JP2005100959A - Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2005100959A
JP2005100959A JP2004228168A JP2004228168A JP2005100959A JP 2005100959 A JP2005100959 A JP 2005100959A JP 2004228168 A JP2004228168 A JP 2004228168A JP 2004228168 A JP2004228168 A JP 2004228168A JP 2005100959 A JP2005100959 A JP 2005100959A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
resin
active material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004228168A
Other languages
Japanese (ja)
Other versions
JP4589047B2 (en
Inventor
Hide Koshina
秀 越名
Shinji Nakanishi
真二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004228168A priority Critical patent/JP4589047B2/en
Publication of JP2005100959A publication Critical patent/JP2005100959A/en
Application granted granted Critical
Publication of JP4589047B2 publication Critical patent/JP4589047B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode capable of giving nonaqueous electrolyte secondary batteries that has high capacity, has a long cycle lifetime, and excellent safety, and exhibits an excellent cycle characteristics even if charging/deep-discharging are repeated. <P>SOLUTION: The negative electrode for nonaqueous electrolyte secondary batteries is provided, where it is made of a current collector sheet and an active material layer deposited on the surface, the active material layer is made of SiO<SB>x</SB>satisfying 0.7≤x≤1.3, and does not include a binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、非水電解質二次電池に関し、特に、非水電解質二次電池に用いる負極およびその製造方法に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a negative electrode used for a non-aqueous electrolyte secondary battery and a method for manufacturing the same.

近年、パーソナルコンピュータ、携帯電話、PDAなどの情報電子機器、およびビデオカムコーダー、ミニディスクプレーヤーなどのオーディオビジュアル電子機器の小型軽量化およびコードレス化が急速に進んでいる。これらの電子機器の駆動用電源として、高エネルギー密度を有する二次電池への要望が高まりつつある。そこで、従来の鉛蓄電池、ニッケルカドミウム蓄電池、ニッケル水素蓄電池などでは到達できなかった高エネルギー密度を有する非水電解質二次電池が、駆動用電源として主流になりつつある。非水電解質二次電池のなかでは、リチウムイオン二次電池およびリチウムイオンポリマー二次電池の開発が進んでいる。   In recent years, information electronic devices such as personal computers, mobile phones, and PDAs, and audiovisual electronic devices such as video camcorders and mini-disc players are rapidly becoming smaller and lighter and cordless. There is an increasing demand for a secondary battery having a high energy density as a power source for driving these electronic devices. Therefore, non-aqueous electrolyte secondary batteries having a high energy density that cannot be achieved by conventional lead storage batteries, nickel cadmium storage batteries, nickel hydride storage batteries, and the like are becoming mainstream as power sources for driving. Among non-aqueous electrolyte secondary batteries, development of lithium ion secondary batteries and lithium ion polymer secondary batteries is progressing.

非水電解質には、3.5V〜4.0Vの高電位で放電する正極の酸化雰囲気に耐え、リチウムに近い電位で充放電する負極の還元雰囲気に耐えることができるものが選択される。現在では、高い誘電率を持つエチレンカーボネート(EC)と低粘性溶媒である鎖状カーボネートとの混合溶媒に六フッ化燐酸リチウム(LiPF6)を溶解させたものが主流である。鎖状カーボネートには、炭酸ジエチル(DEC)、炭酸ジメチル(DMC)、炭酸エチルメチル(EMC)などの1種以上が用いられる。ポリマー二次電池には、これらの非水電解質をポリマー成分に可塑剤として含ませたゲル状電解質などが用いられている。 A non-aqueous electrolyte is selected that can withstand the oxidizing atmosphere of the positive electrode that discharges at a high potential of 3.5 V to 4.0 V and can withstand the reducing atmosphere of the negative electrode that charges and discharges at a potential close to lithium. At present, the mainstream is one in which lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent of ethylene carbonate (EC) having a high dielectric constant and chain carbonate which is a low viscosity solvent. As the chain carbonate, one or more of diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and the like are used. A polymer secondary battery uses a gel electrolyte in which these nonaqueous electrolytes are contained in a polymer component as a plasticizer.

非水電解質二次電池の正極活物質には、主に、リチウムに対する平均放電電位が3.5V〜4.0Vの範囲にある遷移金属酸化物が用いられている。遷移金属酸化物としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn24)、遷移金属を複数取り入れた固溶材料(LiCoxNiyMnz2、Li(CoaNibMnc24)などが用いられている。正極活物質は、導電剤、結着剤などと混合して正極合剤として用いられる。正極は、正極合剤をアルミニウム箔製の集電体シートに塗着したり、チタン製もしくはステンレス鋼製の封口板もしくはケース内に圧縮成型したりすることにより作製される。 A transition metal oxide having an average discharge potential with respect to lithium in the range of 3.5 V to 4.0 V is mainly used as the positive electrode active material of the nonaqueous electrolyte secondary battery. Examples of transition metal oxides include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and solid solution materials incorporating a plurality of transition metals (LiCo x Ni y Mn z O such as 2, Li (Co a Ni b Mn c) 2 O 4) is used. The positive electrode active material is mixed with a conductive agent, a binder or the like and used as a positive electrode mixture. The positive electrode is produced by applying a positive electrode mixture to a current collector sheet made of aluminum foil, or compression molding in a sealing plate or case made of titanium or stainless steel.

負極には、主に、リチウムを吸蔵・放出する炭素材料が用いられている。炭素材料としては、人造黒鉛、天然黒鉛、石炭・石油ピッチから造られるメソフェース焼成体、それらを酸素存在下で焼成した難黒鉛性炭素、酸素含有プラスチックの焼成体からなる難黒鉛性炭素などが挙げられる。炭素材料は、結着剤などと混合して負極合剤として用いられる。負極は、負極合剤を銅箔製の集電体シートに塗着したり、鉄もしくはニッケル製の封口板もしくはケース内に圧縮成型したりすることにより作製される。   For the negative electrode, a carbon material that mainly stores and releases lithium is used. Examples of carbon materials include artificial graphite, natural graphite, mesophase fired bodies made from coal / petroleum pitch, non-graphitic carbon fired in the presence of oxygen, non-graphitic carbon made from fired oxygen-containing plastics, etc. It is done. The carbon material is mixed with a binder and used as a negative electrode mixture. The negative electrode is produced by applying a negative electrode mixture to a current collector sheet made of copper foil, or compression molding in a sealing plate or case made of iron or nickel.

負極に黒鉛材料を用いた場合、リチウムを放出する平均電位は約0.2Vである。この電位は、難黒鉛炭素を用いた場合と比べて卑であるため、高電圧と電圧平坦性が望まれる分野には、黒鉛材料が用いられている。しかしながら、黒鉛材料は、単位体積当りの容量が838mAh/cm3と小さく、これ以上の容量増加は望めない。 When a graphite material is used for the negative electrode, the average potential for releasing lithium is about 0.2V. Since this potential is lower than that in the case of using non-graphite carbon, graphite materials are used in fields where high voltage and voltage flatness are desired. However, the graphite material has a small capacity per unit volume of 838 mAh / cm 3, and no further increase in capacity can be expected.

一方、高容量を示す負極材料としては、シリコン、錫などの単体やそれらの酸化物などのリチウムを吸蔵および放出可能な材料が有望である(特許文献1)。   On the other hand, as a negative electrode material having a high capacity, a material capable of occluding and releasing lithium such as simple substances such as silicon and tin and oxides thereof is promising (Patent Document 1).

珪素酸化物は化学式SiOxで表され、x値によって吸蔵および放出可能なリチウムの容量が変化する。SiOxはアモルファス材料であり、非量論組成を有する。従ってx値は連続的に変化する。通常、x値は、蛍光X線回折を用い、ファンダメンタルパラメータ法により、Siに対するOの原子比の平均値として求められる。 Silicon oxide is represented by the chemical formula SiO x , and the capacity of lithium that can be stored and released varies depending on the x value. SiO x is an amorphous material and has a non-stoichiometric composition. Therefore, the x value changes continuously. Usually, the x value is obtained as an average value of the atomic ratio of O to Si by the fundamental parameter method using fluorescent X-ray diffraction.

ただし、これらの材料は、リチウムを吸蔵する時に結晶構造の変化を起こし、体積が膨張する。その結果、粒子の割れ、集電体からの離脱等を起こすため、充放電サイクル寿命が短いという短所を有する。特に粒子の割れは、非水電解質と活物質との反応を増長させるため、粒子上に被膜などが形成される。これにより界面抵抗が増大し、充放電サイクル寿命を短くする大きな原因となる。   However, these materials cause a change in crystal structure when lithium is occluded, and the volume expands. As a result, cracking of the particles, separation from the current collector, and the like are caused, and thus the charge / discharge cycle life is short. In particular, the cracking of the particles increases the reaction between the nonaqueous electrolyte and the active material, so that a film or the like is formed on the particles. This increases the interface resistance, which is a major cause of shortening the charge / discharge cycle life.

また、アルミニウム製もしくは鉄製の角形ケース、両面に樹脂膜を有するアルミニウム箔(アルミニウムラミネートシート)製の外装材など、強度の低い電池容器を用いる場合、負極の体積膨張により、電池厚みが増大し、組み込み機器を損傷するおそれがある。強度の高い電池容器を用いる円筒型電池では、負極の体積膨張により、正負極間のセパレータが強く圧縮され、正負極間に電解液の枯渇部位が生じるため、電池の寿命はさらに短くなる。   In addition, when using a battery case with low strength, such as an aluminum or iron square case, an exterior material made of aluminum foil (aluminum laminate sheet) having a resin film on both sides, the battery thickness increases due to volume expansion of the negative electrode, There is a risk of damage to embedded devices. In a cylindrical battery using a high-strength battery container, the separator between the positive and negative electrodes is strongly compressed due to the volume expansion of the negative electrode, and a depleted portion of the electrolyte is generated between the positive and negative electrodes, so that the battery life is further shortened.

リチウムを吸蔵する材料に、リチウムを吸蔵しないか、もしくは吸蔵量の少ない珪化ニッケル(NiSi2)、亜鉛、カドミウムなどを配合することにより、負極の体積あたりの膨張を低減させることもできる。しかし、極板全体のリチウム吸蔵量、すなわち充電受け入れ可能量が低下するため、容量増加の施策としては十分ではない。 By incorporating lithium silicide (NiSi 2 ), zinc, cadmium, or the like that does not occlude lithium or has a small occlusion amount into a material that occludes lithium, expansion per volume of the negative electrode can be reduced. However, since the lithium occlusion amount of the whole electrode plate, that is, the charge acceptance amount is lowered, it is not sufficient as a measure for increasing the capacity.

さらに、粒子の体積膨張や割れにより負極全体が膨張すると、電池内圧が高くなり、安全性が損なわれるという問題がある。釘刺し試験においては、樹脂芯材およびその表面を被覆する金属層からなる集電体シートを用いることにより、安全性をある程度まで高めることが可能であるが、電池内圧が高くなると、安全性の確保が困難になる。また、負極材料として可燃性の炭素材料を用いる場合には、安全性の向上に限界がある。   Furthermore, when the whole negative electrode expands due to volume expansion or cracking of the particles, there is a problem that the internal pressure of the battery increases and safety is impaired. In the nail penetration test, it is possible to increase the safety to some extent by using a current collector sheet made of a resin core material and a metal layer covering the surface, but if the battery internal pressure increases, It becomes difficult to secure. Further, when a flammable carbon material is used as the negative electrode material, there is a limit to improvement in safety.

珪素酸化物を用いた負極の製造方法として、珪素酸化物と結着剤と液状成分とを混合してペーストを調製し、これを芯材に塗布した後、乾燥する方法が知られている(特許文献2)。しかし、この方法では、充放電に伴う活物質の体積変化による極板の劣化が依然として問題であり、サイクル特性は不十分である。   As a method for producing a negative electrode using silicon oxide, a method is known in which silicon oxide, a binder and a liquid component are mixed to prepare a paste, which is applied to a core and then dried ( Patent Document 2). However, in this method, deterioration of the electrode plate due to the volume change of the active material accompanying charge / discharge is still a problem, and the cycle characteristics are insufficient.

また、炭素を主成分とする第1の層の上に、蒸着、CVD法またはスパッタリング法により珪素酸化物からなる第2の層を形成した負極が報告されている(特許文献3)。ただし、SiOxとしてx=2に近い組成のものが検討されている。
特開2001−220124号公報 特開2002−260651号公報 特許第3520921号公報
Further, a negative electrode is reported in which a second layer made of silicon oxide is formed on a first layer containing carbon as a main component by vapor deposition, CVD, or sputtering (Patent Document 3). However, SiO x having a composition close to x = 2 has been studied.
JP 2001-220124 A JP 2002-260651 A Japanese Patent No. 3520921

上述したような充放電時の負極の体積膨張は、特に電池が深放電(deep discharge)された場合に、より深刻となる。以下、深放電について説明する。
電池は、機器にセットされたままの状態で、充電されることなく長期間放置されることが多い。しかし、機器が使用されていない時でも、機器にセットされた電池には微少な暗電流が流れる。そのため、機器が長期間放置されると、通常の放電終止電位以下まで電池が放電されてしまう虞がある。このような深放電状態になっても、その後、機器を使用する際には、機器が正常に動作することが、市場から求められている。
The volume expansion of the negative electrode during charge / discharge as described above becomes more serious especially when the battery is deep discharged. Hereinafter, the deep discharge will be described.
The battery is often left for a long time without being charged in a state where it is set in the device. However, even when the device is not used, a minute dark current flows through the battery set in the device. Therefore, if the device is left for a long period of time, the battery may be discharged to a level equal to or lower than the normal discharge end potential. Even in such a deep discharge state, when the device is used thereafter, it is required from the market that the device operates normally.

そこで、本発明は、高容量化が可能であり、サイクル寿命が長く、安全性に優れた非水電解質二次電池であって、充電―深放電を繰り返した場合でも優れたサイクル特性を示す非水電解質二次電池を与える負極を提供することを目的とする。   Therefore, the present invention is a non-aqueous electrolyte secondary battery that can be increased in capacity, has a long cycle life, and is excellent in safety, and exhibits excellent cycle characteristics even when charging and deep discharging are repeated. It aims at providing the negative electrode which gives a water electrolyte secondary battery.

本発明は、x=1付近の珪素酸化物を用いれば、充電―深放電を繰り返した場合であっても優れたサイクル特性を維持する電池が得られることが見出され、完成されるに至ったものである。   The present invention has been found that if a silicon oxide in the vicinity of x = 1 is used, a battery maintaining excellent cycle characteristics can be obtained even when charge-deep discharge is repeated. It is a thing.

本発明は、集電体シートおよびその表面に担持された活物質層からなり、前記活物質層が、0.7≦x≦1.3を満たすSiOxからなり、かつ結着剤を含まない非水電解質二次電池用負極に関する。前記集電体シートには、金属箔を用いることができる。また、樹脂芯材およびその表面を被覆する金属層からなる集電体シートを用いることもできる。 The present invention comprises a current collector sheet and an active material layer carried on the surface thereof, wherein the active material layer is made of SiO x satisfying 0.7 ≦ x ≦ 1.3 and does not contain a binder. The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery. A metal foil can be used for the current collector sheet. A current collector sheet made of a resin core material and a metal layer covering the surface thereof can also be used.

前記金属箔の表面は、炭素材料を含む層で被覆することができる。前記炭素材料は、例えばカーボンブラック又は黒鉛である。
前記集電体シート用の金属は、金、銀、銅、鉄、ニッケル、亜鉛およびアルミニウムよりなる群から選ばれる少なくとも1種からなることが好ましい。
The surface of the metal foil can be covered with a layer containing a carbon material. The carbon material is, for example, carbon black or graphite.
The metal for the current collector sheet is preferably composed of at least one selected from the group consisting of gold, silver, copper, iron, nickel, zinc and aluminum.

前記樹脂芯材は、ポリエチレンテレフタレート、ポリカーボネート、アラミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂およびポリアミド樹脂よりなる群から選ばれる少なくとも1種からなることが好ましい。   The resin core material is preferably made of at least one selected from the group consisting of polyethylene terephthalate, polycarbonate, aramid resin, polyimide resin, phenol resin, polyethersulfone resin, polyetheretherketone resin and polyamide resin.

前記活物質層の厚みは、0.5μm以上20μm以下であることが好ましい。
本発明は、また、上記負極、正極および非水電解質からなる二次電池に関する。
本発明は、また、集電体シート上に蒸着により0.7≦x≦1.3を満たすSiOxを堆積させて活物質層を形成する工程を含む非水電解質二次電池用負極の製造方法に関する。
The thickness of the active material layer is preferably 0.5 μm or more and 20 μm or less.
The present invention also relates to a secondary battery comprising the negative electrode, the positive electrode and a nonaqueous electrolyte.
The present invention also provides a method for producing a negative electrode for a nonaqueous electrolyte secondary battery including a step of depositing SiO x satisfying 0.7 ≦ x ≦ 1.3 by vapor deposition on a current collector sheet to form an active material layer Regarding the method.

一酸化珪素SiOx(0.7≦x≦1.3)からなり、かつ結着剤を含まない活物質層を集電体シート上に形成して得られる負極は、珪素酸化物と結着剤とを含む合剤を集電体シートに塗布することによって得られる負極に比べて、充放電に伴う膨張・収縮が小さく、粒子割れ等による集電性の低下も抑制される。従って、高容量であることに加えて、充放電サイクル寿命、特に充電と深放電を繰り返した場合のサイクル寿命の低下が効果的に抑制される。また、負極の膨張が抑制されていることから、電池内圧の上昇が起こりにくく、安全性が向上する。 The negative electrode obtained by forming an active material layer made of silicon monoxide SiO x (0.7 ≦ x ≦ 1.3) and containing no binder on the current collector sheet is bonded to silicon oxide. Compared to a negative electrode obtained by applying a mixture containing an agent to a current collector sheet, expansion / shrinkage associated with charge / discharge is small, and a decrease in current collection due to particle cracking or the like is also suppressed. Therefore, in addition to the high capacity, the charge / discharge cycle life, particularly the cycle life when charging and deep discharge are repeated, is effectively suppressed. Moreover, since the expansion of the negative electrode is suppressed, the battery internal pressure hardly increases, and the safety is improved.

本発明は、集電体シートおよびその表面に担持された活物質層からなり、活物質層は一酸化珪素SiOx(0.7≦x≦1.3)からなる非水電解質二次電池用負極に関する。ただし、本発明に係る活物質層は、結着剤を含まない。このような活物質層は、集電体シート上に一酸化珪素SiOx(0.7≦x≦1.3)を直接堆積させることにより形成することができる。 The present invention comprises a current collector sheet and an active material layer carried on the surface thereof, and the active material layer is made of silicon monoxide SiO x (0.7 ≦ x ≦ 1.3) for a non-aqueous electrolyte secondary battery. It relates to the negative electrode. However, the active material layer according to the present invention does not include a binder. Such an active material layer can be formed by directly depositing silicon monoxide SiO x (0.7 ≦ x ≦ 1.3) on the current collector sheet.

一酸化珪素SiOx(0.7≦x≦1.3)からなる活物質層の厚みは、20μm以下が好ましく、10μm以下がさらに好ましい。また、電池のエネルギー密度を考慮すると、活物質層の厚みは、0.5μm以上が好ましい。ただし、0.5μm未満では、充放電効率が高く維持され得ることから、エネルギー密度をそれほど高める必要のない分野であれば、活物質層の厚みが0.5μm未満であっても十分に実用的な電池を作製することができる。 The thickness of the active material layer made of silicon monoxide SiO x (0.7 ≦ x ≦ 1.3) is preferably 20 μm or less, and more preferably 10 μm or less. In consideration of the energy density of the battery, the thickness of the active material layer is preferably 0.5 μm or more. However, if the thickness is less than 0.5 μm, the charge / discharge efficiency can be maintained high. Therefore, if the energy density does not need to be increased so much, even if the thickness of the active material layer is less than 0.5 μm, it is sufficiently practical. A simple battery can be manufactured.

集電体シート上に一酸化珪素SiOx(0.7≦x≦1.3)を直接堆積させる方法としては、蒸着法、スパッタ法、電気化学的方法などが挙げられるが、蒸着法により堆積させることが好ましい。蒸着の条件は、所望の活物質層の厚み、集電体シートの材質等に応じて選択すればよい。 Examples of the method for directly depositing silicon monoxide SiO x (0.7 ≦ x ≦ 1.3) on the current collector sheet include vapor deposition, sputtering, and electrochemical methods. It is preferable to make it. The conditions for vapor deposition may be selected according to the desired thickness of the active material layer, the material of the current collector sheet, and the like.

集電体シートには、例えば厚み0.1〜100μmの金属箔を用いることができる。金属箔は、立体加工されていてもよく、穿孔されていてもよい。また、負極の導電性を高める観点から、金属箔の表面を炭素材料を含む層で被覆してもよい。   For the current collector sheet, for example, a metal foil having a thickness of 0.1 to 100 μm can be used. The metal foil may be three-dimensionally processed or perforated. Moreover, you may coat | cover the surface of metal foil with the layer containing a carbon material from a viewpoint of improving the electroconductivity of a negative electrode.

金属箔の表面を、炭素材料を含む層で被覆すると、負極の導電性が向上するのみならず、炭素材料を含む層は金属箔上よりも表面が凹凸していることから、蒸着膜の密着性が向上し、活物質層の膨張収縮の繰り返し時においても、集電体である金属箔との密着性が向上する。その結果、特にサイクル特性が向上する。   When the surface of the metal foil is coated with a layer containing a carbon material, not only the conductivity of the negative electrode is improved, but also the layer containing the carbon material has a more uneven surface than on the metal foil. And the adhesion to the metal foil as a current collector is improved even when the active material layer is repeatedly expanded and contracted. As a result, the cycle characteristics are particularly improved.

炭素材料を含む層(以下、炭素層という)に用いる炭素材料としては、従来リチウム電池等で導電材として用いられているアセチレンブラック(以下、ABという)、ケッチェンブラック、黒鉛化VGCF(気相成長炭素繊維を黒鉛化したもの)などが挙げられる。また、従来リチウム電池の負極として用いられている、グラファイトなどの炭素材料を用いてもよい。特にグラファイトなどを用いると、それ自身もリチウムの挿入脱離反応をおこすため、導電材を用いるよりも容量が向上する。   As a carbon material used for a layer containing a carbon material (hereinafter referred to as a carbon layer), acetylene black (hereinafter referred to as AB), ketjen black, graphitized VGCF (vapor phase), which has been conventionally used as a conductive material in a lithium battery or the like. And graphitized grown carbon fiber). Moreover, you may use carbon materials, such as a graphite conventionally used as the negative electrode of a lithium battery. In particular, when graphite or the like is used, since the lithium itself undergoes an insertion / release reaction of lithium, the capacity is improved as compared with the case of using a conductive material.

炭素層の厚みとしては、導電材を用いる場合は、5μm以下が望ましい。5μmより厚くても電池としては問題なく動作するが、電池の容積あたりの充放電容量が小さくなりすぎるため、実用上において不利である。一方、炭素層は、どれだけ薄くても問題ない。   The thickness of the carbon layer is preferably 5 μm or less when a conductive material is used. Even if it is thicker than 5 μm, it operates as a battery without any problem, but the charge / discharge capacity per volume of the battery becomes too small, which is disadvantageous in practice. On the other hand, no matter how thin the carbon layer is, there is no problem.

リチウムを吸蔵及び放出可能な炭素材料を用い、高容量を指向する場合は、炭素層の厚さは5μm以下が望ましい。それほどの高容量を必要としない場合には、5μmより厚くしてもよく、一酸化珪素膜の厚さと同程度の厚さにしてもよい。   When a carbon material capable of inserting and extracting lithium is used and a high capacity is intended, the thickness of the carbon layer is desirably 5 μm or less. When such a high capacity is not required, it may be thicker than 5 μm, or may be as thick as the silicon monoxide film.

金属箔は、リチウムと合金化しない金、銅、鉄などの遷移金属からなることが好ましいが、充電時にリチウム金属の電位に対する負極電位が0.4V以上である場合には、アルミニウム、銀などからなる金属箔を用いることも可能である。リチウム金属に対して負極電位が0.4V未満になる場合には、アルミニウムや銀は、リチウムと合金化して、粉末化し、電子伝導性を低下させる可能性がある。なお、金、銀、銅、鉄、ニッケル、亜鉛およびアルミニウムよりなる群から選ばれる少なくとも1種を含む合金を用いることもできる。   The metal foil is preferably made of a transition metal such as gold, copper, or iron that is not alloyed with lithium. However, when the negative electrode potential with respect to the lithium metal potential is 0.4 V or more during charging, the metal foil is made of aluminum, silver, or the like. It is also possible to use a metal foil. When the negative electrode potential is less than 0.4 V with respect to lithium metal, aluminum or silver may be alloyed with lithium to be powdered to reduce electronic conductivity. An alloy containing at least one selected from the group consisting of gold, silver, copper, iron, nickel, zinc, and aluminum can also be used.

樹脂芯材およびその表面を被覆する金属層からなる集電体シートを用いることもできる。このような集電体シートを用いる場合、集電体シートの表面は、微小な凹凸を有することから、一酸化珪素と金属層との接触性が良好であり、電気抵抗をさらに小さくすることができると同時に、安全性が大きく向上する。樹脂芯材の厚さは、3〜100μmであることが好ましく、3〜20μmであることがさらに好ましい。樹脂芯材の表面を被覆する金属層の厚さは、0.1〜20μmであることが好ましいが、樹脂芯材の厚さを超えない範囲であれば特に制限はない。樹脂芯材は、20MPa以上の引張強度を有することが好ましい。   A current collector sheet comprising a resin core material and a metal layer covering the surface thereof can also be used. When such a current collector sheet is used, the surface of the current collector sheet has fine irregularities, so that the contact between silicon monoxide and the metal layer is good, and the electrical resistance can be further reduced. At the same time, safety is greatly improved. The thickness of the resin core material is preferably 3 to 100 μm, and more preferably 3 to 20 μm. The thickness of the metal layer covering the surface of the resin core is preferably 0.1 to 20 μm, but is not particularly limited as long as it does not exceed the thickness of the resin core. The resin core material preferably has a tensile strength of 20 MPa or more.

樹脂芯材には、ポリエチレンテレフタレート、ポリカーボネート、アラミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミド樹脂などを用いることができる。高強度の樹脂芯材を得る観点からは、複数の樹脂膜を積層して用いたり、樹脂にフィラーを含ませたりすることが好ましい。   As the resin core material, polyethylene terephthalate, polycarbonate, aramid resin, polyimide resin, phenol resin, polyether sulfone resin, polyether ether ketone resin, polyamide resin, or the like can be used. From the viewpoint of obtaining a high-strength resin core material, it is preferable to use a laminate of a plurality of resin films or to include a filler in the resin.

本発明の非水電解質二次電池は、上記負極を用いること以外、従来と同様の方法で作製することができる。従って、上記負極と組み合わせる正極および非水電解質には、従来から非水電解質二次電池に用いられているものを特に限定なく、用いることができる。   The nonaqueous electrolyte secondary battery of the present invention can be produced by a method similar to the conventional method except that the above negative electrode is used. Therefore, what is conventionally used for the nonaqueous electrolyte secondary battery can be used for the positive electrode combined with the negative electrode and the nonaqueous electrolyte without any particular limitation.

本発明は、円筒型、角型、ラミネートシート包装型、コイン型など、いずれの形態の電池にも適用することができる。正極および負極の態様は、電池のタイプに応じて変更すればよい。
以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
《実施例1》
The present invention can be applied to any type of battery, such as a cylindrical type, a square type, a laminate sheet packaging type, and a coin type. What is necessary is just to change the aspect of a positive electrode and a negative electrode according to the type of battery.
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
Example 1

図1に、実施例1で作製した非水電解質二次電池の縦断面図を示す。この電池は、以下のようにして作製した。   FIG. 1 shows a longitudinal sectional view of the nonaqueous electrolyte secondary battery produced in Example 1. FIG. This battery was produced as follows.

(i)正極の作製
活物質であるコバルト酸リチウム(LiCoO2)100重量部に、導電剤としてアセチレンブラックを3重量部混合し、この混合物に結着剤であるポリフッ化ビリニデン(PVdF)のN−メチル−2−ピロリドン(NMP)溶液をPVdF重量に換算して4重量部加えて練合し、ペースト状正極合剤を得た。この正極合剤を厚み15μmのアルミニウム箔からなる集電体シート5の片面に塗着した後、乾燥し、圧延し、正極活物質層4を形成した。次いで、合剤面積が35mm×35mmとなるように活物質層を担持した集電体シートを切断し、アルミニウム箔の露出部からなるリード接触部分に正極リード8を接続して、正極を得た。活物質層の厚みは65μmであった。正極の電気容量は、LiCoO2の単位重量あたりの容量を155mAh/gとした場合、73.5mAhであった。
(I) Preparation of positive electrode 3 parts by weight of acetylene black as a conductive agent was mixed with 100 parts by weight of lithium cobaltate (LiCoO 2 ) as an active material, and N of poly (vinylidene fluoride) (PVdF) as a binder was mixed into this mixture. 4 parts by weight of a methyl-2-pyrrolidone (NMP) solution in terms of PVdF was added and kneaded to obtain a paste-like positive electrode mixture. The positive electrode mixture was applied to one side of a current collector sheet 5 made of an aluminum foil having a thickness of 15 μm, and then dried and rolled to form the positive electrode active material layer 4. Next, the current collector sheet carrying the active material layer was cut so that the mixture area was 35 mm × 35 mm, and the positive electrode lead 8 was connected to the lead contact portion made of the exposed portion of the aluminum foil to obtain a positive electrode. . The thickness of the active material layer was 65 μm. The electric capacity of the positive electrode was 73.5 mAh when the capacity per unit weight of LiCoO 2 was 155 mAh / g.

(ii)負極の作製
長さ50mm、幅50mm、厚さ10μmの銅箔からなる集電体シート2を準備し、これを(株)サンバック製の真空加熱蒸着装置ED−1500の基板にセットし、チャンバー内を1×10-4Torrの真空にした。次いで、(株)高純度化学研究所製の一酸化珪素(SiO)粉末(SIO05BP、純度4N)を、蒸着レート0.7〜0.9nm/秒、連続蒸着時間1時間の条件で、膜厚20μmの一酸化珪素(SiOx、x=1)膜3が得られるまで数回の蒸着を行った。銅箔を設置する基板は、200℃以上にならないように冷却により温度制御した。銅箔の裏面にも同様の操作で、膜厚20μmの一酸化珪素膜を設けた。
(Ii) Production of Negative Electrode A current collector sheet 2 made of copper foil having a length of 50 mm, a width of 50 mm, and a thickness of 10 μm was prepared, and this was set on a substrate of a vacuum heating deposition apparatus ED-1500 manufactured by Sunbac Co., Ltd. The inside of the chamber was evacuated to 1 × 10 −4 Torr. Next, a silicon monoxide (SiO) powder (SIO05BP, purity 4N) manufactured by Kojundo Chemical Laboratory Co., Ltd. was deposited under the conditions of a deposition rate of 0.7 to 0.9 nm / second and a continuous deposition time of 1 hour. Deposition was carried out several times until a 20 μm silicon monoxide (SiO x , x = 1) film 3 was obtained. The temperature of the substrate on which the copper foil was placed was controlled by cooling so as not to exceed 200 ° C. A silicon monoxide film having a thickness of 20 μm was also provided on the back surface of the copper foil by the same operation.

リード接触部分には、蒸着前にポリイミドテープを貼り付け、一酸化珪素を蒸着した後に、ポリイミドテープを剥がした。そして、銅箔の露出部にニッケル製の負極リード7を接続し、リードの上からポリプロピレン製テープで固定した。一酸化珪素担持部分の面積が37mm×37mmになるように、一酸化珪素を担持した銅箔を切断して、負極とした。負極の電気容量は、一酸化珪素の単位重量あたりの容量を1200mAh/gとした場合、約82.1mAhであった。ただし、正極と対向する部分の容量は73.5mAhであった。   A polyimide tape was affixed to the lead contact portion before vapor deposition, and after vaporizing silicon monoxide, the polyimide tape was peeled off. And the negative electrode lead 7 made from nickel was connected to the exposed part of copper foil, and it fixed with the tape made from a polypropylene from on the lead. The copper foil carrying silicon monoxide was cut so that the area of the silicon monoxide carrying portion was 37 mm × 37 mm to obtain a negative electrode. The electric capacity of the negative electrode was about 82.1 mAh when the capacity per unit weight of silicon monoxide was 1200 mAh / g. However, the capacity of the portion facing the positive electrode was 73.5 mAh.

一酸化珪素の堆積方法として、今回は真空加熱蒸着法を採用したが、ブロック状の一酸化珪素ターゲットを用いて、スパッタ装置により、同様の成膜を行うこともできる。また、一酸化珪素源としてSiとSiO2との混合物を用いることによっても、SiO以外の成分の含有量が10%以下である一酸化珪素からなる堆積膜を得ることができる。 As a method for depositing silicon monoxide, a vacuum heating vapor deposition method is employed this time. However, a similar film formation can be performed by a sputtering apparatus using a block-shaped silicon monoxide target. Also, a deposited film made of silicon monoxide having a content of components other than SiO of 10% or less can be obtained by using a mixture of Si and SiO 2 as the silicon monoxide source.

(iii)電池の作製
正極と負極とを、厚みが25μmのセルガード社製ポリプロピレン製微多孔膜(#2500)からなるセパレータ6を介して積層し、電極群を構成した。正極活物質層の各端部はそれぞれ負極活物質層の端部より1.0mm内側に配置させた。次いで、電極群を真空乾燥機内で、60℃で12時間乾燥させて、電極群内の水分量を50ppm以下に低減させた。
(Iii) Production of Battery The positive electrode and the negative electrode were laminated through a separator 6 made of a polypropylene microporous film (# 2500) manufactured by Celgard with a thickness of 25 μm to constitute an electrode group. Each end of the positive electrode active material layer was disposed 1.0 mm inside from the end of the negative electrode active material layer. Next, the electrode group was dried in a vacuum dryer at 60 ° C. for 12 hours to reduce the amount of water in the electrode group to 50 ppm or less.

乾燥させた電極群をラミネートシート(厚み50μm)からなる外装材1に収容した。ラミネートシートには、両面に変成ポリエチレン樹脂膜を有するアルミニウム箔を用いた。外装材内に非水電解質を真空注液した後、負極リード7および正極リード8の引き出し部を樹脂9で封止し、電池を完成させた。   The dried electrode group was accommodated in an exterior material 1 made of a laminate sheet (thickness 50 μm). As the laminate sheet, an aluminum foil having a modified polyethylene resin film on both sides was used. After the nonaqueous electrolyte was vacuum-injected into the exterior material, the lead portions of the negative electrode lead 7 and the positive electrode lead 8 were sealed with the resin 9 to complete the battery.

非水電解質には、炭酸エチレン(EC)と炭酸エチルメチル(EMC)との体積比1:3の混合溶媒中に、濃度1mol/L分のLiPF6を溶解させたものを用いた。 As the non-aqueous electrolyte, a solution in which LiPF 6 having a concentration of 1 mol / L was dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 3 was used.

得られた電池の寸法は、幅40mm、総高40mm、厚み0.5mmであった。この電池を、周囲温度20℃において、充電電流7.2mAで、電池電圧4.2Vまで定電流で充電し、20分間休止した後、放電電流7.2mAで、終止電圧3.0Vまで放電する充放電を2回繰り返した。最後に、充電電流7.2mAで、電池電圧4.2Vまで充電した。この電池を実施例1の電池とした。
《実施例2》
The dimensions of the obtained battery were 40 mm in width, 40 mm in total height, and 0.5 mm in thickness. The battery was charged at a constant current of up to 4.2 V at a charging current of 7.2 mA at an ambient temperature of 20 ° C., paused for 20 minutes, and then discharged to a final voltage of 3.0 V at a discharge current of 7.2 mA. Charging / discharging was repeated twice. Finally, the battery was charged to a battery voltage of 4.2 V at a charging current of 7.2 mA. This battery was referred to as the battery of Example 1.
Example 2

一酸化珪素膜の厚みを、蒸着回数を減らすことにより10μmにしたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の半分になるように変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例2の電池とした。
《実施例3》
A negative electrode was obtained by performing the same operation as in Example 1 except that the thickness of the silicon monoxide film was reduced to 10 μm by reducing the number of depositions. Further, in order to match the positive electrode capacity to the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to be half that of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 2.
Example 3

一酸化珪素膜の厚みを、蒸着回数を減らすことにより5μmにしたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の1/4に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例3の電池とした。
《実施例4》
A negative electrode was obtained by performing the same operation as in Example 1 except that the thickness of the silicon monoxide film was changed to 5 μm by reducing the number of times of deposition. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to ¼ of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 3.
Example 4

一酸化珪素膜の厚みを、蒸着回数を減らすことにより3μmにしたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の約0.15倍に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例4の電池とした。
《実施例5》
A negative electrode was obtained by performing the same operation as in Example 1 except that the thickness of the silicon monoxide film was reduced to 3 μm by reducing the number of depositions. Further, in order to match the positive electrode capacity to the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to about 0.15 times those of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 4.
Example 5

一酸化珪素膜の厚みを蒸着回数を減らすことにより0.5μmにしたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の1/40に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例5の電池とした。
《実施例6》
A negative electrode was obtained by carrying out the same operation as in Example 1 except that the thickness of the silicon monoxide film was reduced to 0.5 μm by reducing the number of depositions. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to 1/40 of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 5.
Example 6

一酸化珪素膜の厚みを、蒸着回数を減らすことにより10μmにし、銅箔の代わりに厚さ10μmのニッケル箔を用いたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例6の電池とした。   The thickness of the silicon monoxide film was reduced to 10 μm by reducing the number of depositions, and a negative electrode was obtained in the same manner as in Example 1 except that a nickel foil having a thickness of 10 μm was used instead of the copper foil. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 6.

比較例1Comparative Example 1

活物質である炭素材料100重量部に、結着剤であるポリフッ化ビリニデン(PVdF)のN−メチル−2−ピロリドン(NMP)溶液をPVdF重量に換算して4重量部加えて練合し、ペースト状負極合剤を得た。この負極合剤を、厚み10μmの銅箔からなる集電体シートの両面に塗着した後、60℃で8時間乾燥し、圧延して、活物質層を形成した。次いで、活物質層を担持した集電体シートを切断し、銅箔の露出部からなるリード接触部分に負極リードを接続して、負極を得た。活物質充填密度は1.2g/ccとし、負極の厚みは110μmとした。片面単位面積あたりの炭素材料の容量は、3mAhであった。この負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。この電池を比較例1の電池とした。   To 100 parts by weight of the carbon material as the active material, 4 parts by weight of an N-methyl-2-pyrrolidone (NMP) solution of poly (vinylidene fluoride) (PVdF) as the binder is converted into PVdF weight and kneaded. A paste-like negative electrode mixture was obtained. This negative electrode mixture was applied to both surfaces of a current collector sheet made of a copper foil having a thickness of 10 μm, dried at 60 ° C. for 8 hours, and rolled to form an active material layer. Next, the current collector sheet carrying the active material layer was cut, and a negative electrode lead was connected to a lead contact portion made of an exposed portion of the copper foil to obtain a negative electrode. The active material packing density was 1.2 g / cc, and the thickness of the negative electrode was 110 μm. The capacity of the carbon material per one side unit area was 3 mAh. A battery was produced in the same manner as in Example 1 except that this negative electrode was used. This battery was referred to as the battery of Comparative Example 1.

比較例2Comparative Example 2

活物質である(株)高純度化学研究所製の一酸化珪素粉末(SIO05BP、90%粒径(D90)75μm)100重量部に、結着剤であるポリフッ化ビリニデン(PVdF)のN−メチル−2−ピロリドン(NMP)溶液をPVdF重量に換算して4重量部加えて練合し、ペースト状負極合剤を得た。この負極合剤を、厚み10μmの銅箔からなる集電体シートの両面に塗着した後、60℃で8時間乾燥し、圧延して、活物質層を形成した。次いで、活物質層を担持した集電体シートを切断し、銅箔の露出部からなるリード接触部分に負極リードを接続して、負極を得た。片面単位面積あたりの一酸化珪素の容量は、実施例1と同等とした。この負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。この電池を比較例2の電池とした。
《実施例7》
To 100 parts by weight of silicon monoxide powder (SIO05BP, 90% particle size (D 90 ) 75 μm) manufactured by Kojundo Chemical Laboratories Co., Ltd., which is an active material, N—of polyvinylidene fluoride (PVdF), which is a binder. 4 parts by weight of methyl-2-pyrrolidone (NMP) solution in terms of PVdF was added and kneaded to obtain a paste-like negative electrode mixture. This negative electrode mixture was applied to both surfaces of a current collector sheet made of a copper foil having a thickness of 10 μm, dried at 60 ° C. for 8 hours, and rolled to form an active material layer. Next, the current collector sheet carrying the active material layer was cut, and a negative electrode lead was connected to a lead contact portion made of an exposed portion of the copper foil to obtain a negative electrode. The capacity of silicon monoxide per unit area on one side was the same as in Example 1. A battery was produced in the same manner as in Example 1 except that this negative electrode was used. This battery was referred to as the battery of Comparative Example 2.
Example 7

一酸化珪素膜の厚みを蒸着回数を増やすことにより30μmにしたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の約1.5倍に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例7の電池とした。
《実施例8》
A negative electrode was obtained by performing the same operation as in Example 1 except that the thickness of the silicon monoxide film was increased to 30 μm by increasing the number of depositions. Further, in order to match the positive electrode capacity to the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to about 1.5 times that of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 7.
Example 8

一酸化珪素膜の厚みを10μmにし、銅箔の代わりに厚み10μmのアルミニウム箔を用いたこと以外は、実施例1と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例1の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例8の電池とした。
《実施例9》
A negative electrode was obtained by performing the same operation as in Example 1 except that the thickness of the silicon monoxide film was 10 μm and an aluminum foil having a thickness of 10 μm was used instead of the copper foil. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 1. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 8.
Example 9

樹脂芯材として、長さ50mm、幅50mm、厚さ10μmのポリエチレンテレフタレート(PET)のシートを準備した。このPETシートの両面に、それぞれ膜厚2μmの銅の蒸着膜を設けた。蒸着条件は、ターゲットを銅に変更したこと以外は、実施例1の一酸化珪素膜の形成と同様とした。その後、ターゲットを前述の一酸化珪素粉末(純度4N)に変え、実施例1と同様に、蒸着により厚み20μmの一酸化珪素膜を両面に形成した。銅および一酸化珪素の蒸着時には、樹脂芯材を設置する基板が100℃以上にならないように冷却により温度制御した。この負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。この電池を実施例9の電池とした。
《実施例10》
As a resin core material, a polyethylene terephthalate (PET) sheet having a length of 50 mm, a width of 50 mm, and a thickness of 10 μm was prepared. A copper vapor deposition film having a thickness of 2 μm was provided on both surfaces of the PET sheet. The vapor deposition conditions were the same as in the formation of the silicon monoxide film of Example 1 except that the target was changed to copper. Thereafter, the target was changed to the above-mentioned silicon monoxide powder (purity 4N), and a silicon monoxide film having a thickness of 20 μm was formed on both surfaces in the same manner as in Example 1. During the vapor deposition of copper and silicon monoxide, the temperature was controlled by cooling so that the substrate on which the resin core material was placed did not exceed 100 ° C. A battery was produced in the same manner as in Example 1 except that this negative electrode was used. This battery was referred to as the battery of Example 9.
Example 10

一酸化珪素膜の厚みを蒸着回数を減らすことにより10μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例10の電池とした。
《実施例11》
A negative electrode was obtained by carrying out the same operation as in Example 9 except that the thickness of the silicon monoxide film was reduced to 10 μm by reducing the number of depositions. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 10.
Example 11

一酸化珪素膜の厚みを蒸着回数を減らすことにより5μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の1/4に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例11の電池とした。
《実施例12》
A negative electrode was obtained by performing the same operation as in Example 9 except that the thickness of the silicon monoxide film was reduced to 5 μm by reducing the number of depositions. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to ¼ of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 11.
Example 12

一酸化珪素膜の厚みを蒸着回数を減らすことにより3μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の約0.15倍に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例12の電池とした。
《実施例13》
A negative electrode was obtained by performing the same operation as in Example 9 except that the thickness of the silicon monoxide film was reduced to 3 μm by reducing the number of times of deposition. Further, in order to match the positive electrode capacity to the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to about 0.15 times those of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 12.
Example 13

一酸化珪素膜の厚さを蒸着回数を減らすことにより0.5μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の1/40に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例13の電池とした。
《実施例14》
A negative electrode was obtained in the same manner as in Example 9 except that the thickness of the silicon monoxide film was reduced to 0.5 μm by reducing the number of times of deposition. Further, in order to match the positive electrode capacity to the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to 1/40 of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 13.
Example 14

銅の代わりに樹脂芯材に厚み5μmのニッケル膜を蒸着し、一酸化珪素膜の厚みを10μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例14の電池とした。
《実施例15》
A negative electrode was obtained in the same manner as in Example 9 except that a nickel film having a thickness of 5 μm was deposited on the resin core instead of copper and the thickness of the silicon monoxide film was changed to 10 μm. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 14.
Example 15

PETシートの代わりに厚さ10μmのポリイミドシートを用い、一酸化珪素膜の厚みを10μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例15の電池とした。
《実施例16》
A negative electrode was obtained in the same manner as in Example 9 except that a polyimide sheet having a thickness of 10 μm was used instead of the PET sheet and the thickness of the silicon monoxide film was changed to 10 μm. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 15.
Example 16

PETシートの代わりに厚さ10μmのポリプロピレンシートを用い、一酸化珪素膜の厚みを10μmにしたこと以外は、実施例9と同じ操作を行って負極を得た。また、正極容量を負極容量に合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の半分に変更した。これらの正・負極を用い、実施例1と同様の方法で電池を作製した。この電池を実施例16の電池とした。
《実施例17》
A negative electrode was obtained in the same manner as in Example 9 except that a polypropylene sheet having a thickness of 10 μm was used instead of the PET sheet and the thickness of the silicon monoxide film was changed to 10 μm. Moreover, in order to match the positive electrode capacity with the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were changed to half of Example 9. Using these positive and negative electrodes, a battery was produced in the same manner as in Example 1. This battery was referred to as the battery of Example 16.
Example 17

まず、銅芯材の両面に炭素層を塗布した。すなわち、100重量部のABに対し、結着剤としてポリフッ化ビニリデン(PVdF)のNMP溶液を、PVdF重量に換算して、10重量部加えて、練合し、ペースト状にした。これを厚み10μmの銅箔からなる集電体シートの両面に塗着したのち、60℃で8時間乾燥し、圧延して、厚み0.5μmの炭素層を形成した。   First, the carbon layer was apply | coated on both surfaces of the copper core material. That is, to 100 parts by weight of AB, an NMP solution of polyvinylidene fluoride (PVdF) as a binder was added in an amount of 10 parts by weight in terms of PVdF, and kneaded to obtain a paste. This was applied to both sides of a current collector sheet made of a copper foil having a thickness of 10 μm, dried at 60 ° C. for 8 hours, and rolled to form a carbon layer having a thickness of 0.5 μm.

このシートに実施例9と同様の方法で、蒸着回数を減らして、厚み10μmの一酸化珪素膜を作製した。正極容量と負極容量を合わせるために、正極活物質層の厚みおよび活物質重量は、実施例9の半分にした。
これら正極と負極を用いて、実施例1と同様の方法で電池を作製した。この電池を実施例17の電池とした。
《実施例18》
A silicon monoxide film having a thickness of 10 μm was produced on this sheet in the same manner as in Example 9 with the number of depositions reduced. In order to match the positive electrode capacity and the negative electrode capacity, the thickness and the active material weight of the positive electrode active material layer were halved in Example 9.
A battery was produced in the same manner as in Example 1 using these positive electrode and negative electrode. This battery was referred to as the battery of Example 17.
Example 18

塗着厚みを変化させることにより、ABを含む層(炭素層)の厚みを1μmにしたこと以外は、実施例17と同じ方法で電池を作製し、実施例18とした。
《実施例19》
A battery was produced in the same manner as in Example 17 except that the thickness of the layer containing AB (carbon layer) was changed to 1 μm by changing the coating thickness, and Example 18 was obtained.
Example 19

塗着厚みを変化させることにより、ABを含む層(炭素層)の厚みを2μmにしたこと以外は、実施例17と同じ方法で電池を作製し、実施例19とした。
《実施例20》
A battery was produced in the same manner as in Example 17 except that the thickness of the layer containing AB (carbon layer) was changed to 2 μm by changing the coating thickness, and Example 19 was obtained.
Example 20

塗着厚みを変化させることにより、ABを含む層(炭素層)の厚みを5μmにしたこと以外は、実施例17と同じ方法で電池を作製し、実施例20とした。
《実施例21》
A battery was produced in the same manner as in Example 17 except that the thickness of the layer containing AB (carbon layer) was changed to 5 μm by changing the coating thickness, and Example 20 was obtained.
<< Example 21 >>

塗着厚みを変化させることにより、ABを含む層(炭素層)の厚みを10μmにしたこと以外は、実施例17と同じ方法で電池を作製し、実施例21とした。
《実施例22》
A battery was produced in the same manner as in Example 17 except that the thickness of the layer containing AB (carbon layer) was changed to 10 μm by changing the coating thickness, and Example 21 was obtained.
Example 22

炭素材料としてVGCF(気相成長炭素繊維を2800℃で黒鉛化したもの、平均繊維径は0.5μm)を用い、炭素層の厚みを2μmにしたこと以外は、実施例17と同じ方法で電池を作製し、実施例22とした。
《実施例23から26》
The battery was fabricated in the same manner as in Example 17 except that VGCF (graphite-grown carbon fiber graphitized at 2800 ° C., average fiber diameter 0.5 μm) was used as the carbon material, and the carbon layer thickness was 2 μm. This was produced as Example 22.
<< Examples 23 to 26 >>

炭素材料として、粒子形状の異なる複数種のグラファイトを検討した。
ここでは、鱗片状グラファイト(FG)、球状グラファイト、塊状グラファイト(MAG)および繊維状グラファイトを用いた。球状グラファイトには、黒鉛化メソカーボンマイクロビーズ(以下、MCMBという)を用い、繊維状グラファイトには、繊維径が2μmの黒鉛化メソカーボンファイバー(以下、MCFという)を用いた。鱗片状、球状および塊状のグラファイトは、いずれも平均粒径が1〜3μmのものを用いた。
As the carbon material, several types of graphite with different particle shapes were studied.
Here, scaly graphite (FG), spherical graphite, massive graphite (MAG) and fibrous graphite were used. As the spherical graphite, graphitized mesocarbon microbeads (hereinafter referred to as MCMB) were used, and as the fibrous graphite, graphitized mesocarbon fiber (hereinafter referred to as MCF) having a fiber diameter of 2 μm was used. As the scaly, spherical and massive graphite, those having an average particle diameter of 1 to 3 μm were used.

グラファイト100重量部に対し、結着剤としてポリフッ化ビニリデン(PVdF)のNMP溶液を、PVdF重量に換算して、4重量部加えて、練合し、ペースト状にした。これを厚み10μmの銅箔からなる集電体シートの両面に塗着したのち、60℃で8時間乾燥し、圧延して、厚み2μmの炭素層を形成した。このときのグラファイトの充填密度は、1.2g/cc、厚みを5μmとした。
このシートに実施例9と同様の方法で、蒸着回数を減らして、厚み10μmの一酸化珪素膜を作製した。こうして得られた負極を用いたこと以外、実施例17と同じ方法で電池を作製した。
《実施例27》
To 100 parts by weight of graphite, an NMP solution of polyvinylidene fluoride (PVdF) as a binder was added in an amount of 4 parts by weight in terms of PVdF and kneaded to obtain a paste. This was applied to both sides of a current collector sheet made of a copper foil having a thickness of 10 μm, dried at 60 ° C. for 8 hours, and rolled to form a carbon layer having a thickness of 2 μm. The graphite packing density at this time was 1.2 g / cc, and the thickness was 5 μm.
A silicon monoxide film having a thickness of 10 μm was produced on this sheet in the same manner as in Example 9 with the number of depositions reduced. A battery was produced in the same manner as in Example 17, except that the thus obtained negative electrode was used.
Example 27

実施例23の結着剤をゴム系結着剤の1種であるSBR(スチレンブタジエンゴム)に変えたこと以外は、実施例23と同じ方法で電池を作製した。   A battery was fabricated in the same manner as in Example 23, except that the binder of Example 23 was changed to SBR (styrene butadiene rubber), which is one type of rubber-based binder.

比較例3Comparative Example 3

(株)高純度化学研究所製の一酸化珪素粉末(SIO05BP、90%粒径(D90)75μm)を、ジルコニアビーズを用いたボールミルにより粉砕した。
まず、直径5mmのビーズで粗粉砕を行った後、直径2mmのビーズでさらに粉砕した。その結果、粒径D90が10μmのSiO粉末が得られた。上記粉末を用いたこと以外は、比較例2と同じ方法で電池を作製した。
Silicon monoxide powder (SIO05BP, 90% particle size (D 90 ) 75 μm) manufactured by Kojundo Chemical Laboratory Co., Ltd. was pulverized by a ball mill using zirconia beads.
First, after coarsely pulverizing with beads having a diameter of 5 mm, further pulverizing with beads having a diameter of 2 mm. As a result, a SiO powder having a particle size D 90 of 10 μm was obtained. A battery was produced in the same manner as in Comparative Example 2 except that the above powder was used.

比較例4〜5Comparative Examples 4-5

負極の集電体シートとして、銅箔の代わりに、それぞれ厚さ10μmのニッケル箔またはアルミニウム箔を用いたこと以外は、比較例2と同じ方法で電池を作製した。   A battery was fabricated in the same manner as in Comparative Example 2, except that a nickel foil or aluminum foil having a thickness of 10 μm was used instead of the copper foil as the negative electrode current collector sheet.

[電池の評価]
(A)充放電サイクル寿命
20℃の環境下において、充電電流7.2mAで、電池電圧4.2Vまで定電流充電を行い、20分間休止した後、放電電流7.2mAで、終止電圧3.0Vまで放電を行う充放電を繰り返した。2サイクル目の放電容量を電池の初期容量とした。上記充放電サイクルを100サイクル繰り返し、101サイクル目における放電容量の初期容量に対する維持率を算出した。
[Battery evaluation]
(A) Charge / Discharge Cycle Life Under an environment of 20 ° C., a constant current charge is performed to a battery voltage of 4.2 V at a charge current of 7.2 mA, and after resting for 20 minutes, a discharge current of 7.2 mA and a final voltage of 3. Charging / discharging for discharging to 0V was repeated. The discharge capacity at the second cycle was defined as the initial capacity of the battery. The charge / discharge cycle was repeated 100 cycles, and the maintenance ratio of the discharge capacity to the initial capacity at the 101st cycle was calculated.

(B)安全性
20℃の環境下において、充電電流7.2mAで、電池電圧4.2Vまで定電流充電を行い、20分間休止した後、放電電流7.2mAで、終止電圧3.0Vまで放電を行う充放電を2回繰り返した。3サイクル目の充電を行い、電池電圧が4.2Vに達した状態(満充電状態)で、充放電装置から電池をはずした。満充電状態の電池側面の中央部より5mm離れた位置に、アルメル−クロメルの熱電対をガラステープで固着し、それをレコーダーに接続した。熱電対を固定した電池を、アルミナボード製断熱板の上に載せ、電池側面のほぼ中央に、直径1mmの釘を貫通させた。その後、電池側面温度を上述のレコーダーで観測し、最高到達温度を求めた。
(B) Safety Under a 20 ° C. environment, charge current is 7.2 mA at a constant current to a battery voltage of 4.2 V. After a 20-minute pause, the discharge current is 7.2 mA and the end voltage is 3.0 V. Charging / discharging for discharging was repeated twice. The battery was removed from the charging / discharging device in the state where the third cycle charge was performed and the battery voltage reached 4.2 V (full charge state). An alumel-chromel thermocouple was fixed with glass tape at a position 5 mm away from the center of the side surface of the fully charged battery, and connected to a recorder. The battery to which the thermocouple was fixed was placed on an insulating board made of alumina board, and a nail having a diameter of 1 mm was passed through substantially the center of the side surface of the battery. Then, the battery side surface temperature was observed with the above-mentioned recorder, and the highest temperature reached was determined.

各電池の初期容量、体積エネルギー密度、100サイクル後の容量維持率および安全性試験における電池側面の最高到達温度を表1〜3に示す。   Tables 1 to 3 show the initial capacity, the volume energy density, the capacity retention rate after 100 cycles, and the maximum temperature reached on the battery side surface in the safety test.

Figure 2005100959
Figure 2005100959

Figure 2005100959
Figure 2005100959

(C)ハイレート特性
実施例17〜27の電池については、ハイレート特性を評価した。ハイレート特性は、“36mA(0.5C相当)の電流値で放電した場合の放電容量”の“7.2mA(0.1C相当)の電流値で放電した場合の放電容量”に対する割合で算出した。
(C) High rate characteristic About the battery of Examples 17-27, the high rate characteristic was evaluated. The high-rate characteristics were calculated as a ratio of “discharge capacity when discharged at a current value of 36 mA (equivalent to 0.5 C)” to “discharge capacity when discharged at a current value of 7.2 mA (equivalent to 0.1 C)”. .

Figure 2005100959
Figure 2005100959

初期容量は、実施例1の場合、理論上73.5mAhとなるはずであるが、一酸化珪素を用いた電池の場合、約40%程度容量が小さくなっている。充電・放電電流ともに電池容量に対して0.1C相当であり、電極厚みおよび活物質量に対して十分小さい電流であるから、容量低下は一酸化珪素の不可逆容量に依存するものと考えられる。しかしながら、それでも負極材料として炭素材料を用いている比較例1の電池よりもエネルギー密度が高いことがわかる。   In the case of Example 1, the initial capacity should theoretically be 73.5 mAh, but in the case of a battery using silicon monoxide, the capacity is reduced by about 40%. Since both the charge and discharge currents are equivalent to 0.1 C with respect to the battery capacity, and the current is sufficiently small with respect to the electrode thickness and the amount of active material, the capacity reduction is considered to depend on the irreversible capacity of silicon monoxide. However, it can be seen that the energy density is still higher than that of the battery of Comparative Example 1 using the carbon material as the negative electrode material.

表1に示すように、一酸化珪素膜の厚みが20μmまでは、100サイクル後の容量維持率は、炭素材料を用いている比較例1の電池と同等である。しかし、それ以上の膜厚では、容量維持率が大きく低下している。これは、充放電に伴う一酸化珪素膜の体積膨張により、活物質層内で小さな空孔が増加し、非水電解質の量が不足するためと考えられる。このことは、初期と100サイクル後の電池内部抵抗を測定したところ、内部抵抗、特に虚数部の抵抗が増えたことから推察できる。   As shown in Table 1, when the thickness of the silicon monoxide film is up to 20 μm, the capacity retention rate after 100 cycles is equivalent to that of the battery of Comparative Example 1 using the carbon material. However, when the film thickness is larger than that, the capacity retention rate is greatly reduced. This is presumably because small pores increase in the active material layer due to the volume expansion of the silicon monoxide film accompanying charge / discharge, and the amount of non-aqueous electrolyte is insufficient. This can be inferred from the fact that when the battery internal resistance at the initial stage and after 100 cycles was measured, the internal resistance, particularly the resistance of the imaginary part increased.

一酸化珪素膜の厚みが10μm未満では、体積エネルギー密度が極端に低下するが、これは、活物質量に対する電気容量に関与しない電池構成要素の割合が大きくなるためである。ここでは、電池の容量維持率に着眼しているため、樹脂芯材の厚みは10μmで固定したが、例えば5μm以下の薄い樹脂芯材を用いれば、エネルギー密度を炭素材料からなる負極を用いた比較例1の電池と同等レベルまで向上させることができる。   When the thickness of the silicon monoxide film is less than 10 μm, the volume energy density is extremely reduced, because the ratio of battery components not related to the electric capacity with respect to the amount of active material is increased. Here, since the battery capacity retention rate is focused, the thickness of the resin core is fixed at 10 μm. However, when a thin resin core of, for example, 5 μm or less is used, a negative electrode made of a carbon material is used. It can be improved to the same level as the battery of Comparative Example 1.

電池の容量維持率は、表1に示すように、一酸化珪素膜の厚みが薄くなるほど高くなっている。ここでは、一酸化珪素膜の厚みを最小0.5μmとしたが、0.5μm未満の一酸化珪素膜でも、十分なサイクル寿命が得られることは明白であり、容量が小さくても良い用途であれば、0.5μm未満の一酸化珪素膜であっても十分に適用できると考えられる。   As shown in Table 1, the capacity retention rate of the battery increases as the thickness of the silicon monoxide film decreases. Here, the thickness of the silicon monoxide film is set to a minimum of 0.5 μm, but it is clear that a sufficient cycle life can be obtained even with a silicon monoxide film of less than 0.5 μm. If it exists, even if it is a silicon monoxide film | membrane less than 0.5 micrometer, it is thought that it can fully apply.

比較例2では、一酸化珪素の堆積膜ではなく、粒子径D90が75μmの一酸化珪素の粉末を用いていることから、サイクル寿命の劣化が非常に大きくなっている。これは、粉末を構成する粒子が、堆積膜を構成する粒子に比べて遥かに大きく、充放電に伴う粒子の膨張収縮で粒子が歪み、粒子割れや集電性の低下が起こるためと考えられる。それに対し、SiO粉末の粒子径D90を10μmと小さくした比較例3では、比較例2と比べて、初期容量と体積エネルギー密度は若干減少し、維持率と最高温度は若干高いという結果になった。初期容量と体積エネルギー密度が減少したのは、粒子径が小さいことによりSiO粉末の負極への充填性が低下したためと考えられる。また、維持率と最高温度が高くなったのは、SiO粉末の比表面積が上がったためと思われる。いずれにしても、比較例3の結果は、全体的に比較例2と、あまり差がなかった。 In Comparative Example 2, since the silicon monoxide powder having a particle diameter D 90 of 75 μm is used instead of the silicon monoxide deposited film, the cycle life is greatly deteriorated. This is thought to be because the particles that make up the powder are much larger than the particles that make up the deposited film, and the particles are distorted by the expansion and contraction of the particles that accompany charge and discharge, resulting in particle cracking and reduced current collection. . On the other hand, in Comparative Example 3 in which the particle diameter D 90 of the SiO powder was reduced to 10 μm, the initial capacity and volumetric energy density were slightly reduced, and the maintenance factor and the maximum temperature were slightly higher than in Comparative Example 2. It was. The reason why the initial capacity and the volume energy density are decreased is considered to be that the filling property of the SiO powder into the negative electrode is decreased due to the small particle diameter. In addition, the reason why the maintenance ratio and the maximum temperature were increased is thought to be that the specific surface area of the SiO powder was increased. In any case, the result of Comparative Example 3 was not much different from that of Comparative Example 2 as a whole.

次に、集電体シートとしてCuの代わりにNiを用いた比較例4の結果は、Cuを用いた場合と、ほとんど差はなかった。一方、Cuの代わりにAlを用いた比較例5では、全体的に電池特性が低くなった。これは、実施例8と同様の傾向であり、Alが充電の際にリチウムと合金化し、粉体化して、抵抗が増大したためと考えられる。   Next, the result of Comparative Example 4 in which Ni was used instead of Cu as the current collector sheet was almost the same as the case where Cu was used. On the other hand, in Comparative Example 5 in which Al was used instead of Cu, the battery characteristics were generally lowered. This is the same tendency as in Example 8, and it is considered that Al was alloyed with lithium during charging and powdered to increase resistance.

樹脂芯材としてPETシートより強度の高いポリイミドを用いても、容量維持率はあまり向上しなかったが、逆に、強度の低いポリプロピレンを用いた実施例16では、容量維持率が低下している。これは、一酸化珪素の充放電に伴う膨張収縮に対して、ポリプロピレンの耐性が不十分であり、樹脂芯材が伸縮して、集電体の役割を果たす銅蒸着膜が損傷を受けるためと考えられる。従って、樹脂芯材には、引張強度の高い材質を選択することが望まれる。20MPa以上の引張強度を有する樹脂芯材は、樹脂の柔軟性により活物質間の電子伝導性が損なわれることがないことから、特に好ましく用いることができる。活物質の膨張収縮に追随できる樹脂芯材による容量維持率の向上効果も実施例10、15、16の比較から確認することができる。   Even when polyimide having a higher strength than the PET sheet was used as the resin core material, the capacity retention rate did not improve much, but conversely, in Example 16 using polypropylene having a lower strength, the capacity retention rate was lowered. . This is because polypropylene has insufficient resistance to expansion and contraction associated with charging and discharging of silicon monoxide, and the resin core material expands and contracts, resulting in damage to the copper vapor deposition film serving as a current collector. Conceivable. Therefore, it is desirable to select a material having a high tensile strength as the resin core material. A resin core material having a tensile strength of 20 MPa or more can be particularly preferably used because the electronic conductivity between the active materials is not impaired by the flexibility of the resin. The improvement effect of the capacity retention rate by the resin core material that can follow the expansion and contraction of the active material can also be confirmed from the comparison of Examples 10, 15, and 16.

負極の集電体シートにおいて、銅を用いた場合に最も良好な容量維持率が得られており、ニッケルが用いられている実施例6および実施例14でも比較的良好な容量維持率が得られている。一方、アルミニウムを用いた実施例8では、容量維持率が大きく低下している。これは、Alが充電の際にリチウムと合金化し、粉体化して、抵抗が増大したためと考えられる。ただし、リチウムに対して0.4V以上の電位までで充電が終了する限り、負極の集電体シートにAlを用いることが可能である。   In the negative electrode current collector sheet, the best capacity retention rate is obtained when copper is used, and relatively good capacity maintenance rates are also obtained in Example 6 and Example 14 in which nickel is used. ing. On the other hand, in Example 8 using aluminum, the capacity retention rate is greatly reduced. This is presumably because Al was alloyed with lithium during charging and powdered to increase resistance. However, Al can be used for the current collector sheet of the negative electrode as long as the charging is completed up to a potential of 0.4 V or more with respect to lithium.

安全性試験の結果から、粉末の一酸化珪素を用いた電池に比べて、一酸化珪素の堆積膜を用いた電池では、安全性が大きく向上することがわかる。同じ電池容量であれば、樹脂芯材を用いた場合の方が、樹脂芯材を用いていない場合に比べて、電池側面の最高到達温度が低くなっている。また、比較例1に比べると、実施例の電池は、10℃以上も最高到達温度が低くなっており、いずれも安全性に優れていることがわかる。釘刺し試験においては、正負極間の短絡電流が流れ続けるため、化学反応熱やジュール熱が蓄積し、電池温度が上昇するが、樹脂芯材を用いる場合には、ジュール熱により樹脂芯材が溶解し、電子伝導性を失うために、それ以上の発熱が抑制されるためと考えられる。   From the result of the safety test, it can be seen that the safety of the battery using the deposited film of silicon monoxide is greatly improved as compared with the battery using the powdered silicon monoxide. If the battery capacity is the same, the maximum temperature at the side of the battery is lower when the resin core material is used than when the resin core material is not used. Moreover, compared with the comparative example 1, the battery of an Example has the low ultimate temperature of 10 degreeC or more, and it turns out that all are excellent in safety | security. In the nail penetration test, since the short-circuit current between the positive and negative electrodes continues to flow, the heat of chemical reaction and Joule heat accumulates and the battery temperature rises. This is considered to be due to dissolution and loss of electronic conductivity, which suppresses further heat generation.

表2と表3とを対比すると、以下が理解できる。
(a)炭素層を有する場合、有さない場合に比べて、レート特性が大きく向上する。
(b)ABを含む炭素層の厚みが厚いほど、レート特性が向上する(実施例17〜21)。
(c)炭素層を有する場合、サイクル維持率が全体的に向上する。これは、炭素層と集電体との密着性がよく、SiOと集電体との接触抵抗が低下するためと考えられる。通常、長期に渡り充放電サイクルを繰り返すと、充放電に伴い、極板が膨張収縮を繰り返すため、集電体からの剥がれを生じるが、それが低減されると考えられる。
Comparing Table 2 and Table 3, the following can be understood.
(A) When the carbon layer is provided, the rate characteristics are greatly improved as compared with the case where the carbon layer is not provided.
(B) The rate characteristics improve as the thickness of the carbon layer containing AB increases (Examples 17 to 21).
(C) When it has a carbon layer, the cycle maintenance factor improves as a whole. This is presumably because the adhesion between the carbon layer and the current collector is good and the contact resistance between SiO and the current collector is reduced. Usually, when a charge / discharge cycle is repeated over a long period of time, the electrode plate repeatedly expands and contracts along with charge / discharge, which causes peeling from the current collector, but this is considered to be reduced.

(d)グラファイトを用いると、それ自身もリチウムの充放電に関与するため、容量が増える。また、グラファイトを用いると、サイクル維持率は、ABのような導電材を用いる場合と比べて若干劣るが、許容範囲内である。 (D) When graphite is used, the capacity itself increases because it itself participates in charging and discharging of lithium. In addition, when graphite is used, the cycle retention ratio is slightly inferior to that when a conductive material such as AB is used, but is within an allowable range.

(e)PVdFより、SBRを用いた方が、サイクル維持率が向上する。詳細は不明だが、炭素層の結着剤としては、PVdFよりも、ゴム系結着剤の方が好ましいことがわかる(実施例23〜27)。
次に、SiOxのxの値について検討した。
《実施例28から29》
(E) The cycle maintenance rate is improved by using SBR compared to PVdF. Although details are unknown, it can be seen that a rubber-based binder is preferable to PVdF as a binder for the carbon layer (Examples 23 to 27).
Next, the value of x of SiO x was examined.
<< Examples 28 to 29 >>

原料としてSiO粉末単独に代えて、(株)高純度化学研究所製のSi粉末(SIE13PB、平均粒径(直径)10μm以下、純度4N)と、SiO粉末とを併用したこと以外、実施例1と同様の方法で負極の作製を行った。   Example 1 except that instead of SiO powder alone, Si powder (SIE13PB, average particle diameter (diameter) 10 μm or less, purity 4N) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used in combination with SiO powder as a raw material. A negative electrode was produced in the same manner as described above.

ここでは、チャンバー内の別々のボートにSi粉末とSiO粉末とをセットし、それぞれ独立に加熱して同時に蒸着させた。各ボートの加熱温度は、x値の平均が0.7もしくは0.9のSiOxからなる堆積膜が得られるように制御した。なお、x値は、蛍光X線回折およびファンダメンタルパラメータ法を用いて算出した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
《実施例30から31》
Here, Si powder and SiO powder were set in separate boats in the chamber, and each was heated independently and deposited at the same time. The heating temperature of each boat was controlled so that a deposited film composed of SiO x having an average x value of 0.7 or 0.9 was obtained. The x value was calculated using fluorescent X-ray diffraction and the fundamental parameter method.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.
<< Examples 30 to 31 >>

チャンバー内の真空度を10-4Torrに保ちつつ、真空蒸着中にチャンバー内に微量の酸素ガスを流したこと以外、実施例28と同様にして負極の作製を行った。
ここでは、x値の平均が1.1もしくは1.3のSiOxからなる堆積膜が得られるように、各ボートの加熱温度および酸素ガス流量を制御した。なお、x値は、蛍光X線回折およびファンダメンタルパラメータ法を用いて算出した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
A negative electrode was produced in the same manner as in Example 28 except that a slight amount of oxygen gas was allowed to flow into the chamber during vacuum deposition while maintaining the degree of vacuum in the chamber at 10 −4 Torr.
Here, the heating temperature and oxygen gas flow rate of each boat were controlled so that a deposited film made of SiO x having an average x value of 1.1 or 1.3 was obtained. The x value was calculated using fluorescent X-ray diffraction and the fundamental parameter method.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例6〜7Comparative Examples 6-7

x値の平均が0.3もしくは0.5のSiOxからなる堆積膜が得られるように、各ボートの加熱温度を制御したこと以外、実施例28と同様にして負極の作製を行った。なお、xの値は蛍光X線回折を用いファンダメンタルパラメータ法を用いて算出した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
A negative electrode was produced in the same manner as in Example 28 except that the heating temperature of each boat was controlled so that a deposited film composed of SiO x having an average x value of 0.3 or 0.5 was obtained. The value of x was calculated using a fundamental parameter method using fluorescent X-ray diffraction.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例8〜9Comparative Examples 8-9

x値の平均が1.5もしくは1.7のSiOxからなる堆積膜が得られるように、各ボートの加熱温度および酸素ガス流量を制御したこと以外、実施例30と同様にして負極の作製を行った。なお、xの値は蛍光X線回折を用いファンダメンタルパラメータ法を用いて算出した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
A negative electrode was produced in the same manner as in Example 30 except that the heating temperature and oxygen gas flow rate of each boat were controlled so that a deposited film made of SiO x having an average x value of 1.5 or 1.7 was obtained. Went. The value of x was calculated using a fundamental parameter method using fluorescent X-ray diffraction.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例10Comparative Example 10

原料としてSiO粉末単独に代えて、(株)高純度化学研究所製のSi粉末(SIE13PB、純度4N)を単独で用いたこと以外、実施例1と同様の方法で、Si薄膜からなる負極の作製を行った。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
In place of the SiO powder alone as a raw material, a negative electrode comprising a Si thin film was produced in the same manner as in Example 1 except that Si powder (SIE13PB, purity 4N) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used alone. Fabrication was performed.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例11Comparative Example 11

原料としてSiO粉末単独に代えて、(株)高純度化学研究所製のSiO2粉末(SIO13PB、平均粒径(直径)600μm以下、純度5N)を用いたこと以外、実施例1と同様の方法で、SiO2薄膜からなる負極の作製を行った。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
The same method as in Example 1 except that instead of SiO powder alone, SiO 2 powder (SIO13PB, average particle diameter (diameter) 600 μm or less, purity 5N) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used as the raw material. Thus, a negative electrode made of a SiO 2 thin film was produced.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例12Comparative Example 12

活物質として一酸化珪素粉末(SIO05BP、90%粒径(D90)75μm)に代えて、(株)高純度化学研究所製のSi粉末(SIE13PB、純度4N)を用いたこと以外、比較例2と同様の方法で、負極の作製を行った。こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。 Comparative example except that Si powder (SIE13PB, purity 4N) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used instead of silicon monoxide powder (SIO05BP, 90% particle size (D 90 ) 75 μm) as the active material. In the same manner as in No. 2, a negative electrode was produced. A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例13Comparative Example 13

比較例7と同様の方法で、x値の平均が0.5のSiOxからなる堆積膜を作製し、その薄膜を銅箔からこそぎ落とす工程を繰り返し、必要量のSiO0.5粉末を得た。このSiO0.5粉末をボールミルで粉砕し、粉砕された粉末を用いて、比較例2と同様の方法で負極を作製した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
A deposition film made of SiO x having an average x value of 0.5 was prepared in the same manner as in Comparative Example 7, and the process of scraping the thin film from the copper foil was repeated to obtain the required amount of SiO 0.5 powder. . This SiO 0.5 powder was pulverized with a ball mill, and a negative electrode was produced in the same manner as in Comparative Example 2 using the pulverized powder.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例14Comparative Example 14

活物質として一酸化珪素粉末(SIO05BP、90%粒径(D90)75μm)に代えて、(株)高純度化学研究所製のSiO粉末(SIO15PB、平均粒径約10μm)を用いたこと以外、比較例2と同様の方法で、負極の作製を行った。こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。 Instead of the silicon monoxide powder as an active material (SIO05BP, 90% particle size (D 90) 75 [mu] m), except for using (Ltd.) by Kojundo Chemical Laboratory of SiO powder (SIO15PB, average particle size of about 10 [mu] m) A negative electrode was prepared in the same manner as in Comparative Example 2. A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例15Comparative Example 15

比較例8と同様の方法で、x値の平均が1.5のSiOxからなる堆積膜を作製し、その薄膜を銅箔からこそぎ落とす工程を繰り返し、必要量のSiO1.5粉末を得た。このSiO1.5粉末をボールミルで粉砕し、粉砕された粉末を用いて、比較例2と同様の方法で負極を作製した。
こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。
In the same manner as in Comparative Example 8, a deposited film made of SiO x having an average x value of 1.5 was prepared, and the process of scraping the thin film from the copper foil was repeated to obtain a required amount of SiO 1.5 powder. . This SiO 1.5 powder was pulverized with a ball mill, and a negative electrode was produced in the same manner as in Comparative Example 2 using the pulverized powder.
A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

比較例16Comparative Example 16

活物質として一酸化珪素粉末(SIO05BP、90%粒径(D90)75μm)に代えて、(株)高純度化学研究所製のSiO2粉末(SiO14PB、平均粒径約1μm)を用いたこと以外、比較例2と同様の方法で、負極の作製を行った。こうして得られた負極を用いたこと以外は、実施例1と同様の方法で電池を作製した。 In place of silicon monoxide powder (SIO05BP, 90% particle size (D 90 ) 75 μm) as an active material, SiO 2 powder (SiO14PB, average particle size of about 1 μm) manufactured by Kojundo Chemical Laboratory Co., Ltd. was used. A negative electrode was produced in the same manner as in Comparative Example 2 except for the above. A battery was produced in the same manner as in Example 1 except that the thus obtained negative electrode was used.

実施例28〜31、比較例6〜16の電池を実施例1と同様に評価した。
各電池の初期容量、体積エネルギー密度、100サイクル後の容量維持率、安全性試験における電池側面の最高到達温度およびハイレート特性を表4および5に示す。
The batteries of Examples 28 to 31 and Comparative Examples 6 to 16 were evaluated in the same manner as Example 1.
Tables 4 and 5 show the initial capacity, the volume energy density, the capacity retention rate after 100 cycles, the maximum temperature reached on the side surface of the battery in the safety test, and the high rate characteristics.

Figure 2005100959
Figure 2005100959

Figure 2005100959
Figure 2005100959

さらに、各電池の深放電特性の評価を以下の要領で行った。ここではSiOxからなる堆積膜の特性をより明確にするために、実施例28〜31および比較例6〜16で作製した負極を作用極とするモデル電池を作製した。作用極の対極には、37mm×37mmのリチウム箔(厚み150μm)を銅板上に貼り付けたものを用いた。銅板の露出部には、あらかじめニッケル製のリードを接続しておいた。 Furthermore, the deep discharge characteristics of each battery were evaluated in the following manner. Here, in order to clarify the characteristics of the deposited film made of SiO x, model batteries using the negative electrodes produced in Examples 28 to 31 and Comparative Examples 6 to 16 as working electrodes were produced. As the counter electrode of the working electrode, a 37 mm × 37 mm lithium foil (thickness 150 μm) stuck on a copper plate was used. A nickel lead was previously connected to the exposed portion of the copper plate.

上記の作用極と対極とをセパレータを介して対向させたこと以外、実施例1と同様の方法でモデル電池を作製した。
深放電特性の評価では、以下の充放電を繰り返した。
まず、周囲温度20℃において、7.2mAの電流で、電池電圧が0Vになるまで定電流で充電し、20分間休止した後、7.2mAの電流で、電池電圧が1.5Vになるまで放電した。この充放電を3回繰り返した。
A model battery was produced in the same manner as in Example 1 except that the working electrode and the counter electrode were opposed to each other via a separator.
In the evaluation of the deep discharge characteristics, the following charge / discharge was repeated.
First, at an ambient temperature of 20 ° C., the battery is charged with a constant current at a current of 7.2 mA until the battery voltage reaches 0 V, pauses for 20 minutes, and then at a current of 7.2 mA until the battery voltage reaches 1.5 V. Discharged. This charge / discharge was repeated three times.

ここで言う充電とは、作用極にLiが移動する場合であり、充電により、作用極の電位はより低くなる。
その後、周囲温度や充放電電流は上記と同じにして、充電を電池電圧0Vまで、放電を電池電圧3.0Vまで行う充放電を50回繰り返した。50サイクル目の放電容量の1サイクル目の放電容量に対する維持率を深放電特性とした。結果を表4および5に示す。
Charging here refers to the case where Li moves to the working electrode, and the potential of the working electrode becomes lower due to charging.
Thereafter, the ambient temperature and the charging / discharging current were the same as described above, and charging / discharging for charging up to the battery voltage 0V and discharging up to the battery voltage 3.0V was repeated 50 times. The maintenance ratio of the discharge capacity at the 50th cycle to the discharge capacity at the first cycle was defined as the deep discharge characteristics. The results are shown in Tables 4 and 5.

表4および5において、SiO2を用いた場合には、初期容量が全く得られなかった。従って、100サイクル後の容量維持率、安全性試験における電池側面の最高到達温度、ハイレート特性および深放電特性の評価は行わなかった。 In Tables 4 and 5, no initial capacity was obtained when SiO 2 was used. Therefore, the capacity retention rate after 100 cycles, the maximum temperature reached on the side of the battery in the safety test, the high rate characteristics, and the deep discharge characteristics were not evaluated.

表4から明らかなように、x値が0.7〜1.3、特に0.9〜1.3のSiOxを用いた場合には、特に深放電特性が優れており、いずれも高い維持率を示した。一方、x値が0.7より小さい場合および1.3より大きい場合には、いずれも深放電特性が大きく落ち込み、維持率が低くなった。この結果は、x値が0.7〜1.3、特には0.9〜1.3の領域のSiOxを用いることにより、特異的に優れた深放電特性を有する電池が得られることを示している。 As is clear from Table 4, when SiO x having an x value of 0.7 to 1.3, particularly 0.9 to 1.3 is used, the deep discharge characteristics are particularly excellent and both are maintained at a high level. Showed the rate. On the other hand, when the x value was smaller than 0.7 and larger than 1.3, the deep discharge characteristics were greatly lowered and the maintenance rate was lowered. This result shows that a battery having specifically excellent deep discharge characteristics can be obtained by using SiO x in the region where the x value is 0.7 to 1.3, particularly 0.9 to 1.3. Show.

このような結果が得られたのは、おそらく以下のような理由によるものと考えられる。
SiOxのx値が0.7〜1.3の場合、SiOxにLiが挿入されている充電状態では、Si−Oの結合の他に、O−Liの結合も形成されていると考えられる。前記結合のうち、O−Li結合は比較的強く、金属Liに対してSiOxが3.0Vになるまで深い放電を行っても、O−Li結合からはLiが抜けにくい。そのため、充電−深放電を繰り返した場合でも、膨張収縮の程度は、通常の充放電の場合とあまり変わらず、サイクル特性は比較的良好となる。
This result is probably due to the following reasons.
When the x value of SiO x is 0.7 to 1.3, it is considered that in the charged state in which Li is inserted into SiO x , O—Li bonds are formed in addition to Si—O bonds. It is done. Among the bonds, the O—Li bond is relatively strong, and even if deep discharge is performed until the SiO x becomes 3.0 V with respect to the metal Li, it is difficult for Li to escape from the O—Li bond. Therefore, even when charge-deep discharge is repeated, the degree of expansion and contraction is not so different from that of normal charge / discharge, and the cycle characteristics are relatively good.

特に、x値が0.9〜1.3の場合には、充電−深放電を繰り返した場合のサイクル特性が良好である。これは、O−Li結合が多く存在しているためと推察される。
一方、SiOxのx値が0.7より小さい場合には、Oの存在量が少ないため、O−Li結合が相対的に少なくなり、Liが比較的容易に抜けやすい。特にx=0、すなわちSiを用いた場合には、O−Li結合が存在しない。従って、充電−深放電を繰り返すと、通常の充放電時以上に活物質の膨張収縮が激しくなり、堆積膜の崩壊等が起こり、結果的にサイクル特性はかなり低くなってしまう。
In particular, when the x value is 0.9 to 1.3, the cycle characteristics when charging and deep discharging are repeated are good. This is presumably because there are many O-Li bonds.
On the other hand, when the x value of SiO x is smaller than 0.7, since the amount of O is small, O—Li bonds are relatively reduced, and Li is easily removed. In particular, when x = 0, that is, when Si is used, no O—Li bond exists. Therefore, if charge-deep discharge is repeated, the active material expands and contracts more intensely than during normal charge / discharge, causing the deposited film to collapse and the like, resulting in considerably poor cycle characteristics.

また、SiOxのx値が1.3より大きい場合には、Si−Oの結合が非常に強固であるため、Li−Oの結合が形成されにくい他、形成されても非常に弱い結合になると考えられる。従って、SiOxからLiが抜けやすく、充電−深放電を繰り返した場合には、x値が0.7より小さい場合と同様に、通常の充放電時以上に活物質の膨張収縮が激しくなる。なお、SiO2になると、Li−O結合はほとんど形成されないと推察される。 In addition, when the x value of SiO x is larger than 1.3, the Si—O bond is very strong, so that the Li—O bond is not easily formed, and even if formed, the bond is very weak. It is considered to be. Therefore, when Li is easily removed from SiO x and charge-deep discharge is repeated, the expansion and contraction of the active material becomes more intense than in normal charge and discharge as in the case where the x value is smaller than 0.7. Incidentally, at the SiO 2, Li-O bond is presumed to hardly formed.

次に、活物質粉末と結着剤とを含むペーストを調製し、これを銅箔に塗布した後、乾燥させて形成した活物質層の場合、充電−深放電を繰り返した場合のサイクル特性は、堆積膜の場合よりも全体的に低下した。また、活物質粉末のx値が変化しても、充電−深放電を繰り返した場合のサイクル特性には、それほど大きな変化が見られなかった。   Next, in the case of an active material layer formed by preparing a paste containing an active material powder and a binder, applying this to a copper foil, and then drying, the cycle characteristics when charging and deep discharging are repeated are: Overall, it was lower than in the case of the deposited film. Moreover, even if the x value of the active material powder changed, the cycle characteristics when charging and deep discharging were repeated did not change so much.

これは、活物質粉末を用いた電極の場合、充放電時の膨張収縮によって粒子が割れや崩壊を起こしたり、活物質層内での粒子−粒子間の密着性が弱まって電極の電気抵抗が増大したりするためと考えられる。また、この傾向は、普通の充放電サイクルでも見られるものであり、充電−深放電を繰り返した場合に特異なものではない。そのため、活物質粉末のx値が変化しても、充電−深放電を繰り返した場合のサイクル特性に大きな変化が見られなかったものと考えられる。以上より、SiOxのx値が堆積膜の特性に大きく影響すること、およびそのような影響が堆積膜に特有のものであることがわかる。 This is because, in the case of an electrode using an active material powder, the particles are cracked or collapsed due to expansion and contraction during charge and discharge, or the adhesion between the particles within the active material layer is weakened, and the electric resistance of the electrode It is thought to increase. Moreover, this tendency is also observed in a normal charge / discharge cycle, and is not unique when charge-deep discharge is repeated. Therefore, even if the x value of the active material powder changes, it is considered that no significant change was observed in the cycle characteristics when the charge-deep discharge was repeated. From the above, it can be seen that the x value of SiO x greatly affects the characteristics of the deposited film, and such an effect is unique to the deposited film.

本発明を、集電体シートおよびその表面に担持された活物質層からなり、活物質層が結着剤を含まない非水電解質二次電池用負極に適用することにより、高容量で、サイクル寿命が長く、安全性に優れ、かつ充電―深放電を繰り返した場合でも優れたサイクル特性を示す非水電解質二次電池が得られる。   By applying the present invention to a negative electrode for a non-aqueous electrolyte secondary battery comprising a current collector sheet and an active material layer carried on the surface of the current collector sheet, the active material layer does not contain a binder, a high capacity, cycle A non-aqueous electrolyte secondary battery having a long life, excellent safety, and excellent cycle characteristics even when repeated charge-deep discharge is obtained.

本発明の非水電解質二次電池の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the nonaqueous electrolyte secondary battery of this invention.

符号の説明Explanation of symbols

1 外装材
2 銅箔からなる集電体シート
3 SiOx
4 正極活物質層
5 アルミニウム箔からなる集電体シート
6 セパレータ
7 負極リード
8 正極リード
9 樹脂
DESCRIPTION OF SYMBOLS 1 Exterior material 2 Current collector sheet made of copper foil 3 SiO x film 4 Positive electrode active material layer 5 Current collector sheet made of aluminum foil 6 Separator 7 Negative electrode lead 8 Positive electrode lead 9 Resin

Claims (25)

集電体シートおよびその表面に担持された活物質層からなり、
前記活物質層が、0.7≦x≦1.3を満たすSiOxからなり、かつ結着剤を含まない非水電解質二次電池用負極。
It consists of a current collector sheet and an active material layer carried on the surface thereof,
The negative electrode for a non-aqueous electrolyte secondary battery, wherein the active material layer is made of SiO x satisfying 0.7 ≦ x ≦ 1.3 and does not contain a binder.
前記集電体シートが、金属箔からなる請求項1記載の負極。   The negative electrode according to claim 1, wherein the current collector sheet is made of a metal foil. 前記金属箔の表面が、炭素材料を含む層で被覆される請求項2記載の負極。   The negative electrode according to claim 2, wherein the surface of the metal foil is coated with a layer containing a carbon material. 前記炭素材料が、カーボンブラックおよび黒鉛よりなる群から選ばれる少なくとも1種である請求項3記載の負極。   The negative electrode according to claim 3, wherein the carbon material is at least one selected from the group consisting of carbon black and graphite. 前記カーボンブラックが、アセチレンブラックおよびケッチェンブラックよりなる群から選ばれる少なくとも1種である請求項4記載の負極。   The negative electrode according to claim 4, wherein the carbon black is at least one selected from the group consisting of acetylene black and ketjen black. 前記黒鉛が、鱗片状グラファイト、球状グラファイト、塊状グラファイトおよび繊維状グラファイトよりなる群から選ばれる少なくとも1種である請求項4記載の負極。   The negative electrode according to claim 4, wherein the graphite is at least one selected from the group consisting of flaky graphite, spherical graphite, massive graphite, and fibrous graphite. 前記集電体シートが、樹脂芯材およびその表面を被覆する金属層からなる請求項1記載の負極。   The negative electrode according to claim 1, wherein the current collector sheet comprises a resin core material and a metal layer covering the surface thereof. 前記金属が、金、銀、銅、鉄、ニッケル、亜鉛およびアルミニウムよりなる群から選ばれる少なくとも1種からなる請求項2または7記載の負極。   The negative electrode according to claim 2 or 7, wherein the metal is at least one selected from the group consisting of gold, silver, copper, iron, nickel, zinc, and aluminum. 前記樹脂芯材が、ポリエチレンテレフタレート、ポリカーボネート、アラミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂およびポリアミド樹脂よりなる群から選ばれる少なくとも1種からなる請求項7記載の負極。   The said resin core material consists of at least 1 sort (s) chosen from the group which consists of a polyethylene terephthalate, a polycarbonate, an aramid resin, a polyimide resin, a phenol resin, a polyether sulfone resin, a polyether ether ketone resin, and a polyamide resin. Negative electrode. 前記樹脂芯材は、20MPa以上の引張強度を有する請求項7または9記載の負極。   The negative electrode according to claim 7 or 9, wherein the resin core material has a tensile strength of 20 MPa or more. 前記樹脂芯材の厚さは、3〜100μmである請求項7または9記載の負極。   The negative electrode according to claim 7 or 9, wherein the resin core material has a thickness of 3 to 100 µm. 前記活物質層の厚みが、0.5μm以上20μm以下である請求項1〜11のいずれかに記載の負極。   The negative electrode according to claim 1, wherein the active material layer has a thickness of 0.5 μm or more and 20 μm or less. 請求項1〜12のいずれかに記載の負極、正極および非水電解質からなる二次電池。   The secondary battery which consists of a negative electrode in any one of Claims 1-12, a positive electrode, and a nonaqueous electrolyte. 集電体シート上に蒸着により0.7≦x≦1.3を満たすSiOxを堆積させて活物質層を形成する工程を含む非水電解質二次電池用負極の製造方法。 A method for producing a negative electrode for a nonaqueous electrolyte secondary battery, comprising a step of depositing SiO x satisfying 0.7 ≦ x ≦ 1.3 by vapor deposition on a current collector sheet to form an active material layer. 前記集電体シートが、金属箔からなる請求項14記載の製造方法。   The manufacturing method according to claim 14, wherein the current collector sheet is made of a metal foil. 前記金属箔の表面が、炭素材料を含む層で被覆される請求項15記載の製造方法。   The manufacturing method according to claim 15, wherein the surface of the metal foil is coated with a layer containing a carbon material. 前記炭素材料が、カーボンブラックおよび黒鉛よりなる群から選ばれる少なくとも1種である請求項16記載の製造方法。   The production method according to claim 16, wherein the carbon material is at least one selected from the group consisting of carbon black and graphite. 前記カーボンブラックが、アセチレンブラックおよびケッチェンブラックよりなる群から選ばれる少なくとも1種である請求項17記載の製造方法。   The production method according to claim 17, wherein the carbon black is at least one selected from the group consisting of acetylene black and ketjen black. 前記黒鉛が、鱗片状グラファイト、球状グラファイト、塊状グラファイトおよび繊維状グラファイトよりなる群から選ばれる少なくとも1種である請求項17記載の製造方法。   The production method according to claim 17, wherein the graphite is at least one selected from the group consisting of flaky graphite, spherical graphite, massive graphite, and fibrous graphite. 前記集電体シートが、樹脂芯材およびその表面を被覆する金属層からなる請求項14記載の製造方法。   The manufacturing method according to claim 14, wherein the current collector sheet includes a resin core material and a metal layer covering the surface thereof. 前記金属が、金、銀、銅、鉄、ニッケル、亜鉛およびアルミニウムよりなる群から選ばれる少なくとも1種からなる請求項15または20記載の製造方法。   The manufacturing method according to claim 15 or 20, wherein the metal is at least one selected from the group consisting of gold, silver, copper, iron, nickel, zinc, and aluminum. 前記樹脂芯材が、ポリエチレンテレフタレート、ポリカーボネート、アラミド樹脂、ポリイミド樹脂、フェノール樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂およびポリアミド樹脂よりなる群から選ばれる少なくとも1種からなる請求項20記載の製造方法。   The said resin core material consists of at least 1 sort (s) chosen from the group which consists of a polyethylene terephthalate, a polycarbonate, an aramid resin, a polyimide resin, a phenol resin, a polyether sulfone resin, a polyether ether ketone resin, and a polyamide resin. Production method. 前記樹脂芯材は、20MPa以上の引張強度を有する請求項20または22の製造方法。   The manufacturing method according to claim 20 or 22, wherein the resin core material has a tensile strength of 20 MPa or more. 前記樹脂芯材の厚さは、3〜100μmである請求項20または22記載の製造方法。   The manufacturing method according to claim 20 or 22, wherein the resin core material has a thickness of 3 to 100 µm. 前記活物質層の厚みが、0.5μm以上20μm以下である請求項14〜20のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 14 to 20, wherein the active material layer has a thickness of 0.5 µm or more and 20 µm or less.
JP2004228168A 2003-08-28 2004-08-04 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery Expired - Fee Related JP4589047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228168A JP4589047B2 (en) 2003-08-28 2004-08-04 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003305348 2003-08-28
JP2004228168A JP4589047B2 (en) 2003-08-28 2004-08-04 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2005100959A true JP2005100959A (en) 2005-04-14
JP4589047B2 JP4589047B2 (en) 2010-12-01

Family

ID=34467328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228168A Expired - Fee Related JP4589047B2 (en) 2003-08-28 2004-08-04 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4589047B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107912A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2006046353A1 (en) * 2004-10-25 2006-05-04 Sumitomo Titanium Corporation Method for producing negative electrode for lithium secondary battery
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
JP2007035297A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Collector and lithium ion secondary battery using it
JP2007123192A (en) * 2005-10-31 2007-05-17 Nippon Zeon Co Ltd Current collector and electrode for solid electrolyte secondary battery
WO2007063765A1 (en) * 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Negative active substance, and negative electrode and lithium ion secondary battery using the substance
JP2008210783A (en) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd Battery, method of manufacturing its negative electrode, and device for manufacturing negative electrode
JP2009181905A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and battery pack using the same
JP2009266466A (en) * 2008-04-23 2009-11-12 Nec Tokin Corp Non-aqueous electrolyte secondary battery
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2010212167A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Current collecting foil, battery, vehicle, battery using equipment, and method of manufacturing current collecting foil
WO2011048756A1 (en) * 2009-10-22 2011-04-28 株式会社大阪チタニウムテクノロジーズ Negative electrode active material for lithium ion secondary battery
JP2011175766A (en) * 2010-02-23 2011-09-08 Samsung Sdi Co Ltd Negative electrode active material for lithium ion secondary battery
JP4831075B2 (en) * 2006-09-07 2011-12-07 パナソニック株式会社 Nonaqueous electrolyte secondary battery
EP2477260A1 (en) * 2009-09-10 2012-07-18 OSAKA Titanium Technologies Co., Ltd. Silicon oxide and anode material for lithium ion secondary cell
WO2013002055A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
US8945242B2 (en) 2010-12-10 2015-02-03 Panasonic Corporation Method for producing lithium-ion battery
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2018181527A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 All-solid battery
WO2019163967A1 (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Multilayer body and method for producing same
JP2019145212A (en) * 2018-02-15 2019-08-29 株式会社クラレ Silicon oxide/carbon composite, nonaqueous electrolyte secondary battery negative electrode including the composite, and nonaqueous electrolyte secondary battery including the negative electrode
JP2019532471A (en) * 2016-09-22 2019-11-07 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly
CN113363500A (en) * 2019-05-31 2021-09-07 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece, electrochemical device and electric automobile and electronic product containing electrochemical device
CN113363500B (en) * 2019-05-31 2024-04-30 宁德时代新能源科技股份有限公司 Positive electrode current collector, positive electrode sheet, electrochemical device, and electric automobile and electronic product comprising electrochemical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349237A (en) * 2003-04-28 2004-12-09 Sumitomo Titanium Corp Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349237A (en) * 2003-04-28 2004-12-09 Sumitomo Titanium Corp Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107912A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
WO2006046353A1 (en) * 2004-10-25 2006-05-04 Sumitomo Titanium Corporation Method for producing negative electrode for lithium secondary battery
JP2007035297A (en) * 2005-07-22 2007-02-08 Matsushita Electric Ind Co Ltd Collector and lithium ion secondary battery using it
US8888870B2 (en) 2005-08-02 2014-11-18 Panasonic Corporation Lithium secondary battery
KR100903474B1 (en) * 2005-08-02 2009-06-18 파나소닉 주식회사 Negative electrode for lithium secondary battery and method for producing the same
WO2007015419A1 (en) * 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
JP2007123192A (en) * 2005-10-31 2007-05-17 Nippon Zeon Co Ltd Current collector and electrode for solid electrolyte secondary battery
WO2007063765A1 (en) * 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Negative active substance, and negative electrode and lithium ion secondary battery using the substance
US8071237B2 (en) 2005-12-02 2011-12-06 Panasonic Corporation Negative electrode active material and negative electrode using the same and lithium ion secondary battery
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
US8313862B2 (en) 2006-09-07 2012-11-20 Panasonic Corporation Non-aqueous battery with columnar active material
JP4831075B2 (en) * 2006-09-07 2011-12-07 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2008210783A (en) * 2007-02-01 2008-09-11 Matsushita Electric Ind Co Ltd Battery, method of manufacturing its negative electrode, and device for manufacturing negative electrode
JP2009181905A (en) * 2008-01-31 2009-08-13 Ohara Inc Solid battery and battery pack using the same
JP2009266466A (en) * 2008-04-23 2009-11-12 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2010212167A (en) * 2009-03-12 2010-09-24 Toyota Motor Corp Current collecting foil, battery, vehicle, battery using equipment, and method of manufacturing current collecting foil
EP2477260A1 (en) * 2009-09-10 2012-07-18 OSAKA Titanium Technologies Co., Ltd. Silicon oxide and anode material for lithium ion secondary cell
EP2477260A4 (en) * 2009-09-10 2013-08-21 Osaka Titanium Technologies Co Silicon oxide and anode material for lithium ion secondary cell
JP2011108635A (en) * 2009-10-22 2011-06-02 Osaka Titanium Technologies Co Ltd Negative electrode active material for lithium ion secondary battery
WO2011048756A1 (en) * 2009-10-22 2011-04-28 株式会社大阪チタニウムテクノロジーズ Negative electrode active material for lithium ion secondary battery
KR101432403B1 (en) 2009-10-22 2014-08-20 오사카 티타늄 테크놀로지스 캄파니 리미티드 Negative electrode active material for lithium ion secondary battery
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
JP2011175766A (en) * 2010-02-23 2011-09-08 Samsung Sdi Co Ltd Negative electrode active material for lithium ion secondary battery
JP5716169B2 (en) * 2010-12-10 2015-05-13 パナソニックIpマネジメント株式会社 Method for manufacturing lithium ion battery
US8945242B2 (en) 2010-12-10 2015-02-03 Panasonic Corporation Method for producing lithium-ion battery
JPWO2013002055A1 (en) * 2011-06-29 2015-02-23 シャープ株式会社 Current collector and electrode for non-aqueous secondary battery, and non-aqueous secondary battery
WO2013002055A1 (en) * 2011-06-29 2013-01-03 シャープ株式会社 Current collector and electrode for use in non-aqueous secondary cell, and non-aqueous secondary cell
JP2019532471A (en) * 2016-09-22 2019-11-07 ジーアールエスティー・インターナショナル・リミテッド Electrode assembly
JP2018181527A (en) * 2017-04-07 2018-11-15 トヨタ自動車株式会社 All-solid battery
JP2019145212A (en) * 2018-02-15 2019-08-29 株式会社クラレ Silicon oxide/carbon composite, nonaqueous electrolyte secondary battery negative electrode including the composite, and nonaqueous electrolyte secondary battery including the negative electrode
WO2019163967A1 (en) * 2018-02-23 2019-08-29 国立研究開発法人産業技術総合研究所 Multilayer body and method for producing same
US11916227B2 (en) 2018-02-23 2024-02-27 National Institute Of Advanced Industrial Science And Technology Multilayer body and method for producing same
CN113363500A (en) * 2019-05-31 2021-09-07 宁德时代新能源科技股份有限公司 Positive current collector, positive pole piece, electrochemical device and electric automobile and electronic product containing electrochemical device
CN113363500B (en) * 2019-05-31 2024-04-30 宁德时代新能源科技股份有限公司 Positive electrode current collector, positive electrode sheet, electrochemical device, and electric automobile and electronic product comprising electrochemical device

Also Published As

Publication number Publication date
JP4589047B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
KR100613952B1 (en) Negative electrode for non-aqueous electrolyte secondary battery, production method thereof and non-aqueous electrolyte secondary battery
JP4589047B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP5338041B2 (en) Negative electrode for secondary battery and secondary battery
JP5219339B2 (en) Lithium secondary battery
WO2013021630A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20070072077A1 (en) Lithium secondary battery, negative electrode therefor, and method of their manufacture
JP2011138762A (en) Nonaqueous electrolyte secondary battery, and separator
JP2010165471A (en) Lithium secondary battery
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2006332020A (en) Battery
EP3863084B1 (en) Negative electrode and secondary battery including same
JP2006294393A (en) Lithium ion secondary battery
JP2011171150A (en) Positive electrode active material, positive electrode, and nonaqueous electrolyte secondary battery
JPWO2010106768A1 (en) Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery using the same, and manufacturing method thereof
JPWO2011001666A1 (en) Non-aqueous electrolyte secondary battery positive electrode, method for producing the same, and non-aqueous electrolyte secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
WO2015015883A1 (en) Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JP2004273304A (en) Electrode and battery using the same
JP4958405B2 (en) Nonaqueous electrolyte secondary battery
EP4002539A1 (en) Method for manufacturing secondary battery
JP6984202B2 (en) A control device and a control method for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery system having the control device, and a method for manufacturing a non-aqueous electrolyte secondary battery.
JP2023543242A (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured thereby
JP2022531337A (en) How to manufacture a secondary battery
KR20210071836A (en) Negative electrode active material, method for manufacturing the same, negative electrode and secondary battery comprising the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140917

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees