JP2010160988A - Positive electrode sintered body and nonaqueous electrolyte battery - Google Patents

Positive electrode sintered body and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010160988A
JP2010160988A JP2009002962A JP2009002962A JP2010160988A JP 2010160988 A JP2010160988 A JP 2010160988A JP 2009002962 A JP2009002962 A JP 2009002962A JP 2009002962 A JP2009002962 A JP 2009002962A JP 2010160988 A JP2010160988 A JP 2010160988A
Authority
JP
Japan
Prior art keywords
positive electrode
sintered body
battery
active material
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009002962A
Other languages
Japanese (ja)
Inventor
Taku Kamimura
卓 上村
Ryoko Kanda
良子 神田
Mitsuho Ueda
光保 上田
Kentaro Yoshida
健太郎 吉田
Katsuji Emura
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009002962A priority Critical patent/JP2010160988A/en
Publication of JP2010160988A publication Critical patent/JP2010160988A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode sintered body, which can be used as a positive electrode of a nonaqueous electrolyte battery to reduce the internal resistance of the battery and improve the discharge capacity, and to provide a nonaqueous electrolyte battery provided with a positive electrode using the positive electrode sintered body. <P>SOLUTION: The positive electrode sintered body to be used as a positive electrode of a nonaqueous electrolyte battery contains particles of a positive electrode active material, and has a porosity of 15 vol.% or less, the particle size of the active material particles being 10 μm or more but 100 μm or less. The nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive and negative electrodes, and the positive electrode includes the positive electrode sintered body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質電池の正極に利用される正極焼結体、及びこの正極焼結体を利用した正極を備える非水電解質電池に関する。   The present invention relates to a positive electrode sintered body used for a positive electrode of a nonaqueous electrolyte battery, and a nonaqueous electrolyte battery including a positive electrode using the positive electrode sintered body.

携帯機器といった比較的小型の電気機器の電源に非水電解質電池が利用されている。非水電解質電池は、正極と負極、及びこれら正負極間に介在される電解質層を備える。この非水電解質電池の代表例として、正負極においてリチウムイオンの吸蔵・放出反応を利用したリチウムイオン二次電池が挙げられる(例えば、特許文献1を参照)。   Nonaqueous electrolyte batteries are used as power sources for relatively small electric devices such as portable devices. A nonaqueous electrolyte battery includes a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive and negative electrodes. A typical example of this non-aqueous electrolyte battery is a lithium ion secondary battery using a lithium ion occlusion / release reaction in the positive and negative electrodes (see, for example, Patent Document 1).

特許文献1には、リチウム複合酸化物の焼結体(正極焼結体)を非水電解質電池の正極に利用する技術が開示されている。   Patent Document 1 discloses a technique of using a lithium composite oxide sintered body (positive electrode sintered body) as a positive electrode of a nonaqueous electrolyte battery.

特開平8−180904号公報JP-A-8-180904

しかし、本発明者らが鋭意研究した結果、従来の正極焼結体を利用した正極では、電池に使用しても内部抵抗が大きく、また十分な放電容量が得られない点で改善の余地があることが分かった。   However, as a result of intensive studies by the present inventors, the positive electrode using the conventional positive electrode sintered body has a large internal resistance even when used in a battery, and there is room for improvement in that a sufficient discharge capacity cannot be obtained. I found out.

特許文献1では、正極焼結体の体積密度を2.0〜4.3g/mlとすることを教示しているが、正極焼結体が正極活物質として多用されているLiCoO2(LiCoO2の密度:約5.0g/cm3)のみで構成されていると仮定すれば、その空隙率は大凡16〜60体積%になる。そのため、このような空隙率の大きい正極焼結体を正極に利用した場合、空隙部が多く存在するため、放電容量の低下を招くことが懸念される。 Patent Document 1 teaches the making the volume density of the Seikyokusho sintered body and 2.0~4.3g / ml, Seikyokusho sintered body is LiCoO 2 (LiCoO 2 which is frequently used as a positive active material density: Assuming that it is composed only of about 5.0 g / cm 3 ), the porosity is about 16 to 60% by volume. Therefore, when such a positive electrode sintered body having a large porosity is used for the positive electrode, there are many voids, which may cause a decrease in discharge capacity.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、非水電解質電池の正極に利用することで、電池の内部抵抗を低減し、放電容量を向上させることができる正極焼結体、及びこの正極焼結体を利用した正極を備える非水電解質電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to reduce the internal resistance of the battery and improve the discharge capacity by using it for the positive electrode of a non-aqueous electrolyte battery. The object is to provide a non-aqueous electrolyte battery including a positive electrode sintered body and a positive electrode using the positive electrode sintered body.

(1)本発明の正極焼結体は、非水電解質電池の正極に利用される正極焼結体である。そして、本発明の正極焼結体は、正極活物質の粒子を含有し、空隙率が15体積%以下で、かつ活物質粒子の粒径が10μm以上100μm以下であることを特徴とする。   (1) The positive electrode sintered body of the present invention is a positive electrode sintered body used for a positive electrode of a nonaqueous electrolyte battery. The positive electrode sintered body of the present invention is characterized by containing positive electrode active material particles, a porosity of 15% by volume or less, and an active material particle size of 10 μm or more and 100 μm or less.

空隙率を15体積%以下とすることで、電池反応に寄与しない空隙部が減少し、放電容量を向上させることができる。また、空隙率がこの範囲内であれば、正極焼結体の強度も確保し易い。一方、空隙率が15体積%超では、正極焼結体の強度が低下して脆くなり、また正極焼結体内でのリチウムイオンの拡散抵抗が全体的に上昇して電池の内部抵抗が増大するなど、放電容量が低下する。より好ましい空隙率は12体積%以下である。なお、空隙率が0.1体積%以下の正極焼結体を製造することは技術的に難しい。   By setting the porosity to 15% by volume or less, voids that do not contribute to the battery reaction are reduced, and the discharge capacity can be improved. Moreover, if the porosity is within this range, it is easy to ensure the strength of the positive electrode sintered body. On the other hand, if the porosity exceeds 15% by volume, the strength of the positive electrode sintered body decreases and becomes brittle, and the diffusion resistance of lithium ions in the positive electrode sintered body generally increases to increase the internal resistance of the battery. The discharge capacity decreases. A more preferable porosity is 12% by volume or less. It is technically difficult to produce a positive electrode sintered body having a porosity of 0.1% by volume or less.

また、空隙率を15体積%以下とすることで次のような効果も発揮できる。例えば電解質層に固体電解質を利用する場合、正極焼結体の一方の面上に気相法などを用いて固体電解質層を形成することがある。しかし、空隙率が15体積%超といった空隙率の大きい正極焼結体では、表面の凹凸が大きくなる傾向があり、この凹凸に起因して一方の面上に形成される固体電解質層にピンホールなどの欠陥が生じ易く、正負極間で短絡が頻発する結果を招く要因となる。特に固体電解質層を薄くした薄膜電池(例えば固体電解質層の厚さが50μm以下)では、それが顕著に現れる。これに対し、空隙率が15体積%以下であれば、空隙に起因する表面の凹凸が小さくなるので、固体電解質層に欠陥が生じ難く、正負極間の短絡を抑制することができる。その結果、安全性・信頼性の高い電池を得ることができる。   Moreover, the following effects can be exhibited by setting the porosity to 15% by volume or less. For example, when a solid electrolyte is used for the electrolyte layer, the solid electrolyte layer may be formed on one surface of the positive electrode sintered body using a vapor phase method or the like. However, the positive electrode sintered body having a large porosity such as a porosity of more than 15% by volume tends to have a large surface irregularity, and pinholes are formed in the solid electrolyte layer formed on one surface due to the irregularities. Defects such as these are likely to occur, causing a frequent short circuit between the positive and negative electrodes. This is particularly noticeable in a thin film battery having a thin solid electrolyte layer (for example, the thickness of the solid electrolyte layer is 50 μm or less). On the other hand, if the porosity is 15% by volume or less, the surface unevenness due to the voids becomes small, so that defects are hardly generated in the solid electrolyte layer, and a short circuit between the positive and negative electrodes can be suppressed. As a result, a battery with high safety and reliability can be obtained.

さらに、本発明者らは、内部抵抗の低抵抗化を実現する上で正極焼結体中の活物質粒子の粒径が重要であることを見出し、活物質粒子の粒径を10μm以上100μm以下とすることを提案する。なお、本発明において、活物質粒子とは、焼結体中の結晶粒界で囲まれた活物質の結晶粒のことである。また、活物質粒子の粒径とは、電子顕微鏡(SEM)により焼結体の表面組織を観察し、任意の視野で選択した複数個(10個以上、好ましくは20個以上)の活物質粒子についてそれぞれ最も長い長軸径を測定して、これらを平均した値のことである。   Furthermore, the present inventors have found that the particle size of the active material particles in the positive electrode sintered body is important in realizing a reduction in internal resistance, and the particle size of the active material particles is 10 μm or more and 100 μm or less. Propose that. In addition, in this invention, an active material particle is a crystal grain of the active material enclosed by the crystal grain boundary in a sintered compact. The particle size of the active material particles refers to a plurality (10 or more, preferably 20 or more) of active material particles selected from an arbitrary field of view by observing the surface structure of the sintered body with an electron microscope (SEM). It is the value which measured the longest major axis diameter about each, and averaged these.

低抵抗化のメカニズムは、次にように考えられる。粒径が10μm未満の場合、結晶粒間の拡散接合が充分に発達していないため、結晶粒間のリチウムイオン伝導性などが低下し、電池の内部抵抗が増大する。一方、粒径が100μm超の場合、結晶粒間の気孔サイズが大きくなるため、正極焼結体内でのリチウムイオンの拡散距離や電子の伝導距離が増大し、電池の内部抵抗が増大する。より好ましい粒径は10μm以上50μm以下である。   The mechanism for lowering resistance is considered as follows. When the particle size is less than 10 μm, the diffusion bonding between the crystal grains is not sufficiently developed, so that the lithium ion conductivity between the crystal grains is lowered and the internal resistance of the battery is increased. On the other hand, when the particle size exceeds 100 μm, the pore size between crystal grains increases, so that the diffusion distance of lithium ions and the conduction distance of electrons in the positive electrode sintered body increase, and the internal resistance of the battery increases. A more preferable particle size is 10 μm or more and 50 μm or less.

(2)正極活物質が、LiαO2及びLiβ2O4から選択される少なくとも一種であることが好ましい。但し、α及びβは、Co、Mn、Al及びNiから選択される少なくとも一種の元素を含み、α及びβにおける前記元素の合計割合が原子比で50%以上とする。 (2) The positive electrode active material is preferably at least one selected from LiαO 2 and Liβ 2 O 4 . However, α and β include at least one element selected from Co, Mn, Al, and Ni, and the total ratio of the elements in α and β is 50% or more in atomic ratio.

このような酸化物は、非水電解質電池の正極活物質として代表的なものであり、電池の放電容量を確保する上で好ましい。LiαO2及びLiβ2O4としては、例えばLiCoO2、LiNiO2、LiNi0.5Mn0.5O2などが挙げられる。また、α及びβにおけるCo、Mn、Al、Niの合計割合は原子比で50%以上を満たせばよく、例えばLiCo0.5Fe0.5O2などの正極活物質を利用してもよい。その他、正極活物質として、LiNi0.5Mn1.5O4、LiMn2O4などのスピネル構造の正極活物質を利用してもよい。正極活物質は、単独で又は組み合せて用いてもよい。 Such an oxide is typical as a positive electrode active material of a nonaqueous electrolyte battery, and is preferable in securing the discharge capacity of the battery. Examples of LiαO 2 and Liβ 2 O 4 include LiCoO 2 , LiNiO 2 , and LiNi 0.5 Mn 0.5 O 2 . Further, the total ratio of Co, Mn, Al, and Ni in α and β only needs to satisfy 50% or more in atomic ratio. For example, a positive electrode active material such as LiCo 0.5 Fe 0.5 O 2 may be used. In addition, a positive electrode active material having a spinel structure such as LiNi 0.5 Mn 1.5 O 4 or LiMn 2 O 4 may be used as the positive electrode active material. The positive electrode active materials may be used alone or in combination.

また、正極焼結体は、上述した正極活物質のほか、リチウムイオン伝導性の複合酸化物を含有してもよい。複合酸化物としては、例えば、Ti、Nb及びTaから選択される少なくとも一種の元素とLiとを含有する酸化物、或いはLaと、Zr及びTiから選択される少なくとも一種の元素と、Liとを含有する酸化物などが挙げられる。複合酸化物は、単独で又は組み合せて用いてもよい。   In addition to the positive electrode active material described above, the positive electrode sintered body may contain lithium ion conductive composite oxide. As the composite oxide, for example, an oxide containing Li and at least one element selected from Ti, Nb and Ta, or at least one element selected from La, Zr and Ti, and Li Examples thereof include oxides contained therein. The complex oxides may be used alone or in combination.

(3)本発明の非水電解質電池は、正極と負極、及びこれら正負極間に介在される電解質層を備える。この本発明の電池において、正極は本発明の正極焼結体を備え、電解質層は固体電解質を備えることを特徴とする。   (3) The nonaqueous electrolyte battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte layer interposed between these positive and negative electrodes. In the battery of the present invention, the positive electrode includes the positive electrode sintered body of the present invention, and the electrolyte layer includes a solid electrolyte.

電解質層は、後述するように、例えば固体電解質や有機電解液、或いはこれらを併用して構成することができる。電解質層が有機電解液を備える場合は、有機電解液が正極焼結体の結晶粒界や空隙部に入り込み、正極焼結体の深部まで染み渡るので、正極焼結体を構成する活物質粒子の結晶粒間におけるリチウムイオン拡散の小ささをカバーできる。一方、電解質層が固体電解質を備える場合は、正極焼結体の結晶粒界や空隙部に固体電解質が入り込むことがないため、正極焼結体を構成する活物質粒子の結晶粒間におけるリチウムイオン拡散の小ささが正極焼結体全体のリチウムイオン拡散に対して大きな影響を及ぼす。   As will be described later, the electrolyte layer can be constituted by, for example, a solid electrolyte, an organic electrolyte, or a combination thereof. When the electrolyte layer includes an organic electrolyte, the organic electrolyte enters the crystal grain boundaries and voids of the positive electrode sintered body and penetrates deep into the positive electrode sintered body, so that the active material particles constituting the positive electrode sintered body The small diffusion of lithium ions between crystal grains can be covered. On the other hand, when the electrolyte layer includes a solid electrolyte, since the solid electrolyte does not enter the crystal grain boundaries and voids of the positive electrode sintered body, lithium ions between the active material particles constituting the positive electrode sintered body The small diffusion greatly affects the lithium ion diffusion of the entire positive electrode sintered body.

したがって、電解質層として固体電解質を備える電池であっても、正極として本発明の正極焼結体を利用することで、リチウムイオン伝導性を向上させ、電池の内部抵抗を低減する効果を顕著に得ることができる。   Therefore, even in a battery including a solid electrolyte as an electrolyte layer, the use of the positive electrode sintered body of the present invention as a positive electrode significantly improves the lithium ion conductivity and reduces the internal resistance of the battery. be able to.

(4)本発明の非水電解質電池は、正極と負極、及びこれら正負極間に介在される電解質層を備える。この本発明の電池において、正極は、本発明の正極焼結体と、この正極焼結体の表面に形成された金属薄膜とを備えることを特徴とする。   (4) The nonaqueous electrolyte battery of the present invention includes a positive electrode, a negative electrode, and an electrolyte layer interposed between the positive and negative electrodes. In the battery of the present invention, the positive electrode includes the positive electrode sintered body of the present invention and a metal thin film formed on the surface of the positive electrode sintered body.

本発明の非水電解質電池では、正極焼結体が正極活物質層として機能し、金属薄膜が正極集電体として機能する。金属薄膜は、正極焼結体の電解質層が配置される面側とは反対側の面に形成され、例えば気相法を用いて形成することができる。金属薄膜としては、Au、Al、Ni及びこれらの合金、又はステンレスが好適に利用することができる。   In the nonaqueous electrolyte battery of the present invention, the positive electrode sintered body functions as a positive electrode active material layer, and the metal thin film functions as a positive electrode current collector. The metal thin film is formed on the surface opposite to the surface on which the electrolyte layer of the positive electrode sintered body is disposed, and can be formed using, for example, a vapor phase method. As the metal thin film, Au, Al, Ni and alloys thereof, or stainless steel can be suitably used.

また、正極焼結体は平均厚さが0.05〜0.3mmであることが好ましく、金属薄膜は平均厚さが0.01〜30μmであることが好ましい。正極焼結体の平均厚さがこの範囲を満たすことで、正極焼結体の強度を保持し易く、放電容量を確保し易い。金属薄膜の平均厚さがこの範囲を満たすことで、正極焼結体に対して金属薄膜を薄くすることができ、正極中に占める正極焼結体の割合(正極活物質の量)を増大せしめ電池全体としてのエネルギー密度を高めることができる。ところで、正極焼結体を厚くし過ぎても、正極焼結体内でのリチウムイオンの拡散が律速となるため、厚さに見合った放電容量の向上効果が得られないことがあり、正極焼結体の平均厚さの上限値を0.3mmとした。なお、ここでいう平均厚さとは、複数の箇所(10点以上)についてそれぞれ厚さを測定し、これらを平均した値のことである。   Further, the positive electrode sintered body preferably has an average thickness of 0.05 to 0.3 mm, and the metal thin film preferably has an average thickness of 0.01 to 30 μm. When the average thickness of the positive electrode sintered body satisfies this range, it is easy to maintain the strength of the positive electrode sintered body and to secure the discharge capacity. When the average thickness of the metal thin film satisfies this range, the metal thin film can be made thinner than the positive electrode sintered body, and the proportion of the positive electrode sintered body (amount of the positive electrode active material) in the positive electrode is increased. The energy density of the entire battery can be increased. By the way, even if the positive electrode sintered body is made too thick, the diffusion capacity of lithium ions in the positive electrode sintered body becomes rate-determining, so the effect of improving the discharge capacity commensurate with the thickness may not be obtained. The upper limit of the average body thickness was set to 0.3 mm. Here, the average thickness is a value obtained by measuring the thickness at each of a plurality of locations (10 or more points) and averaging them.

(5)本発明の非水電解質電池において、正極と電解質層との間には界面抵抗を低減するための緩衝層を備えることが好ましい。   (5) In the nonaqueous electrolyte battery of the present invention, it is preferable to provide a buffer layer for reducing the interface resistance between the positive electrode and the electrolyte layer.

例えば、正極活物質に酸化物、電解質層に硫化物系固体電解質を利用した場合、酸化物イオンが硫化物イオンに比べてリチウムイオンを強く引き付けるため、正極と電解質層との接合界面において、電解質層から正極にリチウムイオンが移動することがある。その結果、正極と接する電解質層の界面近傍において、電荷の偏りが起こり、電荷空乏層が形成されるため、界面抵抗が増大する。そこで、電解質層を硫化物系固体電解質で構成する場合、正極と電解質層との間に緩衝層を設けることで、界面抵抗を低減することができる。   For example, when an oxide is used as the positive electrode active material and a sulfide-based solid electrolyte is used as the electrolyte layer, the oxide ions attract lithium ions more strongly than sulfide ions, so the electrolyte at the junction interface between the positive electrode and the electrolyte layer Lithium ions may move from the layer to the positive electrode. As a result, a charge bias occurs near the interface of the electrolyte layer in contact with the positive electrode, and a charge depletion layer is formed, so that the interface resistance increases. Therefore, when the electrolyte layer is composed of a sulfide-based solid electrolyte, the interface resistance can be reduced by providing a buffer layer between the positive electrode and the electrolyte layer.

緩衝層としては、Liと、Ti、Nb、Ta及びSiから選択される少なくとも一種の元素とを含有する複合酸化物が挙げられ、具体的には、Li4Ti5O12、LiNbO3、LiTaO3、Li3.6Si0.6P0.4O4、LiXLa(2-X)/3TiO3(X=0.1〜0.5)、Li1.3Al0.3Ti1.7(PO4)3、Li1.8Cr0.8Ti1.2(PO4)3、Li1.4In0.4Ti1.6(PO4)3などを単独で又は組み合せて用いることができる。 Examples of the buffer layer include a composite oxide containing Li and at least one element selected from Ti, Nb, Ta, and Si, specifically, Li 4 Ti 5 O 12 , LiNbO 3 , LiTaO. 3 , Li 3.6 Si 0.6 P 0.4 O 4 , Li X La (2-X) / 3 TiO 3 (X = 0.1 to 0.5), Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.8 Cr 0.8 Ti 1.2 ( PO 4 ) 3 , Li 1.4 In 0.4 Ti 1.6 (PO 4 ) 3 and the like can be used alone or in combination.

また、緩衝層は平均厚さが5〜100nmであることが好ましい。緩衝層を厚くし過ぎると、電池の内部抵抗が増大し、逆に薄くし過ぎると、界面抵抗の低減効果が得られない虞がある。   The buffer layer preferably has an average thickness of 5 to 100 nm. If the buffer layer is too thick, the internal resistance of the battery increases. Conversely, if the buffer layer is too thin, the effect of reducing the interface resistance may not be obtained.

(6)本発明の正極焼結体は、空隙部にリチウムイオン伝導性の複合酸化物を有し、複合酸化物が、以下に示す[1]及び[2]から選択される少なくとも一種であることが好ましい。
[1] Ti、Nb及びTaから選択される少なくとも一種の元素とLiとを含有する酸化物
[2] Laと、Zr及びTiから選択される少なくとも一種の元素と、Liとを含有する酸化物
(6) The positive electrode sintered body of the present invention has a lithium ion conductive composite oxide in the gap, and the composite oxide is at least one selected from [1] and [2] shown below. It is preferable.
[1] Oxides containing at least one element selected from Ti, Nb and Ta and Li
[2] An oxide containing La, at least one element selected from Zr and Ti, and Li

このような複合酸化物が正極焼結体の空隙部に存在することで、空隙部において複合酸化物がリチウムイオンの伝導を助け、リチウムイオン伝導性の向上に寄与する。その結果、電池の内部抵抗を低減して、放電容量を向上させることができる。このような複合酸化物としては、例えば、LiNbO3、Li2Ti3O7、Li4Ti5O12、Li0.35La0.52TiO2.96、LixLa1/3Nb1-xTixO3(x<0.1)、Li5.5La3Nb1.75In0.25O12、Li6BaLa2Ta2O12などが挙げられる。 The presence of such a complex oxide in the void portion of the positive electrode sintered body helps the lithium oxide to conduct lithium ions in the void portion, thereby contributing to improvement in lithium ion conductivity. As a result, the internal resistance of the battery can be reduced and the discharge capacity can be improved. Examples of such complex oxides include LiNbO 3 , Li 2 Ti 3 O 7 , Li 4 Ti 5 O 12 , Li 0.35 La 0.52 TiO 2.96 , Li x La 1/3 Nb 1-x Ti x O 3 ( x <0.1), Li 5.5 La 3 Nb 1.75 In 0.25 O 12 , Li 6 BaLa 2 Ta 2 O 12 and the like.

なお、その他、LiPF6などのリチウム塩を溶解させた高分子材(例えば、ポリエチレンオキサイドなど)を空隙部に充填しても有効である。この場合においても、複合酸化物は、単独で又は組み合せて用いてもよい。 In addition, it is also effective to fill the voids with a polymer material (for example, polyethylene oxide) in which a lithium salt such as LiPF 6 is dissolved. Also in this case, the composite oxides may be used alone or in combination.

本発明の正極焼結体は、空隙率が15体積%以下で、かつ活物質粒子の粒径が10μm以上100μm以下であり、非水電解質電池の正極に利用した場合、電池の内部抵抗を低減し、放電容量を向上させることができる。また、本発明の非水電解質電池は、本発明の正極焼結体を利用した正極を備え、内部抵抗が小さく、放電容量が大きい。   The positive electrode sintered body of the present invention has a porosity of 15% by volume or less and an active material particle size of 10 μm or more and 100 μm or less, and reduces the internal resistance of the battery when used for the positive electrode of a nonaqueous electrolyte battery. In addition, the discharge capacity can be improved. The nonaqueous electrolyte battery of the present invention includes a positive electrode using the positive electrode sintered body of the present invention, has a low internal resistance, and a high discharge capacity.

本発明の正極焼結体及び非水電解質電池について、より詳しく説明する。   The positive electrode sintered body and the nonaqueous electrolyte battery of the present invention will be described in more detail.

(正極焼結体)
正極焼結体は、原料となる正極活物質を含む粉末(以下、原料粉末という)を加圧成形した後、焼成して製造することができる。正極焼結体には、活物質の他、導電助剤が含有されていてもよい。導電助剤としては、アセチレンブラックといったカーボンブラック、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、AlやNiの金属繊維などを利用することができる。
(Positive electrode sintered body)
The positive electrode sintered body can be manufactured by press-molding a powder containing a positive electrode active material as a raw material (hereinafter referred to as a raw material powder) and then firing it. The positive electrode sintered body may contain a conductive additive in addition to the active material. As the conductive aid, carbon black such as acetylene black, natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, metal fibers of Al or Ni, and the like can be used.

空隙率が15体積%以下、かつ活物質粒子の粒径が10μm以上100μm以下に制御するためには、原料粉末の粒径、加圧成形する際のプレス圧力、焼成温度及び焼成時間を適切な条件に設定することが重要である。   In order to control the porosity to 15% by volume or less and the particle size of the active material particles to 10 μm or more and 100 μm or less, the particle size of the raw material powder, the press pressure at the time of pressure molding, the firing temperature and the firing time are appropriately set. It is important to set the conditions.

原料粉末の粒径に関しては0.1〜8μmとすることが好ましく、0.5〜3μmとすることがより好ましい。正極焼結体とした際、焼成前に比べて焼結体中の活物質粒子が成長し、粗大化する。そこで、原料粉末の粒径がこの範囲を満たすことで、最終的な焼結体中の活物質粒子の粒径を10μm以上100μm以下に制御し易い。   The particle size of the raw material powder is preferably 0.1 to 8 μm, and more preferably 0.5 to 3 μm. When the positive electrode sintered body is formed, the active material particles in the sintered body grow and become coarser than before firing. Therefore, when the particle size of the raw material powder satisfies this range, the particle size of the active material particles in the final sintered body can be easily controlled to 10 μm or more and 100 μm or less.

また、焼成温度に関しては使用する活物質の種類や原料粉末の粒径によって異なるが、例えばLiαO2(αはCo、Mn、Al及びNiから選択される少なくとも一種の元素)の場合は、焼成温度を750〜1100℃とすることが好ましい。 The firing temperature varies depending on the type of active material used and the particle size of the raw material powder. For example, in the case of LiαO 2 (α is at least one element selected from Co, Mn, Al and Ni), the firing temperature Is preferably 750 to 1100 ° C.

(非水電解質電池)
本発明の非水電解質電池の基本構造は、正極、電解質層、負極が順に積層された構造である。そして、正極は、上述の正極焼結体とこの正極焼結体の表面に形成された金属薄膜とから構成される。
(Nonaqueous electrolyte battery)
The basic structure of the nonaqueous electrolyte battery of the present invention is a structure in which a positive electrode, an electrolyte layer, and a negative electrode are sequentially laminated. And a positive electrode is comprised from the above-mentioned positive electrode sintered compact and the metal thin film formed in the surface of this positive electrode sintered compact.

(電解質層)
本発明の非水電解質電池において、電解質層は、例えば固体電解質や有機電解液で構成することができる。電解質層を固体電解質で構成する場合、リチウムイオン伝導性の高い硫化物系固体電解質を用いることが好ましい。このような硫化物系固体電解質としては、Li-P-S系やLi-P-S-O系のものが挙げられる。その他、Li-P-O系やLi-P-O-N系の酸化物系固体電解質を用いてもよい。Li-P-S系の固体電解質としては、具体的には、Li2S-P2S5やLi7P3S11が挙げられる。また、電解質層を有機電解液で構成する場合、有機溶媒にリチウム塩を溶解させた有機電解液を含浸させたセパレータを用いるとよい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、γ‐ブチロラクトン、ジエチルカーボネート、テトラヒドロフラン、アセトニトリル及びこれら混合溶媒などを用いることができる。リチウム塩としては、LiPF6、LiClO4、LiBF4、リチウムハロゲン化物などを用いることができる。セパレータとしては、ポリエチレンやポリプロピレンなどの多孔体(例えば不織布)を用いることができる。なお、電解質層は、固体電解質と有機電解液とを併用することもできる。
(Electrolyte layer)
In the nonaqueous electrolyte battery of the present invention, the electrolyte layer can be composed of, for example, a solid electrolyte or an organic electrolyte. When the electrolyte layer is composed of a solid electrolyte, it is preferable to use a sulfide-based solid electrolyte with high lithium ion conductivity. Examples of such sulfide-based solid electrolytes include Li-PS-based and Li-PSO-based ones. In addition, a Li-PO-based or Li-PON-based oxide-based solid electrolyte may be used. Specific examples of the Li-PS solid electrolyte include Li 2 SP 2 S 5 and Li 7 P 3 S 11 . When the electrolyte layer is composed of an organic electrolyte, a separator impregnated with an organic electrolyte in which a lithium salt is dissolved in an organic solvent may be used. As the organic solvent, ethylene carbonate, propylene carbonate, γ-butyrolactone, diethyl carbonate, tetrahydrofuran, acetonitrile, a mixed solvent thereof and the like can be used. As the lithium salt, LiPF 6 , LiClO 4 , LiBF 4 , lithium halide and the like can be used. As the separator, a porous body (for example, non-woven fabric) such as polyethylene or polypropylene can be used. The electrolyte layer can be a combination of a solid electrolyte and an organic electrolyte.

(負極)
本発明の非水電解質電池において、負極を構成する負極活物質としては、Li金属単体及びLi金属と合金を形成する元素、若しくはこれらの混合物又は合金を用いることができる。中でも、Liを含有する材料、特にLi金属を使用すると、電池の高容量化、高電圧化の点で優位である。Liと合金を形成する元素としては、Al、Si、C、Sn及びInなどが挙げられる。その他、LiとTiの複合酸化物や、Si、Sn及びVの酸化物などを用いることができる。また、集電体としては、Cu、Ni、Fe、Cr及びこれらの合金が好適に利用することができる。
(Negative electrode)
In the nonaqueous electrolyte battery of the present invention, as the negative electrode active material constituting the negative electrode, Li metal alone, an element that forms an alloy with Li metal, or a mixture or alloy thereof can be used. In particular, the use of a Li-containing material, particularly Li metal, is advantageous in terms of increasing the battery capacity and voltage. Examples of elements that form an alloy with Li include Al, Si, C, Sn, and In. In addition, composite oxides of Li and Ti, oxides of Si, Sn, and V can be used. Moreover, Cu, Ni, Fe, Cr, and these alloys can be utilized suitably as a collector.

(実施例1)
本発明の正極焼結体を製造し、この正極焼結体を利用した正極を備えるリチウムイオン二次電池を作製して、その電池性能を評価した。
Example 1
The positive electrode sintered body of the present invention was manufactured, a lithium ion secondary battery including a positive electrode using the positive electrode sintered body was produced, and the battery performance was evaluated.

(原料粉末の作製)
水酸化リチウム(LiOH)と酢酸コバルト(Co(CH3COO)2)とを等モル量混合し、蒸留水中に投入して混合撹拌した後、混合物を乾燥させて前駆体粉末を得た。次に、この前躯体粉末を冷間等方加圧装置で50MPaの圧力を加え、φ20mm×厚み1mmのペレット状に成形した後、900℃×5時間仮焼きを行った。この仮焼き体を乳鉢で粉砕して粉末状にして、LiCoO2粉末を得た。この粉末の粒度分布をレーザ散乱法を用いて測定したところ、体積分布中心粒径D50が4μmであった。さらに、この粉末をジェットミル装置(日清エンジニアリング株式会社製)を用いて粉砕し、最終的に体積分布中心粒径D50が1μmのLiCoO2粉末(原料粉末)を得た。体積分布中心粒径D50とは、体積基準の累積分布曲線の50%に相当する粒径のことである。
(Preparation of raw material powder)
Lithium hydroxide (LiOH) and cobalt acetate (Co (CH 3 COO) 2 ) were mixed in equimolar amounts, poured into distilled water, mixed and stirred, and then the mixture was dried to obtain a precursor powder. Next, this precursor powder was formed into pellets of φ20 mm × thickness 1 mm by applying a pressure of 50 MPa with a cold isostatic press, and then calcined at 900 ° C. for 5 hours. The calcined body was pulverized with a mortar to obtain a LiCoO 2 powder. When the particle size distribution of the powder was measured using a laser scattering method, the volume distribution center particle size D50 was 4 μm. Further, this powder was pulverized using a jet mill device (manufactured by Nissin Engineering Co., Ltd.), and finally LiCoO 2 powder (raw material powder) having a volume distribution center particle size D50 of 1 μm was obtained. The volume distribution center particle diameter D50 is a particle diameter corresponding to 50% of a volume-based cumulative distribution curve.

(正極焼結体の試作)
次いで、D50=1μmの原料粉末を金型に配置し、50MPaの圧力でプレスして加圧成形した後、この加圧成形体を大気中で1000℃×3時間焼成して、正極焼結体を得た。
(Prototype of positive electrode sintered body)
Next, D50 = 1μm raw material powder is placed in a mold, pressed at a pressure of 50MPa, and then press-molded. Got.

この正極焼結体について、空隙率及び活物質粒子の粒径を求めた。空隙率は、正極焼結体表面を研磨処理した後、その表面のSEM写真を撮影し、画像を2値化処理して測定した空隙部の面積から算出して求めた。また、活物質粒子の粒径は、SEM画像において任意の20個の活物質粒子を抽出し、それぞれについて最も長い長軸径を測定して、これらを平均して求めた。その結果、この正極焼結体の空隙率及び活物質粒子の粒径はそれぞれ、5体積%及び30μmであった。   About this positive electrode sintered compact, the porosity and the particle size of the active material particle were calculated | required. The porosity was obtained by polishing the surface of the positive electrode sintered body, taking an SEM photograph of the surface, and calculating the void area measured by binarizing the image. Further, the particle diameter of the active material particles was obtained by extracting any 20 active material particles in the SEM image, measuring the longest major axis diameter for each, and averaging these. As a result, the porosity of the positive electrode sintered body and the particle diameter of the active material particles were 5% by volume and 30 μm, respectively.

この正極焼結体を最終的なサイズがφ15mm×厚み0.1mmとなるように研磨し、これを試作例1とした。   This positive electrode sintered body was polished so that the final size would be φ15 mm × thickness 0.1 mm.

焼成温度を1050℃にし、焼成時間を12時間に変更した以外は、試作例1と同様にして試作例2を作製した。この正極焼結体の空隙率及び活物質粒子の粒径はそれぞれ、5体積%及び120μmであった。   Prototype Example 2 was produced in the same manner as Prototype Example 1 except that the firing temperature was changed to 1050 ° C. and the firing time was changed to 12 hours. The porosity of the positive electrode sintered body and the particle size of the active material particles were 5% by volume and 120 μm, respectively.

焼成温度を950℃にし、焼成時間を2時間に変更した以外は、試作例1と同様にして試作例3を作製した。この正極焼結体の空隙率及び活物質粒子の粒径はそれぞれ、11体積%及び8μmであった。   Prototype Example 3 was produced in the same manner as Prototype Example 1, except that the firing temperature was 950 ° C. and the firing time was changed to 2 hours. The porosity of the positive electrode sintered body and the particle diameter of the active material particles were 11% by volume and 8 μm, respectively.

(電池の試作)
これら試作例1〜3の正極焼結体において、一方の表面に抵抗加熱蒸着法を用いてAlの金属薄膜(平均厚さ0.1μm)を成膜して、正極を作製した。そして、これら正極を使用して、正極、緩衝層、電解質層、負極を順に積層した薄膜型のリチウムイオン二次電池(電池A〜D)を作製した。各電池の構成を表1に示す。但し、いずれの電池も電解質層を固体電解質で構成し、電池Aについては緩衝層を設けていない。
(Battery prototype)
In these positive electrode sintered bodies of Experimental Examples 1 to 3, an Al metal thin film (average thickness of 0.1 μm) was formed on one surface by resistance heating vapor deposition to produce a positive electrode. And using these positive electrodes, the thin film type lithium ion secondary battery (battery AD) which laminated | stacked the positive electrode, the buffer layer, the electrolyte layer, and the negative electrode in order was produced. Table 1 shows the configuration of each battery. However, in any battery, the electrolyte layer is made of a solid electrolyte, and the battery A is not provided with a buffer layer.

Figure 2010160988
Figure 2010160988

緩衝層は、正極の上に、具体的には金属薄膜が形成されていない正極焼結体の他方の面上に、エキシマレーザアブレーション法を用いてLiNbO3を成膜して、形成した。ここでは、緩衝層の平均厚さを10nmとした。また、緩衝層の成膜条件は、蒸発源出力500mJ、圧力1Paの酸素雰囲気とした。 The buffer layer was formed by depositing LiNbO 3 on the positive electrode, specifically on the other surface of the positive electrode sintered body on which the metal thin film was not formed, using the excimer laser ablation method. Here, the average thickness of the buffer layer was 10 nm. The buffer layer was formed in an oxygen atmosphere with an evaporation source output of 500 mJ and a pressure of 1 Pa.

電解質層は、緩衝層の上に、構成材料に応じて次のようにして形成した。電解質層をLi-P-O-N系の固体電解質で構成する場合、LiPO3をターゲットにして、窒素分圧を1Paとした窒素雰囲気下で高周波マグネトロンスパッタ法を用いて成膜した。電解質層をLi-P-S系の固体電解質で構成する場合、電池B、C及びDでは、Li2S及びP2S5をターゲットにして、エキシマレーザアブレーションを用いてLi2S-P2S5系固体電解質を成膜した。ここでは、電解質層の平均厚さを5μmとした。 The electrolyte layer was formed on the buffer layer as follows according to the constituent material. When the electrolyte layer was composed of a Li-PON-based solid electrolyte, the film was formed using a high-frequency magnetron sputtering method in a nitrogen atmosphere with a nitrogen partial pressure of 1 Pa using LiPO 3 as a target. When the electrolyte layer is composed of a Li-PS solid electrolyte, batteries B, C, and D use Li 2 S and P 2 S 5 as targets and excimer laser ablation to form a Li 2 SP 2 S 5 solid. An electrolyte was deposited. Here, the average thickness of the electrolyte layer was 5 μm.

負極は、電解質層の上に、10-4Pa以下の真空下で抵抗加熱蒸着法を用いてLi金属を成膜して、形成した。ここでは、負極の平均厚さを4μmとした。このLi金属の膜は、負極活物質層としての機能と負極集電体としての機能とを兼ね備えることができる。 The negative electrode was formed by depositing Li metal on the electrolyte layer using a resistance heating vapor deposition method under a vacuum of 10 −4 Pa or less. Here, the average thickness of the negative electrode was 4 μm. This Li metal film can have both a function as a negative electrode active material layer and a function as a negative electrode current collector.

(電池性能の評価)
上述した各電池A〜Dについて、電流密度0.05mA/cm2の定電流で4.2Vまで充電した後、同じ定電流で3Vまで放電する充放電試験を実施し、初回放電容量を測定した。また、放電開始時の電圧降下から電池の内部抵抗を計算して求めた。その結果を表2に示す。
(Evaluation of battery performance)
About each battery AD mentioned above, after charging to 4.2V with the constant current of 0.05 mA / cm < 2 > current density, the charging / discharging test discharged to 3V with the same constant current was implemented, and the first time discharge capacity was measured. The internal resistance of the battery was calculated from the voltage drop at the start of discharge. The results are shown in Table 2.

Figure 2010160988
Figure 2010160988

表2から明らかなように、試作例1を利用した正極を備える電池A及びBは、放電容量が大きく、いずれも内部抵抗が小さかった。これに対し、試作例2及び3を利用した正極を備える電池C及びDは、放電容量が小さく、いずれも内部抵抗が大きかった。   As is clear from Table 2, the batteries A and B equipped with the positive electrode using the prototype 1 had a large discharge capacity and both had a low internal resistance. On the other hand, the batteries C and D provided with the positive electrode using the prototype examples 2 and 3 had a small discharge capacity and both had a large internal resistance.

以上の結果から、本発明の正極焼結体は、空隙率が15体積%以下で、かつ活物質粒子の粒径が10μm以上100μm以下であることで、非水電解質電池の正極に利用した場合、電池の内部抵抗を低減し、放電容量を向上させることができることが分かる。   From the above results, the positive electrode sintered body of the present invention has a porosity of 15% by volume or less and the particle size of the active material particles is 10 μm or more and 100 μm or less, and is used for a positive electrode of a nonaqueous electrolyte battery. It can be seen that the internal resistance of the battery can be reduced and the discharge capacity can be improved.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、空隙率及び活物質粒子の粒径を適宜変更したり、正極活物質としてLiCoO2以外の材料を用いてもよい。 Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the porosity and the particle size of the active material particles may be appropriately changed, or a material other than LiCoO 2 may be used as the positive electrode active material.

本発明の正極焼結体及び非水電解質電池は、携帯電話、ノートパソコン、デジタルカメラの他、電動車両などの電源にも好適に利用することができる。   The positive electrode sintered body and the non-aqueous electrolyte battery of the present invention can be suitably used for a power source of an electric vehicle as well as a mobile phone, a notebook computer, and a digital camera.

Claims (4)

非水電解質電池の正極に利用される正極焼結体であって、
正極活物質の粒子を含有し、
空隙率が15体積%以下で、かつ活物質粒子の粒径が10μm以上100μm以下であることを特徴とする正極焼結体。
A positive electrode sintered body used for a positive electrode of a nonaqueous electrolyte battery,
Containing particles of positive electrode active material,
A positive electrode sintered body having a porosity of 15% by volume or less and a particle diameter of active material particles of 10 μm or more and 100 μm or less.
前記正極活物質が、LiαO2及びLiβ2O4から選択される少なくとも一種であることを特徴とする請求項1に記載の正極焼結体。
但し、α及びβは、Co、Mn、Al及びNiから選択される少なくとも一種の元素を含み、α及びβにおける前記元素の合計割合が原子比で50%以上とする。
The positive electrode sintered body according to claim 1, wherein the positive electrode active material is at least one selected from LiαO 2 and Liβ 2 O 4 .
However, α and β include at least one element selected from Co, Mn, Al, and Ni, and the total ratio of the elements in α and β is 50% or more in atomic ratio.
正極と負極、及びこれら正負極間に介在される電解質層を備える非水電解質電池であって、
前記正極は、請求項1又は2に記載の正極焼結体を備え、
前記電解質層は、固体電解質を備えることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode and a negative electrode, and an electrolyte layer interposed between the positive and negative electrodes,
The positive electrode includes the positive electrode sintered body according to claim 1 or 2,
The non-aqueous electrolyte battery, wherein the electrolyte layer includes a solid electrolyte.
正極と負極、及びこれら正負極間に介在される電解質層を備える非水電解質電池であって、
前記正極は、
請求項1又は2に記載の正極焼結体と、
この正極焼結体の表面に形成された金属薄膜とを備えることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery comprising a positive electrode and a negative electrode, and an electrolyte layer interposed between the positive and negative electrodes,
The positive electrode is
The positive electrode sintered body according to claim 1 or 2,
A nonaqueous electrolyte battery comprising a metal thin film formed on the surface of the positive electrode sintered body.
JP2009002962A 2009-01-08 2009-01-08 Positive electrode sintered body and nonaqueous electrolyte battery Pending JP2010160988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009002962A JP2010160988A (en) 2009-01-08 2009-01-08 Positive electrode sintered body and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002962A JP2010160988A (en) 2009-01-08 2009-01-08 Positive electrode sintered body and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010160988A true JP2010160988A (en) 2010-07-22

Family

ID=42578012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002962A Pending JP2010160988A (en) 2009-01-08 2009-01-08 Positive electrode sintered body and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010160988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097912A (en) * 2011-10-28 2013-05-20 Kyocera Corp Secondary battery
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097912A (en) * 2011-10-28 2013-05-20 Kyocera Corp Secondary battery
JP2020129446A (en) * 2019-02-07 2020-08-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP7107867B2 (en) 2019-02-07 2022-07-27 本田技研工業株式会社 Positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5219339B2 (en) Lithium secondary battery
KR101209338B1 (en) Lithium Secondary Battery
CN111480251B (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
WO2019146296A1 (en) Positive electrode material and battery using same
JPWO2018043190A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5348607B2 (en) All-solid lithium secondary battery
JP5930372B2 (en) Solid electrolyte material, all-solid battery, and method for producing solid electrolyte material
US20130302698A1 (en) Nonaqueous electrolyte battery
JP2004362895A (en) Negative electrode material, and battery using it
JPWO2012026480A1 (en) Nonaqueous electrolyte battery and manufacturing method thereof
KR20170003544A (en) Electrode, method of producing the same, battery, and electronic device
JP2012129166A (en) Lithium ion secondary battery
JP2007005073A (en) Positive electrode material, battery, and manufacturing method of positive electrode material
JP2006331943A (en) Cathode active substance and battery
CN112136232B (en) Nonaqueous electrolyte secondary battery
JP2012243644A (en) Electrode and all-solid state nonaqueous electrolyte battery
JP2012164571A (en) Negative electrode body and lithium ion battery
US20220069279A1 (en) All-solid-state battery and manufacturing method therefor
KR20100062744A (en) Ncm type cathode active material for secondary battery and secondary battery including the same
JP4648879B2 (en) Method for producing negative electrode for lithium secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP5566825B2 (en) Lithium secondary battery
JP2011129258A (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP2018008843A (en) Solid electrolyte, all-solid battery and manufacturing method thereof
JP2010177042A (en) Positive electrode for nonaqueous electrolyte battery, method of manufacturing the same, and nonaqueous electrolyte battery