JP2017017186A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2017017186A
JP2017017186A JP2015132642A JP2015132642A JP2017017186A JP 2017017186 A JP2017017186 A JP 2017017186A JP 2015132642 A JP2015132642 A JP 2015132642A JP 2015132642 A JP2015132642 A JP 2015132642A JP 2017017186 A JP2017017186 A JP 2017017186A
Authority
JP
Japan
Prior art keywords
lithium
storage device
electrode
lithium foil
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015132642A
Other languages
Japanese (ja)
Inventor
暁 村川
Akira Murakawa
暁 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2015132642A priority Critical patent/JP2017017186A/en
Publication of JP2017017186A publication Critical patent/JP2017017186A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device which has a lithium electrode as a lithium ion supply source and in which electrolytic solution is impregnated into the entire area of a lithium foil and a lithium ion doping amount of a negative electrode is made uniform when pre-doping is performed in the power storage device.SOLUTION: A power storage device 1 includes an electrode unit 8 having a plurality of laminated positive electrodes 5 and negative electrodes 4, a lithium electrode 7 having a lithium foil 7b arranged so as to face the outermost layer of the laminate, and external connection tabs (3a, 3b) protruding outwards from the end portions of the positive electrodes 5 and the negative electrodes 4, and an outer packaging bag 2 for enclosing the electrode unit 8. The power storage device 1 seals two sides located at both end portions of the outer packaging bag 2 in the tab protruding direction, and one side located at the end portion in an electrolytic solution injection direction, and electrolytic solution is injected from the other one side located at the end portion in the electrolytic solution injection direction to impregnate the electrode unit 8 with the electrolytic solution, thereby manufacturing the power storage device 1. A plurality of grooves extending along the entire length in the electrolytic solution injection direction are juxtaposed with one another on the surface of the lithium foil 7b.SELECTED DRAWING: Figure 2

Description

本発明は、正極と負極とがセパレータを介して交互に積層された電極ユニットと、その最外層に対向して配置されたリチウム極と、を有するリチウムイオンキャパシタやリチウムイオン二次電池等の蓄電デバイスに関する。   The present invention relates to a power storage device such as a lithium ion capacitor or a lithium ion secondary battery having an electrode unit in which positive electrodes and negative electrodes are alternately stacked via separators, and a lithium electrode disposed opposite to the outermost layer. Regarding devices.

近年、自然エネルギーを用いた発電(太陽光発電や風力発電等)の際に、余剰電力を一時的に蓄電して発電量が減ったときに放電可能であったり、電気自動車の電源として使用できたりするような大容量の蓄電デバイスの開発が進められている。   In recent years, when generating power using natural energy (solar power generation, wind power generation, etc.), it can be stored when surplus power is temporarily stored and the amount of power generation decreases, and can be used as a power source for electric vehicles. The development of large-capacity electricity storage devices is underway.

かかる蓄電デバイスとしては、特にリチウムイオンキャパシタが注目されている。リチウムイオンキャパシタは、電気二重層キャパシタという蓄電部品とリチウムイオン二次電池とを組み合わせたハイブリッド構造の蓄電部品である。具体的には、電気二重層キャパシタの正極と、リチウムイオン二次電池の負極を組み合わせたものである。   As such an electricity storage device, a lithium ion capacitor is particularly attracting attention. The lithium ion capacitor is a power storage component having a hybrid structure in which a power storage component called an electric double layer capacitor and a lithium ion secondary battery are combined. Specifically, the positive electrode of the electric double layer capacitor and the negative electrode of the lithium ion secondary battery are combined.

リチウムイオンキャパシタにおいては、リチウムイオンの供給源としてのリチウム箔を有するリチウム極を用いて、あらかじめ負極にリチウムイオンを吸蔵(プレドープ)させて負極の電位を低下させることで、正極との電位差が拡大して高電圧を達成することができる。   In a lithium ion capacitor, using a lithium electrode having a lithium foil as a lithium ion supply source, the potential difference between the positive electrode and the positive electrode is increased by preliminarily occluding (pre-doping) lithium ions in the negative electrode to lower the potential of the negative electrode. High voltage can be achieved.

プレドープの方法としては、例えば正極と負極とをセパレータを介して複数積層させることで電極セルを組み、加圧板で挟持することで負極とリチウム箔を短絡させた状態で電解液を注液して、リチウムイオンを吸蔵させることができる。   As a pre-doping method, for example, an electrode cell is assembled by laminating a plurality of positive electrodes and negative electrodes with a separator interposed therebetween, and an electrolytic solution is injected in a state where the negative electrode and the lithium foil are short-circuited by being sandwiched between pressure plates. Lithium ions can be occluded.

特許文献1には、正極、負極、リチウム塩の非プロトン性有機溶媒溶液を電解液として備えた電池であり、正極集電体及び負極集電体が貫通孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが正極と対向して配置されたリチウムと電気化学的に接触することで担持され、リチウムの対向面積は負極面積の40%以下である電池が開示されている。   Patent Document 1 discloses a battery including a positive electrode, a negative electrode, and an aprotic organic solvent solution of a lithium salt as an electrolyte solution. The positive electrode current collector and the negative electrode current collector include through holes, and the negative electrode active material includes lithium. Disclosed is a battery that can be reversibly supported and is supported by electrochemical contact of lithium derived from the negative electrode with lithium disposed opposite the positive electrode, and the opposed area of lithium is 40% or less of the negative electrode area Has been.

特許第3485935号Japanese Patent No. 3485935

しかし、特許文献1に記載されているようなリチウムイオンキャパシタを作製し、リチウムイオンをプレドープしてみると、デバイスの特性に個体差があり、期待された静電容量の値に達しないものがみられた。   However, when a lithium ion capacitor as described in Patent Document 1 is prepared and lithium ions are pre-doped, there are individual differences in device characteristics, and the expected capacitance value is not reached. It was seen.

このようなデバイスを解析したところ、負極のリチウムイオンドープ量に面内ばらつきがあることがわかった。特に、電極セルを外装袋に封入し、外装袋の電解液を注入する注入口から離れた領域ほどリチウムイオンの吸蔵量が少なく、リチウム箔の一部が溶け残っていた。本発明者は鋭意研究の結果、この原因が、電解液がリチウム箔の全域に含浸されなかったことに起因する可能性があることを見出した。   When such a device was analyzed, it was found that there was in-plane variation in the lithium ion doping amount of the negative electrode. In particular, the amount of occlusion of lithium ions was smaller in the region away from the injection port in which the electrode cell was sealed in the outer bag and the electrolyte solution in the outer bag was injected, and a part of the lithium foil remained undissolved. As a result of intensive studies, the present inventor has found that this cause may be due to the electrolyte not being impregnated throughout the lithium foil.

本発明は、このような問題点に鑑み、リチウムイオンの供給源としてのリチウム箔を備える蓄電デバイスにおいてプレドープを行う場合に、電解液がリチウム箔の全域に含浸し、負極のリチウムイオンドープ量を均一にすることが可能な蓄電デバイスを提供することである。   In view of such a problem, the present invention, when performing pre-doping in an electricity storage device including a lithium foil as a lithium ion supply source, the electrolyte solution is impregnated throughout the lithium foil, and the amount of lithium ion dope of the negative electrode is reduced. An electrical storage device that can be made uniform is provided.

上記課題を解決するために、本発明に係る蓄電デバイスは、セパレータを介して複数積層された正極及び負極、積層された正極及び負極の最外層に対向するように配置されたリチウム箔を有するリチウム極、並びに正極及び負極の端部から外方向に突出するように正極及び負極それぞれに接続された外部接続用タブを有する電極ユニットと、一対のシート状の外装材を貼り合わせることによって電極ユニットを封入する外装袋とを備え、外部接続用タブが突出する方向の外装袋の両端部に位置する2辺及び突出する方向に直交する方向の端部に位置する1辺を封止し、直交する方向の端部に位置する他の1辺から電解液を注入して電極ユニットに含浸させることによって作製される蓄電デバイスにおいて、リチウム箔の表面には、直交する方向の全長に亘って延在する溝が複数並設されていることを特徴とする。   In order to solve the above-described problems, an electricity storage device according to the present invention includes a lithium foil having a positive electrode and a negative electrode that are stacked in plural via separators, and a lithium foil that is disposed so as to face the outermost layer of the stacked positive and negative electrodes. An electrode unit having an electrode unit having an external connection tab connected to each of the positive electrode and the negative electrode so as to protrude outward from the ends of the electrode and the positive electrode and the negative electrode, and a pair of sheet-shaped exterior members are bonded together. An outer bag to be sealed, and two sides positioned at both ends of the outer bag in the direction in which the external connection tab protrudes and one side positioned at the end in the direction orthogonal to the protruding direction are sealed and orthogonal In an electricity storage device manufactured by injecting an electrolyte from another side located at the end of the direction and impregnating the electrode unit, the surface of the lithium foil is orthogonal Wherein the groove extends over the entire length of the is several juxtaposed.

本発明の上記構成によれば、リチウム箔の表面に複数の溝が設けられているため、リチウム箔の端部近傍に含浸している電解液が毛細管現象により溝を介してリチウム箔壁面の全域に含浸する。その結果、プレドープが均一に進行し、負極のリチウムイオンプレドープ量を均一にすることができるようになる。   According to the above configuration of the present invention, since a plurality of grooves are provided on the surface of the lithium foil, the electrolyte impregnated in the vicinity of the end of the lithium foil is filled with the entire area of the wall surface of the lithium foil through the grooves by capillary action. Impregnate into. As a result, the pre-doping progresses uniformly, and the lithium ion pre-doping amount of the negative electrode can be made uniform.

さらに、リチウム箔の表面には、突出する方向の全長に亘って延在する溝が複数並設されていることが好ましい。   Furthermore, it is preferable that a plurality of grooves extending over the entire length in the protruding direction are arranged in parallel on the surface of the lithium foil.

また、リチウム箔の表面に形成される溝の深さが、リチウム箔の厚みの60%以上90%以下であることが好ましい。   Moreover, it is preferable that the depth of the groove | channel formed in the surface of lithium foil is 60 to 90% of the thickness of lithium foil.

また、リチウム箔の表面に形成される溝の幅が、0.1mm以上1mm以下であることが好ましい。   Moreover, it is preferable that the width | variety of the groove | channel formed in the surface of lithium foil is 0.1 mm or more and 1 mm or less.

また、リチウム箔の表面に形成される複数の溝の間隔が、溝の深さの3倍以上かつ10mm以下であることが好ましい。   Moreover, it is preferable that the space | interval of the some groove | channel formed in the surface of lithium foil is 3 times or more and 10 mm or less of the depth of a groove | channel.

本発明の蓄電デバイスによれば、プレドープを行う場合に、電解液がリチウム箔の全域に含浸し、負極のリチウムイオンドープ量を均一にすることが可能となる。   According to the electricity storage device of the present invention, when pre-doping is performed, the electrolyte solution is impregnated throughout the lithium foil, and the amount of lithium ion doping of the negative electrode can be made uniform.

本発明の一つの実施形態に係る蓄電デバイスの全体構成を示す概略斜視図である。1 is a schematic perspective view showing an overall configuration of an electricity storage device according to one embodiment of the present invention. 同蓄電デバイスに含まれる電極ユニットの構成の一例を示す概略側面図である。It is a schematic side view which shows an example of a structure of the electrode unit contained in the electrical storage device. 同蓄電デバイスに含まれるリチウム箔の構成の一例を示す概略平面図である。It is a schematic plan view which shows an example of a structure of the lithium foil contained in the same electrical storage device. 図3のA−A’線における断面図である。FIG. 4 is a cross-sectional view taken along line A-A ′ of FIG. 3. 他の一つの実施形態に係るリチウム箔の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the lithium foil which concerns on another one embodiment. 実施例及び比較例の結果を示す図表である。It is a graph which shows the result of an Example and a comparative example.

以下、添付の図面を参照して、この発明の実施の形態に係る蓄電デバイスについて詳細に説明する。   Hereinafter, an electric storage device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明の一つの実施形態に係る蓄電デバイス1は、図1に示すように、電極ユニット8と、電極ユニット8を封入する外装袋2とを備えている。   As shown in FIG. 1, the power storage device 1 according to one embodiment of the present invention includes an electrode unit 8 and an outer bag 2 that encloses the electrode unit 8.

電極ユニット8は、図1及び2に示すように、セパレータ6を介して複数積層された正極5及び負極4と、積層された正極5及び負極4の最外層に配置されたリチウム極7と、正極5及び負極4それぞれに接続された外部接続用タブ(3a、3b)とを備えている。   As shown in FIGS. 1 and 2, the electrode unit 8 includes a plurality of positive electrodes 5 and negative electrodes 4 stacked via a separator 6, a lithium electrode 7 disposed in the outermost layer of the stacked positive electrodes 5 and negative electrodes 4, and External connection tabs (3a, 3b) connected to the positive electrode 5 and the negative electrode 4, respectively.

正極5は、長方形のシート状に形成されており、正極集電体5aと、この両面に形成された正極合剤層5bとから構成される。   The positive electrode 5 is formed in a rectangular sheet shape, and includes a positive electrode current collector 5a and a positive electrode mixture layer 5b formed on both surfaces thereof.

正極集電体5aは、例えばアルミニウムやステンレス鋼などの金属箔からなり、リチウムイオンが透過可能な貫通孔がその全域に亘って複数形成されている。正極合剤層5bは、正極活物質、導電助材、結着剤(バインダ)、及び分散剤を混合したものである。正極活物質としては、リチウムイオンや電解質に含まれるアニオンを吸蔵・放出可能な遷移金属酸化物や、活性炭を用いることが好ましい。導電助材としては、グラファイトやカーボンブラックなどの炭素粉末を使用することが好ましい。結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、またはスチレンブタジエンゴム(SBR)などの非フッ素系ポリマーなどを用いることが好ましい。   The positive electrode current collector 5a is made of, for example, a metal foil such as aluminum or stainless steel, and a plurality of through-holes through which lithium ions can pass are formed. The positive electrode mixture layer 5b is a mixture of a positive electrode active material, a conductive additive, a binder (binder), and a dispersant. As the positive electrode active material, it is preferable to use a transition metal oxide capable of inserting and extracting lithium ions and anions contained in the electrolyte, or activated carbon. As the conductive aid, it is preferable to use carbon powder such as graphite or carbon black. As the binder, it is preferable to use a fluorine resin such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE), or a non-fluorine polymer such as styrene butadiene rubber (SBR).

負極4は、長方形のシート状に形成されており、負極集電体4aと、この両面に形成された負極合剤層4bとから構成される。   The negative electrode 4 is formed in a rectangular sheet shape, and includes a negative electrode current collector 4a and a negative electrode mixture layer 4b formed on both sides thereof.

負極集電体4aは、例えば銅やステンレス鋼などの金属箔からなり、リチウムイオンが透過可能な貫通孔がその全域に亘って複数形成されている。負極合剤層4bは、負極活物質、導電助材、結着剤(バインダ)、及び分散剤を混合したものである。負極活物質としては、リチウムイオンを吸蔵・放出可能な、ポリアセン、ソフトカーボン、ハードカーボン、グラファイト等の炭素系材料を用いることが好ましい。導電助材や結着剤には、上記の正極の説明で挙げた中から選択して用いることが好ましい。なお、本実施の形態において正極合剤層5b及び負極合剤層4bは、それぞれ正極集電体5a及び負極集電体5aの両面に形成されているが、片面にのみ形成されていてもよい。   The negative electrode current collector 4a is made of, for example, a metal foil such as copper or stainless steel, and a plurality of through-holes through which lithium ions can pass are formed. The negative electrode mixture layer 4b is a mixture of a negative electrode active material, a conductive additive, a binder (binder), and a dispersant. As the negative electrode active material, it is preferable to use a carbon-based material such as polyacene, soft carbon, hard carbon, and graphite that can occlude and release lithium ions. It is preferable to select and use the conductive aid and the binder from those mentioned in the description of the positive electrode. In the present embodiment, the positive electrode mixture layer 5b and the negative electrode mixture layer 4b are formed on both surfaces of the positive electrode current collector 5a and the negative electrode current collector 5a, respectively, but may be formed only on one surface. .

また、正極集電体5a及び負極集電体4aの端部の一方は、正極合剤層5b及び負極合剤層4bに覆われずに露出しており、この部分に外部接続用タブ(正極用タブ3a及び負極用タブ3b)が接続されている。ここで、図1乃至3に示すように、この外部接続用タブ(3a、3b)が突出している方向をタブ突出方向と定義し、これに直交する方向を電解液注入方向と定義する。後述するように、本実施の形態の蓄電デバイス1を作製するには、この電解液注入方向に沿って電解液を注入して電極ユニット8に含浸させる。   One of the ends of the positive electrode current collector 5a and the negative electrode current collector 4a is exposed without being covered with the positive electrode mixture layer 5b and the negative electrode mixture layer 4b, and an external connection tab (positive electrode) Tab 3a and negative electrode tab 3b) are connected. Here, as shown in FIGS. 1 to 3, the direction in which the external connection tabs (3a, 3b) protrude is defined as a tab protruding direction, and the direction orthogonal to this is defined as an electrolyte injection direction. As will be described later, in order to manufacture the electricity storage device 1 of the present embodiment, an electrolyte solution is injected along the electrolyte solution injection direction and impregnated in the electrode unit 8.

電極ユニット内で各電極(正極5、負極4及びリチウム極7)間に配置されるセパレータ6は、長方形のシート状に形成されている。そして、正極・負極・リチウム極間の絶縁を保ち、一方でイオンや電解液の透過が可能な材料が用いられ、例えばポリエチレン、ポリプロピレンなどのオレフィン系多孔質樹脂のほか、セルロースを用いることが好ましい。   The separator 6 disposed between the electrodes (the positive electrode 5, the negative electrode 4, and the lithium electrode 7) in the electrode unit is formed in a rectangular sheet shape. A material that can maintain the insulation between the positive electrode, the negative electrode, and the lithium electrode while allowing the permeation of ions and electrolyte is used. For example, in addition to olefinic porous resins such as polyethylene and polypropylene, it is preferable to use cellulose. .

リチウム極7は、長方形のシート状に形成されており、銅箔からなるリチウム極集電体7aと、リチウム極集電体7aの片面に貼付された金属リチウム箔7bとから構成されている。リチウム極7は、プレドープの際にリチウム箔7bからのリチウムイオンの供給を円滑に行えるようにするため、リチウム箔7bが正極5及び負極4が積層された構造の最外層と対向するように、電極ユニット8の最外層に配置されている。そして、本実施の形態におけるリチウム箔7bは、図2乃至図4に示すように、その表面に、電解液注入方向の全長に亘って連続して延在する溝9が複数並設されている。   The lithium electrode 7 is formed in a rectangular sheet shape, and is composed of a lithium electrode current collector 7a made of copper foil and a metal lithium foil 7b attached to one surface of the lithium electrode current collector 7a. In order to facilitate the supply of lithium ions from the lithium foil 7b during the pre-doping, the lithium electrode 7 is arranged so that the lithium foil 7b faces the outermost layer of the structure in which the positive electrode 5 and the negative electrode 4 are stacked. It is arranged on the outermost layer of the electrode unit 8. As shown in FIGS. 2 to 4, the lithium foil 7 b according to the present embodiment has a plurality of grooves 9 extending continuously over the entire length in the electrolyte injection direction on the surface thereof. .

リチウムイオン供給源としてのリチウム箔7bの厚みは、正極5及び負極4の、合剤層の厚みや積層数などから算出される必要なリチウムイオンドープ量によって決定されるが、通常0.05mm以上であることが好ましい。   The thickness of the lithium foil 7b as a lithium ion supply source is determined by the required lithium ion doping amount calculated from the thickness of the mixture layer and the number of laminated layers of the positive electrode 5 and the negative electrode 4, but usually 0.05 mm or more It is preferable that

外部接続用タブ(3a、3b)は、正極5又は負極4の端部から、外方向に突出するように帯状に形成されている。外部接続用タブ(3a、3b)としては、アルミニウム、銅、ステンレス鋼、又はこれらがニッケルめっき、またはスズめっきされた金属板に、シーラントフィルムが形成されているものを用いることが好ましい。   The external connection tabs (3 a, 3 b) are formed in a band shape so as to protrude outward from the end of the positive electrode 5 or the negative electrode 4. As the external connection tabs (3a, 3b), it is preferable to use aluminum, copper, stainless steel, or a metal plate on which these are nickel-plated or tin-plated and on which a sealant film is formed.

外装袋2は、電極ユニット8をその内部に封入するのに十分な大きさを有しており、一対のシート状の外装材から構成される。本実施の形態では、外装材としてアルミ箔をラミネート加工したものを用いている。   The exterior bag 2 has a size sufficient to enclose the electrode unit 8 therein, and is composed of a pair of sheet-shaped exterior materials. In this embodiment, a laminate of aluminum foil is used as the exterior material.

蓄電デバイス1内で電極ユニット8を含浸する電解液は、リチウムを含む電解質塩を有機溶媒で溶解させた非水電解質溶液を用いることが好ましい。電解質塩としては、LiBF, LiPF6, LiClO, LiB(C, CHSOLiなどが好適である。有機溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)などの環状カーボネートと、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートがあり、これらを単独または組み合わせて使用することが好ましい。また、添加剤として、ビニレンカーボネート(VC)やフルオロエチレンカーボネート(FEC)などを少量添加してもよい。 As the electrolytic solution impregnating the electrode unit 8 in the electricity storage device 1, it is preferable to use a non-aqueous electrolyte solution in which an electrolyte salt containing lithium is dissolved in an organic solvent. As the electrolyte salt, LiBF 4 , LiPF 6 , LiClO 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li and the like are suitable. Examples of organic solvents include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC), and chain carbonates such as ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). It is preferable to use alone or in combination. Moreover, you may add a small amount of vinylene carbonate (VC), a fluoroethylene carbonate (FEC), etc. as an additive.

そして、本実施の形態において蓄電デバイス1を作製するには、正極5と負極4とをセパレータ6を介して複数積層させて、その最外層にリチウム極7を配置する。正極5及び負極4のタブ突出方向の端部に外部接続用のタブ3a及び3bを接続して電極ユニット8を作製する。続いて、電極ユニット8を一対のシート状のアルミニウム製ラミネートフィルムで覆う。この一対のアルミニウム製ラミネートフィルムのタブ突出方向の両端部に位置する2辺(図1において正極用タブ3a及び負極用タブ3bが接続されている辺及びそれに対向する辺)及び電解液注入方向の端部に位置する1辺を封止する。そして、電解液注入方向の端部に位置する他の1辺の開口部から電解液を注入し、電極ユニット8に含浸させる。電解液の注入後、電解液を注入した1辺を封止して、電極ユニット8を外装袋2に封入する。このようにして図1に示す蓄電デバイス1が得られる。   And in order to produce the electrical storage device 1 in this Embodiment, the positive electrode 5 and the negative electrode 4 are laminated | stacked via the separator 6, and the lithium electrode 7 is arrange | positioned in the outermost layer. The external connection tabs 3 a and 3 b are connected to the ends of the positive electrode 5 and the negative electrode 4 in the tab projecting direction to produce the electrode unit 8. Subsequently, the electrode unit 8 is covered with a pair of sheet-like aluminum laminate films. Two sides (the side to which the positive electrode tab 3a and the negative electrode tab 3b are connected in FIG. 1 and the opposite side) located at both ends in the tab protruding direction of the pair of aluminum laminate films and the electrolyte injection direction One side located at the end is sealed. And electrolyte solution is inject | poured from the opening part of the other one side located in the edge part of electrolyte solution injection direction, and the electrode unit 8 is impregnated. After the electrolyte solution is injected, one side into which the electrolyte solution is injected is sealed, and the electrode unit 8 is sealed in the outer bag 2. In this way, the electricity storage device 1 shown in FIG. 1 is obtained.

本実施の形態に係る蓄電デバイス1によれば、リチウム箔7bの表面に溝9が形成されているので、注入された電解液が電極ユニット8の電解液注入方向の端部側から、毛細管現象によって溝9を介してリチウム箔7b全域に亘って浸透していく。溝9は電解液注入方向の全長に亘って形成されており、また複数並設されているため、リチウム箔7bの電解液を注入した位置より離れた領域や、電解液が浸透しにくいリチウム箔7bの中心部にまで電解液を行き届かせることが可能になる。その結果、リチウム箔7bの全域に電解液を含浸させることが可能になる。   According to the electricity storage device 1 according to the present embodiment, since the groove 9 is formed on the surface of the lithium foil 7b, the injected electrolyte solution is capillary from the end side in the electrolyte solution injection direction of the electrode unit 8. As a result, the lithium foil 7b permeates through the groove 9. The grooves 9 are formed over the entire length in the electrolyte injection direction, and a plurality of the grooves 9 are arranged side by side. Therefore, the region away from the position where the electrolyte solution is injected in the lithium foil 7b, or the lithium foil in which the electrolyte solution is difficult to penetrate. It is possible to make the electrolyte reach the center of 7b. As a result, the entire area of the lithium foil 7b can be impregnated with the electrolytic solution.

溝9が、リチウム箔7bの電解液注入方向の全長に亘って連続して設けられていない場合には、溝9が不連続になっている箇所、つまり途切れている箇所において、毛細管現象による浸透も途切れてしまい、リチウム箔7bの全域に電解液が行き届かなくなってしまう。ただし、製造上の誤差によるわずかな深さや幅の変化や、リチウム箔7bの端部にわずかに溝が形成されなくなる等の場合でも、溝9が全体として毛細管現象を発現できるのであれば本実施の形態に含まれるものとして許容される。   In the case where the groove 9 is not continuously provided over the entire length of the lithium foil 7b in the electrolyte solution injection direction, penetration by capillary action at a location where the groove 9 is discontinuous, that is, at a location where it is interrupted. As a result, the electrolyte solution does not reach the entire area of the lithium foil 7b. However, even if a slight change in depth or width due to a manufacturing error or a slight groove is not formed at the end of the lithium foil 7b, etc., this implementation is possible as long as the groove 9 can exhibit a capillary phenomenon as a whole. It is allowed to be included in the form.

リチウム箔7bに形成する溝9の深さdは、リチウム箔の厚みの60%以上90%以下であることが好ましい。溝9の深さがリチウム箔7bの厚みの60%未満では、リチウム箔7bと電解液とが接している界面から遠い、リチウム極集電体7aとリチウム箔7bとの境界近傍のリチウム箔7bに電解液が行き届かず、リチウムの溶け残りが発生するおそれがある。また、溝9の深さをリチウム箔の厚みの90%よりも深くした場合、加工ばらつきやハンドリングによって溝9の部分でリチウム箔7bが割れて複数の個片状に分断される場合があり、その場合個片状となったリチウムがリチウム極集電体7aから脱落して溶け残るおそれがある。   The depth d of the groove 9 formed in the lithium foil 7b is preferably 60% or more and 90% or less of the thickness of the lithium foil. When the depth of the groove 9 is less than 60% of the thickness of the lithium foil 7b, the lithium foil 7b near the boundary between the lithium electrode current collector 7a and the lithium foil 7b, which is far from the interface between the lithium foil 7b and the electrolyte solution. Therefore, there is a risk that the electrolyte will not reach and the lithium will remain undissolved. Moreover, when the depth of the groove 9 is deeper than 90% of the thickness of the lithium foil, the lithium foil 7b may be broken at the portion of the groove 9 due to processing variations and handling, and may be divided into a plurality of individual pieces. In that case, there is a possibility that the separated lithium will fall off the lithium electrode current collector 7a and remain undissolved.

溝9の幅wは0.1mm以上1mm以下であることが好ましい。溝9の幅が0.1mm未満である場合は、溝9からリチウム箔7bに浸透する電解液の量が不十分となり、リチウムの溶け残りの原因となる。また、溝9の幅が1mmを超える場合は、毛細管現象が十分に発現せず、溝9を通じた電解液の浸透が起こりにくくなり、やはりリチウムの溶け残りの原因となる。   The width w of the groove 9 is preferably 0.1 mm or more and 1 mm or less. When the width of the groove 9 is less than 0.1 mm, the amount of the electrolytic solution penetrating from the groove 9 into the lithium foil 7b becomes insufficient, which causes the remaining undissolved lithium. In addition, when the width of the groove 9 exceeds 1 mm, the capillary phenomenon is not sufficiently exhibited, the penetration of the electrolytic solution through the groove 9 is difficult to occur, and this also causes the remaining undissolved lithium.

複数並設されている溝9の間のリチウム箔7bへの電解液浸透のため、隣り合う溝9間の距離pは10mm以下であることが好ましい。10mmを超える場合は溝9と溝9との間のリチウム箔7bへ電解液浸透が起こりにくく、リチウムの溶け残りが発生するおそれがある。一方で溝9間の距離pは、溝9の深さの3倍以上であることが好ましい。リチウム箔7bは柔らかいため、3倍に満たない場合、電極ユニット形成時に加圧した際、リチウム箔7bが潰れやすくなり、毛細管現象の発現に必要なだけの溝9の深さを確保できなくなるおそれがある。   The distance p between adjacent grooves 9 is preferably 10 mm or less in order to penetrate the electrolytic solution into the lithium foil 7b between the plurality of grooves 9 arranged in parallel. When it exceeds 10 mm, the electrolyte solution hardly penetrates into the lithium foil 7b between the grooves 9 and the lithium may not be melted. On the other hand, the distance p between the grooves 9 is preferably at least three times the depth of the grooves 9. Since the lithium foil 7b is soft, if it is less than 3 times, the lithium foil 7b is liable to be crushed when pressurized when forming the electrode unit, and the depth of the groove 9 necessary for the expression of the capillary phenomenon cannot be secured. There is.

また、溝9は、凸部のある平板でリチウム箔7bを押圧することで形成する。リチウム箔7bに溝9を形成してからリチウム極集電体7a集電体と貼り合わせても、リチウム箔7bをリチウム極集電体7aと貼り合せてから溝9を形成してもどちらでもよい。   Moreover, the groove | channel 9 is formed by pressing the lithium foil 7b with the flat plate with a convex part. Either the groove 9 is formed in the lithium foil 7b and then bonded to the lithium electrode current collector 7a, or the groove 9 is formed after the lithium foil 7b is bonded to the lithium electrode current collector 7a. Good.

(実施例)
以下、上記の実施の形態で述べた蓄電デバイスについて実施例及び比較例によりその有効性を説明する。これらの実施例は例示であり、本発明は以下の実施例に限定されない。
(Example)
Hereinafter, the effectiveness of the electricity storage device described in the above embodiment will be described with reference to examples and comparative examples. These examples are illustrative, and the present invention is not limited to the following examples.

(実施例1)
正極活物質にやし殻水蒸気賦活炭、導電助材としてカーボンブラック、結着剤としてSBR を、分散剤であるカルボキシルメチルセルロース(CMC)を溶解した純水と混合、攪拌、分散させた後、集電体であるアルミニウム箔に塗工した。これを減圧乾燥して水を除去した後、所定のサイズに打ち抜いて、正極電極とした。
(Example 1)
After mixing, stirring, and dispersing coconut shell steam activated charcoal in the positive electrode active material, carbon black as the conductive additive, and SBR as the binder with pure water in which the dispersing agent carboxymethylcellulose (CMC) is dissolved, It applied to the aluminum foil which is an electric body. This was dried under reduced pressure to remove water, and then punched out to a predetermined size to obtain a positive electrode.

次いで負極活物質に黒鉛、導電助材としてカーボンブラック、結着剤としてSBRを、CMCを溶解した純水と混合、攪拌、分散させた後、集電体である銅箔に塗工した。これを減圧乾燥して水を除去した後、所定のサイズに打ち抜いて、負極電極とした。さらにプレドープのリチウム供給源として、厚み0.1mmのリチウム箔を切断し、集電体である銅箔に密着させることでリチウム極を作製した。リチウム箔に形成する溝の深さは0.08mm、溝の幅は0.5mmとし、間隔は5mmとした。   Next, graphite as a negative electrode active material, carbon black as a conductive additive, and SBR as a binder were mixed with pure water in which CMC was dissolved, stirred, and dispersed, and then applied to a copper foil as a current collector. This was dried under reduced pressure to remove water, and then punched out to a predetermined size to obtain a negative electrode. Further, as a pre-doped lithium supply source, a lithium electrode having a thickness of 0.1 mm was cut and adhered to a copper foil as a current collector to produce a lithium electrode. The depth of the groove formed in the lithium foil was 0.08 mm, the width of the groove was 0.5 mm, and the interval was 5 mm.

上記正極と負極及びリチウム極を、リチウム極が最外層となりかつリチウム箔が内側の電極側となるようにセルロース製セパレータを介して積層した。正極集電体に設けたアルミ露出部に、アルミニウムからなる正極タブを溶接し、負極集電体に設けた銅露出部に、ニッケルめっきされた銅からなる負極タブを溶接した。正極タブおよび負極タブが外装袋からはみ出すようにして、一対のシート状のアルミニウム製ラミネートフィルムからなる外装袋に封入した。   The positive electrode, the negative electrode, and the lithium electrode were laminated via a cellulose separator so that the lithium electrode was the outermost layer and the lithium foil was the inner electrode side. A positive electrode tab made of aluminum was welded to the exposed aluminum portion provided in the positive electrode current collector, and a negative electrode tab made of nickel-plated copper was welded to the exposed copper portion provided in the negative electrode current collector. The positive electrode tab and the negative electrode tab protruded from the outer bag and were enclosed in an outer bag made of a pair of sheet-like aluminum laminate films.

電解液として、1Mの六フッ化リン酸リチウム(LiPF)を、ECとDECを等量混合した溶媒に溶解したものを注入し、前記外装袋を封止することでセルとした。電解液の注入の際には、外装袋の、タブがはみ出している側の辺及びこれに対向する辺の2辺(タブ突出方向端部の2辺)と、タブ突出方向に直交する電解液注入方向端部側の1辺を封止して、電解液注入方向端部側から電解液を注入した。その後、この辺も封止し、前記セルの負極とリチウム極を短絡させ、リチウムイオンプレドープをおこなった。 A cell was prepared by injecting 1M lithium hexafluorophosphate (LiPF 6 ) dissolved in an equal volume of EC and DEC, and sealing the outer bag. When injecting the electrolyte, the side of the outer bag on the side where the tab protrudes and the two sides opposite to the side (two sides at the end of the tab protruding direction) and the electrolyte orthogonal to the tab protruding direction One side on the end side in the injection direction was sealed, and the electrolyte solution was injected from the end side in the electrolyte injection direction. Thereafter, this side was also sealed, the negative electrode and the lithium electrode of the cell were short-circuited, and lithium ion pre-doping was performed.

(実施例2)
溝部の深さを0.09mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Example 2)
A cell was produced by the same material and manufacturing method as in Example 1 except that the depth of the groove was 0.09 mm.

(実施例3)
溝部の深さを0.06mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
Example 3
A cell was produced by the same material and manufacturing method as in Example 1 except that the depth of the groove was 0.06 mm.

(実施例4)   Example 4

溝部の幅を0.1mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。   A cell was produced using the same material and manufacturing method as in Example 1 except that the width of the groove was 0.1 mm.

(実施例5)   (Example 5)

溝部の幅を1mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。   A cell was produced by the same material and manufacturing method as in Example 1 except that the width of the groove was 1 mm.

(実施例6)   Example 6

溝部の間隔を3mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。   A cell was manufactured using the same material and manufacturing method as in Example 1 except that the interval between the grooves was 3 mm.

(実施例7)
溝部の間隔を10mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Example 7)
A cell was produced by the same material and manufacturing method as in Example 1 except that the interval between the groove portions was 10 mm.

(比較例1)
リチウム箔に溝を設けないこと以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Comparative Example 1)
A cell was produced by the same material and manufacturing method as in Example 1 except that the groove was not provided in the lithium foil.

(比較例2)   (Comparative Example 2)

リチウム箔の溝の深さを0.05mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。   A cell was produced by the same material and manufacturing method as in Example 1 except that the depth of the groove of the lithium foil was 0.05 mm.

(比較例3)   (Comparative Example 3)

リチウム箔の溝の深さを0.095mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。   A cell was produced by the same material and manufacturing method as in Example 1 except that the depth of the groove of the lithium foil was 0.095 mm.

(比較例4)
溝の幅を0.05mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Comparative Example 4)
A cell was produced by the same material and manufacturing method as in Example 1 except that the groove width was 0.05 mm.

(比較例5)
溝の幅を2mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Comparative Example 5)
A cell was produced by the same material and manufacturing method as in Example 1 except that the groove width was 2 mm.

(比較例6)
溝の間隔を15mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Comparative Example 6)
A cell was produced by the same material and manufacturing method as in Example 1 except that the groove interval was 15 mm.

(比較例7)
溝の間隔を2mmとした以外は実施例1と同様の材料及び製造方法にて、セルを作製した。
(Comparative Example 7)
A cell was produced by the same material and manufacturing method as in Example 1 except that the groove interval was 2 mm.

(評価試験)   (Evaluation test)

プレドープが進行していることを確認するため、実施例1〜7および比較例1〜7で作製したセルを各1個ずつ分解した結果、全ての比較例において、リチウム箔の溶け残りが観察された。   As a result of disassembling each of the cells prepared in Examples 1 to 7 and Comparative Examples 1 to 7 in order to confirm that the pre-doping has progressed, in all the comparative examples, undissolved lithium foil was observed. It was.

さらに、評価試験として、25℃において、2A定電流、2.2V〜3.8Vの範囲におけるサイクル試験をおこない、1サイクル目に対する10万サイクル目の静電容量と内部抵抗を評価した。サイクル前後の静電容量の維持率である容量維持率は、比較例1〜5で95%を下回り、許容範囲外となった。また、サイクル前後の内部抵抗の上昇率である抵抗上昇率は、比較例1で100%をオーバーして許容範囲外となった。比較例2〜5は100%以内を満たしたものの、実施例と比較すると明らかに抵抗上昇率が高いことが確認された。   Further, as an evaluation test, a cycle test in the range of 2 A constant current and 2.2 V to 3.8 V was performed at 25 ° C., and the capacitance and internal resistance at the 100,000th cycle with respect to the first cycle were evaluated. The capacity maintenance ratio, which is the capacity maintenance ratio before and after the cycle, was less than 95% in Comparative Examples 1 to 5, and was outside the allowable range. The resistance increase rate, which is the increase rate of the internal resistance before and after the cycle, exceeded 100% in Comparative Example 1 and was outside the allowable range. Although Comparative Examples 2 to 5 satisfied 100% or less, it was confirmed that the rate of increase in resistance was clearly higher when compared with Examples.

評価試験の結果を図6の図表に示す。この結果から、各実施例による蓄電デバイスが、均一なプレドープを確保するとともに、高い静電容量の維持率及び低い内部抵抗の上昇率を示していることが確認される。   The result of the evaluation test is shown in the chart of FIG. From this result, it is confirmed that the electricity storage device according to each example shows a uniform pre-dope, and shows a high capacitance maintenance rate and a low internal resistance increase rate.

(変形例)
上記の実施例では、蓄電デバイスに用いるリチウム箔7bの表面に電解液注入方向に延在する溝9のみが形成されている例を説明したが、図5に示すように、溝9が格子状に形成されていてもよい。
(Modification)
In the above embodiment, an example in which only the grooves 9 extending in the electrolyte injection direction are formed on the surface of the lithium foil 7b used for the electricity storage device. However, as shown in FIG. It may be formed.

溝9を格子状に形成することで、リチウム箔7bの電解液注入方向だけでなくタブ突出方向にも毛細管現象による電解液の浸透が生じるので、より確実にリチウム箔7b全域へ電解液を含浸させることが可能になる。   By forming the grooves 9 in a lattice shape, not only the electrolyte injection direction of the lithium foil 7b but also the penetration of the electrolyte due to the capillary phenomenon occurs in the tab protruding direction, so that the entire area of the lithium foil 7b is more reliably impregnated with the electrolyte. It becomes possible to make it.

溝9を格子状に形成する際の溝9の深さ、厚み及び溝間の距離は図3に示した溝9を電解液注入方向にのみ設けた場合と同様である。   The depth, thickness, and distance between the grooves 9 when forming the grooves 9 in a lattice shape are the same as when the grooves 9 shown in FIG. 3 are provided only in the electrolyte injection direction.

以上、実施例に基づいて本発明について具体的に説明したが、本発明は上記の実施例に限定されるものではなく、その発明の要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、上記の実施例についてはタブ突出方向と直交する方向を電解液注入方向としていた。しかし、蓄電デバイス作製の際に、電解液を外装袋のタブ突出方向の辺側から注入する場合、つまりタブが接続されている辺またはその対向する辺側から注入するような場合には、電解液注入方向はタブ突出方向と一致する。この場合には、リチウム箔の表面に形成する溝は、リチウム箔のタブ突出方向の全長に亘って連続して延在し、タブ突出方向と直交する方向に複数並設することが好ましい。また、上記の実施の形態では各電極を積層させた構成を説明したが、これに限らず、各電極を捲回させた構成にも本発明は適用可能である。   The present invention has been specifically described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Nor. For example, in the above embodiment, the direction orthogonal to the tab protruding direction is the electrolyte injection direction. However, when the electrolytic solution is injected from the side of the outer bag in the protruding direction of the tab, that is, when injected from the side to which the tab is connected or the opposite side, The liquid injection direction coincides with the tab protruding direction. In this case, it is preferable that a plurality of grooves formed on the surface of the lithium foil extend continuously over the entire length in the tab protruding direction of the lithium foil, and a plurality of grooves are arranged in a direction perpendicular to the tab protruding direction. In the above-described embodiment, the configuration in which the respective electrodes are stacked has been described. However, the present invention is not limited to this, and the present invention can also be applied to a configuration in which the respective electrodes are wound.

1…蓄電デバイス 2…外装袋 3a…正極用タブ 3b…負極用タブ 4…負極 4a…負極集電体 4b…負極合剤層 5…正極 5a…正極集電体 5b…正極合剤層 6…セパレータ 7…リチウム極 7a…リチウム集電体 7b…リチウム箔 8…電極ユニット 9…溝
DESCRIPTION OF SYMBOLS 1 ... Power storage device 2 ... Outer packaging bag 3a ... Positive electrode tab 3b ... Negative electrode tab 4 ... Negative electrode 4a ... Negative electrode collector 4b ... Negative electrode mixture layer 5 ... Positive electrode 5a ... Positive electrode collector 5b ... Positive electrode mixture layer 6 ... Separator 7 ... Lithium electrode 7a ... Lithium current collector 7b ... Lithium foil 8 ... Electrode unit 9 ... Groove

Claims (5)

セパレータを介して複数積層された正極及び負極、前記積層された正極及び負極の最外層に対向するように配置されたリチウム箔を有するリチウム極、並びに前記正極及び負極の端部から外方向に突出するように前記正極及び負極それぞれに接続された外部接続用タブを有する電極ユニットと、一対のシート状の外装材を貼り合わせることによって該電極ユニットを封入する外装袋とを備え、前記外部接続用タブが突出する方向の前記外装袋の両端部に位置する2辺及び前記突出する方向に直交する方向の端部に位置する1辺を封止し、前記直交する方向の端部に位置する他の1辺から電解液を注入して前記電極ユニットに含浸させることによって作製される蓄電デバイスにおいて、
前記リチウム箔の表面には、前記直交する方向の全長に亘って延在する溝が複数並設されていることを特徴とする蓄電デバイス。
A plurality of positive and negative electrodes stacked via a separator, a lithium electrode having a lithium foil disposed so as to face the outermost layer of the stacked positive and negative electrodes, and projecting outward from the ends of the positive and negative electrodes An electrode unit having an external connection tab connected to each of the positive electrode and the negative electrode, and an exterior bag for enclosing the electrode unit by bonding a pair of sheet-shaped exterior materials, 2 sides positioned at both ends of the outer bag in the direction in which the tab protrudes and 1 side positioned at the end in the direction orthogonal to the protruding direction are sealed, and the other is positioned at the end in the orthogonal direction In an electricity storage device produced by injecting an electrolyte from one side of the electrode and impregnating the electrode unit,
A power storage device, wherein a plurality of grooves extending over the entire length in the orthogonal direction are arranged in parallel on the surface of the lithium foil.
前記リチウム箔の表面には、前記突出する方向の全長に亘って延在する溝が複数並設されていることを特徴とする請求項1蓄電デバイス。   2. The electricity storage device according to claim 1, wherein a plurality of grooves extending over the entire length in the protruding direction are provided in parallel on the surface of the lithium foil. 前記溝の深さが、前記リチウム箔の厚みの60%以上90%以下であることを特徴とする請求項1又は2記載の蓄電デバイス。   The electrical storage device according to claim 1 or 2, wherein the depth of the groove is 60% or more and 90% or less of the thickness of the lithium foil. 前記溝の幅が、0.1mm以上1mm以下であることを特徴とする請求項1乃至3いずれか記載の蓄電デバイス。   The power storage device according to any one of claims 1 to 3, wherein a width of the groove is 0.1 mm or more and 1 mm or less. 前記複数の溝の間隔が、前記溝の深さの3倍以上かつ10mm以下であることを特徴とする請求項1乃至4いずれか記載の蓄電デバイス。
The electrical storage device according to any one of claims 1 to 4, wherein an interval between the plurality of grooves is not less than three times the depth of the grooves and not more than 10 mm.
JP2015132642A 2015-07-01 2015-07-01 Power storage device Pending JP2017017186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015132642A JP2017017186A (en) 2015-07-01 2015-07-01 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132642A JP2017017186A (en) 2015-07-01 2015-07-01 Power storage device

Publications (1)

Publication Number Publication Date
JP2017017186A true JP2017017186A (en) 2017-01-19

Family

ID=57831038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132642A Pending JP2017017186A (en) 2015-07-01 2015-07-01 Power storage device

Country Status (1)

Country Link
JP (1) JP2017017186A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681171A (en) * 2017-09-27 2018-02-09 惠州市惠德瑞锂电科技股份有限公司 A kind of high lithium primary battery of discharging efficiency
CN112106161A (en) * 2018-05-02 2020-12-18 株式会社捷太格特 Alkali metal ion capacitor
CN113675363A (en) * 2021-08-20 2021-11-19 蜂巢能源科技有限公司 Pole piece lithium supplementing method and pole piece lithium supplementing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681171A (en) * 2017-09-27 2018-02-09 惠州市惠德瑞锂电科技股份有限公司 A kind of high lithium primary battery of discharging efficiency
CN107681171B (en) * 2017-09-27 2019-06-18 惠州市惠德瑞锂电科技股份有限公司 A kind of lithium primary battery that discharging efficiency is high
CN112106161A (en) * 2018-05-02 2020-12-18 株式会社捷太格特 Alkali metal ion capacitor
CN112106161B (en) * 2018-05-02 2023-03-14 株式会社捷太格特 Alkali metal ion capacitor
CN113675363A (en) * 2021-08-20 2021-11-19 蜂巢能源科技有限公司 Pole piece lithium supplementing method and pole piece lithium supplementing device

Similar Documents

Publication Publication Date Title
KR101802102B1 (en) Electrode and cell having electrode
JP4623039B2 (en) Electrochemical element
JP4557001B2 (en) Electrode for electrochemical device and electrochemical device
US9236632B2 (en) Electrochemical device and method for manufacturing electrochemical device
JP7231188B2 (en) Manufacturing method of lithium ion battery
JP2018055871A (en) Secondary battery
JP2013206699A (en) Electrochemical device
JP2010161249A (en) Lithium ion capacitor
JP2008305928A (en) Nonaqueous electrical storage device
JP2013140825A (en) Laminate type electrical storage element
JP2017017186A (en) Power storage device
WO2013002055A1 (en) Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JP2012109102A (en) Nonaqueous electrolyte secondary battery
KR102297666B1 (en) Secondary battery and manufacturing method thereof
JP2008305648A (en) Nonaqueous power storage device
JP5840429B2 (en) Lithium ion capacitor
JP2019145331A (en) Non-aqueous electrolyte secondary battery
JP6349730B2 (en) Power storage device
JP2019145330A (en) Non-aqueous electrolyte secondary battery
JP2014212304A (en) Power storage device and method of manufacturing power storage module
JP2015210846A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte battery
CN111213277A (en) Non-aqueous electrolyte secondary battery
JP5110516B2 (en) Non-aqueous electrolyte secondary battery
KR101599963B1 (en) Energy storage device with composite electrode structure
JP5852881B2 (en) LAMINATE TYPE ELECTRIC STORAGE ELEMENT AND MANUFACTURING METHOD THEREOF