WO2013002055A1 - Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell - Google Patents

Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell Download PDF

Info

Publication number
WO2013002055A1
WO2013002055A1 PCT/JP2012/065500 JP2012065500W WO2013002055A1 WO 2013002055 A1 WO2013002055 A1 WO 2013002055A1 JP 2012065500 W JP2012065500 W JP 2012065500W WO 2013002055 A1 WO2013002055 A1 WO 2013002055A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
aqueous secondary
secondary battery
active material
positive electrode
Prior art date
Application number
PCT/JP2012/065500
Other languages
French (fr)
Japanese (ja)
Inventor
虎太 直人
里美 長谷川
智史 有馬
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002055A1 publication Critical patent/WO2013002055A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current collector and electrodes for a non-aqueous secondary battery, and a non-aqueous secondary battery. More specifically, the present invention relates to a non-aqueous secondary battery current collector that can effectively use an active material layer formed thereon, an electrode using the current collector, and a non-aqueous system using the electrode The present invention relates to a secondary battery.
  • a lithium oxide secondary battery (hereinafter simply referred to as a non-aqueous secondary battery) using a metal oxide as a positive electrode, an organic electrolyte as an electrolyte, a carbon material such as graphite as a negative electrode, and a porous separator between the positive electrode and the negative electrode Since it was first commercialized in 1991, it has rapidly spread as a battery for portable devices such as mobile phones that are becoming smaller and lighter due to its high energy density. In addition, lithium ion secondary batteries (large capacity batteries) having a large capacity for storing the generated electricity have been studied. As this large-capacity battery, an example in which a conventional battery is simply scaled up has been reported.
  • the positive electrode and the negative electrode usually include an active material layer containing a positive electrode active material or a negative electrode active material (hereinafter also simply referred to as an active material) on a current collector.
  • a metal foil is usually used for the current collector.
  • the lithium ion secondary battery uses an organic electrolyte as an electrolyte. Therefore, it is desired to prevent accidents such as rupture and fire even under severe use conditions.
  • the metal foil did not have a function to prevent such an accident. Therefore, International Publication WO2009 / 131184 (Patent Document 1) proposes to use a film-like or fibrous resin layer having a conductive layer on both sides as a current collector.
  • the positive electrode and / or the negative electrode are damaged by the melting of the resin layer, and a short circuit between the positive electrode and the negative electrode is prevented. As a result, the temperature rise inside the battery can be suppressed.
  • the positive electrode or the negative electrode is obtained by forming an active material layer containing a positive electrode active material or a negative electrode active material on a current collector. From the viewpoint of long-term reliability, the active material layer peels off from the current collector, and in particular, it becomes difficult to collect the active material. Therefore, there has been a problem that the battery capacity decreases when the battery is charged and discharged.
  • a current collector for a non-aqueous secondary battery that constitutes at least one of a positive electrode and a negative electrode used in a non-aqueous secondary battery, and on which an active material layer is placed
  • the current collector is composed of a resin film and a conductive layer that is laminated on at least one surface of the resin film and can be in contact with the active material layer
  • the conductive layer is provided with a current collector for a non-aqueous secondary battery including at least one exposed region of the resin film in which the resin film and the active material layer can be in direct contact with each other.
  • At least one of a positive electrode and a negative electrode is a nonaqueous secondary battery electrode, and the nonaqueous secondary battery current collector and the conductive layer of the nonaqueous secondary battery current collector
  • an electrode for a nonaqueous secondary battery comprising an active material layer formed thereon.
  • it includes a positive electrode, a negative electrode, a separator located between the positive electrode and the negative electrode, and an electrolyte, and at least one of the positive electrode and the negative electrode is the electrode for a non-aqueous secondary battery.
  • a non-aqueous secondary battery is provided.
  • the inventors of the present invention have the effect that the presence of the exposed region of the resin film on the current collector has the effect of further improving the adhesion between the current collector and the active material layer compared to the current collector of the metal foil. I found. Therefore, according to the present invention, the degree of decrease in the utilization factor of the active material can be reduced as compared with the conventional case. As a result, the current collector and the non-aqueous secondary battery electrode that can improve the battery cycle characteristics, and the battery cycle characteristics are improved. A non-aqueous secondary battery can be provided.
  • the resin film is used for the current collector, when the positive electrode and the negative electrode are short-circuited by a foreign object, the resistance in the vicinity of the short-circuit can be increased by fusing the resin film with heat generated by the short-circuit. As a result, since a short circuit between the positive electrode and the negative electrode can be cut off, it is possible to provide a current collector that can improve battery safety, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery with improved safety.
  • the adhesion between the current collector and the active material layer can be further improved, so that the battery cycle characteristics Can be provided.
  • the non-aqueous secondary battery current collector has one or more openings with a maximum diameter of 1 to 1000 ⁇ m in the region where the active material layer can be placed, the adhesion between the current collector and the active material layer is further improved. Therefore, it is possible to provide a current collector that can further improve battery cycle characteristics.
  • the opening portion has an area of 0.5 to 50.0% of the area of the conductive layer in plan view (however, when there are a plurality of opening portions, the total area), the current collector and the active material layer Since the adhesion can be further improved, a current collector that can further improve the battery cycle characteristics can be provided.
  • the current collector for non-aqueous secondary battery of the present invention (hereinafter simply referred to as current collector) can be used for either or both of the positive electrode and the negative electrode.
  • Examples of the non-aqueous secondary battery that can use the current collector of the present invention include a lithium ion secondary battery and a lithium metal secondary battery. Among these, a lithium ion secondary battery that can use the current collector of the present invention for both the positive electrode and the negative electrode is preferable.
  • the current collector of the present invention comprises a resin film and a conductive layer laminated on at least one surface thereof.
  • the conductive layer may be laminated only on one side of the resin film, or may be laminated on both sides. This conductive layer is a layer in which an active material layer is placed on an electrode (positive electrode and / or negative electrode) and is in contact with the active material layer.
  • the thickness of the current collector is preferably in the range of 0.01 to 0.1 mm. When the thickness is less than 0.01 mm, the supportability of the active material layer may not be ensured sufficiently. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased.
  • This thickness can be 0.01 mm, 0.02 mm, 0.03 mm, 0.05 mm, 0.08 mm and 0.1 mm. A more preferred thickness is in the range of 0.02 to 0.08 mm.
  • the current collector preferably has a sheet resistance of 0.1 ⁇ / ⁇ or less from the viewpoint of securing sufficient current collecting performance.
  • the sheet resistance can be 0.01 ⁇ / ⁇ , 0.03 ⁇ / ⁇ , 0.05 ⁇ / ⁇ , 0.08 ⁇ / ⁇ , and 0.1 ⁇ / ⁇ . A more preferable sheet resistance is 0.05 ⁇ / ⁇ or less.
  • the resin film is not particularly limited as long as it is made of a resin material that hardly affects the battery reaction. From the viewpoint of imparting safety to the battery, a resin material that melts when the temperature rises is preferable. Examples of such a resin material include polyolefin resins such as polyethylene (PE) and polypropylene (PP) having a heat distortion temperature of 200 ° C. or less, and resin films such as polystyrene (PS). As the resin film, a film produced by any method such as uniaxial stretching, biaxial stretching, and non-stretching can be used.
  • PE polyethylene
  • PP polypropylene
  • PS polystyrene
  • the thickness of the resin film can be appropriately adjusted in order to obtain a current collector having the above thickness.
  • the thickness is preferably in the range of 0.01 to 0.1 mm.
  • the thickness is less than 0.01 mm, the supportability of the active material layer may not be ensured sufficiently. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased.
  • This thickness can be 0.01 mm, 0.015 mm, 0.03 mm, 0.05 mm, 0.08 mm and 0.1 mm. A more preferred thickness is in the range of 0.015 to 0.05 mm.
  • the conductive layer on the positive electrode side is preferably a layer made of aluminum, titanium, nickel or the like, and the negative electrode side conductive layer is preferably a layer made of copper, nickel or the like.
  • the thickness of the conductive layer is not particularly limited as long as conductivity can be ensured, but is usually in the range of 0.002 to 0.01 mm. This thickness can be 0.002 mm, 0.004 mm, 0.0065 mm, 0.008 mm and 0.01 mm.
  • the method for forming the conductive layer is not particularly limited, and examples thereof include methods such as vapor deposition, sputtering, electrolytic plating, electroless plating, bonding, and combinations of these methods.
  • the exposed region of the resin film is in contact with the active material layer placed on the current collector. This is because the adhesiveness between the resin film constituting the current collector and the active material layer is higher than the adhesiveness between the conductive layer constituting the current collector and the active material layer. In other words, the resin constituting the resin film has higher adhesiveness with the organic material contained in the active material layer than the metal constituting the conductive layer. In particular, it is more preferable that the resin layer of the current collector and the organic material in the active material layer contain the same component resin.
  • the exposed region of the resin film may be formed in any part of the current collector as long as it can contact the active material layer to be placed in the region.
  • an opening is formed in a region where the active material layer of the current collector can be placed.
  • the side surface of the through hole constituting the opening portion can be an exposed region.
  • 3 (a) and 3 (b) are a method of laminating a conductive layer having an opening formed in advance on a resin film, a method of etching a conductive layer using a mask having an opening corresponding to the opening, It can be formed by a method of stretching a laminate film composed of a conductive layer and a resin film layer.
  • 1 is a conductive layer
  • 2 is a resin film
  • 3 is an opening
  • 3a is a recess
  • 3b is a protrusion
  • a is a depth of the recess.
  • the height and the height of the convex part, b means the diameter of the uppermost end of the concave part and the lowest part of the convex part
  • y and d mean the maximum diameter of the hole.
  • the planar shape of the opening is not particularly limited, and examples thereof include a circle, an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a polygon that is heptagon or more, a star, and an indefinite shape. Among these, from the viewpoint of easy formation, a circle and a quadrangle are preferable.
  • the opening portion preferably has a maximum diameter of 1 to 1000 ⁇ m.
  • the maximum diameter can be 1 ⁇ m, 5 ⁇ m, 8 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, 200 ⁇ m, 300 ⁇ m, 400 ⁇ m, 600 ⁇ m, 800 ⁇ m and 1000 ⁇ m.
  • a more preferable maximum diameter is 5 to 300 ⁇ m.
  • the maximum length corresponds to the diameter when the planar shape is circular, and the diagonal length when the planar shape is square.
  • the area of the opening portion (however, when there are a plurality of the opening portions, the total area thereof) is preferably 0.5 to 50% of the area of the conductive layer in a plan view of the current collector. If it is less than 0.5%, the effect of improving the adhesion of the active material layer due to the exposed region at the opening may be reduced. If it exceeds 50%, the area where the conductive layer is in contact with the active material layer becomes small, and the current collection efficiency may be reduced. This area can take 0.5%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%. A more preferable area ratio is 1.0 to 30.0%. In FIGS.
  • a plurality of exposed regions are provided, but the number is not particularly limited, and may be one or two or more. For example, it may be 0.1 to 20 / mm 2 per unit area of the current collector in plan view. This number is 0.1 / mm 2 , 0.5 / mm 2 , 1 / mm 2 , 2 / mm 2 , 5 / mm 2 , 10 / mm 2 , 15 / mm 2 and It can take 20 pieces / mm 2 .
  • the area of the exposed region (however, when there are a plurality of exposed areas) is preferably 0.1 to 30.0% of the area of the conductive layer in plan view. If it is less than 0.1%, the effect of improving the adhesion of the active material layer due to the exposed region may be reduced. When the content is more than 30.0%, the area where the conductive layer is in contact with the active material layer is small, and thus current collection efficiency may be reduced. This area can be 0.1%, 1%, 2%, 0.5%, 5%, 10%, 15%, 20%, 25% and 30%. A more preferable area ratio is 0.5 to 10.0%.
  • the current collector has a three-dimensional structure region.
  • the three-dimensional structure region means a region where one or more concave portions and / or convex portions are formed in a direction perpendicular to the plane of the current collector.
  • the current collector may include only a concave portion, may include only a convex portion, or may include both a concave portion and a convex portion.
  • a recessed part and a convex part may be arranged alternately, and the area
  • the three-dimensional structure region preferably occupies half or more of the plane of the current collector including the three-dimensional structure region.
  • the upper limit of the ratio of the three-dimensional structure region occupying the plane of the current collector is the entire surface.
  • the portion where the end is provided should be flat with a width in the range of 2 to 20 mm from the end. preferable. This width can be 2 mm, 6 mm, 10 mm, 14 mm, 18 mm and 20 mm. Therefore, it is preferable that the three-dimensional structure region occupies the plane of the current collector in the range of 1.0 to 10.0% from the viewpoint of the efficiency of the charge / discharge reaction and the necessity of the region for forming the terminal. . This range can take 1%, 3%, 5%, 7% and 10%.
  • the number of concave portions and convex portions in the three-dimensional structure region (the total number when both concave portions and convex portions are formed) is not particularly limited as long as the effect of the present invention is not impaired.
  • it can be 0.1 / mm 2 or more per unit area of the three-dimensional structure region.
  • the upper limit of the number is the number that can form a concave portion and a convex portion in the three-dimensional structure region, and is, for example, 20 pieces / mm 2 or less.
  • a more preferable number is in the range of 0.5 to 10 pieces / mm 2 .
  • This number can be 0.5 / mm 2 , 1 / mm 2 , 2 / mm 2 , 3 / mm 2 , 6 / mm 2 , 8 / mm 2, and 10 / mm 2.
  • the exposed region of the resin film is formed by providing a through-hole of the current collector at the bottom of the concave portion and the apex of the convex portion, but all the concave and convex portions are formed. It is not necessary to provide a through hole in the part.
  • the planar shape of the concave and convex portions (the plane means the conductive layer forming surface of the resin film) is not particularly limited as long as the effect of the present invention is not impaired.
  • Examples thereof include a circle (see FIG. 2B), an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a polygon with a heptagon or more, a star, and an indefinite shape.
  • a circular shape and a quadrangular shape are preferable from the viewpoint of easy formation.
  • the maximum length of the uppermost end of the concave portion and the maximum length of the lowermost end of the convex portion are too small, the effect of improving the conductivity will be small, and if it is too large, it will be difficult to form the active material layer uniformly. Therefore, it is preferably in the range of 1 to 1000 ⁇ m.
  • This maximum length can be 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 800 ⁇ m and 1000 ⁇ m.
  • a more preferred maximum length is in the range of 5 to 500 ⁇ m.
  • the maximum length corresponds to, for example, the diameter when the planar shape is circular, and the length of the diagonal line when the planar shape is square.
  • the cross-sectional shapes of the concave portion and the convex portion are not particularly limited as long as the effects of the present invention are not impaired. For example, a triangle (see FIG. 2A), a quadrangle, a partial circle, and the like can be given.
  • a corrugated cross-sectional shape can be obtained by alternately arranging the concave portion and the convex portion.
  • the range of 50 to 1000 ⁇ m is preferable.
  • This height can be 50 ⁇ m, 100 ⁇ m, 200 ⁇ m, 400 ⁇ m, 500 ⁇ m, 600 ⁇ m, 800 ⁇ m and 1000 ⁇ m. A more preferred height is in the range of 100 to 500 ⁇ m.
  • the three-dimensional structure region can be formed by, for example, a pressing method using a male mold and a female mold, a punching processing method, a lath processing method, or the like. Note that the three-dimensional structure region may be formed either after the conductive layer is formed or before the formation.
  • Electrode for non-aqueous secondary battery (hereinafter also simply referred to as electrode) includes the current collector and an active material layer formed on the current collector.
  • an electrode means a positive electrode, a negative electrode, or a positive electrode and a negative electrode.
  • the active material layer is a positive electrode active material layer in the case of a positive electrode, and is a negative electrode active material layer in the case of a negative electrode.
  • Positive electrode active material layer As a positive electrode active material contained in a positive electrode active material layer, the oxide containing lithium is mentioned. Specifically, LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , and a part of transition metals in these oxides are replaced with other metal elements (Co, Ni, Fe, Mn, Al, Mg Etc.), oxides having an olivine structure represented by LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe). Among these, a positive electrode active material using Mn and / or Fe is preferable from the viewpoint of cost.
  • the positive electrode active material examples include olivine type lithium iron phosphate (eg, LiFePO 4 ) from the viewpoints of safety and charging voltage. Normally, as the temperature rises, the positive electrode active material releases oxygen and burns the electrolyte solution, generating more intense heat.
  • LiFePO 4 is preferable from the viewpoint of safety because all oxygen is bonded to phosphorus by a strong covalent bond, and the release of oxygen hardly occurs due to temperature rise. In addition, since it contains phosphorus, it can be expected to have an anti-inflammatory effect.
  • the charging voltage of olivine type lithium iron phosphate is about 3.5V, and charging is almost completed at 3.8V, there is a little margin to the voltage that causes the decomposition of the electrolyte. Therefore, even if there is electrode polarization in the specified load characteristics, charging is possible by increasing the charging voltage, which is more preferable.
  • a binder may be included in addition to the positive electrode active material.
  • the binder include fluorine polymers such as polyvinylidene fluoride (PVDF), polyvinyl pyridine, and polytetrafluoroethylene, polyolefin polymers such as polyethylene and polypropylene, and styrene butadiene rubber.
  • PVDF polyvinylidene fluoride
  • polyvinyl pyridine polyvinyl pyridine
  • polytetrafluoroethylene polyolefin polymers
  • polyolefin polymers such as polyethylene and polypropylene
  • styrene butadiene rubber styrene butadiene rubber
  • the positive electrode active material layer may contain a conductive material or a thickener.
  • a conductive material it is preferable to use a chemically stable material. Specific examples include carbonaceous materials such as carbon black, acetylene black, ketjen black, graphite (natural graphite, artificial graphite), carbon fiber, and conductive metal oxides.
  • the thickener include polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like.
  • the mixing ratio of the binder, the thickener, and the conductive material varies depending on the types of the binder, the thickener, and the conductive material to be mixed, but the binder is 1 to 50 with respect to 100 parts by weight of the positive electrode active material.
  • about 0.1 parts by weight, thickener is about 0.1-20 parts by weight, and conductive material is about 0.1-50 parts by weight.
  • the amount of the binder is less than about 1 part by weight, the binding ability may be insufficient.
  • the amount of the binder is more than about 50 parts by weight, the amount of active material contained in the positive electrode is reduced, and the resistance or polarization of the positive electrode is increased. As a result, the discharge capacity may be reduced.
  • the thickener is less than about 0.1 parts by weight, the thickening ability may be insufficient, and if it is more than about 20 parts by weight, the amount of the active material contained in the positive electrode decreases, and the positive electrode resistance or Polarization and the like may increase and the discharge capacity may decrease. Furthermore, if the conductive material is less than about 0.1 parts by weight, the resistance or polarization of the positive electrode may increase and the discharge capacity may decrease, and if it exceeds about 50 parts by weight, the amount of active material contained in the positive electrode will decrease. As a result, the discharge capacity as the positive electrode may be reduced.
  • the amount of the binder can be 1 part by weight, 2 parts by weight, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, and 50 parts by weight. 5 parts by weight, 8 parts by weight, 10 parts by weight, 13 parts by weight, 18 parts by weight and 20 parts by weight, and the amount of the conductive material is 0.1 parts by weight, 6 parts by weight, 10 parts by weight, 20 parts by weight. Part, 30 parts, 40 parts and 50 parts by weight can be taken.
  • Negative electrode active material layer As the negative electrode active material contained in the negative electrode active material layer, natural graphite, particulate (scalar or lump, fiber, whisker, spherical, crushed, etc.) artificial graphite Or highly crystalline graphite typified by graphitized products such as mesocarbon microbeads, mesophase pitch powder and isotropic pitch powder, and non-graphitizable carbon such as resin-fired charcoal. These negative electrode active materials may consist of only 1 type, and may consist of 2 or more types of mixtures. Also, alloy materials having a large capacity such as tin oxide and silicon-based negative electrode active materials can be used.
  • the negative electrode active material layer may contain other additives such as a binder, a conductive material, and a thickener as in the positive electrode active material layer.
  • additives such as a binder, a conductive material, and a thickener as in the positive electrode active material layer.
  • any of those described in the column of the positive electrode active material layer can be used.
  • the resin of the binder and the resin layer used for the current collector similarly to the positive electrode active material layer, it is preferable that the resin of the binder and the resin layer used for the current collector have the same components because a tendency toward better long-term reliability of the battery can be obtained.
  • the active material layer is formed by a known method such as, for example, a method of applying a paste containing an active material and optionally other additives onto a current collector and drying the obtained coating film. Can be formed. Further, it is possible to form a thick active material layer by repeating application and drying. Further, after drying, the electrode may be pressed to improve the workability of the electrode.
  • the active material layer may cover the entire surface of the current collector, or may cover the current collector region excluding the portion where the terminal is formed. Further, an active material layer may be formed on both sides of the current collector. Furthermore, two current collectors having an active material layer on one surface are formed, and the other surfaces of the two current collectors on which the active material layer is not formed are bonded to each other, whereby an electrode having an active material layer on both surfaces You may get
  • Non-aqueous secondary battery includes a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte.
  • A Electrode At least one of a positive electrode and a negative electrode is the said electrode for non-aqueous secondary batteries. Both the positive electrode and the negative electrode may be the non-aqueous secondary battery electrode.
  • a known material is composed of a flat current collector (a metal foil, a laminate of a conductive layer and a resin film, etc.) and an active material layer formed thereon. The electrode is mentioned.
  • the separator can be appropriately selected from, for example, electrically insulating synthetic resin fibers, glass fibers, nonwoven fabrics such as natural fibers, woven fabrics, or microporous membranes.
  • non-woven fabrics such as polyethylene, polypropylene, polyester, aramid resin, and cellulose resin, and microporous membranes are preferable from the viewpoint of quality stability and the like.
  • Some of these synthetic resin non-woven fabrics and microporous membranes have a function in which the separator melts by heat and blocks between the positive and negative electrodes when the battery abnormally heats up. can do.
  • the thickness of a separator is not specifically limited, The thickness which can hold
  • the separator is made of a material having an air permeability of 0.01 to 500 seconds / cm 3 because strength sufficient to prevent a short circuit inside the battery can be secured while maintaining a low battery internal resistance. preferable.
  • the air permeability is 0.01 sec / cm 3 , 0.03 sec / cm 3 , 100 sec / cm 3 , 200 sec / cm 3 , 300 sec / cm 3 , 400 sec / cm 3 and 500 sec / cm 3.
  • the shape and size of the separator are not particularly limited, and examples thereof include various shapes such as a rectangle such as a square or a rectangle, a polygon, and a circle.
  • an electrolytic solution containing an organic solvent and an electrolyte salt is generally used.
  • the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate, chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, ⁇ - Lactones such as butyrolactone and ⁇ -valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, dioxane, Examples thereof include dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. Two or more of these organic solvents
  • electrolyte salt examples include lithium borofluoride (LiBF 4 ), lithium phosphofluoride (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium imide trifluoromethanesulfonate ( Examples thereof include lithium salts such as LiN (CF 3 SO 2 ) 2 ). Two or more of these electrolyte salts may be mixed. Moreover, it is also possible to use the gel electrolyte which hold
  • the battery may be held in a bag made of an outer can or a resin film.
  • a metal can that is, a material in which iron is nickel-plated. This is because it can be achieved at low cost in order to maintain the strength of the outer can.
  • Other can materials may be, for example, stainless steel, aluminum or the like.
  • the shape of the outer can may be any of a thin flat tube type, a cylindrical type, a rectangular tube type, etc., but in the case of a large lithium secondary battery, it is often used as an assembled battery, so it is a thin flat type or a square type. Is preferred.
  • the positive electrode current collector of FIG. 1 was made of a laminate film having an opening portion made of 6.5 ⁇ m aluminum foil / 30 ⁇ m polyolefin resin layer / 6.5 ⁇ m aluminum foil (planar shape: rectangular having a length of 250 mm and a width of 150 mm). ).
  • Aramid resin nonwoven fabric (Nippon Vilene Co., Ltd., hereinafter referred to as aramid resin layer) having a width of 205 mm, a length of 158 mm, and a thickness of 65 ⁇ m is used as a separator.
  • electrolytic solution a solution obtained by dissolving 1M LiPF 6 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 was used.
  • This electrolytic solution was poured into a can and kept under reduced pressure. Subsequently, after returning to atmospheric pressure, the outer periphery of the lid was sealed to produce a battery.
  • Example 2 As the positive electrode current collector, a laminate film having a structural region shown in FIG. 3 composed of 6.5 ⁇ m aluminum foil / 30 ⁇ m polyolefin resin layer / 6.5 ⁇ m aluminum foil was used (planar shape: rectangle having a length of 250 mm and a width of 150 mm). ).
  • the battery cycle characteristics of the batteries of Examples 1 and 2 of the present invention were excellent. This is because the non-aqueous secondary battery current collector of the present invention improves the adhesion between the current collector and the active material layer compared to the metal foil current collector due to the presence of the exposed region of the resin film. It is presumed that the reduction of the utilization rate due to the peeling of the active material, particularly the reduction of the current collecting performance of the active material can be suppressed over a long period of time.
  • 1 conductive layer
  • 2 resin film
  • 3 opening portion
  • 3a concave portion
  • 3b convex portion
  • a depth of concave portion and height of convex portion
  • b top end of concave portion and bottom end of convex portion
  • Diameter y and d: maximum diameter of the hole

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a current collector for use in a non-aqueous secondary cell, the current collector constituting the cathode and/or anode used in the non-aqueous secondary cell, and having an active material layer arranged thereon. In this current collector for use in a non-aqueous secondary cell, the current collector is constituted by: a resin film; and a conductive layer stacked on at least one face of the resin film, and able to contact the active material layer; the conductive layer being furnished with one or more areas of exposure of the resin film, in which the resin film and the active material layer are able to come into direct contact.

Description

非水系二次電池用の集電体及び電極、並びに非水系二次電池Current collector and electrode for non-aqueous secondary battery, and non-aqueous secondary battery
 本発明は、非水系二次電池用の集電体及び電極、並びに非水系二次電池に関する。更に詳しくは、本発明は、その上に形成される活物質層を有効に使用しうる非水系二次電池用集電体、その集電体を用いた電極、及びその電極を用いた非水系二次電池に関する。 The present invention relates to a current collector and electrodes for a non-aqueous secondary battery, and a non-aqueous secondary battery. More specifically, the present invention relates to a non-aqueous secondary battery current collector that can effectively use an active material layer formed thereon, an electrode using the current collector, and a non-aqueous system using the electrode The present invention relates to a secondary battery.
 正極に金属酸化物、電解質には有機電解液、負極に黒鉛のような炭素材料、正極及び負極間に多孔質セパレータを用いる非水系二次電池の一種であるリチウムイオン二次電池(以下、単に電池ともいう)は、1991年に始めて製品化されて以来、そのエネルギー密度の高さから、小型、軽量化が進む携帯電話のような携帯機器向けの電池として急速に普及してきた。
 また、発電された電気を蓄えるために容量を大きくしたリチウムイオン二次電池(大容量電池)も研究されている。この大容量電池としては、従来の電池を単にスケールアップして製造された例が報告されている。
A lithium oxide secondary battery (hereinafter simply referred to as a non-aqueous secondary battery) using a metal oxide as a positive electrode, an organic electrolyte as an electrolyte, a carbon material such as graphite as a negative electrode, and a porous separator between the positive electrode and the negative electrode Since it was first commercialized in 1991, it has rapidly spread as a battery for portable devices such as mobile phones that are becoming smaller and lighter due to its high energy density.
In addition, lithium ion secondary batteries (large capacity batteries) having a large capacity for storing the generated electricity have been studied. As this large-capacity battery, an example in which a conventional battery is simply scaled up has been reported.
 正極及び負極は、通常、集電体上に、正極活物質又は負極活物質(以下、単に活物質ともいう)を含む活物質層を備えている。この集電体には、通常、金属箔が使用されていた。
 ところで、リチウムイオン二次電池は、電解質として有機電解液を用いている。従って、過酷な使用条件においても破裂や発火等の事故に至らないようにすることが望まれている。金属箔は、このような事故を防止する機能がなかった。そこで、国際公開WO2009/131184号(特許文献1)では、両面に導電層を有するフィルム状又は繊維状の樹脂層を集電体として使用することが提案されている。
 この集電体を含む電池では、異常発熱の発生した場合に、樹脂層の溶断により、正極及び/又は負極が破損し、正極と負極間の短絡を防止する。その結果、電池内部の温度上昇が抑制できるとされている。
The positive electrode and the negative electrode usually include an active material layer containing a positive electrode active material or a negative electrode active material (hereinafter also simply referred to as an active material) on a current collector. A metal foil is usually used for the current collector.
By the way, the lithium ion secondary battery uses an organic electrolyte as an electrolyte. Therefore, it is desired to prevent accidents such as rupture and fire even under severe use conditions. The metal foil did not have a function to prevent such an accident. Therefore, International Publication WO2009 / 131184 (Patent Document 1) proposes to use a film-like or fibrous resin layer having a conductive layer on both sides as a current collector.
In the battery including the current collector, when abnormal heat generation occurs, the positive electrode and / or the negative electrode are damaged by the melting of the resin layer, and a short circuit between the positive electrode and the negative electrode is prevented. As a result, the temperature rise inside the battery can be suppressed.
国際公開WO2009/131184号International Publication WO2009 / 131184
 特許文献1の集電体からは、安全性が向上した電池を得ることができる。ところで、正極又は負極は、集電体上に、正極活物質又は負極活物質を含む活物質層を形成することで得られている。長期信頼性の観点において、集電体から活物質層が剥離し、特に活物質の集電がとりにくくなるために、電池の充放電サイクルを経ると電池容量が低下する課題があった。 From the current collector of Patent Document 1, a battery with improved safety can be obtained. By the way, the positive electrode or the negative electrode is obtained by forming an active material layer containing a positive electrode active material or a negative electrode active material on a current collector. From the viewpoint of long-term reliability, the active material layer peels off from the current collector, and in particular, it becomes difficult to collect the active material. Therefore, there has been a problem that the battery capacity decreases when the battery is charged and discharged.
 かくして本発明によれば、非水系二次電池に使用される正極及び負極の少なくとも一方を構成し、かつ活物質層が載置される非水系二次電池用集電体であり、
 前記集電体が、樹脂フィルムと、前記樹脂フィルムの少なくとも片面に積層され、かつ前記活物質層と接し得る導電層とから構成され、
 前記導電層は、前記樹脂フィルムと前記活物質層とが直接接し得る、前記樹脂フィルムの露出領域を1つ以上備えている非水系二次電池用集電体が提供される。
Thus, according to the present invention, it is a current collector for a non-aqueous secondary battery that constitutes at least one of a positive electrode and a negative electrode used in a non-aqueous secondary battery, and on which an active material layer is placed,
The current collector is composed of a resin film and a conductive layer that is laminated on at least one surface of the resin film and can be in contact with the active material layer,
The conductive layer is provided with a current collector for a non-aqueous secondary battery including at least one exposed region of the resin film in which the resin film and the active material layer can be in direct contact with each other.
 また、本発明によれば、正極及び負極の少なくとも一方の非水系二次電池用電極であり、上記非水系二次電池用集電体と、前記非水系二次電池用集電体の導電層上に形成された活物質層とを備えている非水系二次電池用電極が提供される。
 更に、本発明によれば、正極と、負極と、前記正極と前記負極間に位置するセパレータと、電解質とを含み、前記正極及び前記負極の少なくとも一方が上記非水系二次電池用電極である非水系二次電池が提供される。
Further, according to the present invention, at least one of a positive electrode and a negative electrode is a nonaqueous secondary battery electrode, and the nonaqueous secondary battery current collector and the conductive layer of the nonaqueous secondary battery current collector There is provided an electrode for a nonaqueous secondary battery comprising an active material layer formed thereon.
Furthermore, according to the present invention, it includes a positive electrode, a negative electrode, a separator located between the positive electrode and the negative electrode, and an electrolyte, and at least one of the positive electrode and the negative electrode is the electrode for a non-aqueous secondary battery. A non-aqueous secondary battery is provided.
 本発明の発明者等は、集電体への樹脂フィルムの露出領域の存在が、金属箔の集電体に比べて、集電体と活物質層の密着性をより向上させる効果があることを見出した。
 そのため、本発明によれば、従来よりも活物質の利用率が低下していく度合を低減できる結果、電池サイクル特性を改善できる集電体及び非水系二次電池用電極、電池サイクル特性が改善された非水系二次電池を提供できる。
 更に、集電体に樹脂フィルムを使用しているため、異物により正極と負極とが短絡した際、短絡により発生する熱で、樹脂フィルムが溶断することにより、短絡近傍の抵抗を増大できる。その結果、正極と負極間の短絡を遮断できるので、電池の安全性を向上できる集電体及び非水系二次電池用電極、安全性の向上した非水系二次電池を提供できる。
The inventors of the present invention have the effect that the presence of the exposed region of the resin film on the current collector has the effect of further improving the adhesion between the current collector and the active material layer compared to the current collector of the metal foil. I found.
Therefore, according to the present invention, the degree of decrease in the utilization factor of the active material can be reduced as compared with the conventional case. As a result, the current collector and the non-aqueous secondary battery electrode that can improve the battery cycle characteristics, and the battery cycle characteristics are improved. A non-aqueous secondary battery can be provided.
Furthermore, since the resin film is used for the current collector, when the positive electrode and the negative electrode are short-circuited by a foreign object, the resistance in the vicinity of the short-circuit can be increased by fusing the resin film with heat generated by the short-circuit. As a result, since a short circuit between the positive electrode and the negative electrode can be cut off, it is possible to provide a current collector that can improve battery safety, an electrode for a non-aqueous secondary battery, and a non-aqueous secondary battery with improved safety.
 非水系二次電池用集電体が、活物質層を載置させ得る領域に、開口部分を1つ以上有する場合、集電体と活物質層の密着性をより向上できるので、電池サイクル特性をより改善し得る集電体を提供できる。
 非水系二次電池用集電体が、活物質層を載置させ得る領域に、最大径1~1000μmの開口部分を1つ以上有する場合、集電体と活物質層の密着性をより向上できるので、電池サイクル特性をより改善し得る集電体を提供できる。
 開口部分が、導電層の平面視における面積の0.5~50.0%の面積(但し、開口部分が複数存在する場合は、その合計面積)を有する場合、集電体と活物質層の密着性をより向上できるので、電池サイクル特性をより改善し得る集電体を提供できる。
When the current collector for the non-aqueous secondary battery has one or more openings in the region where the active material layer can be placed, the adhesion between the current collector and the active material layer can be further improved, so that the battery cycle characteristics Can be provided.
When the non-aqueous secondary battery current collector has one or more openings with a maximum diameter of 1 to 1000 μm in the region where the active material layer can be placed, the adhesion between the current collector and the active material layer is further improved. Therefore, it is possible to provide a current collector that can further improve battery cycle characteristics.
When the opening portion has an area of 0.5 to 50.0% of the area of the conductive layer in plan view (however, when there are a plurality of opening portions, the total area), the current collector and the active material layer Since the adhesion can be further improved, a current collector that can further improve the battery cycle characteristics can be provided.
本発明による実施例1の集電体の概略断面図及び概略平面図である。It is the schematic sectional drawing and schematic plan view of the electrical power collector of Example 1 by this invention. 本発明による実施例2の集電体の概略断面図及び概略平面図である。It is the schematic sectional drawing and schematic plan view of the electrical power collector of Example 2 by this invention. 本発明の集電体の概略断面図及び概略平面図である。It is the schematic sectional drawing and schematic plan view of the electrical power collector of this invention. 前記実施例1、前記実施例2及び前記比較例1の電池サイクル特性を示すグラフである。4 is a graph showing battery cycle characteristics of Example 1, Example 2, and Comparative Example 1;
 (1)非水系二次電池用集電体
 本発明の非水系二次電池用集電体(以下、単に集電体という)は、正極及び負極のどちらか一方又は両方に使用できる。また、本発明の集電体を使用可能である非水系二次電池としては、リチウムイオン二次電池、リチウム金属二次電池等が挙げられる。この内、本発明の集電体を正極及び負極の両方に使用可能なリチウムイオン二次電池が好ましい。
 本発明の集電体は、樹脂フィルムと、その少なくとも片面に積層された導電層とから構成される。導電層は、樹脂フィルムの片面のみに積層されていてもよく、両面に積層されていてもよい。この導電層は、電極(正極及び/又は負極)中において、その上に活物質層が載置されて、活物質層と接する層である。
(1) Current collector for non-aqueous secondary battery The current collector for non-aqueous secondary battery of the present invention (hereinafter simply referred to as current collector) can be used for either or both of the positive electrode and the negative electrode. Examples of the non-aqueous secondary battery that can use the current collector of the present invention include a lithium ion secondary battery and a lithium metal secondary battery. Among these, a lithium ion secondary battery that can use the current collector of the present invention for both the positive electrode and the negative electrode is preferable.
The current collector of the present invention comprises a resin film and a conductive layer laminated on at least one surface thereof. The conductive layer may be laminated only on one side of the resin film, or may be laminated on both sides. This conductive layer is a layer in which an active material layer is placed on an electrode (positive electrode and / or negative electrode) and is in contact with the active material layer.
 集電体の厚さは、0.01~0.1mmの範囲であることが好ましい。厚さが0.01mmより薄い場合、活物質層の担持性を十分確保できないことがある。0.1mmより厚い場合、二次電池に占める集電体の体積割合が大きくなるため、電池容量を大きくできないことがある。この厚さは、0.01mm、0.02mm、0.03mm、0.05mm、0.08mm及び0.1mmをとり得る。より好ましい厚さは、0.02~0.08mmの範囲である。
 集電体は、十分な集電性を確保する観点から、0.1Ω/□以下のシート抵抗を有することが好ましい。このシート抵抗は、0.01Ω/□、0.03Ω/□、0.05Ω/□、0.08Ω/□及び0.1Ω/□をとり得る。より好ましいシート抵抗は、0.05Ω/□以下である。
The thickness of the current collector is preferably in the range of 0.01 to 0.1 mm. When the thickness is less than 0.01 mm, the supportability of the active material layer may not be ensured sufficiently. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased. This thickness can be 0.01 mm, 0.02 mm, 0.03 mm, 0.05 mm, 0.08 mm and 0.1 mm. A more preferred thickness is in the range of 0.02 to 0.08 mm.
The current collector preferably has a sheet resistance of 0.1Ω / □ or less from the viewpoint of securing sufficient current collecting performance. The sheet resistance can be 0.01Ω / □, 0.03Ω / □, 0.05Ω / □, 0.08Ω / □, and 0.1Ω / □. A more preferable sheet resistance is 0.05Ω / □ or less.
  (a)樹脂フィルム
 樹脂フィルムは、電池反応に影響を与えにくい樹脂材料からなりさえすれば、特に限定されない。電池に安全性を付与する観点から、温度上昇時において融解する樹脂材料であることが好ましい。そのような樹脂材料として、例えば、熱変形温度が200℃以下である、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン樹脂、ポリスチレン(PS)等の樹脂フィルム等が挙げられる。
 樹脂フィルムには、一軸延伸、二軸延伸、無延伸等のいずれかの方法で製造したフィルムを使用できる。
(A) Resin film The resin film is not particularly limited as long as it is made of a resin material that hardly affects the battery reaction. From the viewpoint of imparting safety to the battery, a resin material that melts when the temperature rises is preferable. Examples of such a resin material include polyolefin resins such as polyethylene (PE) and polypropylene (PP) having a heat distortion temperature of 200 ° C. or less, and resin films such as polystyrene (PS).
As the resin film, a film produced by any method such as uniaxial stretching, biaxial stretching, and non-stretching can be used.
 樹脂フィルムの厚さは、上記厚さの集電体を得るために適宜調整できる。例えば、厚さは、0.01~0.1mmの範囲であることが好ましい。厚さが0.01mmより薄い場合、活物質層の担持性を十分確保できないことがある。0.1mmより厚い場合、二次電池に占める集電体の体積割合が大きくなるため、電池容量を大きくできないことがある。この厚さは、0.01mm、0.015mm、0.03mm、0.05mm、0.08mm及び0.1mmをとり得る。より好ましい厚さは、0.015~0.05mmの範囲である。 The thickness of the resin film can be appropriately adjusted in order to obtain a current collector having the above thickness. For example, the thickness is preferably in the range of 0.01 to 0.1 mm. When the thickness is less than 0.01 mm, the supportability of the active material layer may not be ensured sufficiently. If it is thicker than 0.1 mm, the volume ratio of the current collector to the secondary battery becomes large, so the battery capacity may not be increased. This thickness can be 0.01 mm, 0.015 mm, 0.03 mm, 0.05 mm, 0.08 mm and 0.1 mm. A more preferred thickness is in the range of 0.015 to 0.05 mm.
  (b)導電層
 正極側の導電層には、アルミニウム、チタン、ニッケル等からなる層を用いることが好ましく、負極側の導電層は、銅、ニッケル等からなる層を用いることが好ましい。
 導電層の厚さは、導電性を確保できれば特に限定されないが、通常0.002~0.01mmの範囲である。この厚さは、0.002mm、0.004mm、0.0065mm、0.008mm及び0.01mmをとり得る。
 導電層の形成方法としては、特に限定されず、蒸着、スパッタリング、電解めっき、無電解めっき、貼り合わせ等の方法、及びこれらの方法の組み合わせからなる方法が挙げられる。
(B) Conductive layer The conductive layer on the positive electrode side is preferably a layer made of aluminum, titanium, nickel or the like, and the negative electrode side conductive layer is preferably a layer made of copper, nickel or the like.
The thickness of the conductive layer is not particularly limited as long as conductivity can be ensured, but is usually in the range of 0.002 to 0.01 mm. This thickness can be 0.002 mm, 0.004 mm, 0.0065 mm, 0.008 mm and 0.01 mm.
The method for forming the conductive layer is not particularly limited, and examples thereof include methods such as vapor deposition, sputtering, electrolytic plating, electroless plating, bonding, and combinations of these methods.
  (c)樹脂フィルムの露出領域
 本発明の集電体は、樹脂フィルムの露出領域が、集電体上に載置される活物質層と接する。これは、集電体を構成する導電層と活物質層との接着性より、集電体を構成する樹脂フィルムと活物質層との接着性が高いことを利用するためである。言い換えると、導電層を構成する金属よりも、樹脂フィルムを構成する樹脂の方が、活物質層に含まれる有機材料との接着性が高いことを利用している。特に集電体の樹脂層、および活物質層中の有機材料の構成が、同成分の樹脂を含むことがより好ましい。
(C) Exposed region of resin film In the current collector of the present invention, the exposed region of the resin film is in contact with the active material layer placed on the current collector. This is because the adhesiveness between the resin film constituting the current collector and the active material layer is higher than the adhesiveness between the conductive layer constituting the current collector and the active material layer. In other words, the resin constituting the resin film has higher adhesiveness with the organic material contained in the active material layer than the metal constituting the conductive layer. In particular, it is more preferable that the resin layer of the current collector and the organic material in the active material layer contain the same component resin.
 樹脂フィルムの露出領域は、その領域において、載置される活物質層と接することができさえすれば、集電体のどのような部分に形成されていてもよい。例えば、図1(a)及び(b)と図2(a)及び(b)の概略断面図及び概略平面図に示すように、集電体の活物質層を載置させ得る領域に、開口部分を形成することで、開口部分を構成する貫通孔の側面を露出領域とすることができる。更に、導電層のみを除去して孔を貫通させないことで、樹脂フィルムの露出領域を作製してもよい。そのような集電体の形態として、図3(a)及び(b)の概略断面図及び概略平面図に示す形態が挙げられる。図3(a)及び(b)の形態は、予め開口部分が形成された導電層を樹脂フィルムに積層する方法、開口部分に対応する箇所が開口したマスクを用いて導電層をエッチングする方法、導電層と樹脂フィルム層からなるラミネートフィルムを延伸させる方法等により形成できる。 The exposed region of the resin film may be formed in any part of the current collector as long as it can contact the active material layer to be placed in the region. For example, as shown in the schematic cross-sectional views and the schematic plan views of FIGS. 1A and 1B and FIGS. 2A and 2B, an opening is formed in a region where the active material layer of the current collector can be placed. By forming the portion, the side surface of the through hole constituting the opening portion can be an exposed region. Furthermore, you may produce the exposed area | region of a resin film by removing only a conductive layer and not penetrating a hole. Examples of the form of such a current collector include the forms shown in the schematic cross-sectional views and schematic plan views of FIGS. 3 (a) and 3 (b) are a method of laminating a conductive layer having an opening formed in advance on a resin film, a method of etching a conductive layer using a mask having an opening corresponding to the opening, It can be formed by a method of stretching a laminate film composed of a conductive layer and a resin film layer.
  図1(a)及び(b)と図2(a)及び(b)中、1は導電層、2は樹脂フィルム、3は開口部分、3aは凹部、3bは凸部、aは凹部の深さ及び凸部の高さ、bは凹部の最上端及び凸部の最下端の直径、y及びdは孔の最大径を意味する。
 開口部分の平面形状は、特に限定されず、円形、楕円形、三角形、四角形、五角形、六角形、七角形以上の多角形、星型、不定形等が挙げられる。この内、形成が容易である観点から、円形及び四角形が好ましい。
1A and 1B and FIGS. 2A and 2B, 1 is a conductive layer, 2 is a resin film, 3 is an opening, 3a is a recess, 3b is a protrusion, and a is a depth of the recess. The height and the height of the convex part, b means the diameter of the uppermost end of the concave part and the lowest part of the convex part, and y and d mean the maximum diameter of the hole.
The planar shape of the opening is not particularly limited, and examples thereof include a circle, an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a polygon that is heptagon or more, a star, and an indefinite shape. Among these, from the viewpoint of easy formation, a circle and a quadrangle are preferable.
 開口部分は、1~1000μmの最大径を有していることが好ましい。最大径が1μm未満の場合、開口部分での露出領域による活物質層の密着性の向上効果が低くなることがある。1000μmより大きい場合、導電層が活物質層と接する面積が小さくなるため、集電効率が低下することがある。この最大径は、1μm、5μm、8μm、10μm、20μm、30μm、50μm、200μm、300μm、400μm、600μm、800μm及び1000μmをとり得る。より好ましい最大径は、5~300μmである。なお、最大長さは、平面形状が円形の場合、直径に、四角形の場合、対角線の長さに対応する。 The opening portion preferably has a maximum diameter of 1 to 1000 μm. When the maximum diameter is less than 1 μm, the effect of improving the adhesion of the active material layer due to the exposed region at the opening may be reduced. When it is larger than 1000 μm, the area where the conductive layer is in contact with the active material layer becomes small, and thus the current collection efficiency may be lowered. The maximum diameter can be 1 μm, 5 μm, 8 μm, 10 μm, 20 μm, 30 μm, 50 μm, 200 μm, 300 μm, 400 μm, 600 μm, 800 μm and 1000 μm. A more preferable maximum diameter is 5 to 300 μm. The maximum length corresponds to the diameter when the planar shape is circular, and the diagonal length when the planar shape is square.
 更に、開口部分の面積(但し、前記開口部分が複数存在する場合は、その合計面積)は、集電体の平面視において、導電層の面積の0.5~50%を有することが好ましい。0.5%未満の場合、開口部分での露出領域による活物質層の密着性の向上効果が低くなることがある。50%より多い場合、導電層が活物質層と接する面積が小さくなるため、集電効率が低下することがある。この面積は、0.5%、1%、5%、10%、15%、20%、25%、30%、35%、40%、45%及び50%をとり得る。より好ましい面積比は、1.0~30.0%である。
 図1~3では、露出領域が複数設けられているが、その数は特に限定されず、1個でもよく、2個以上でもよい。例えば、平面視における集電体の単位面積あたり0.1~20個/mm2とすることができる。この数は、0.1個/mm2、0.5個/mm2、1個/mm2、2個/mm2、5個/mm2、10個/mm2、15個/mm2及び20個/mm2をとり得る。
Furthermore, the area of the opening portion (however, when there are a plurality of the opening portions, the total area thereof) is preferably 0.5 to 50% of the area of the conductive layer in a plan view of the current collector. If it is less than 0.5%, the effect of improving the adhesion of the active material layer due to the exposed region at the opening may be reduced. If it exceeds 50%, the area where the conductive layer is in contact with the active material layer becomes small, and the current collection efficiency may be reduced. This area can take 0.5%, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% and 50%. A more preferable area ratio is 1.0 to 30.0%.
In FIGS. 1 to 3, a plurality of exposed regions are provided, but the number is not particularly limited, and may be one or two or more. For example, it may be 0.1 to 20 / mm 2 per unit area of the current collector in plan view. This number is 0.1 / mm 2 , 0.5 / mm 2 , 1 / mm 2 , 2 / mm 2 , 5 / mm 2 , 10 / mm 2 , 15 / mm 2 and It can take 20 pieces / mm 2 .
 また、露出領域の面積(但し、複数存在する場合は、その合計面積)は、導電層の平面視における面積の0.1~30.0%であることが好ましい。0.1%未満の場合、露出領域による活物質層の密着性の向上効果が低くなることがある。30.0%より多い場合、導電層が活物質層と接する面積が小さくなるため、集電効率が低下することがある。この面積は、0.1%、1%、2%、0.5%、5%、10%、15%、20%、25%及び30%をとり得る。より好ましい面積比は、0.5~10.0%である。 Further, the area of the exposed region (however, when there are a plurality of exposed areas) is preferably 0.1 to 30.0% of the area of the conductive layer in plan view. If it is less than 0.1%, the effect of improving the adhesion of the active material layer due to the exposed region may be reduced. When the content is more than 30.0%, the area where the conductive layer is in contact with the active material layer is small, and thus current collection efficiency may be reduced. This area can be 0.1%, 1%, 2%, 0.5%, 5%, 10%, 15%, 20%, 25% and 30%. A more preferable area ratio is 0.5 to 10.0%.
 図2(a)及び(b)では、集電体は3次元構造領域を有している。3次元構造領域は、集電体の平面に垂直な方向に、凹部及び/又は凸部が1つ以上形成されている領域を意味している。集電体は、凹部のみ備えていてもよく、凸部のみ備えていてもよく、凹部と凸部とを両方備えていてもよい。更に、両方備える場合、凹部と凸部とを交互に並べてもよく、凹部のみの領域と凸部のみの領域とを並べてもよい。
 3次元構造領域は、それを含む側の集電体の平面の半分以上を占めることが好ましい。半分以上を占めることにより、その上に形成される活物質層の接着性を向上できる。3次元構造領域が集電体の平面を占める割合の上限は、全面である。但し、集電体は、電気を取り出すための端子がいずれかの端部に設けられるため、端部を設ける部分は、その端部から2~20mmの範囲の幅で平坦になっていることが好ましい。この幅は、2mm、6mm、10mm、14mm、18mm及び20mmをとり得る。従って、充放電反応の効率と、端子を形成する領域の必要性との観点から、1.0~10.0%の範囲で3次元構造領域が集電体の平面を占めていることが好ましい。この範囲は、1%、3%、5%、7%及び10%をとり得る。
2A and 2B, the current collector has a three-dimensional structure region. The three-dimensional structure region means a region where one or more concave portions and / or convex portions are formed in a direction perpendicular to the plane of the current collector. The current collector may include only a concave portion, may include only a convex portion, or may include both a concave portion and a convex portion. Furthermore, when providing both, a recessed part and a convex part may be arranged alternately, and the area | region only of a recessed part and the area | region only of a convex part may be arranged.
The three-dimensional structure region preferably occupies half or more of the plane of the current collector including the three-dimensional structure region. By occupying more than half, the adhesiveness of the active material layer formed thereon can be improved. The upper limit of the ratio of the three-dimensional structure region occupying the plane of the current collector is the entire surface. However, since the current collector is provided with a terminal for taking out electricity at either end, the portion where the end is provided should be flat with a width in the range of 2 to 20 mm from the end. preferable. This width can be 2 mm, 6 mm, 10 mm, 14 mm, 18 mm and 20 mm. Therefore, it is preferable that the three-dimensional structure region occupies the plane of the current collector in the range of 1.0 to 10.0% from the viewpoint of the efficiency of the charge / discharge reaction and the necessity of the region for forming the terminal. . This range can take 1%, 3%, 5%, 7% and 10%.
 3次元構造領域中の凹部及び凸部の数(凹部と凸部とが両方形成されている場合は、合計数)は、本発明の効果を阻害しない限り、特に限定されない。例えば、3次元構造領域の単位面積当たり、0.1個/mm2以上とすることができる。個数の上限は、3次元構造領域中に凹部及び凸部を形成可能な数であり、例えば、20個/mm2以下である。より好ましい個数は、0.5~10個/mm2の範囲である。この個数は、0.5個/mm2、1個/mm2、2個/mm2、3個/mm2、6個/mm2、8個/mm2及び10個/mm2をとり得る。尚、図2(a)及び(b)では、凹部の底部及び凸部の頂点に集電体の貫通孔を設けることで、樹脂フィルムの露出領域を形成しているが、全ての凹部及び凸部に貫通孔を設けなくてもよい。
 凹部及び凸部の平面形状(平面は、樹脂フィルムの導電層形成面を意味する)は、本発明の効果を阻害しない限り、特に限定されない。例えば、円形(図2(b)参照)、楕円形、三角形、四角形、五角形、六角形、七角以上の多角形、星型、不定形等が挙げられる。この内、形成が容易である観点から、円形及び四角形が好ましい。
The number of concave portions and convex portions in the three-dimensional structure region (the total number when both concave portions and convex portions are formed) is not particularly limited as long as the effect of the present invention is not impaired. For example, it can be 0.1 / mm 2 or more per unit area of the three-dimensional structure region. The upper limit of the number is the number that can form a concave portion and a convex portion in the three-dimensional structure region, and is, for example, 20 pieces / mm 2 or less. A more preferable number is in the range of 0.5 to 10 pieces / mm 2 . This number can be 0.5 / mm 2 , 1 / mm 2 , 2 / mm 2 , 3 / mm 2 , 6 / mm 2 , 8 / mm 2, and 10 / mm 2. . In FIGS. 2A and 2B, the exposed region of the resin film is formed by providing a through-hole of the current collector at the bottom of the concave portion and the apex of the convex portion, but all the concave and convex portions are formed. It is not necessary to provide a through hole in the part.
The planar shape of the concave and convex portions (the plane means the conductive layer forming surface of the resin film) is not particularly limited as long as the effect of the present invention is not impaired. Examples thereof include a circle (see FIG. 2B), an ellipse, a triangle, a quadrangle, a pentagon, a hexagon, a polygon with a heptagon or more, a star, and an indefinite shape. Among these, a circular shape and a quadrangular shape are preferable from the viewpoint of easy formation.
 凹部の最上端の最大長さ及び凸部の最下端の最大長さは、小さすぎると導電性を向上する効果が小さくなり、大きすぎると活物質層を均一に形成し難くなる。従って、1~1000μmの範囲であることが好ましい。この最大長さは、1μm、5μm、10μm、20μm、50μm、100μm、200μm、400μm、500μm、600μm、800μm及び1000μmをとり得る。より好ましい最大長さは、5~500μmの範囲である。なお、最大長さは、例えば、平面形状が円形の場合、直径に、四角形の場合、対角線の長さに対応する。
 凹部及び凸部の断面形状は、本発明の効果を阻害しない限り、特に限定されない。例えば、三角形(図2(a)参照)、四角形、部分円等が挙げられる。ここで、凹部及び凸部が部分円である場合、凹部と凸部とを交互に並べることで、波型の断面形状とすることも可能である。
If the maximum length of the uppermost end of the concave portion and the maximum length of the lowermost end of the convex portion are too small, the effect of improving the conductivity will be small, and if it is too large, it will be difficult to form the active material layer uniformly. Therefore, it is preferably in the range of 1 to 1000 μm. This maximum length can be 1 μm, 5 μm, 10 μm, 20 μm, 50 μm, 100 μm, 200 μm, 400 μm, 500 μm, 600 μm, 800 μm and 1000 μm. A more preferred maximum length is in the range of 5 to 500 μm. The maximum length corresponds to, for example, the diameter when the planar shape is circular, and the length of the diagonal line when the planar shape is square.
The cross-sectional shapes of the concave portion and the convex portion are not particularly limited as long as the effects of the present invention are not impaired. For example, a triangle (see FIG. 2A), a quadrangle, a partial circle, and the like can be given. Here, when the concave portion and the convex portion are partial circles, a corrugated cross-sectional shape can be obtained by alternately arranging the concave portion and the convex portion.
 凹部の深さ及び凸部の高さは、小さすぎると密着性を向上する効果が小さくなり、大きすぎると活物質層を均一に形成し難くなる。従って、50~1000μmの範囲であることが好ましい。この高さは、50μm、100μm、200μm、400μm、500μm、600μm、800μm及び1000μmをとり得る。より好ましい高さは、100~500μmの範囲である。
 3次元構造領域は、例えば、雄型と雌型を用いてプレスする方法、パンチング加工方法、ラス加工方法等により形成できる。なお、3次元構造領域の形成は、導電層を形成した後でも、形成する前でもよい。
If the depth of the concave portion and the height of the convex portion are too small, the effect of improving the adhesiveness is small, and if it is too large, it is difficult to form the active material layer uniformly. Accordingly, the range of 50 to 1000 μm is preferable. This height can be 50 μm, 100 μm, 200 μm, 400 μm, 500 μm, 600 μm, 800 μm and 1000 μm. A more preferred height is in the range of 100 to 500 μm.
The three-dimensional structure region can be formed by, for example, a pressing method using a male mold and a female mold, a punching processing method, a lath processing method, or the like. Note that the three-dimensional structure region may be formed either after the conductive layer is formed or before the formation.
  (2)非水系二次電池用電極
 非水系二次電池用電極(以下、単に電極ともいう)は、上記集電体と、集電体上に形成された活物質層とを備えている。ここで、電極は、正極、負極、又は正極及び負極を意味する。また、活物質層は、正極の場合、正極活物質層であり、負極の場合、負極活物質層である。
(2) Electrode for non-aqueous secondary battery An electrode for non-aqueous secondary battery (hereinafter also simply referred to as electrode) includes the current collector and an active material layer formed on the current collector. Here, an electrode means a positive electrode, a negative electrode, or a positive electrode and a negative electrode. The active material layer is a positive electrode active material layer in the case of a positive electrode, and is a negative electrode active material layer in the case of a negative electrode.
  (a)正極
   (i)正極活物質層
 正極活物質層に含まれる正極活物質としては、リチウムを含有した酸化物が挙げられる。具体的には、LiCoO2、LiNiO2、LiFeO2、LiMnO2、LiMn24、及びこれら酸化物中の遷移金属の一部を他の金属元素(Co、Ni、Fe、Mn、Al、Mg等)で置換した物、LiMPO4(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素)で表されるオリビン構造を有する酸化物等が挙げられる。中でもMn及び/又はFeを用いた正極活物質がコストの観点から好ましい。
(A) Positive electrode (i) Positive electrode active material layer As a positive electrode active material contained in a positive electrode active material layer, the oxide containing lithium is mentioned. Specifically, LiCoO 2 , LiNiO 2 , LiFeO 2 , LiMnO 2 , LiMn 2 O 4 , and a part of transition metals in these oxides are replaced with other metal elements (Co, Ni, Fe, Mn, Al, Mg Etc.), oxides having an olivine structure represented by LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe). Among these, a positive electrode active material using Mn and / or Fe is preferable from the viewpoint of cost.
 正極活物質として、特に安全性、及び充電電圧の観点から、オリビン型リン酸鉄リチウム(例:LiFePO4)が挙げられる。通常、温度上昇に伴い、正極活物質が酸素を放出し、電解液を燃焼させることによって更に激しく発熱する。しかし、LiFePO4は全ての酸素が強固な共有結合によって燐と結合しており、温度上昇によって酸素の放出が非常に起こりにくく、安全性の観点から好ましい。また、燐を含んでいるため、消炎作用も期待できる。更に、オリビン型リン酸鉄リチウムは、その充電電圧が3.5V程度であり、3.8Vでほぼ充電が完了するため、電解液の分解を引き起こす電圧までは少し余裕がある。従って、規定する負荷特性に電極の分極があったとしても、充電電圧を高くすることにより、充電が可能となり更に好ましい。 Examples of the positive electrode active material include olivine type lithium iron phosphate (eg, LiFePO 4 ) from the viewpoints of safety and charging voltage. Normally, as the temperature rises, the positive electrode active material releases oxygen and burns the electrolyte solution, generating more intense heat. However, LiFePO 4 is preferable from the viewpoint of safety because all oxygen is bonded to phosphorus by a strong covalent bond, and the release of oxygen hardly occurs due to temperature rise. In addition, since it contains phosphorus, it can be expected to have an anti-inflammatory effect. Furthermore, since the charging voltage of olivine type lithium iron phosphate is about 3.5V, and charging is almost completed at 3.8V, there is a little margin to the voltage that causes the decomposition of the electrolyte. Therefore, even if there is electrode polarization in the specified load characteristics, charging is possible by increasing the charging voltage, which is more preferable.
 充電電圧が4V以上に達する正極活物質を用いた場合には、それ以上に充電電圧を上げると電解液の分解が起こりやすくなる。そのため、上記のように分極が大きい場合に、充電電圧を上げて充電すると、サイクル特性に影響を及ぼす場合があり、好ましくない。また、オリビン型リン酸鉄リチウムは充電末に電圧が急激に上昇するため、満充電状態の検出が非常に行いやすく、組電池にした場合にも電圧検出の精度があまり要求されることがないという利点も有する。 When using a positive electrode active material whose charging voltage reaches 4 V or higher, the electrolytic solution is likely to be decomposed when the charging voltage is further increased. For this reason, when the polarization is large as described above, if the charging voltage is increased and charging is performed, cycle characteristics may be affected, which is not preferable. In addition, since the voltage of olivine type lithium iron phosphate increases rapidly at the end of charging, it is very easy to detect the fully charged state, and even when an assembled battery is used, the accuracy of voltage detection is not so required. It also has the advantage of.
   (ii)その他の添加物
 正極活物質層には、層として維持するために、正極活物質以外に、結着材が含まれていてもよい。
 結着材としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリビニルピリジン、ポリテトラフルオロエチレン等のフッ素系ポリマー、ポリエチレン、ポリプロピレン等のポリオレフィン系ポリマー、スチレンブタジエンゴム等が挙げられる。特に、この結着材の樹脂と、集電体に用いる樹脂層が同成分を有することが、より電池の長期サイクル性によい傾向を与えるために好ましい。
(Ii) Other Additives In order to maintain the positive electrode active material layer as a layer, a binder may be included in addition to the positive electrode active material.
Examples of the binder include fluorine polymers such as polyvinylidene fluoride (PVDF), polyvinyl pyridine, and polytetrafluoroethylene, polyolefin polymers such as polyethylene and polypropylene, and styrene butadiene rubber. In particular, it is preferable that the resin of the binder and the resin layer used for the current collector have the same component in order to give a better tendency to the long-term cycle performance of the battery.
 正極活物質層には、他に導電材や増粘材が含まれていてもよい。
 導電材としては、化学的に安定なものを使用することが好ましい。具体的には、カーボンブラック、アセチレンブラック、ケッチェンブラック、グラファイト(天然黒鉛、人造黒鉛)、炭素繊維等の炭素質材料や導電性金属酸化物等が挙げられる。
 増粘材としては、例えば、ポリエチレングリコール類、セルロース類、ポリアクリルアミド類、ポリN-ビニルアミド類、ポリN-ビニルピロリドン類等が挙げられる。
In addition, the positive electrode active material layer may contain a conductive material or a thickener.
As the conductive material, it is preferable to use a chemically stable material. Specific examples include carbonaceous materials such as carbon black, acetylene black, ketjen black, graphite (natural graphite, artificial graphite), carbon fiber, and conductive metal oxides.
Examples of the thickener include polyethylene glycols, celluloses, polyacrylamides, poly N-vinyl amides, poly N-vinyl pyrrolidones and the like.
 結着材、増粘材、導電材の混合比は、混合する結着材、増粘材、導電材の種類により異なるが、正極活物質100重量部に対して、結着材は1~50重量部程度、増粘材は0.1~20重量部程度、導電材は0.1~50重量部程度である。結着材が、1重量部程度より少ないと結着能力が不十分となることがあり、50重量部程度より多いと正極内に含まれる活物質量が減り、正極の抵抗又は分極等が大きくなって放電容量が小さくなることがある。また、増粘材が、0.1重量部程度より少ないと増粘能力が不十分となることがあり、20重量部程度より多いと正極内に含まれる活物質量が減り、正極の抵抗又は分極等が大きくなって放電容量が小さくなることがある。更に、導電材が0.1重量部程度より少ないと、正極の抵抗又は分極等が大きくなり放電容量が小さくなることがあり、50重量部程度より多いと正極内に含まれる活物質量が減ることにより正極としての放電容量が小さくなることがある。
 結着材量は、1重量部、2重量部、10重量部、20重量部、30重量部、40重量部及び50重量部をとり得、増粘材量は、0.1重量部、2重量部、5重量部、8重量部、10重量部、13重量部、18重量部及び20重量部をとり得、導電材量は、0.1重量部、6重量部、10重量部、20重量部、30重量部、40重量部及び50重量部をとり得る。
The mixing ratio of the binder, the thickener, and the conductive material varies depending on the types of the binder, the thickener, and the conductive material to be mixed, but the binder is 1 to 50 with respect to 100 parts by weight of the positive electrode active material. About 0.1 parts by weight, thickener is about 0.1-20 parts by weight, and conductive material is about 0.1-50 parts by weight. When the amount of the binder is less than about 1 part by weight, the binding ability may be insufficient. When the amount of the binder is more than about 50 parts by weight, the amount of active material contained in the positive electrode is reduced, and the resistance or polarization of the positive electrode is increased. As a result, the discharge capacity may be reduced. Further, if the thickener is less than about 0.1 parts by weight, the thickening ability may be insufficient, and if it is more than about 20 parts by weight, the amount of the active material contained in the positive electrode decreases, and the positive electrode resistance or Polarization and the like may increase and the discharge capacity may decrease. Furthermore, if the conductive material is less than about 0.1 parts by weight, the resistance or polarization of the positive electrode may increase and the discharge capacity may decrease, and if it exceeds about 50 parts by weight, the amount of active material contained in the positive electrode will decrease. As a result, the discharge capacity as the positive electrode may be reduced.
The amount of the binder can be 1 part by weight, 2 parts by weight, 10 parts by weight, 20 parts by weight, 30 parts by weight, 40 parts by weight, and 50 parts by weight. 5 parts by weight, 8 parts by weight, 10 parts by weight, 13 parts by weight, 18 parts by weight and 20 parts by weight, and the amount of the conductive material is 0.1 parts by weight, 6 parts by weight, 10 parts by weight, 20 parts by weight. Part, 30 parts, 40 parts and 50 parts by weight can be taken.
  (b)負極
   (i)負極活物質層
 負極活物質層に含まれる負極活物質としては、天然黒鉛、粒子状(鱗片状乃至塊状、繊維状、ウイスカー状、球状、破砕状等)の人造黒鉛、あるいは、メソカーボンマイクロビーズ、メソフェーズピッチ粉末、等方性ピッチ粉末等の黒鉛化品等に代表される高結晶性黒鉛、樹脂焼成炭等の難黒鉛化炭素等が挙げられる。これら負極活物質は、1種のみからなっていてもよく、2種以上混合物からなっていてもよい。また、錫の酸化物、シリコン系の負極活物質等の容量の大きい合金系の材料も使用可能である。
(B) Negative electrode (i) Negative electrode active material layer As the negative electrode active material contained in the negative electrode active material layer, natural graphite, particulate (scalar or lump, fiber, whisker, spherical, crushed, etc.) artificial graphite Or highly crystalline graphite typified by graphitized products such as mesocarbon microbeads, mesophase pitch powder and isotropic pitch powder, and non-graphitizable carbon such as resin-fired charcoal. These negative electrode active materials may consist of only 1 type, and may consist of 2 or more types of mixtures. Also, alloy materials having a large capacity such as tin oxide and silicon-based negative electrode active materials can be used.
   (ii)その他の添加物
 負極活物質層には、正極活物質層と同様に、結着材、導電材、増粘材等の他の添加物が含まれていてもよい。これら他の添加物は、正極活物質層の欄に記載した物をいずれも使用できる。また、正極活物質層と同様に、結着材の樹脂と、集電体に用いる樹脂層が同成分を有することが、より電池の長期信頼性によい傾向が得られるために好ましい。
(Ii) Other Additives The negative electrode active material layer may contain other additives such as a binder, a conductive material, and a thickener as in the positive electrode active material layer. As these other additives, any of those described in the column of the positive electrode active material layer can be used. Further, similarly to the positive electrode active material layer, it is preferable that the resin of the binder and the resin layer used for the current collector have the same components because a tendency toward better long-term reliability of the battery can be obtained.
  (c)形成方法
 活物質層は、例えば、活物質及び任意にその他の添加物を含むペーストを集電体上に塗布し、得られた塗膜を乾燥させる方法のような、公知の方法により形成できる。また、塗布と乾燥を繰り返すことにより、厚い活物質層を形成することも可能である。更に、乾燥後に、電極の加工性の向上のためにプレスしてもよい。
 活物質層は、集電体全面を覆っていてもよく、端子を形成する部位を除く集電体領域を覆っていてもよい。また、集電体の両面に活物質層を形成してもよい。更に、活物質層を一面に備えた集電体を2枚形成し、2枚の集電体の活物質層未形成の他面同士を貼り合わせることで、両面に活物質層を備えた電極を得てもよい。
(C) Formation method The active material layer is formed by a known method such as, for example, a method of applying a paste containing an active material and optionally other additives onto a current collector and drying the obtained coating film. Can be formed. Further, it is possible to form a thick active material layer by repeating application and drying. Further, after drying, the electrode may be pressed to improve the workability of the electrode.
The active material layer may cover the entire surface of the current collector, or may cover the current collector region excluding the portion where the terminal is formed. Further, an active material layer may be formed on both sides of the current collector. Furthermore, two current collectors having an active material layer on one surface are formed, and the other surfaces of the two current collectors on which the active material layer is not formed are bonded to each other, whereby an electrode having an active material layer on both surfaces You may get
 (3)非水系二次電池
 非水系二次電池は、正極、負極、及び正極と負極間に位置するセパレータと、電解質とを含む。
  (a)電極
 正極及び負極の少なくとも一方は、上記非水系二次電池用電極である。正極及び負極の両方が、上記非水系二次電池用電極であってもよい。
 上記非水系二次電池用電極以外の電極としては、平坦な集電体(金属箔、導電層と樹脂フィルムとの積層体等)と、その上に形成された活物質層とからなる、公知の電極が挙げられる。
(3) Non-aqueous secondary battery The non-aqueous secondary battery includes a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte.
(A) Electrode At least one of a positive electrode and a negative electrode is the said electrode for non-aqueous secondary batteries. Both the positive electrode and the negative electrode may be the non-aqueous secondary battery electrode.
As an electrode other than the electrode for the non-aqueous secondary battery, a known material is composed of a flat current collector (a metal foil, a laminate of a conductive layer and a resin film, etc.) and an active material layer formed thereon. The electrode is mentioned.
  (b)セパレータ
 セパレータは、例えば、電気絶縁性の合成樹脂繊維、ガラス繊維、天然繊維等の不織布、織布又は微多孔質膜等の中から適宜選択可能である。なかでもポリエチレン、ポリプロピレン、ポリエステル、アラミド系樹脂、セルロース系樹脂等の不織布、微多孔質膜が品質の安定性等の点から好ましい。これら合成樹脂の不織布、微多孔質膜では電池が異常発熱した場合に、セパレータが熱により溶解し、正負極間を遮断する機能を付加したものもあり、安全性の観点からこれらも好適に使用することができる。
(B) Separator The separator can be appropriately selected from, for example, electrically insulating synthetic resin fibers, glass fibers, nonwoven fabrics such as natural fibers, woven fabrics, or microporous membranes. Of these, non-woven fabrics such as polyethylene, polypropylene, polyester, aramid resin, and cellulose resin, and microporous membranes are preferable from the viewpoint of quality stability and the like. Some of these synthetic resin non-woven fabrics and microporous membranes have a function in which the separator melts by heat and blocks between the positive and negative electrodes when the battery abnormally heats up. can do.
 セパレータの厚さは特に限定されないが、必要量の電解液を保持することが可能で、かつ正極と負極との短絡を防ぐ厚さがあればよい。例えば、10~500μm程度である。この厚さは、10μm、20μm、65μm、80μm、100μm、200μm、300μm、400μm及び500μmをとり得る。好ましい厚さは、20~80μm程度である。また、セパレータを構成する材質は、透気度が0.01~500秒/cm3のものであることが、低い電池内部抵抗を維持しつつ、電池内部短絡を防ぐだけの強度を確保できるため好ましい。透気度は、0.01秒/cm3、0.03秒/cm3、100秒/cm3、200秒/cm3、300秒/cm3、400秒/cm3及び500秒/cm3をとり得る。
 セパレータの形状及び大きさは特に限定されるものではなく、例えば、正方形又は長方形等の矩形、多角形、円形等種々の形状が挙げられる。
Although the thickness of a separator is not specifically limited, The thickness which can hold | maintain a required amount of electrolyte solution and prevents the short circuit of a positive electrode and a negative electrode should just be sufficient. For example, it is about 10 to 500 μm. This thickness can be 10 μm, 20 μm, 65 μm, 80 μm, 100 μm, 200 μm, 300 μm, 400 μm and 500 μm. A preferred thickness is about 20 to 80 μm. The separator is made of a material having an air permeability of 0.01 to 500 seconds / cm 3 because strength sufficient to prevent a short circuit inside the battery can be secured while maintaining a low battery internal resistance. preferable. The air permeability is 0.01 sec / cm 3 , 0.03 sec / cm 3 , 100 sec / cm 3 , 200 sec / cm 3 , 300 sec / cm 3 , 400 sec / cm 3 and 500 sec / cm 3. Can take.
The shape and size of the separator are not particularly limited, and examples thereof include various shapes such as a rectangle such as a square or a rectangle, a polygon, and a circle.
  (c)電解質
 電解質は、一般に、有機溶媒と電解質塩とを含む電解液が使用される。
 有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート等の環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類、γ-ブチロラクトン、γ-バレロラクトン等のラクトン類、テトラヒドロフラン、2-メチルテトラヒドロフラン等のフラン類、ジエチルエーテル、1,2-ジメトキシエタン、1,2-ジエトキシエタン、エトキシメトキシエタン、ジオキサン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル等が挙げられる。これら有機溶媒は、2種以上混合してもよい。
(C) Electrolyte As the electrolyte, an electrolytic solution containing an organic solvent and an electrolyte salt is generally used.
Examples of the organic solvent include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and butylene carbonate, chain carbonates such as dimethyl carbonate (DMC), diethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, γ- Lactones such as butyrolactone and γ-valerolactone, furans such as tetrahydrofuran and 2-methyltetrahydrofuran, ethers such as diethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, ethoxymethoxyethane, dioxane, Examples thereof include dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, and methyl acetate. Two or more of these organic solvents may be mixed.
 電解質塩としては、ホウフッ化リチウム(LiBF4)、リンフッ化リチウム(LiPF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、トリフルオロ酢酸リチウム(LiCF3COO)、トリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO22)等のリチウム塩が挙げられる。これら電解質塩は、2種以上を混合してもよい。
 また、上記電解液をポリマーマトリックス中に保持したゲル電解質や、イオン液体を含む電解質を用いることも可能である。
Examples of the electrolyte salt include lithium borofluoride (LiBF 4 ), lithium phosphofluoride (LiPF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium trifluoroacetate (LiCF 3 COO), lithium imide trifluoromethanesulfonate ( Examples thereof include lithium salts such as LiN (CF 3 SO 2 ) 2 ). Two or more of these electrolyte salts may be mixed.
Moreover, it is also possible to use the gel electrolyte which hold | maintained the said electrolyte solution in the polymer matrix, and the electrolyte containing an ionic liquid.
  (d)その他
 電池は、外装缶や樹脂フィルムからなる袋体に保持されていてもよい。
 外装缶には、金属製の缶、すなわち鉄にニッケルメッキが施された材料を用いるのが好ましい。これは、外装缶としての強度を保つのに、安価で達成できるからである。その他の缶材料としては、たとえば、ステンレススチール、アルミニウム等でもよい。また、外装缶の形状は薄い扁平筒型、円筒型、角筒型等いずれでもよいが、大型リチウム二次電池の場合は組電池として使用することが多いため薄い扁平型または角型であるのが好ましい。
(D) Others The battery may be held in a bag made of an outer can or a resin film.
For the outer can, it is preferable to use a metal can, that is, a material in which iron is nickel-plated. This is because it can be achieved at low cost in order to maintain the strength of the outer can. Other can materials may be, for example, stainless steel, aluminum or the like. The shape of the outer can may be any of a thin flat tube type, a cylindrical type, a rectangular tube type, etc., but in the case of a large lithium secondary battery, it is often used as an assembled battery, so it is a thin flat type or a square type. Is preferred.
 以下、実施例により具体的に本発明を説明するが、本発明はこれによりなんら制限されるものではない。
 実施例1
 正極活物質としてオリビン構造を有するLiFePO4、導電材としてアセチレンブラック、増粘材としてCMC、結着材として水系バインダーを、正極活物質:導電材:増粘材:結着材=100:6:2:2(重量比)となるように秤量した。これら原料を、水を用いて混練することで、正極形成用のペーストを作製した。
 正極形成用のペーストを、図1(a)の概略断面図及び図1(b)の概略平面図に示す正極集電体の両面に塗工し、十分に乾燥した後、プレスすることで正極活物質層を備えた正極を得た。
 図1の正極集電体は、6.5μmアルミニウム箔/30μmポリオレフィン系樹脂層/6.5μmアルミニウム箔からなり、開口部分を有するラミネートフィルムを使用した(平面形状:長さ250mm、幅150mmの長方形)。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
Example 1
LiFePO 4 having an olivine structure as a positive electrode active material, acetylene black as a conductive material, CMC as a thickener, an aqueous binder as a binder, positive electrode active material: conductive material: thickener: binder = 100: 6: It was weighed so as to be 2: 2 (weight ratio). These raw materials were kneaded with water to prepare a positive electrode forming paste.
The positive electrode forming paste is applied to both surfaces of the positive electrode current collector shown in the schematic cross-sectional view of FIG. 1A and the schematic plan view of FIG. 1B, dried sufficiently, and then pressed. A positive electrode provided with an active material layer was obtained.
The positive electrode current collector of FIG. 1 was made of a laminate film having an opening portion made of 6.5 μm aluminum foil / 30 μm polyolefin resin layer / 6.5 μm aluminum foil (planar shape: rectangular having a length of 250 mm and a width of 150 mm). ).
 開口部分の概要を下記する。
・開口部分を構成する孔加工により形成された孔の数:18750個(単位面積当たりの個数は0.5個/mm2
・孔の最大径:250μm
・開口部分の合計面積が、正極集電体の平面視における面積に占める面積の割合:10.0%
 負極活物質として人造黒鉛、増粘材としてCMC、結着材として水系バインダーを、負極活物質:増粘材:結着材=98:1:1(重量比)となるように秤量した。これら原料を、水を用いて混練し、負極形成用のペーストを作製した。このペーストを、負極集電体として銅箔の両面に塗工し、十分に乾燥した後、プレスすることで負極活物質層を備えた負極を得た(負極塗工部サイズ幅205mm×長さ158mm)。
The outline of the opening is as follows.
-Number of holes formed by hole processing constituting the opening portion: 18750 (the number per unit area is 0.5 / mm 2 )
・ Maximum hole diameter: 250 μm
-Ratio of the area occupied by the total area of the opening portion in the plan view of the positive electrode current collector: 10.0%
Artificial graphite as a negative electrode active material, CMC as a thickener, and a water-based binder as a binder were weighed so that the negative electrode active material: thickener: binder = 98: 1: 1 (weight ratio). These raw materials were kneaded using water to produce a paste for forming a negative electrode. This paste was applied to both sides of a copper foil as a negative electrode current collector, sufficiently dried, and then pressed to obtain a negative electrode provided with a negative electrode active material layer (negative electrode coating part size width 205 mm × length 158 mm).
 幅205mm、長さ158mm、厚さ65μmのアラミド系樹脂の不織布(日本バイリーン社製、以下、アラミド系樹脂層)をセパレータとして、セパレータ、正極及び負極を、負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/負極/セパレータ/正極/セパレータ/
負極の順で積層することで、電池要素を得た。更に、それぞれの正極及び負極にタブを溶接した。得られた電池要素を、缶内に挿入した。
 電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)を体積比で1:1になるように混合した溶媒に1MのLiPF6を溶解したものを用いた。この電解液を、缶内に注液し、減圧下にて保持した。次いで、大気圧に戻した後、蓋の外周を封止して電池を作製した。
Aramid resin nonwoven fabric (Nippon Vilene Co., Ltd., hereinafter referred to as aramid resin layer) having a width of 205 mm, a length of 158 mm, and a thickness of 65 μm is used as a separator. Separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / positive electrode / separator / negative electrode / separator / Positive electrode / separator / negative electrode / separator / positive electrode / separator /
By laminating in order of the negative electrode, a battery element was obtained. Further, a tab was welded to each positive electrode and negative electrode. The obtained battery element was inserted into a can.
As the electrolytic solution, a solution obtained by dissolving 1M LiPF 6 in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 was used. This electrolytic solution was poured into a can and kept under reduced pressure. Subsequently, after returning to atmospheric pressure, the outer periphery of the lid was sealed to produce a battery.
 実施例2
 正極集電体として、6.5μmアルミニウム箔/30μmポリオレフィン系樹脂層/6.5μmアルミニウム箔からなる図3に示す構造領域を有するラミネートフィルムを使用した(平面形状:長さ250mm、幅150mmの長方形)。
・導電層の開孔形状:円
・開口部分を構成する孔加工により形成された孔の数:1875個(単位面積当たりの個数は0.05個/mm2
・孔(開口部分)の最大径:100μm
・開口部分の合計面積が、正極集電体の平面視における面積に占める面積の割合:1.0%
 上記のペーストを、正極集電体の両面に塗工し、十分に乾燥した後、プレスすることで、両面に正極活物質層(最大厚230μm)を有する正極を得た(正極塗工部サイズ:幅200mm×長さ150mm)。
 上記正極を使用すること以外は実施例1と同様に電池を作製した。
Example 2
As the positive electrode current collector, a laminate film having a structural region shown in FIG. 3 composed of 6.5 μm aluminum foil / 30 μm polyolefin resin layer / 6.5 μm aluminum foil was used (planar shape: rectangle having a length of 250 mm and a width of 150 mm). ).
-Opening shape of the conductive layer: Circle-Number of holes formed by hole processing constituting the opening: 1875 (the number per unit area is 0.05 / mm 2 )
・ Maximum diameter of hole (opening): 100 μm
-Ratio of the area occupied by the total area of the opening portion in the plan view of the positive electrode current collector: 1.0%
The above paste was applied to both sides of the positive electrode current collector, sufficiently dried, and then pressed to obtain a positive electrode having a positive electrode active material layer (maximum thickness of 230 μm) on both sides (positive electrode coating part size). : Width 200 mm × length 150 mm).
A battery was produced in the same manner as in Example 1 except that the positive electrode was used.
 比較例1
 正極集電体として、孔のない20μmアルミニウム箔を用いること以外は実施例1と同様に電池を作製した。
 実施例1~2及び比較例1の電池を、以下の充放電サイクル試験により評価した。
Comparative Example 1
A battery was fabricated in the same manner as in Example 1 except that a 20 μm aluminum foil without holes was used as the positive electrode current collector.
The batteries of Examples 1 and 2 and Comparative Example 1 were evaluated by the following charge / discharge cycle test.
 (充放電試験)
 サイクル試験条件
 充電:充電電流3.0C、終止電圧4.0Vの定電流定電圧充電し、2時間又は充電電流10mAカットオフ
 放電:放電電流3Cで定電流放電し、終止電圧2.0Vカットオフ
 上記条件で充放電試験を行った。放電容量は、2.0Vまで放電を行った時間をもとに、容量を算出した。
 サイクル評価の結果を図4に示す。
(Charge / discharge test)
Cycle test conditions Charging: constant current and constant voltage charging with a charging current of 3.0C and a termination voltage of 4.0V, 2 hours or a charging current of 10mA cutoff Discharge: constant current discharging with a discharge current of 3C, cutoff voltage of 2.0V cutoff The charge / discharge test was conducted under the above conditions. The discharge capacity was calculated based on the time for discharging to 2.0V.
The results of cycle evaluation are shown in FIG.
 本発明の実施例1、2の電池の電池サイクル特性が優れていることが判明した。
 これは、本発明の非水系二次電池用集電体が、集電体と活物質層の密着性を、樹脂フィルムの露出領域の存在により、金属箔の集電体に比べて、より向上させる効果があるため、従来よりも活物質の剥離、特に活物質の集電性能の低下による利用率の低下を長期にわたり抑制できるためと推測している。
It was found that the battery cycle characteristics of the batteries of Examples 1 and 2 of the present invention were excellent.
This is because the non-aqueous secondary battery current collector of the present invention improves the adhesion between the current collector and the active material layer compared to the metal foil current collector due to the presence of the exposed region of the resin film. It is presumed that the reduction of the utilization rate due to the peeling of the active material, particularly the reduction of the current collecting performance of the active material can be suppressed over a long period of time.
1:導電層、2:樹脂フィルム、3:開口部分、3a:凹部、3b:凸部、a:凹部の深さ及び凸部の高さ、b:凹部の最上端及び凸部の最下端の直径、y及びd:孔の最大径 1: conductive layer, 2: resin film, 3: opening portion, 3a: concave portion, 3b: convex portion, a: depth of concave portion and height of convex portion, b: top end of concave portion and bottom end of convex portion Diameter, y and d: maximum diameter of the hole

Claims (13)

  1.  非水系二次電池に使用される正極及び負極の少なくとも一方を構成し、かつ活物質層が載置される非水系二次電池用集電体であり、
     前記集電体が、樹脂フィルムと、前記樹脂フィルムの少なくとも片面に積層され、かつ前記活物質層と接し得る導電層とから構成され、
     前記導電層は、前記樹脂フィルムと前記活物質層とが直接接し得る、前記樹脂フィルムの露出領域を1つ以上備えている非水系二次電池用集電体。
    It is a current collector for a non-aqueous secondary battery that constitutes at least one of a positive electrode and a negative electrode used for a non-aqueous secondary battery and on which an active material layer is placed,
    The current collector is composed of a resin film and a conductive layer that is laminated on at least one surface of the resin film and can be in contact with the active material layer,
    The conductive layer is a current collector for a non-aqueous secondary battery that includes at least one exposed region of the resin film in which the resin film and the active material layer can be in direct contact.
  2.  前記非水系二次電池用集電体が、前記活物質層を載置させ得る領域に、開口部分を1つ以上有する請求項1に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 1, wherein the current collector for a non-aqueous secondary battery has one or more opening portions in a region where the active material layer can be placed.
  3.  前記非水系二次電池用集電体が、前記活物質層を載置させ得る領域に、最大径1~1000μmの開口部分を1つ以上有する請求項1に記載の非水系二次電池用集電体。 The non-aqueous secondary battery collector according to claim 1, wherein the non-aqueous secondary battery current collector has one or more openings having a maximum diameter of 1 to 1000 μm in a region where the active material layer can be placed. Electric body.
  4.  前記開口部分が、前記導電層の平面視における面積の0.5~50%の面積(但し、前記開口部分が複数存在する場合は、その合計面積)を有する請求項2に記載の非水系二次電池用集電体。 The non-aqueous system according to claim 2, wherein the opening portion has an area of 0.5 to 50% of the area of the conductive layer in plan view (provided that there are a plurality of the opening portions, the total area thereof). Secondary battery current collector.
  5.  前記露出領域が、平面視における集電体の単位面積あたり0.1~20個/mm2の数で設けられる請求項1に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 1, wherein the exposed regions are provided at a number of 0.1 to 20 / mm 2 per unit area of the current collector in plan view.
  6.  前記露出領域が、導電層の平面視における面積の0.1~30.0%の面積を有する請求項1に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 1, wherein the exposed region has an area of 0.1 to 30.0% of an area of the conductive layer in plan view.
  7.  前記集電体が、集電体の平面に垂直な方向に、凹部及び/又は凸部が1つ以上形成されている3次元構造領域を有している請求項1に記載の非水系二次電池用集電体。 The non-aqueous secondary according to claim 1, wherein the current collector has a three-dimensional structure region in which one or more concave portions and / or convex portions are formed in a direction perpendicular to a plane of the current collector. Battery current collector.
  8.  前記3次元構造領域が、1.0~10.0%の範囲で集電体の平面を占めている請求項7に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 7, wherein the three-dimensional structure region occupies the plane of the current collector in a range of 1.0 to 10.0%.
  9.  前記凹部及び凸部が、3次元構造領域の単位面積当たり、0.5~10個/mm2の数で設けられている請求項7に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 7, wherein the concave portions and the convex portions are provided at a number of 0.5 to 10 pieces / mm 2 per unit area of the three-dimensional structure region.
  10.  前記凹部が、1~1000μmの範囲の最上端の最大長さを有し、前記凸部が、1~1000μmの範囲の最下端の最大長さを有する請求項7に記載の非水系二次電池用集電体。 The non-aqueous secondary battery according to claim 7, wherein the concave portion has a maximum length at an uppermost end in a range of 1 to 1000 µm, and the convex portion has a maximum length at a lowermost end in a range of 1 to 1000 µm. Current collector.
  11.  前記凹部が、50~1000μmの範囲の深さを有し、前記凸部が、50~1000μmの範囲の高さを有する請求項7に記載の非水系二次電池用集電体。 The current collector for a non-aqueous secondary battery according to claim 7, wherein the concave portion has a depth in the range of 50 to 1000 µm, and the convex portion has a height in the range of 50 to 1000 µm.
  12.  正極及び負極の少なくとも一方の非水系二次電池用電極であり、請求項1に記載の非水系二次電池用集電体と、前記非水系二次電池用集電体の導電層上に形成された活物質層とを備えている非水系二次電池用電極。 It is an electrode for non-aqueous secondary batteries of at least one of a positive electrode and a negative electrode, and is formed on the conductive layer of the non-aqueous secondary battery current collector according to claim 1 and the non-aqueous secondary battery current collector. A non-aqueous secondary battery electrode comprising the active material layer.
  13.  正極と、負極と、前記正極と前記負極間に位置するセパレータと、電解質とを含み、前記正極及び前記負極の少なくとも一方が請求項12に記載の非水系二次電池用電極である非水系二次電池。 A non-aqueous secondary battery comprising a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and an electrolyte, wherein at least one of the positive electrode and the negative electrode is an electrode for a non-aqueous secondary battery according to claim 12. Next battery.
PCT/JP2012/065500 2011-06-29 2012-06-18 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell WO2013002055A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144410 2011-06-29
JP2011-144410 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002055A1 true WO2013002055A1 (en) 2013-01-03

Family

ID=47423953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065500 WO2013002055A1 (en) 2011-06-29 2012-06-18 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell

Country Status (2)

Country Link
JP (1) JPWO2013002055A1 (en)
WO (1) WO2013002055A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528669A (en) * 2013-06-20 2016-09-15 ランドマーク バッテリー イノベーションズ インコーポレーテッド Nickel iron battery
JP2019186195A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
JP2019186204A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
JP2020057584A (en) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet, and electrochemical device
CN111554959A (en) * 2019-02-09 2020-08-18 宋伟豪 Electrode assembly method for prolonging service life of battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042669A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Lithium secondary cell
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
WO2009131184A1 (en) * 2008-04-24 2009-10-29 シャープ株式会社 Nonaqueous secondary battery
JP2010153140A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002368229A1 (en) * 2002-08-29 2004-03-29 Toyo Kohan Co., Ltd. Composite current collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042669A1 (en) * 1999-01-14 2000-07-20 Fujitsu Limited Lithium secondary cell
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
WO2009131184A1 (en) * 2008-04-24 2009-10-29 シャープ株式会社 Nonaqueous secondary battery
JP2010153140A (en) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd Non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528669A (en) * 2013-06-20 2016-09-15 ランドマーク バッテリー イノベーションズ インコーポレーテッド Nickel iron battery
JP2019186195A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
JP2019186204A (en) * 2018-03-30 2019-10-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector and its electrode sheet, and electrochemical device
JP2020057584A (en) * 2018-09-30 2020-04-09 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Current collector, electrode sheet, and electrochemical device
CN111554959A (en) * 2019-02-09 2020-08-18 宋伟豪 Electrode assembly method for prolonging service life of battery

Also Published As

Publication number Publication date
JPWO2013002055A1 (en) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5690529B2 (en) Current collector and electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5690575B2 (en) Non-aqueous secondary battery
JP5693982B2 (en) Non-aqueous secondary battery
US20130177787A1 (en) Current collector and nonaqueous secondary battery
US20130022865A1 (en) Current collector and nonaqueous secondary cell
JP4649502B2 (en) Lithium ion secondary battery
US20100119940A1 (en) Secondary battery
JP6783149B2 (en) Power storage device
JP2013012405A (en) Nonaqueous secondary battery
JP2018055871A (en) Secondary battery
JP2007273183A (en) Negative electrode and secondary battery
JP5937969B2 (en) Non-aqueous secondary battery
WO2010131650A1 (en) Non-aqueous electrolyte secondary battery
JP2011159506A (en) Nonaqueous secondary battery
WO2013002055A1 (en) Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JP2010040488A (en) Battery
JP2007035419A (en) Battery
JP2006339054A (en) Lithium secondary battery
CN112216878B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
WO2013108841A1 (en) Non-aqueous electrolyte secondary cell containing scavenger
CN108695517B (en) Battery with a battery cell
CN112216876A (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP2010282789A (en) Nonaqueous electrolyte secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
CN112216812B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522761

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803969

Country of ref document: EP

Kind code of ref document: A1