JP2004349237A - Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode - Google Patents

Cathode for lithium secondary battery, lithium secondary battery using cathode, deposition material used for cathode formation, and manufacturing method of cathode Download PDF

Info

Publication number
JP2004349237A
JP2004349237A JP2003295363A JP2003295363A JP2004349237A JP 2004349237 A JP2004349237 A JP 2004349237A JP 2003295363 A JP2003295363 A JP 2003295363A JP 2003295363 A JP2003295363 A JP 2003295363A JP 2004349237 A JP2004349237 A JP 2004349237A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium secondary
sio
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295363A
Other languages
Japanese (ja)
Other versions
JP3999175B2 (en
Inventor
Yoshitake Natsume
義丈 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003295363A priority Critical patent/JP3999175B2/en
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to KR1020107027027A priority patent/KR101118933B1/en
Priority to PCT/JP2004/005527 priority patent/WO2004097962A1/en
Priority to US10/554,397 priority patent/US20070059601A1/en
Priority to KR1020097013899A priority patent/KR20090081438A/en
Priority to EP04728063A priority patent/EP1622215A4/en
Priority to KR1020057020430A priority patent/KR20050119214A/en
Publication of JP2004349237A publication Critical patent/JP2004349237A/en
Application granted granted Critical
Publication of JP3999175B2 publication Critical patent/JP3999175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To greatly improve the low level of an initial efficiency as its shortcoming without impairing the large level of an initial charge capacity which is a characteristic of a lithium secondary battery using SiO as a negative electrode. <P>SOLUTION: A film of a silicon oxide formed by vacuum vapor deposition or sputtering is formed on a surface of a current collector as a negative electrode active material layer. Preferably, the film is formed by an ion plating method. The silicon oxide is SiOx (0.5 ≤ x <1.0), and the thickness of the film is 0.1-50 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池に使用される負極、その負極を用いたリチウム二次電池、その負極形成に用いる成膜用材料及びその負極の製造方法に関する。   The present invention relates to a negative electrode used for a lithium secondary battery, a lithium secondary battery using the negative electrode, a film-forming material used for forming the negative electrode, and a method for manufacturing the negative electrode.

リチウムイオンの吸蔵放出により充電・放電を行うリチウム二次電池は、高容量、高電圧、高エネルギー密度といった特徴を兼ね備えていることから、OA機器、なかでも携帯電話、パソコン等の携帯情報機器の電源として非常に多く使用されている。このリチウム二次電池では、充電時に正極から負極へリチウムイオンが移行し、負極に吸蔵されたリチウムイオンが放電時に正極へ移行する。   Lithium secondary batteries, which charge and discharge by inserting and extracting lithium ions, have features such as high capacity, high voltage, and high energy density, making them suitable for OA equipment, especially mobile information devices such as mobile phones and personal computers. It is used very often as a power source. In this lithium secondary battery, lithium ions move from the positive electrode to the negative electrode during charging, and lithium ions stored in the negative electrode move to the positive electrode during discharging.

リチウム二次電池の負極を構成する負極活物質としては、炭素粉末が多用されている。これは後で詳しく述べるが、炭素負極の容量、初期効率及びサイクル寿命といった各種特性の総合的な評価が高いためである。そして、この炭素粉末は、結着剤溶液と混合されてスラリー化され、そのスラリーを集電板の表面に塗布し乾燥後、加圧する粉末混練塗布乾燥法により負極シートとされる。ちなみに、正極を構成する正極活物質としては、リチウムを含有する遷移金属の酸化物、主にLiCoO2 などが使用されている。 As a negative electrode active material constituting a negative electrode of a lithium secondary battery, carbon powder is frequently used. As will be described in detail later, this is because the comprehensive evaluation of various characteristics such as the capacity, initial efficiency, and cycle life of the carbon anode is high. The carbon powder is mixed with a binder solution to form a slurry. The slurry is applied to the surface of a current collector plate, dried, and then formed into a negative electrode sheet by a powder kneading application drying method in which pressure is applied. Incidentally, as a positive electrode active material constituting the positive electrode, an oxide of a transition metal containing lithium, mainly LiCoO 2 or the like is used.

現在多用されている炭素負極の問題点の一つは、他の負極に比べて理論容量が小さい点である。理論容量が小さいにもかかわらず、炭素負極が多用されているのは、初期効率、サイクル寿命といった容量以外の特性が高く、諸特性のバランスが良いためである。   One of the problems of the carbon anode which is frequently used at present is that its theoretical capacity is smaller than that of other anodes. Despite the small theoretical capacity, the reason why carbon anodes are frequently used is that the properties other than capacity, such as initial efficiency and cycle life, are high and the properties are well balanced.

携帯情報機器用電源として多用されるリチウム二次電池に関しては、更なる容量増大が求められており、この観点から炭素粉末より容量が大きい負極活物質の開発が進められている。そのような負極活物質の一つがSiOであり、SiOの理論容量は炭素の数倍に達する。それにもかかわらずSiO負極は実用化されていない。その最大の理由はSiO負極の初期効率が極端に低いからである。   With respect to lithium secondary batteries, which are frequently used as power sources for portable information devices, further increase in capacity is required, and from this viewpoint, development of a negative electrode active material having a larger capacity than carbon powder is being promoted. One such negative electrode active material is SiO, and the theoretical capacity of SiO reaches several times that of carbon. Nevertheless, a SiO negative electrode has not been put to practical use. The biggest reason is that the initial efficiency of the SiO negative electrode is extremely low.

初期効率とは、初期充電容量に対する初期放電容量の比率であり、重要な電池設計因子の一つである。これが低いということは、初期充電で負極に注入されたリチウムイオンが初期放電時に十分に放出されないということであり、この初期効率が低いと如何に理論容量が大きくとも実用化は困難である。このため、SiO負極の初期効率を高める工夫が様々に講じられており、その一つが特許文献1に記載された、予めリチウムをSiOへ含有させる方法である。ちなみに、望ましい初期効率は75%以上である。   The initial efficiency is a ratio of the initial discharge capacity to the initial charge capacity, and is one of important battery design factors. The fact that this is low means that the lithium ions injected into the negative electrode during the initial charge are not sufficiently released during the initial discharge, and if the initial efficiency is low, practical application is difficult even if the theoretical capacity is large. For this reason, various measures have been devised to increase the initial efficiency of the SiO negative electrode, and one of them is a method in which lithium is contained in SiO in advance described in Patent Document 1. Incidentally, the desired initial efficiency is 75% or more.

特許第2997741号公報Japanese Patent No. 2997741

SiO負極は、炭素負極と同様、SiOの微粉末を結着剤溶液と混合してスラリー化し、そのスラリーを集電板の表面に塗布し乾燥後、加圧する粉末混練塗布乾燥法により作製される。予めリチウムをSiOへ含有させた負極の場合も、同様の粉末混練塗布乾燥法を用いて集電板の表面に粉末を積層することにより作製される。   Like the carbon anode, the SiO anode is prepared by mixing a fine powder of SiO with a binder solution to form a slurry, applying the slurry to the surface of a current collector plate, drying, and then applying pressure by a powder kneading application drying method. . In the case of a negative electrode containing lithium in SiO in advance, the negative electrode is manufactured by laminating powder on the surface of a current collector plate using the same powder kneading, coating and drying method.

このようにして作製されるリチウム含有のSiO負極は、リチウム二次電池の初期効率を高めるのに有効である。しかし、SiOへ予めリチウムを含有させる方法は、その含有によって初期充電容量を低下させることになり、SiOの優れた特性である理論容量の高さを実質的に阻害することになる。このようなことから、SiO負極の初期充電容量を低減させずに初期効率を高める対策が待たれている。   The lithium-containing SiO negative electrode thus produced is effective for increasing the initial efficiency of the lithium secondary battery. However, in the method of preliminarily containing lithium in SiO, the initial charge capacity is reduced by the content thereof, which substantially impairs the high theoretical capacity, which is an excellent characteristic of SiO. For this reason, measures to increase the initial efficiency without reducing the initial charge capacity of the SiO negative electrode have been desired.

これに加えて、リチウム二次電池は更なる小型化が要求されているが、粉末混練塗布乾燥法によって作製されるSiO負極では、SiO層が低密度の多孔質体となるため、リチウムの有無に関係なく小型化が難しいという問題もある。   In addition, lithium secondary batteries are required to be further miniaturized. However, in the case of an SiO negative electrode manufactured by a powder kneading coating and drying method, since the SiO layer is a low-density porous body, the presence or absence of lithium is reduced. There is also a problem that miniaturization is difficult regardless of the above.

本発明の目的は、SiOを負極に用いたリチウム二次電池に特徴的な初期充電容量の大きさを阻害することなく、その欠点である初期効率の低さを大幅に改善すること、及びその負極の小型化を図ることにある。   An object of the present invention is to significantly improve the low initial efficiency, which is a disadvantage of the lithium secondary battery using SiO as a negative electrode, without impairing the initial charge capacity characteristic of the lithium secondary battery. The purpose is to reduce the size of the negative electrode.

上記目的を達成するために、本発明者はこれまでとは発想を変えて、集電体の表面に真空蒸着によりSiOの緻密層を形成することを企画した。その結果、粉末混練塗布乾燥法で形成された従来のSiO層と比べて単位体積当たりの容量が増加するだけでなく、そのSiO層で問題になっていた初期効率の低さが、初期充電容量の低下を伴うことなく飛躍的に改善されることが判明した。また、真空蒸着のなかではイオンプレーティング法によって形成された薄膜が特に高性能であること、スパッタリング膜でも真空蒸着膜に類似した効果が得られること、及び真空蒸着に使用する成膜用材料としてはSiOの析出体又はその析出体から製造した焼結体、とりわけ後述する特殊焼結体が好適であることが判明した。   In order to achieve the above object, the present inventor has changed the idea and planned to form a dense layer of SiO on the surface of the current collector by vacuum evaporation. As a result, not only the capacity per unit volume is increased as compared with the conventional SiO layer formed by the powder kneading coating and drying method, but also the low initial efficiency, which is a problem in the SiO layer, is due to the initial charging capacity. It has been found that the improvement is drastically performed without a decrease in the amount. Also, among the vacuum deposition, the thin film formed by the ion plating method has a particularly high performance, the effect similar to the vacuum deposition film can be obtained even with the sputtering film, and as a film forming material used for the vacuum deposition. Has been found to be suitable for a precipitate of SiO or a sintered body produced from the precipitate, especially a special sintered body described later.

SiOの粉末混練塗布乾燥層で初期充電容量が低下し、真空蒸着層及びスパッタリング層でこれが低下しない理由は次のように考えられる。   The reason why the initial charge capacity decreases in the SiO powder kneaded coating and dried layer and does not decrease in the vacuum deposition layer and the sputtering layer is considered as follows.

SiO粉末は例えば次のようにして製造される。まずSi粉末とSiO2 粉末の混合物を真空中で加熱することにより、SiOガスを発生させ、これを低温の析出部で析出させてSiO析出体を得る。この製法で得られるSiO析出体のSiに対するOのモル比はほぼ1となる。このSiO析出体を粉砕してSiO粉末を得るのであるが、粉末にすると表面積が増大するために、粉砕時及び粉末の使用時などに大気中の酸素により酸化され、SiO成形体のSiに対するOのモル比は1を超えてしまう。加えて、SiO粉末を粉末混練塗布乾燥法で積層する際にもSiO粉末の表面積の大きさ故に酸化が進んでしまう。こうしてSiOの粉末混練塗布乾燥層ではSiに対するOのモル比が高くなる。そして、粉末混練塗布乾燥層のSiO粉末のSiに対するOのモル比が高いと、初期充電時に吸蔵されたリチウムイオンが放電時に放出されにくくなり、初期効率が低下することになる。 The SiO powder is manufactured, for example, as follows. First, a mixture of Si powder and SiO 2 powder is heated in a vacuum to generate a SiO gas, which is deposited in a low-temperature deposition section to obtain a SiO precipitate. The molar ratio of O to Si in the SiO precipitate obtained by this method is approximately 1. This SiO precipitate is pulverized to obtain SiO powder. However, when the powder is formed into a powder, the surface area is increased. Therefore, the powder is oxidized by oxygen in the air at the time of pulverization and when the powder is used. Molar ratio exceeds 1. In addition, when the SiO powder is laminated by the powder kneading coating and drying method, oxidation proceeds due to the large surface area of the SiO powder. Thus, the molar ratio of O to Si is increased in the dry layer of the powder kneaded and coated with SiO. If the molar ratio of O to Si in the SiO powder of the powder kneaded and dried layer is high, the lithium ions absorbed during the initial charge are less likely to be released during the discharge, and the initial efficiency is reduced.

これに対して、真空蒸着法やスパッタリング法では、成膜を真空中で行うために酸素モル比の増加が抑制され、結果、初期効率の低下が抑えられる。加えて、真空蒸着法やスパッタリング法で形成される薄膜は緻密である。一方、粉末混練塗布乾燥層は粉末が押し固められただけの粉末集合体に過ぎず、SiOの充填率が低い。初期充電容量は負極活物質層の単位体積あたりの充電量であるため、緻密な薄膜の方が初期充電容量が高くなり、2サイクル目以降も充電容量が高くなる。   On the other hand, in the vacuum evaporation method and the sputtering method, since the film is formed in a vacuum, an increase in the oxygen molar ratio is suppressed, and as a result, a decrease in the initial efficiency is suppressed. In addition, a thin film formed by a vacuum evaporation method or a sputtering method is dense. On the other hand, the powder-kneaded and dried layer is merely a powder aggregate in which the powder is compacted, and has a low filling rate of SiO. Since the initial charge capacity is the amount of charge per unit volume of the negative electrode active material layer, a dense thin film has a higher initial charge capacity, and has a higher charge capacity even after the second cycle.

また、イオンプレーティング法によって形成された薄膜が特に高性能になる理由については、Siに対するOのモル比が1:1のSiOを使用する場合でも、そのSiO中の酸素が低下する傾向が見られることが影響していると考えられる。即ち、SiO中の酸素はリチウムイオンとの結合性が強いために出来るだけ少ない方が望ましいところ、イオンプレーティング法を用いることにより、SiO膜のSiに対するOのモル比が最大で0.5程度まで低下するのである。ちなみにイオンプレーティング法で酸素モル比が低下する理由は現状では不明である。   The reason why the thin film formed by the ion plating method has a particularly high performance is that even when SiO having a molar ratio of O to Si of 1: 1 is used, the oxygen in the SiO tends to decrease. Is considered to be affected. That is, it is desirable that oxygen in SiO has as little oxygen as possible because of its strong binding with lithium ions. However, by using the ion plating method, the molar ratio of O to Si in the SiO film is about 0.5 at the maximum. Down to the point. Incidentally, the reason why the oxygen molar ratio is reduced by the ion plating method is unknown at present.

また逆に、真空蒸着又はスパッタリングでの雰囲気中の酸素量を増やすことにより、SiO中の酸素モル比を高くすることも可能である。   Conversely, it is also possible to increase the oxygen molar ratio in SiO by increasing the amount of oxygen in the atmosphere during vacuum deposition or sputtering.

真空蒸着では、蒸着源、即ち成膜用材料を真空中で抵抗加熱や誘導加熱、電子ビーム照射等により加熱して溶融させ、その蒸気を基体の表面に付着させる。ここにおける成膜用材料としては、例えばSi粉末とSiO2 粉末の混合焼結体が使用されている。また、前述したSiO析出体やその析出体を粉砕して得たSiOの粉末や粒、塊などから製造したSiO焼結体が使用されている。本発明者らによる調査の結果、集電体の表面に真空蒸着によりSiOの緻密層を形成する際の成膜用材料としては、SiとSiO2 の混合焼結体よりSiO析出体又はSiO焼結体が初期効率及び成膜レートの点から好ましく、そのなかでも特に、粉末粒径及び焼結雰囲気に工夫を講じて製造した粉末焼結体が好ましいことが判明した。 In vacuum deposition, a deposition source, that is, a film-forming material is heated and melted in a vacuum by resistance heating, induction heating, electron beam irradiation, or the like, and the vapor is adhered to the surface of a substrate. As the material for film formation here, for example, a mixed sintered body of Si powder and SiO 2 powder is used. Further, the above-mentioned SiO precipitates and SiO sintered bodies manufactured from powders, granules, and lump of SiO obtained by pulverizing the precipitates are used. As a result of the investigation by the present inventors, as a film forming material when forming a dense layer of SiO by vacuum evaporation on the surface of the current collector, an SiO precipitate or SiO firing from a mixed sintered body of Si and SiO 2 was used. It has been found that a sintered body is preferable in terms of the initial efficiency and the film forming rate, and among them, a powder sintered body manufactured by devising the powder particle size and the sintering atmosphere is particularly preferable.

即ち、珪素酸化物の真空蒸着に使用する成膜用材料に関しては、一酸化珪素は蒸着に際してSiとSiO2 の混合材料などより蒸発速度が高くなることが知られている。このため、一酸化珪素の成膜用材料を用いれば薄膜の成膜速度を高めることができる。しかしながら、焼結により製造した一酸化珪素からなる成膜用材料の蒸発特性は、製造の際に使用する一酸化珪素粉末の粒径、製造方法などの諸条件に依存し、焼結前の一酸化珪素に比べ、焼結後の成膜用材料の蒸発速度は低下し、一酸化珪素からなる成膜用材料を用いたことによる薄膜の生産性向上は期待できない。 That is, it is known that silicon monoxide has a higher evaporation rate than a mixed material of Si and SiO 2 at the time of vapor deposition for a film forming material used for vacuum deposition of silicon oxide. For this reason, the use of a silicon monoxide film-forming material makes it possible to increase the rate of forming a thin film. However, the evaporation characteristics of the film-forming material made of silicon monoxide produced by sintering depend on various conditions such as the particle size of the silicon monoxide powder used in the production and the production method. The evaporation rate of the film-forming material after sintering is lower than that of silicon oxide, and it is not expected that the productivity of the thin film is improved by using the film-forming material made of silicon monoxide.

このような事情に鑑み、本発明者は焼結しても蒸発速度を高く維持することができる一酸化珪素焼結体及びその製造方法について検討した。その結果、以下の知見を得ることができた。   In view of such circumstances, the present inventor has studied a silicon monoxide sintered body that can maintain a high evaporation rate even when sintered, and a method of manufacturing the same. As a result, the following findings were obtained.

まず、一酸化珪素の蒸発速度が焼結前後で異なるのは、一酸化珪素の焼結の際に生成される組成に若干の変動が生じるためである。一方、二酸化珪素は、一酸化珪素に比べエネルギー的に安定な材料であり、二酸化珪素の蒸発速度は一酸化珪素の蒸発速度に比べて低い。したがって、一酸化珪素の成膜用材料を製造した場合でも、一酸化珪素が局部的に酸化してその一部が二酸化珪素に変化するために、蒸発速度の低下が起こることが推察される。   First, the reason why the evaporation rate of silicon monoxide differs before and after sintering is that a slight variation occurs in the composition generated during sintering of silicon monoxide. On the other hand, silicon dioxide is a material that is more energy stable than silicon monoxide, and the evaporation rate of silicon dioxide is lower than that of silicon monoxide. Therefore, even when a material for forming a film of silicon monoxide is manufactured, it is inferred that the evaporation rate is reduced because silicon monoxide is locally oxidized and a part of the material is changed to silicon dioxide.

そして、一酸化珪素の酸化は空気中に放置したときの自然酸化や酸素雰囲気下での焼結の際に起こり得る。そこで、表面積が小さい一酸化珪素粉末を使用して自然酸化を防止し、更にこのような一酸化珪素粉末を非酸化性雰囲気で焼結すれば、一酸化珪素の酸化を極力抑制することができる。こうして製造した一酸化珪素の粉末焼結体は、蒸発速度が高く、熱重量測定を行ったときの蒸発残渣が極めて少なくなる。また、リチウム二次電池における負極の薄膜をこれで蒸着形成すると、Siに対するOのモル比が低くなるため、リチウム二次電池における初期効率が向上する。   Oxidation of silicon monoxide can occur during natural oxidation when left in the air or during sintering in an oxygen atmosphere. Therefore, natural oxidation is prevented by using silicon monoxide powder having a small surface area, and sintering of such silicon monoxide powder in a non-oxidizing atmosphere can suppress oxidation of silicon monoxide as much as possible. . The thus-produced sintered body of silicon monoxide has a high evaporation rate and an extremely small amount of evaporation residue when thermogravimetry is performed. In addition, when a negative electrode thin film in a lithium secondary battery is formed by vapor deposition, the initial efficiency in the lithium secondary battery is improved because the molar ratio of O to Si is reduced.

本発明はかかる知見に基づいて開発されたものであり、下記のリチウム二次電池用負極、リチウム二次電池、成膜用材料及びリチウム二次電池の製造方法を要旨とする
(1)真空蒸着若しくはスパッタリングにより形成された珪素酸化物の薄膜を集電体の表面に有するリチウム二次電池用負極。
(2)その負極を用いるリチウム二次電池。
(3)その負極における珪素酸化物の薄膜の形成に使用される成膜用材料であり、一酸化珪素の析出体又はその析出体から製造された焼結体からなる成膜用材料。
(3−1)特にその焼結体であって、加熱温度が1300℃、圧力が10Pa以下の真空雰囲気下で焼結体試料の熱重量測定を行ったときの蒸発残渣が測定前における試料の質量の4%以下である成膜用材料。
(3−2)或いは、焼結体のなかの粉末焼結体であって、その粉末の平均粒径が250μm以上である成膜用材料。
(4)集電体の表面に真空蒸着若しくはスパッタリングにより珪素酸化物の薄膜を形成するリチウム二次電池用負極の製造方法。
The present invention has been developed based on such knowledge, and has the following negative electrode for a lithium secondary battery, a lithium secondary battery, a material for film formation, and a method for manufacturing a lithium secondary battery. Alternatively, a negative electrode for a lithium secondary battery having a thin film of silicon oxide formed by sputtering on the surface of a current collector.
(2) A lithium secondary battery using the negative electrode.
(3) A film-forming material used for forming a silicon oxide thin film on the negative electrode, the film-forming material comprising a deposit of silicon monoxide or a sintered body produced from the deposit.
(3-1) In particular, when the thermogravimetric measurement of the sintered body sample is performed in a vacuum atmosphere having a heating temperature of 1300 ° C. and a pressure of 10 Pa or less, evaporation residue of the sample before measurement is obtained. A film-forming material having a mass of 4% or less.
(3-2) Alternatively, a film-forming material in which the powder has a mean particle size of 250 μm or more, which is a powder sintered body among the sintered bodies.
(4) A method for manufacturing a negative electrode for a lithium secondary battery, wherein a silicon oxide thin film is formed on the surface of a current collector by vacuum evaporation or sputtering.

珪素酸化物の薄膜の厚さは0.1〜50μmが好ましい。0.1μm未満の場合は、単位体積当たりの容量は増加するものの、単位面積当たりの容量が低くなる。一方、この薄膜は絶縁膜であるため、50μmを超えるような場合は、薄膜から集電体への集電効率の低下が問題になる場合がある。特に好ましい膜厚は0.1〜20μmである。   The thickness of the silicon oxide thin film is preferably from 0.1 to 50 μm. If it is less than 0.1 μm, the capacity per unit volume increases, but the capacity per unit area decreases. On the other hand, since this thin film is an insulating film, when the thickness exceeds 50 μm, there may be a problem that the current collection efficiency from the thin film to the current collector decreases. A particularly preferred film thickness is 0.1 to 20 μm.

真空蒸着のなかではイオンプレーティング法が好ましい。その理由は前述したとおりである。   Among the vacuum depositions, the ion plating method is preferable. The reason is as described above.

負極活物質層を形成する珪素酸化物におけるSiに対するOのモル比は0.5〜1.2が好ましく、0.5以上1未満が特に好ましい。即ち、本発明では、負極活物質層を形成する珪素酸化物におけるSiに対するOのモル比を、粉末混練塗布乾燥層の場合よりも下げることができる。具体的には1未満に下げることができるし、これを意図的に上げることもできる。このモル比は、粉末混練塗布乾燥層より十分に低い0.5〜1.2が好ましく、0.5以上1未満が特に好ましい。換言すれば、珪素酸化物としてはSiOx(0.5≦x≦1.2)が好ましく、SiOx(0.5≦x<1)が特に好ましい。即ち、負極でリチウムイオンが酸素と結合する現象を抑制する観点から、このモル比は1.2以下が好ましく、1未満が特に好ましい。一方、これが0.5未満の場合はリチウムイオン吸蔵時の体積膨脹が顕著になり、負極活物質層が破壊するおそれがある。   The molar ratio of O to Si in the silicon oxide forming the negative electrode active material layer is preferably 0.5 to 1.2, particularly preferably 0.5 or more and less than 1. That is, in the present invention, the molar ratio of O to Si in the silicon oxide forming the negative electrode active material layer can be made lower than that in the case of the powder kneading applied dry layer. Specifically, it can be reduced to less than 1, or can be increased intentionally. This molar ratio is preferably 0.5 to 1.2, which is sufficiently lower than that of the powder kneaded and dried layer, particularly preferably 0.5 or more and less than 1. In other words, as the silicon oxide, SiOx (0.5 ≦ x ≦ 1.2) is preferable, and SiOx (0.5 ≦ x <1) is particularly preferable. That is, from the viewpoint of suppressing the phenomenon in which lithium ions are combined with oxygen at the negative electrode, the molar ratio is preferably 1.2 or less, and particularly preferably less than 1. On the other hand, if it is less than 0.5, the volume expansion during lithium ion occlusion becomes remarkable, and the negative electrode active material layer may be broken.

集電体としては金属薄板が好適である。その金属としてはCu、Alなどを用いることができる。板厚は1〜50μmが好ましい。これが薄すぎると製造が難しくなり、機械的強度の低下も問題になる。一方、厚すぎる場合は負極の小型化が阻害される。   A thin metal plate is preferable as the current collector. Cu, Al, or the like can be used as the metal. The plate thickness is preferably 1 to 50 μm. If this is too thin, production becomes difficult, and reduction in mechanical strength also becomes a problem. On the other hand, when it is too thick, miniaturization of the negative electrode is hindered.

正極は、集電体の表面に正極活物質層を形成した構造である。正極活物質としては、LiCoO2 、LiNiO2 、LiMn2 4 などのリチウムを含有する遷移金属の酸化物が主に使用される。正極の作製法としては、酸化物の微粉末を結着剤溶液と混合してスラリー化し、そのスラリーを集電板の表面に塗布し乾燥後、加圧する粉末混練塗布乾燥法が一般的であるが、負極と同様の成膜により形成することもできる。 The positive electrode has a structure in which a positive electrode active material layer is formed on the surface of a current collector. As the positive electrode active material, a transition metal oxide containing lithium such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 is mainly used. As a method for producing the positive electrode, a powder kneading coating and drying method in which a fine powder of an oxide is mixed with a binder solution to form a slurry, the slurry is applied to the surface of a current collector plate, dried, and then pressurized, is generally used. However, it can also be formed by the same film formation as the negative electrode.

電解液としては、例えばエチレンカーボネートを含有する非水電解質などを使用することができる。   As the electrolytic solution, for example, a non-aqueous electrolyte containing ethylene carbonate can be used.

本発明の成膜用材料は真空蒸着に特に有効であるが、スパッタリングに使用しても効果がある。その成膜用材料のうち、一酸化珪素の焼結体の嵩密度は特に限定しないが、スプラッシュの効果的な抑制及びハンドリング時の割れ欠け防止の面から80%以上が好ましく、95%以上が更に好ましい。   The film-forming material of the present invention is particularly effective for vacuum deposition, but is also effective for use in sputtering. Among the materials for film formation, the bulk density of the sintered body of silicon monoxide is not particularly limited, but is preferably 80% or more, and more preferably 95% or more from the viewpoint of effective suppression of splash and prevention of cracks and cracks during handling. More preferred.

本発明のリチウム二次電池用負極は、真空蒸着若しくはスパッタリングにより形成された珪素酸化物の薄膜を集電体の表面に有する構成により、SiOを負極に用いたリチウム二次電池に特徴的な初期充電容量の大きさを阻害することなく、その欠点である初期効率の低さを大幅に改善でき、リチウム二次電池の性能向上及び小型化に大きな効果を発揮する。   The negative electrode for a lithium secondary battery of the present invention has a structure in which a thin film of silicon oxide formed by vacuum evaporation or sputtering is provided on the surface of a current collector, and thus an initial characteristic characteristic of a lithium secondary battery using SiO for the negative electrode. Without impairing the charge capacity, the low initial efficiency, which is a drawback thereof, can be significantly improved, and it is highly effective in improving the performance and reducing the size of the lithium secondary battery.

また、本発明のリチウム二次電池は、その負極の使用により、SiOを負極に用いたリチウム二次電池に特徴的な初期充電容量の大きさを阻害することなく、その欠点である初期効率の低さを大幅に改善でき、性能向上及び小型化に大きな効果を発揮する。   In addition, the use of the negative electrode of the lithium secondary battery of the present invention does not impair the initial charge capacity characteristic of the lithium secondary battery using SiO as the negative electrode, and the initial efficiency, which is a drawback, is low. The height can be greatly improved, and it has a significant effect on performance improvement and miniaturization.

また、本発明の成膜用材料は、リチウム二次電池用負極における珪素酸化物の薄膜の形成に使用して、SiOを負極に用いたリチウム二次電池に特徴的な初期充電容量の大きさを阻害することなく、その欠点である初期効率の低さを大幅に改善でき、これによりリチウム二次電池の性能向上及び小型化に大きな効果を発揮する。また、蒸発速度が大きく、成膜レートを向上させることができる。   Further, the film-forming material of the present invention is used for forming a silicon oxide thin film in a negative electrode for a lithium secondary battery, and has an initial charge capacity characteristic of a lithium secondary battery using SiO as a negative electrode. However, the low initial efficiency, which is a drawback thereof, can be greatly improved without hindering the performance of the lithium secondary battery, thereby greatly improving the performance and reducing the size of the lithium secondary battery. Further, the evaporation rate is high, and the film formation rate can be improved.

また、本発明のリチウム二次電池用負極の製造方法は、集電体の表面に真空蒸着若しくはスパッタリングにより珪素酸化物の薄膜を形成することにより、SiOを負極に用いたリチウム二次電池に特徴的な初期充電容量の大きさを阻害することなく、その欠点である初期効率の低さを大幅に改善できる優れた特性の負極を提供でき、これによりリチウム二次電池の性能向上及び小型化に大きな効果を発揮する。   Further, the method for producing a negative electrode for a lithium secondary battery of the present invention is characterized by forming a thin film of silicon oxide on the surface of a current collector by vacuum evaporation or sputtering to form a lithium secondary battery using SiO for the negative electrode. A negative electrode with excellent characteristics that can significantly improve the low initial efficiency, which is a drawback of the negative electrode, without hindering the initial initial charge capacity, thereby improving the performance and miniaturizing lithium secondary batteries. It has a great effect.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示すリチウム二次電池の縦断面図、図2は熱重量測定に用いる熱重量測定器の構成を示す断面図、図3は熱重量測定を起こった場合の測定試料の質量変化を示すグラフである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of a lithium secondary battery showing one embodiment of the present invention, FIG. 2 is a sectional view showing a configuration of a thermogravimeter used for thermogravimetry, and FIG. 4 is a graph showing a change in mass of a measurement sample.

本実施形態のリチウム二次電池は、図1に示すように所謂ボタン電池であり、正極面を形成する円形の偏平なケース10を備えている。ケース10は金属からなり、その内部には、円盤状の正極20及び負極30が下から順に重ねられて収容されている。正極20は、円形の金属薄板からなる集電体21と、その表面に形成された正極活物質層22とからなる。同様に、負極30は円形の金属薄板からなる集電体31と、その表面に形成された負極活物質層32とからなる。そして両極は、それぞれの活物質層を対向させ、対向面間にセパレータ40を挟んだ状態で積層されて、ケース10内に収容されている。   The lithium secondary battery of the present embodiment is a so-called button battery as shown in FIG. 1, and includes a circular flat case 10 forming a positive electrode surface. The case 10 is made of a metal, and accommodates therein a disk-shaped positive electrode 20 and a negative electrode 30 which are stacked in order from the bottom. The positive electrode 20 includes a current collector 21 formed of a circular thin metal plate, and a positive electrode active material layer 22 formed on the surface thereof. Similarly, the negative electrode 30 includes a current collector 31 made of a circular thin metal plate and a negative electrode active material layer 32 formed on the surface of the current collector 31. The two electrodes are stacked in a state where the respective active material layers face each other and the separator 40 is sandwiched between the facing surfaces, and are housed in the case 10.

ケース10内には又、正極20及び負極30と共に電解液が収容されている。そして、シール部材50を介してケース10の開口部をカバー60で密閉することにより、収容物がケース10内に封入されている。カバー60は負極面を形成する部材を兼ねており、負極30の集電体31に接触している。正極面を形成する部材を兼ねるケース10は、正極20の集電体21と接触している。   The case 10 also contains an electrolytic solution together with the positive electrode 20 and the negative electrode 30. The container is sealed in the case 10 by sealing the opening of the case 10 with the cover 60 via the seal member 50. The cover 60 also serves as a member forming the negative electrode surface, and is in contact with the current collector 31 of the negative electrode 30. The case 10 also serving as a member forming the positive electrode surface is in contact with the current collector 21 of the positive electrode 20.

本実施形態のリチウム二次電池において注目すべき点は、負極30における負極活物質層32が、集電体31上にSiOを原材料として真空蒸着又はスパッタリング、好ましくは真空蒸着の一種であるイオンプレーティングにより形成した珪素酸化物の緻密な薄膜からなる点である。その珪素酸化物は、出発材をSiOとしているにもかかわらず、雰囲気中の酸素濃度のコントロールによりSiOn(0.5≦n<1.2)とすることが可能である。また薄膜の厚みは0.1〜50μmが適当である。   It should be noted that in the lithium secondary battery according to the present embodiment, the negative electrode active material layer 32 in the negative electrode 30 is formed by vacuum deposition or sputtering on the current collector 31 using SiO as a raw material, preferably an ion plating method which is a kind of vacuum deposition. This is a point made of a dense thin film of a silicon oxide formed by sputtering. The silicon oxide can be made SiOn (0.5 ≦ n <1.2) by controlling the oxygen concentration in the atmosphere, even though the starting material is SiO. The thickness of the thin film is suitably from 0.1 to 50 μm.

一方、正極20における正極活物質層22は、従来どおり、LiCoO2 などのリチウムを含有する遷移金属の酸化物の粉末を、結着剤溶液と混合してスラリー化し、そのスラリーを集電板21の表面に塗布し乾燥後、加圧する粉末混練塗布乾燥法により形成されている。 On the other hand, the positive electrode active material layer 22 in the positive electrode 20 is formed by mixing powder of a transition metal oxide containing lithium such as LiCoO 2 with a binder solution to form a slurry, It is formed by a powder kneading coating and drying method in which the mixture is applied to the surface of the substrate, dried and then pressed.

本実施形態のリチウム二次電池における特徴は以下のとおりである。   The features of the lithium secondary battery of the present embodiment are as follows.

第1に、負極活物質層32が珪素酸化物からなるため、炭素粉末層と比べて理論容量が格段に大きい。第2に、その珪素酸化物が真空蒸着又はスパッタリングにて形成された薄膜であり、Siに対するOのモル比が低い上に緻密であるため、初期充電容量を低減させずに初期効率を高くできる。第3に、薄膜の単位体積当たりの容量が大きいため、小型化が容易となる。   First, since the negative electrode active material layer 32 is made of silicon oxide, the theoretical capacity is much larger than that of the carbon powder layer. Second, the silicon oxide is a thin film formed by vacuum evaporation or sputtering, and has a low molar ratio of O to Si and is dense, so that the initial efficiency can be increased without reducing the initial charging capacity. . Third, since the capacity per unit volume of the thin film is large, miniaturization becomes easy.

また、二次電池負極30における負極活物質層32を形成するための成膜用材料については、以下のとおりである。 The material for forming a film for forming the negative electrode active material layer 32 in the secondary battery negative electrode 30 is as follows.

この成膜用材料として適するのは、前述したとおり、一酸化珪素の析出体又はその析出体から製造された焼結体であり、特に、加熱温度が1300℃、圧力が10Pa以下の真空雰囲気下で焼結体試料の熱重量測定を行ったときの蒸発残渣が測定前における試料の質量の4%以下である焼結体である。   As described above, the material suitable for the film formation is a precipitate of silicon monoxide or a sintered body produced from the precipitate, particularly in a vacuum atmosphere at a heating temperature of 1300 ° C. and a pressure of 10 Pa or less. Is a sintered body whose evaporation residue when the thermogravimetric measurement of the sintered body sample is performed is 4% or less of the mass of the sample before the measurement.

焼結体の熱重量測定には、図2の熱重量測定器を用いる。具体的には、天秤1の一方に吊り下げられたルツボ2に測定試料3を装入する。これに対し、天秤1のもう一方に測定試料3と釣り合う質量を有する分銅4を配置する。熱重量測定器には、加熱炉5、ガス導入口6、ガス排気口7などが備えられており、これらにより、測定試料3の温度および雰囲気の調節が行われる。   The thermogravimeter of FIG. 2 is used for the thermogravimetry of the sintered body. Specifically, the measurement sample 3 is loaded into the crucible 2 suspended on one side of the balance 1. On the other hand, a weight 4 having a mass balanced with the measurement sample 3 is arranged on the other side of the balance 1. The thermogravimeter includes a heating furnace 5, a gas inlet 6, a gas outlet 7, and the like, and controls the temperature and the atmosphere of the measurement sample 3 by these.

測定試料3の蒸発により測定試料3の質量が減少した場合、均一な磁場内に設置されたフィードバックコイルに電流を流して電磁力を発生させ、分銅4との釣り合いを維持させる。このとき、電磁力と電流値は正比例の関係にあるので、電流値から測定試料3の質量変化を測定することができる。 When the mass of the measurement sample 3 is reduced due to the evaporation of the measurement sample 3, an electric current is caused to flow through a feedback coil installed in a uniform magnetic field to generate an electromagnetic force, and the balance with the weight 4 is maintained. At this time, since the electromagnetic force and the current value are directly proportional, the change in mass of the measurement sample 3 can be measured from the current value.

測定試料3の温度を1300℃にし、雰囲気を10Pa以下の真空雰囲気として熱重量測定を行う。このとき、熱重量測定に際し、測定試料3の温度の微変動は避けられないが、温度の微変動が1300±50℃の範囲内であれば許容される。この条件で熱重量測定を行うと、焼結体の質量は一酸化珪素の蒸発に伴い減少する。このときの試料質量の変化を、測定前の測定試料の質量を100%とし、測定時間の経過に伴う蒸発残渣量の変化にて示したのが図3である。同図に示す測定では、測定試料の温度を室温から1300℃まで上昇させた。 The temperature of the measurement sample 3 is set to 1300 ° C., and thermogravimetry is performed in a vacuum atmosphere of 10 Pa or less. At this time, in the thermogravimetric measurement, a slight change in the temperature of the measurement sample 3 is inevitable, but a slight change in the temperature within the range of 1300 ± 50 ° C. is permissible. When thermogravimetry is performed under these conditions, the mass of the sintered body decreases as silicon monoxide evaporates. FIG. 3 shows the change in the mass of the sample at this time, assuming that the mass of the measurement sample before measurement is 100%, and the change in the amount of evaporation residue with the lapse of the measurement time. In the measurement shown in the figure, the temperature of the measurement sample was increased from room temperature to 1300 ° C.

図3に示すように、測定試料をルツボに装入し、温度を上昇させると、測定試料は蒸発を始め、一定の時間が経過すると、測定試料の質量が実質的に変化せず、恒量残渣とし把握できる。好ましい成膜用材料は、このときの焼結体の蒸発残渣の質量、即ち恒量残渣の質量が測定前の質量の4%以下となる一酸化珪素の焼結体である。   As shown in FIG. 3, when the measurement sample is charged into the crucible and the temperature is increased, the measurement sample starts to evaporate. After a certain period of time, the mass of the measurement sample does not substantially change, and the constant weight residue It can be grasped. A preferable film forming material is a silicon monoxide sintered body in which the mass of the evaporation residue of the sintered body at this time, that is, the mass of the constant weight residue is 4% or less of the mass before measurement.

この条件を満足すれば、一酸化珪素の蒸発速度は高く、蒸発による蒸着による酸化珪素薄膜の生産性を向上させることができる。また、その薄膜はSiに対するOのモル比が低くなり、初期充電容量を低減させずに初期効率を高くすることができる。   If this condition is satisfied, the evaporation rate of silicon monoxide is high, and the productivity of the silicon oxide thin film by vapor deposition by evaporation can be improved. In addition, the thin film has a low molar ratio of O to Si, so that the initial efficiency can be increased without reducing the initial charge capacity.

このような一酸化珪素の焼結体は、粒径が250μm以上のSiO粉末をプレス成形後、又はプレス成形しながら、非酸化性雰囲気で焼結することにより製造できる。   Such a sintered body of silicon monoxide can be manufactured by sintering in a non-oxidizing atmosphere after press molding or while press molding SiO powder having a particle size of 250 μm or more.

この粉末焼結体の原材料として、平均粒径が250μm以上のSiO粉末を使用するのは、粒径が250μm未満のSiO粉末では、SiO粉末の表面積が大きく、自然酸化による粒子表面に二酸化珪素が形成されるため、焼結体にこの二酸化珪素が反映され、蒸発速度の低下、初期効率の低下が生じるからである。この粒径の上限については2000μm以下が好ましい。2000μm超の場合にはプレス成形性、焼結性の低下が生じる。   As the raw material of this powder sintered body, the use of SiO powder having an average particle diameter of 250 μm or more is because, in the case of SiO powder having a particle diameter of less than 250 μm, the surface area of the SiO powder is large and silicon dioxide is deposited on the particle surface by natural oxidation. This is because the silicon dioxide is reflected on the sintered body because it is formed, and the evaporation rate and the initial efficiency are reduced. The upper limit of the particle size is preferably 2000 μm or less. If it exceeds 2000 μm, the press formability and sinterability will be reduced.

上記SiO粉末の粒径は、平均250μm以上であれば同程度に揃える必要はない。例えば250μm以上の様々な粒径のSiO粒子を混合して焼結することより、焼結体の密度を高くすることができる。焼結体の密度が約95%以下であれば、光学顕微鏡による断面観察により、焼結体におけるSiO粉末の粒径を調査でき、焼結体の原材料として、平均粒径が250μm以上のSiO粉末を使用したか否かを確認できる。   It is not necessary to make the particle diameter of the above-mentioned SiO powder as uniform as long as the average is 250 μm or more. For example, by mixing and sintering SiO particles having various particle diameters of 250 μm or more, the density of the sintered body can be increased. If the density of the sintered body is about 95% or less, the particle size of the SiO powder in the sintered body can be investigated by cross-sectional observation using an optical microscope. As a raw material of the sintered body, an SiO powder having an average particle size of 250 μm or more is used. You can check whether you have used.

このようなSiO粉末は、任意の形状にプレス成形後、又はプレス成形しながら、非酸化性雰囲気下で焼結する。プレス成形後に焼結を行う場合、プレスにより所望の形状に成形できればプレス成形の方法は特に問わない。SiO粒子同士の接合性が悪い場合は、SiO粉末に少量の水を添加し、プレス成形後、脱水処理により水を除去するなどしてもよい。1cm2 あたり300〜1500kg程度の荷重を付加することで、SiO粉末は任意の形状に成形可能となる。 Such SiO powder is sintered in a non-oxidizing atmosphere after or while press-forming into an arbitrary shape. When sintering is performed after press molding, the press molding method is not particularly limited as long as the desired shape can be formed by pressing. When the bonding property between SiO particles is poor, a small amount of water may be added to the SiO powder, and after press molding, water may be removed by a dehydration treatment. By applying a load of about 300 to 1500 kg per 1 cm 2 , the SiO powder can be formed into an arbitrary shape.

一方、プレス成形しながら焼結を行う場合は、SiO粉末が昇温するため、1cm2 あたり100〜300kg程度の荷重を付加すれば十分である。 On the other hand, when sintering is performed while press-molding, it is sufficient to apply a load of about 100 to 300 kg per 1 cm 2 because the temperature of the SiO powder rises.

焼結は非酸化性雰囲気下で行うことが望ましい。非酸化性雰囲気とは、酸素を含有しない雰囲気であり、例えば真空雰囲気又はアルゴンガスなどの不活性雰囲気である。特に、真空雰囲気下で焼結を行った場合は、一酸化珪素の焼結体の蒸発速度は、焼結前のSiO粉末の蒸発速度と変わらないため、焼結は真空雰囲気下で行うことが好ましい。酸素を含有する雰囲気下で焼結を行った場合は、SiO粉末が結合し、蒸発速度が低下する。   Sintering is desirably performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is an atmosphere containing no oxygen, for example, a vacuum atmosphere or an inert atmosphere such as an argon gas. In particular, when sintering is performed in a vacuum atmosphere, the sintering can be performed in a vacuum atmosphere because the evaporation rate of the sintered body of silicon monoxide is not different from the evaporation rate of the SiO powder before sintering. preferable. When sintering is performed in an atmosphere containing oxygen, the SiO powder binds and the evaporation rate decreases.

焼結の温度については、SiO粒子同士が結合し、その形状を維持できれば、特に問わない。1200〜1350℃で1時間以上の焼結で十分である。   The sintering temperature is not particularly limited as long as the SiO particles are bonded to each other and the shape can be maintained. Sintering at 1200 to 1350 ° C. for 1 hour or more is sufficient.

次に、本発明の実施例を示し、従来例と比較することにより、本発明の効果を明らかにする。   Next, examples of the present invention will be shown, and the effects of the present invention will be clarified by comparing with the conventional examples.

図1に示すリチウム二次電池(サイズ直径15mm、厚さ3mm)を作製する際に、負極の構成を下記のとおり様々に変更した。   When manufacturing the lithium secondary battery (size diameter 15 mm, thickness 3 mm) shown in FIG. 1, the configuration of the negative electrode was variously changed as follows.

実施例として、厚みが10μmの銅箔からなる集電体の表面に、負極活物質層として、イオンプレーティング法、通常の蒸着法(抵抗加熱)、スパッタリング法及び粉末混練塗布乾燥法により珪素酸化物の薄膜を形成した。イオンプレーティング法では、SiO粉末焼結体(タブレット)を成膜用材料(蒸発源)とし、EBガンを加熱源として所定の真空雰囲気中〔10-3Pa(10-5torr)〕で珪素酸化物の薄膜を形成した。 As an example, silicon oxide was formed on a surface of a current collector made of a copper foil having a thickness of 10 μm as a negative electrode active material layer by an ion plating method, a normal vapor deposition method (resistance heating), a sputtering method, and a powder kneading coating and drying method. A thin film of the product was formed. In the ion plating method, a sintered silicon powder (tablet) is used as a material for film formation (evaporation source), and an EB gun is used as a heating source in a predetermined vacuum atmosphere [10 −3 Pa (10 −5 torr)]. An oxide thin film was formed.

成膜用材料としては、前記SiO粉末焼結体の他に、前述したSiO析出体、即ちSi粉末とSiO2 粉末の混合物を真空中で加熱することにより、SiOガスを発生させ、これを低温の析出部で析出させて得たSiO析出体の破砕塊、Si粉末とSiO2 粉末の混合焼結体、及びシリコン塊を使用した。 As a material for film formation, in addition to the above-mentioned SiO powder sintered body, the above-mentioned SiO precipitate, that is, a mixture of Si powder and SiO 2 powder is heated in a vacuum to generate a SiO gas, The crushed lump of the SiO precipitate obtained by precipitation in the precipitation section of No., a mixed sintered body of Si powder and SiO 2 powder, and a silicon lump were used.

また、前記SiO粉末焼結体としては、粉末の平均粒径が250μm、1000μm、10μmの3種類を使用した。それぞれの製造方法については、250μmのものは荷重100kg/cm2 でプレス加圧しながら焼結(真空中1200℃×1.5時間)を行い、1000μmのものは荷重100kg/cm2 でプレス加圧しながら焼結(真空中で1200℃×1.5時間)を行い、10μmのものは荷重200kg/cm2 でプレス加圧しながら焼結(真空中で1200℃×1.5時間)を行った。 As the SiO powder sintered body, three kinds of powder having an average particle diameter of 250 μm, 1000 μm, and 10 μm were used. For each production method, performed sintering (1200 ° C. × 1.5 hours in vacuum) while 250μm things pressure press-in load of 100 kg / cm 2, pressing pressurized with a load 100 kg / cm 2 is that of 1000μm Sintering was performed (1200 ° C. × 1.5 hours in a vacuum), and sintering (1200 ° C. × 1.5 hours in a vacuum) was performed on a 10 μm-thick one while pressing with a load of 200 kg / cm 2 .

加熱温度が1300℃、圧力が10Pa以下の真空雰囲気下で焼結体試料の熱重量測定を行ったときの蒸発残渣率は、それぞれ4%、3%、8%である。熱重量測定には図2の測定器を用いた。加熱温度1300℃は、測定試料から約1mm離れた距離における温度を熱電対8で測定した温度であり、実質的に測定試料はこの温度に加熱されている考えられる。熱重量測定によって得られたデータを整理し、実質的に測定試料の質量変化がなくったときの質量を蒸発残渣の質量として、測定前の質量に対する比率(蒸発残渣率)を計算した(図3参照)。   When the thermogravimetric measurement of the sintered body sample was performed in a vacuum atmosphere at a heating temperature of 1300 ° C. and a pressure of 10 Pa or less, the evaporation residue rates were 4%, 3%, and 8%, respectively. The thermometer shown in FIG. 2 was used for thermogravimetry. The heating temperature of 1300 ° C. is a temperature measured by a thermocouple 8 at a distance of about 1 mm from the measurement sample, and it is considered that the measurement sample is substantially heated to this temperature. The data obtained by the thermogravimetry were arranged, and the mass (the evaporation residue ratio) with respect to the mass before the measurement was calculated with the mass when the mass change of the measurement sample substantially disappeared as the mass of the evaporation residue (FIG. 3). reference).

なお、図3に示した2種類の試料は、上述した3種類のSiO粉末焼結体のうちの2種類であり、具体的には、粉末の平均粒径が250μmのSiO粉末焼結体(実線:実施例3)と、粉末の平均粒径が10μmのSiO粉末焼結体(点線:実施例10)である。前者の蒸発残渣率は4%であるが、後者の蒸発残渣率は8%である。   The two types of samples shown in FIG. 3 are two of the above-described three types of SiO powder sintered bodies, and specifically, an SiO powder sintered body having an average particle diameter of 250 μm ( Solid line: Example 3), and a sintered body of SiO powder having an average particle diameter of 10 μm (dotted line: Example 10). The former has an evaporation residue ratio of 4%, while the latter has an evaporation residue ratio of 8%.

作製された各種の負極を正極と組み合わせ、電解液と共にケース内に封入してリチウム二次電池を完成させた。完成した各種電池の初期充電容量、初期放電容量及び初期効率を測定した。なお、正極にはLiCoO2 の微粉末を用い、電解液にはエチレンカーボネートを含有する非水電解質を用いた。 Each of the prepared negative electrodes was combined with a positive electrode, and sealed in a case together with an electrolyte to complete a lithium secondary battery. The initial charge capacity, initial discharge capacity, and initial efficiency of the completed various batteries were measured. Note that a fine powder of LiCoO 2 was used for the positive electrode, and a non-aqueous electrolyte containing ethylene carbonate was used for the electrolytic solution.

初期充電容量、並びに初期充電容量と初期放電容量とから算出した初期効率を表1に示す。初期充電容量は単位体積当たりの電流量で評価し、実施例3におけるデータを1としたときの比率で表している。   Table 1 shows the initial charging capacity and the initial efficiency calculated from the initial charging capacity and the initial discharging capacity. The initial charge capacity is evaluated by the amount of current per unit volume, and is expressed as a ratio when the data in Example 3 is set to 1.

Figure 2004349237
Figure 2004349237

実施例1〜8では、成膜用材料として、粉末の平均粒径が250μmであるSiO粉末焼結体(真空焼結品)を用い、成膜方法を種々変更した。   In Examples 1 to 8, a SiO powder sintered body (vacuum sintered product) having an average powder particle size of 250 μm was used as a film forming material, and the film forming method was variously changed.

成膜方法は、実施例1〜5ではイオンプレーティング法を用いた。薄膜の厚みは0.05μm、0.1μm、1μm、20μm、50μmの5種類とした。いずれの薄膜においても珪素酸化物中のSiに対するOのモル比は0.5になった。   In Examples 1 to 5, a film forming method used an ion plating method. The thickness of the thin film was set to five types: 0.05 μm, 0.1 μm, 1 μm, 20 μm, and 50 μm. In all the thin films, the molar ratio of O to Si in the silicon oxide was 0.5.

実施例6では、薄膜が1μmの場合に成膜雰囲気中に酸素を添加して珪素酸化物中のSiに対するOのモル比を意図的に増大させた。   In Example 6, when the thickness of the thin film was 1 μm, oxygen was added to the film formation atmosphere to intentionally increase the molar ratio of O to Si in the silicon oxide.

実施例7及び実施例8では、前記集電体の表面に、通常の真空蒸着(抵抗加熱)及びスパッタリングにより、珪素酸化物からなる厚みが1μmの薄膜を形成した。   In Example 7 and Example 8, a thin film of silicon oxide having a thickness of 1 μm was formed on the surface of the current collector by ordinary vacuum deposition (resistance heating) and sputtering.

これらに対し、従来例1では、SiOの微粉末を粉末混練塗布乾燥法により前記集電体の表面に積層して、厚みが200μmの負極活物質層を形成した。従来例2では、予めリチウムをSiOへ含有させた厚み200μmの負極活物質層を、粉末混練塗布乾燥法により前記集電体の表面に形成した。   On the other hand, in Conventional Example 1, a fine powder of SiO was laminated on the surface of the current collector by a powder kneading coating and drying method to form a negative electrode active material layer having a thickness of 200 μm. In Conventional Example 2, a 200 μm-thick negative electrode active material layer in which lithium was previously contained in SiO was formed on the surface of the current collector by a powder kneading coating and drying method.

負極活物質としてSiOを用い、粉末混練塗布乾燥法により層形成した場合は、層中のSiに対するOのモル比は1.4に増加している。初期充電容量に対して初期放電容量が小さいために、初期効率は46%と低い(従来例1)。予めリチウムをSiOへ含有させることにより、初期効率は84%と上がるが、これはもっぱら初期充電容量が減少したためであり、SiOの優れた理論容量が阻害される結果になった(従来例2)。   When SiO was used as the negative electrode active material and a layer was formed by a powder kneading coating and drying method, the molar ratio of O to Si in the layer was increased to 1.4. Since the initial discharge capacity is smaller than the initial charge capacity, the initial efficiency is as low as 46% (conventional example 1). The incorporation of lithium in SiO beforehand increases the initial efficiency to 84%, but this is solely due to the decrease in the initial charge capacity, which results in the inhibition of the excellent theoretical capacity of SiO (Conventional Example 2). .

粉末混練塗布乾燥法に代えて、負極活物質であるSiOをイオンプレーティング法で成膜した。薄膜中のSiに対するOのモル比は0.5に低下した。初期充電容量が大きいまま、初期効率が改善された(実施例1〜5)。ただし、膜厚が厚い実施例5では、初期充電容量及び初期効率が若干低下した。薄膜中のSiに対するOのモル比が0.99に増大した実施例6では、初期効率は多少低下するものの、依然高いレベルであり、初期充電容量も大きい。   Instead of the powder kneading, coating and drying method, SiO, which is a negative electrode active material, was formed by ion plating. The molar ratio of O to Si in the thin film dropped to 0.5. The initial efficiency was improved while the initial charging capacity was large (Examples 1 to 5). However, in Example 5 having a large film thickness, the initial charging capacity and the initial efficiency were slightly reduced. In Example 6 in which the molar ratio of O to Si in the thin film was increased to 0.99, although the initial efficiency was slightly lowered, it was still at a high level and the initial charging capacity was large.

通常の真空蒸着及びスパッタリングで薄膜を形成した実施例7及び8では、薄膜中のSiに対するOのモル比は1を超える。イオンプレーティングに比べると初期効率は若干低下するものの依然高いレベルであり、初期充電容量も高レベルてある。成膜レートはイオンプレーティング法と比べて通常の真空蒸着で低く、スパッタリングで更に低くなる。   In Examples 7 and 8 in which a thin film was formed by ordinary vacuum deposition and sputtering, the molar ratio of O to Si in the thin film exceeded 1. Although the initial efficiency is slightly lower than that of ion plating, it is still at a high level, and the initial charging capacity is also at a high level. The film formation rate is lower in normal vacuum deposition than in the ion plating method, and further lower in sputtering.

他方、実施例9〜13では、成膜方法としてイオンプレーティング法を用い、成膜用材料を種々変更した。膜厚は1μmとした。   On the other hand, in Examples 9 to 13, the ion-plating method was used as the film-forming method, and the material for film-forming was variously changed. The film thickness was 1 μm.

成膜用材料は、実施例9では、粉末の平均粒径が1000μmのSiO粉末焼結体(真空焼結品)とした。実施例10では、粉末の平均粒径が10μmのSiO粉末焼結体(真空焼結品)を用いた。蒸発残渣率は、それぞれ3%、8%である。膜厚が同じ1μmの実施例3と比較して、実施例9では電池性能に関しての効果は飽和しており、実施例10では薄膜中のSiに対するOのモル比は若干低下する。したがって、SiO粉末焼結体における粉末の平均粒径としては250μm以上が好ましい。   In Example 9, the material for film formation was an SiO powder sintered body (vacuum sintered product) having an average powder particle diameter of 1000 μm. In Example 10, an SiO powder sintered body (vacuum sintered product) having an average powder particle size of 10 μm was used. The evaporation residue rates are 3% and 8%, respectively. As compared with Example 3 having the same film thickness of 1 μm, the effect on the battery performance is saturated in Example 9, and the molar ratio of O to Si in the thin film is slightly reduced in Example 10. Therefore, the average particle size of the powder in the SiO powder sintered body is preferably 250 μm or more.

実施例11では、SiO析出体の破砕塊(平均粒径5cm程度)を用いた。膜厚が同じ1μmの実施例3と比較して、析出体であっても粉末焼結体と同等の初期効率及び初期充電容量が得られる。一方、焼結体では成膜中のスプラッシュが析出体より少ないために、成膜レート(蒸発速度)を更に上げることができる。このため、生産性の面からは焼結体の方が好ましい。また、焼結体の方が成膜装置への原料の連続供給がしやすい利点もある。SiO焼結体の成膜中のスプラッシュが少ない理由としては、成膜用材料であるSiOがSiO析出体よりも強固に結合していることが考えられる。   In Example 11, a crushed lump of SiO precipitate (average particle size of about 5 cm) was used. Compared with Example 3 having the same film thickness of 1 μm, the same initial efficiency and initial charge capacity as the powder sintered body can be obtained even with the precipitate. On the other hand, in the case of the sintered body, since the number of splashes during the film formation is smaller than that of the precipitate, the film formation rate (evaporation rate) can be further increased. For this reason, a sintered body is more preferable in terms of productivity. Further, the sintered body has an advantage that the raw material can be easily supplied to the film forming apparatus continuously. The reason why the splash during the film formation of the SiO sintered body is small is considered that SiO, which is a material for film formation, is more strongly bonded than the SiO precipitate.

実施例12では、Si粉末とSiO2 粉末の混合焼結体を用いた。この成膜用材料でも電池性能に関する効果は得られるが、成膜レートはかなり遅い。SiO析出体やSiO焼結体では、加熱温度をSiOの昇華温度上げるだけで成膜が可能であるが、Si粉末とSiO2 粉末の混合焼結体では、まず焼結体内のSiとSiO2 の接触部分で互いを反応させてSiOを発生させる必要がある。このため、混合焼結体は、SiO析出体やSiO焼結体よりもSiO発生速度が遅い。大きな熱量を与えれば発生速度は上がるが、そうすると成膜時のスプラッシュが増加するため、結局は成膜レートを小さくせざるを得ないという制約があるのである。 In Example 12, a mixed sintered body of Si powder and SiO 2 powder was used. Although this film-forming material can provide an effect on battery performance, the film-forming rate is considerably slow. In the case of SiO precipitates and SiO sintered bodies, film formation is possible only by raising the heating temperature to the sublimation temperature of SiO. However, in the case of a mixed sintered body of Si powder and SiO 2 powder, first, Si and SiO in the sintered body are mixed. It is necessary to react each other at the contact portion 2 to generate SiO. Therefore, the mixed sintered body has a lower SiO generation rate than the SiO precipitate and the SiO sintered body. If a large amount of heat is applied, the generation rate increases, but this increases the splash at the time of film formation, so there is a restriction that the film formation rate must be reduced after all.

実施例13では、キャスト法により製造したシリコンインゴットから切り出したシリコン塊を材料として、酸化性雰囲気下で成膜を行う。電池性能については実施例12の混合焼結体の場合と同等のものが得られる。酸化性雰囲気は、酸素ガスを導入することにより形成した。この場合、Si原子を材料表面から放散させる必要があるため、混合焼結体よりもスプラッシュが発生しやすい。このため、成膜レートは更に小さい。   In the thirteenth embodiment, a film is formed in an oxidizing atmosphere using a silicon lump cut from a silicon ingot manufactured by a casting method as a material. As for the battery performance, the same performance as that of the mixed sintered body of Example 12 can be obtained. The oxidizing atmosphere was formed by introducing oxygen gas. In this case, since the Si atoms need to be diffused from the material surface, splash is more likely to occur than in the mixed sintered body. For this reason, the film formation rate is even lower.

なお、電池形式は上記実施形態ではボタン電池を挙げたが、本発明では負極が薄くなるため積層により容易に容量増大が可能になる。このため、本発明は積層型電池に特に好適であり、積層型電池への適用により小型で大容量のものを安価に提供できる特徴がある。そして、積層型電池とする場合、正極活物質層、集電体、セパレータなどの部分についても、負極活物質層と同様に成膜による薄膜とすることが可能である。   In the above embodiment, the button battery is used as the battery type. However, in the present invention, since the negative electrode is thin, the capacity can be easily increased by lamination. For this reason, the present invention is particularly suitable for a stacked battery, and has a feature in that a small-sized and large-capacity battery can be provided at low cost by applying to the stacked battery. In the case of a stacked battery, a thin film formed by film formation can also be formed on the positive electrode active material layer, the current collector, the separator, and the like in the same manner as the negative electrode active material layer.

本発明の一実施形態を示すリチウム二次電池の縦断面図である。1 is a longitudinal sectional view of a lithium secondary battery showing one embodiment of the present invention. 熱重量測定に用いる熱重量測定器の構成を示す断面図である。It is sectional drawing which shows the structure of the thermogravimeter used for thermogravimetry. 熱重量測定を起こった場合の測定試料の質量変化を示すグラフである。5 is a graph showing a change in mass of a measurement sample when thermogravimetry is performed.

符号の説明Explanation of reference numerals

1 天秤
2 ルツボ
3 測定試料
4 分銅
5 加熱炉
6 ガス導入口
7 ガス排気口
8 熱電対
10 ケース
20 正極
21 集電体
22 正極活物質層
30 負極
31 集電体
32 負極活物質層
40 セパレータ
50 シール部材
60 カバー
DESCRIPTION OF SYMBOLS 1 Balance 2 Crucible 3 Measurement sample 4 Weight 5 Heating furnace 6 Gas inlet 7 Gas exhaust port 8 Thermocouple 10 Case 20 Positive electrode 21 Current collector 22 Positive electrode active material layer 30 Negative electrode 31 Current collector 32 Negative electrode active material layer 40 Separator 50 Sealing member 60 cover

Claims (12)

真空蒸着若しくはスパッタリングにより形成された珪素酸化物の薄膜を集電体の表面に有するリチウム二次電池用負極。   A negative electrode for a lithium secondary battery having a silicon oxide thin film formed by vacuum evaporation or sputtering on the surface of a current collector. 前記珪素酸化物の薄膜の厚さが0.1〜50μmである請求項1に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the silicon oxide thin film has a thickness of 0.1 to 50 m. 前記真空蒸着はイオンプレーティング法である請求項1に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the vacuum deposition is an ion plating method. 前記珪素酸化物はSiOx(0.5≦x≦1.2)である請求項1に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 1, wherein the silicon oxide is SiOx (0.5≤x≤1.2). 前記珪素酸化物はSiOx(0.5≦x<1.0)である請求項4に記載のリチウム二次電池用負極。   The negative electrode for a lithium secondary battery according to claim 4, wherein the silicon oxide is SiOx (0.5 ≦ x <1.0). 請求項1〜5のいずれかに記載された負極を有するリチウム二次電池。   A lithium secondary battery having the negative electrode according to claim 1. 請求項1に記載のリチウム二次電池用負極における珪素酸化物の薄膜の形成に使用される成膜用材料であり、一酸化珪素の析出体又はその析出体から製造された焼結体からなる成膜用材料。   A film forming material used for forming a silicon oxide thin film in the negative electrode for a lithium secondary battery according to claim 1, comprising a deposit of silicon monoxide or a sintered body produced from the deposit. Materials for film formation. 焼結体からなり、加熱温度が1300℃、圧力が10Pa以下の真空雰囲気下で焼結体試料の熱重量測定を行ったときの蒸発残渣が測定前における試料の質量の4%以下である請求項7に記載の成膜用材料。   Claims 1. A thermogravimetric measurement of a sintered body sample in a vacuum atmosphere having a heating temperature of 1300 ° C and a pressure of 10 Pa or less, the evaporation residue being 4% or less of the mass of the sample before measurement. Item 8. A film-forming material according to item 7. 粉末焼結体からなり、且つその粉末の平均粒径が250μm以上である請求項7に記載の成膜用材料。   The film forming material according to claim 7, which is formed of a powder sintered body, and has an average particle diameter of 250 µm or more. 集電体の表面に真空蒸着若しくはスパッタリングにより珪素酸化物の薄膜を形成するリチウム二次電池用負極の製造方法。   A method for producing a negative electrode for a lithium secondary battery, wherein a silicon oxide thin film is formed on the surface of a current collector by vacuum deposition or sputtering. 前記真空蒸着の一種であるイオンプレーティング法を用いる請求項10に記載のリチウム二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium secondary battery according to claim 10, wherein an ion plating method, which is a kind of the vacuum deposition, is used. 前記真空蒸着における成膜用材料として請求項7〜9のいずれかに記載の成膜用材料を用いる請求項10に記載のリチウム二次電池用負極の製造方法。   The method for producing a negative electrode for a lithium secondary battery according to claim 10, wherein the material for film formation according to any one of claims 7 to 9 is used as the material for film formation in the vacuum deposition.
JP2003295363A 2003-04-28 2003-08-19 Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode Expired - Fee Related JP3999175B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003295363A JP3999175B2 (en) 2003-04-28 2003-08-19 Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode
PCT/JP2004/005527 WO2004097962A1 (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
US10/554,397 US20070059601A1 (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
KR1020097013899A KR20090081438A (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material used for forming negative electrode, and process for producing negative electrode
KR1020107027027A KR101118933B1 (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material used for forming negative electrode, and process for producing negative electrode
EP04728063A EP1622215A4 (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material b used for forming negative electrode, and process for producing negative electrode
KR1020057020430A KR20050119214A (en) 2003-04-28 2004-04-16 Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material used for forming negative electrode, and process for producing negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003123938 2003-04-28
JP2003295363A JP3999175B2 (en) 2003-04-28 2003-08-19 Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode

Publications (2)

Publication Number Publication Date
JP2004349237A true JP2004349237A (en) 2004-12-09
JP3999175B2 JP3999175B2 (en) 2007-10-31

Family

ID=33543351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295363A Expired - Fee Related JP3999175B2 (en) 2003-04-28 2003-08-19 Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode

Country Status (1)

Country Link
JP (1) JP3999175B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP2006107912A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
WO2007086411A1 (en) 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2008093777A1 (en) 2007-02-02 2008-08-07 Panasonic Corporation Lithium cell electrode, and method for manufacturing the lithium cell electrode
JP2008198610A (en) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd Negative electode active material, its manufacturing method, and negative electrode and lithium battery adopting it
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus
WO2009060614A1 (en) * 2007-11-09 2009-05-14 Panasonic Corporation Electrode for electrochemical device
KR100898293B1 (en) 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
US7833662B2 (en) 2007-01-05 2010-11-16 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
WO2011048756A1 (en) * 2009-10-22 2011-04-28 株式会社大阪チタニウムテクノロジーズ Negative electrode active material for lithium ion secondary battery
WO2012176039A1 (en) 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material
US8563158B2 (en) 2010-04-01 2013-10-22 Sanyo Electric Co., Ltd. Lithium secondary battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100959A (en) * 2003-08-28 2005-04-14 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method of the same, and nonaqueous electrolyte secondary battery
JP4589047B2 (en) * 2003-08-28 2010-12-01 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP2006107912A (en) * 2004-10-05 2006-04-20 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP2007053084A (en) * 2005-07-21 2007-03-01 Sumitomo Titanium Corp Method of manufacturing negative electrode for lithium secondary battery
JP4648879B2 (en) * 2005-07-21 2011-03-09 株式会社大阪チタニウムテクノロジーズ Method for producing negative electrode for lithium secondary battery
WO2007086411A1 (en) 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US8110307B2 (en) 2006-01-25 2012-02-07 Panasonic Corporation Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US8309252B2 (en) 2007-01-05 2012-11-13 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US7833662B2 (en) 2007-01-05 2010-11-16 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8129076B2 (en) 2007-02-02 2012-03-06 Panasonic Corporation Electrode for lithium batteries and method of manufacturing electrode for lithium batteries
WO2008093777A1 (en) 2007-02-02 2008-08-07 Panasonic Corporation Lithium cell electrode, and method for manufacturing the lithium cell electrode
JP2008198610A (en) * 2007-02-14 2008-08-28 Samsung Sdi Co Ltd Negative electode active material, its manufacturing method, and negative electrode and lithium battery adopting it
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus
JP2009117267A (en) * 2007-11-09 2009-05-28 Panasonic Corp Electrode for electrochemical element
WO2009060614A1 (en) * 2007-11-09 2009-05-14 Panasonic Corporation Electrode for electrochemical device
KR100898293B1 (en) 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
JP2011108635A (en) * 2009-10-22 2011-06-02 Osaka Titanium Technologies Co Ltd Negative electrode active material for lithium ion secondary battery
WO2011048756A1 (en) * 2009-10-22 2011-04-28 株式会社大阪チタニウムテクノロジーズ Negative electrode active material for lithium ion secondary battery
US8563158B2 (en) 2010-04-01 2013-10-22 Sanyo Electric Co., Ltd. Lithium secondary battery
WO2012176039A1 (en) 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material
US9136525B2 (en) 2011-06-24 2015-09-15 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material

Also Published As

Publication number Publication date
JP3999175B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
KR101118933B1 (en) Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material used for forming negative electrode, and process for producing negative electrode
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP4797105B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4712721B2 (en) Method for producing negative electrode for lithium secondary battery
JP3999175B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery using the negative electrode, film forming material used for forming the negative electrode, and method for producing the negative electrode
JP2011150817A (en) All solid battery
CN111864207A (en) All-solid-state battery
CN110224118A (en) Compound manganese and oxygen compound film and the preparation method and application thereof
JP4648879B2 (en) Method for producing negative electrode for lithium secondary battery
JP2005340078A (en) Active material for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP2007026983A (en) Negative electrode for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
CN100411229C (en) Negative electrode for lithium secondary cell, lithium secondary cell employing the negative electrode, film deposition material used for forming negative electrode, and process for producing negati
US8673491B2 (en) Li-ion battery with selective moderating material
JP3984937B2 (en) Film forming material used for production of negative electrode for lithium secondary battery, method for producing negative electrode for lithium secondary battery, and negative electrode for lithium secondary battery
WO2002019449A1 (en) Positive active material for non-aqueous electrolyte secondary cell, method for preparation thereof and non-aqueous electrolyte secondary cell
EP2051318B1 (en) Lithium cell electrode, and method for manufacturing the lithium cell electrode
JP3927527B2 (en) Method for producing negative electrode for lithium secondary battery
WO2023090248A1 (en) Method for producing member for power storage devices
WO2020137618A1 (en) Method for producing lithium ion secondary battery
WO2020137617A1 (en) Sputtering target
JP2010160988A (en) Positive electrode sintered body and nonaqueous electrolyte battery
CN116995307A (en) Method for modifying interface of all-solid-state thin-film lithium ion battery by piezoelectric material transition layer and all-solid-state thin-film lithium ion battery
TW202401876A (en) Flat silicon anode on a copper conductor for lithium ion batteries
JP4413895B2 (en) Method for producing negative electrode for lithium secondary battery
KR20090103979A (en) Lithium cell electrode, and method for manufacturing the lithium cell electrode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees