dual carbon battery, but is not limited to this. For example, various secondary batteries such as a lithium ion battery, an electric double layer capacitor, and a lithium ion capacitor may be used. Moreover, it is good also as a structure which does not accommodate the metal lithium 12 in the cell 8 for electrical storage devices.

1 正極
1a 側周部
2 正極集電体
3 負極
3a 側周部
4 負極集電体
5 セパレータ
6 積層体
7 外装部材(ケース)
8 蓄電デバイス用セル
9 非水電解液(電解液)
10 取り出し電極部
11 取り出し電極部
12 金属リチウム
13 金属箔
14 取り出し電極部
15 リチウムイオン供給源
16 正極用外部端子
17 負極用外部端子
20 電解液リザーバ
21 開口部
30 長尺シート体
31 シート体
32 中央体
33 開口周縁体
34 切り取り線
34a 切断面
35 L字状分割体(分割体)
36 L字状分割体(分割体)
37 結合周縁体
40 電解液リザーバ
100 蓄電デバイス
100A 蓄電デバイス
100B 蓄電デバイス
DESCRIPTION OF SYMBOLS 1 Positive electrode 1a Side peripheral part 2 Positive electrode collector 3 Negative electrode 3a Side peripheral part 4 Negative electrode collector 5 Separator 6 Laminate 7 Exterior member (case)
8 Electric storage device cell 9 Non-aqueous electrolyte (electrolyte)
DESCRIPTION OF SYMBOLS 10 Extraction electrode part 11 Extraction electrode part 12 Metal lithium 13 Metal foil 14 Extraction electrode part 15 Lithium ion supply source 16 External terminal for positive electrodes 17 External terminal for negative electrodes 20 Electrolyte reservoir 21 Opening part 30 Long sheet body 31 Sheet body 32 Center Body 33 Opening peripheral body 34 Cut line 34a Cut surface 35 L-shaped divided body (divided body)
36 L-shaped divided body (divided body)
37 Binding peripheral body 40 Electrolyte reservoir 100 Electric storage device 100A Electric storage device 100B Electric storage device

Claims (6)

電解液を含浸した多孔質のセパレータを挟んで配置される正極及び負極をケース内に収容した蓄電デバイスであって、
前記正極と前記負極のうち少なくとも一方の電極の側周部を囲む電解液リザーバを備える、
ことを特徴とする蓄電デバイス。
An electricity storage device in which a positive electrode and a negative electrode arranged in a case sandwiching a porous separator impregnated with an electrolytic solution are housed in a case,
An electrolyte reservoir surrounding a side periphery of at least one of the positive electrode and the negative electrode;
An electricity storage device characterized by the above.
前記電解液リザーバは、前記側周部を囲む開口部を備える、
ことを特徴とする請求項1に記載の蓄電デバイス。
The electrolyte reservoir includes an opening that surrounds the side periphery.
The power storage device according to claim 1.
前記正極は、正極活物質を含む材料を正極集電体上に形成したものであり、
前記負極は、負極活物質を含む材料により負極集電体上に形成したものであり、
前記電解液リザーバの厚みは、前記電極の厚みよりも大きい、
ことを特徴とする請求項1又は2に記載の蓄電デバイス。
The positive electrode is formed by forming a material containing a positive electrode active material on a positive electrode current collector,
The negative electrode is formed on a negative electrode current collector by a material containing a negative electrode active material,
The thickness of the electrolyte reservoir is greater than the thickness of the electrode;
The electrical storage device according to claim 1 or 2, wherein
前記正極活物質は、アニオンが挿入脱離する炭素材料であり、
前記負極活物質は、カチオンが挿入脱離すると共に予めカチオンとしてリチウムイオンを挿入した炭素材料であり、
前記正極集電体及び前記負極集電体は、両側の主面を貫通する貫通孔を備え、
前記電解液は、リチウム塩を溶解した非水電解液である、
ことを特徴とする請求項3に記載の蓄電デバイス。
The positive electrode active material is a carbon material from which anions are inserted and released,
The negative electrode active material is a carbon material in which cations are inserted and desorbed and lithium ions are inserted in advance as cations,
The positive electrode current collector and the negative electrode current collector include through holes penetrating the main surfaces on both sides,
The electrolytic solution is a non-aqueous electrolytic solution in which a lithium salt is dissolved.
The electricity storage device according to claim 3.
前記電解液リザーバの気孔率は前記セパレータの気孔率より大きい、
ことを特徴とする請求項1から4の何れか1項に記載の蓄電デバイス。
The porosity of the electrolyte reservoir is greater than the porosity of the separator;
The electricity storage device according to any one of claims 1 to 4, wherein the electricity storage device is provided.
前記セパレータは、平板状のシート体の中央部分を、前記正極又は前記負極の主面領域よりも大きく切り取った中央体により形成され、
前記電解液リザーバは、前記シート体から前記中央体を切り取った後の開口周縁体を分割した複数の分割体のうちの一部の分割体を組み合わせて前記側周部を囲う大きさに形成した結合周縁体により形成される、
ことを特徴とする請求項1から4の何れか1項に記載の蓄電デバイス。
The separator is formed by a central body obtained by cutting a central portion of a flat sheet body larger than a main surface region of the positive electrode or the negative electrode,
The electrolyte reservoir is formed in a size that surrounds the side peripheral portion by combining some of the plurality of divided bodies obtained by dividing the opening peripheral body after cutting the central body from the sheet body. Formed by a combined perimeter,
The electricity storage device according to any one of claims 1 to 4, wherein the electricity storage device is provided.
JP2014000279A 2014-01-06 2014-01-06 Power storage device Active JP6349730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000279A JP6349730B2 (en) 2014-01-06 2014-01-06 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000279A JP6349730B2 (en) 2014-01-06 2014-01-06 Power storage device

Publications (2)

Publication Number Publication Date
JP2015130245A true JP2015130245A (en) 2015-07-16
JP6349730B2 JP6349730B2 (en) 2018-07-04

Family

ID=53760847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000279A Active JP6349730B2 (en) 2014-01-06 2014-01-06 Power storage device

Country Status (1)

Country Link
JP (1) JP6349730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174527A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for manufacturing lithium ion secondary battery for evaluation, and lithium ion secondary battery for evaluation
JP2022156905A (en) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 lithium ion secondary battery

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110402A (en) * 1999-10-13 2001-04-20 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005317380A (en) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and automobile using this battery pack
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
JP2008072040A (en) * 2006-09-15 2008-03-27 Mitsubishi Electric Corp Flat laminated power storage device
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2010199282A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
WO2011027683A1 (en) * 2009-09-03 2011-03-10 三菱電機株式会社 Flat-wound electricity storage device cell and flat-wound electricity storage device module
US20110189577A1 (en) * 2009-11-18 2011-08-04 Lg Chem, Ltd. Bipolar electrode/separator assembly, bipolar battery comprising the same and method of manufacturing the same
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012199006A (en) * 2011-03-18 2012-10-18 Taiyo Yuden Co Ltd Electrochemical device
JP2012209252A (en) * 2011-03-16 2012-10-25 Gs Yuasa Corp Power storage element
JP2013134878A (en) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd Module for electric device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110402A (en) * 1999-10-13 2001-04-20 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005317380A (en) * 2004-04-28 2005-11-10 Nissan Motor Co Ltd Bipolar battery, manufacturing method of bipolar battery, battery pack, and automobile using this battery pack
JP2006303224A (en) * 2005-04-21 2006-11-02 Mitsubishi Electric Corp Electric double layer capacitor
JP2008072040A (en) * 2006-09-15 2008-03-27 Mitsubishi Electric Corp Flat laminated power storage device
JP2009059732A (en) * 2007-08-29 2009-03-19 Jm Energy Corp Lithium ion capacitor
JP2010199282A (en) * 2009-02-25 2010-09-09 Fuji Heavy Ind Ltd Electric storage device and method of manufacturing the same
WO2011027683A1 (en) * 2009-09-03 2011-03-10 三菱電機株式会社 Flat-wound electricity storage device cell and flat-wound electricity storage device module
US20110189577A1 (en) * 2009-11-18 2011-08-04 Lg Chem, Ltd. Bipolar electrode/separator assembly, bipolar battery comprising the same and method of manufacturing the same
JP2012004491A (en) * 2010-06-21 2012-01-05 Nec Tokin Corp Power storage device
JP2012209252A (en) * 2011-03-16 2012-10-25 Gs Yuasa Corp Power storage element
JP2012199006A (en) * 2011-03-18 2012-10-18 Taiyo Yuden Co Ltd Electrochemical device
JP2013134878A (en) * 2011-12-26 2013-07-08 Nissan Motor Co Ltd Module for electric device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174527A (en) * 2016-03-22 2017-09-28 住友金属鉱山株式会社 Method for manufacturing lithium ion secondary battery for evaluation, and lithium ion secondary battery for evaluation
JP2022156905A (en) * 2021-03-31 2022-10-14 トヨタ自動車株式会社 lithium ion secondary battery
JP7298642B2 (en) 2021-03-31 2023-06-27 トヨタ自動車株式会社 lithium ion secondary battery

Also Published As

Publication number Publication date
JP6349730B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP2019510349A (en) Composite electrolyte for secondary battery having multilayer structure
KR20140025617A (en) Electric storage device
WO2015125647A1 (en) Storage device and charging/discharging device
JP2021501961A (en) Compositions and Methods for Multilayer Electrode Membranes
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
JP5429678B1 (en) Method for manufacturing power storage device
JP2016081931A (en) Electrode integrating super capacitor and battery, and method of manufacturing the same
WO2015076059A1 (en) Capacitor and method for manufacturing same
US20180366770A1 (en) Bipolar lithium-ion battery
WO2014049440A2 (en) Hybrid electrochemical energy storage device
JP2013140825A (en) Laminate type electrical storage element
JP5614567B2 (en) Lithium ion secondary battery
JP6451077B2 (en) Electric storage device and method for manufacturing electric storage device
JP6349730B2 (en) Power storage device
JP2018049821A (en) Nonaqueous electrolyte for power storage element, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element
KR101138524B1 (en) Energy storing device
KR101709391B1 (en) Nonaqueous electrolyte secondary battery
KR101710654B1 (en) Lithium secondary battery with improved electrolyte-injection and a method for making the same
JP2017017186A (en) Power storage device
JP2016001566A (en) Power storage device and method for manufacturing power storage device
JP5840429B2 (en) Lithium ion capacitor
JP2009187751A (en) Power storage element
KR101599963B1 (en) Energy storage device with composite electrode structure
JP2015095634A (en) Power storage device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6349730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250