JP5348607B2 - All-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery Download PDF

Info

Publication number
JP5348607B2
JP5348607B2 JP2008157145A JP2008157145A JP5348607B2 JP 5348607 B2 JP5348607 B2 JP 5348607B2 JP 2008157145 A JP2008157145 A JP 2008157145A JP 2008157145 A JP2008157145 A JP 2008157145A JP 5348607 B2 JP5348607 B2 JP 5348607B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
powder
solid
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008157145A
Other languages
Japanese (ja)
Other versions
JP2009301959A (en
Inventor
光靖 小川
進啓 太田
勝治 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008157145A priority Critical patent/JP5348607B2/en
Publication of JP2009301959A publication Critical patent/JP2009301959A/en
Application granted granted Critical
Publication of JP5348607B2 publication Critical patent/JP5348607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、固体電解質を用いた全固体リチウム二次電池に関する。特に、信頼性が高く、充放電サイクル特性に優れた全固体リチウム二次電池に関する。   The present invention relates to an all-solid lithium secondary battery using a solid electrolyte. In particular, the present invention relates to an all solid lithium secondary battery having high reliability and excellent charge / discharge cycle characteristics.

リチウム二次電池は、長寿命・高効率・高容量であり、携帯電話、ノートパソコン、デジタルカメラなどの電源に利用されている。   Lithium secondary batteries have a long life, high efficiency, and high capacity, and are used as power sources for mobile phones, notebook computers, digital cameras, and the like.

リチウム二次電池は、正極と負極の間で電解質層を介してリチウムイオンをやり取りすることによって、充放電が行なわれる。最近では、有機溶媒電解質に代えて不燃性の固体電解質を用いた全固体リチウム二次電池の研究開発が活発に行なわれている(例えば特許文献1、2を参照)。   The lithium secondary battery is charged and discharged by exchanging lithium ions between the positive electrode and the negative electrode through the electrolyte layer. Recently, research and development of all-solid-state lithium secondary batteries using non-flammable solid electrolytes instead of organic solvent electrolytes have been actively conducted (see, for example, Patent Documents 1 and 2).

特許文献1、2に記載の全固体リチウム二次電池では、固体電解質層として、Li2Sを含むガラス固体電解質を粉砕して得られた粉末を加圧成形したものを用いている。また、特許文献2には、金属リチウムのデンドライト成長による電池の内部短絡を防止するため、固体電解質層の厚みを5μm以上とすることが記載されている。 In the all-solid-state lithium secondary batteries described in Patent Documents 1 and 2, a powder obtained by pressure-molding a powder obtained by pulverizing a glass solid electrolyte containing Li 2 S is used as the solid electrolyte layer. Patent Document 2 describes that the thickness of the solid electrolyte layer is 5 μm or more in order to prevent internal short circuit of the battery due to dendrite growth of metallic lithium.

特開平8−148180号公報JP-A-8-148180 特開平8―138723号公報JP-A-8-138723

しかし、本発明者らが鋭意研究した結果、特許文献1、2に記載するような粉末成形体の固体電解質層であっても、充放電の繰り返しに伴い、金属リチウムのデンドライトが成長して、電池に内部短絡が生じることがあり、安全性・信頼性の面で問題があることが分かった。これは、固体電解質層に存在する粉末間の隙間(空隙)を通って金属リチウムのデンドライトが成長することが原因と考えられ、特に、負極に金属リチウムを用いた場合に、デンドライトの発生・成長が起こり易い傾向が認められた。また、負極に金属リチウムを用いない場合であっても、高電流密度の充放電条件で充放電を繰り返し行なった場合などは、デンドライトの発生・成長が起こり易い。   However, as a result of diligent research by the present inventors, even in the case of a solid electrolyte layer of a powder molded body as described in Patent Documents 1 and 2, with the repetition of charge and discharge, metallic dendrites grow, It was found that internal short circuit may occur in the battery, and there is a problem in terms of safety and reliability. This is thought to be caused by the growth of metallic lithium dendrites through the gaps (voids) between the powders present in the solid electrolyte layer, especially when metallic lithium is used for the negative electrode. A tendency to occur was observed. Even when metallic lithium is not used for the negative electrode, dendrites are likely to be generated / grown when charging / discharging is repeated under high current density charging / discharging conditions.

また、固体電解質層の厚みを5μm以上としても、充放電条件や使用環境などによって内部短絡発生率が変化するため、内部短絡を確実に防止できるとは限らず、検討の余地がある。   Even if the thickness of the solid electrolyte layer is 5 μm or more, the internal short-circuit occurrence rate changes depending on the charge / discharge conditions and the use environment, and therefore it is not always possible to prevent the internal short-circuit, and there is room for examination.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、信頼性が高く、充放電サイクル特性に優れた全固体リチウム二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide an all-solid lithium secondary battery having high reliability and excellent charge / discharge cycle characteristics.

本発明の全固体リチウム二次電池は、正極と負極、及びこれら正負極間に介在される固体電解質層を有する。そして、固体電解質層は、第一固体電解質の粉末を成形した粉末成形体部と、正極側又は負極側の少なくとも一方の表面に第二固体電解質を気相法により堆積した表面蒸着膜とを備えることを特徴とする。   The all solid lithium secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between these positive and negative electrodes. The solid electrolyte layer includes a powder molded body portion obtained by molding the powder of the first solid electrolyte, and a surface vapor deposition film obtained by depositing the second solid electrolyte by a vapor phase method on at least one surface of the positive electrode side or the negative electrode side. It is characterized by that.

本発明において、固体電解質層は、リチウムイオン伝導性を有する固体電解質により全体的に構成されており、粉末成形体部と表面蒸着膜とを備える。粉末成形体部は、第一固体電解質の粉末を成形した粉末成形体であり、粉末間には隙間が存在する。一方、表面蒸着膜は、第二固体電解質を気相法により堆積した薄膜であり、緻密な構造を有しているため、隙間が存在し難い。したがって、本発明の全固体リチウム二次電池は、固体電解質層が表面蒸着膜を備えることで、金属リチウムのデンドライト成長を抑制することができ、電池の内部短絡を防止することができる。そのため、信頼性が高く、充放電サイクル特性に優れる。特に、表面蒸着膜は、金属リチウムのデンドライトが発生・成長する電極側、即ち固体電解質層の負極側表面に設けることが好ましい。   In the present invention, the solid electrolyte layer is entirely constituted by a solid electrolyte having lithium ion conductivity, and includes a powder molded body portion and a surface-deposited film. The powder compact is a powder compact obtained by molding the powder of the first solid electrolyte, and there are gaps between the powders. On the other hand, the surface vapor-deposited film is a thin film in which the second solid electrolyte is deposited by a vapor phase method, and has a dense structure, so that there is hardly any gap. Therefore, the all-solid-state lithium secondary battery of the present invention can suppress dendrite growth of metallic lithium and prevent an internal short circuit of the battery because the solid electrolyte layer includes a surface-deposited film. Therefore, the reliability is high and the charge / discharge cycle characteristics are excellent. In particular, the surface-deposited film is preferably provided on the electrode side where metal lithium dendrite is generated and grows, that is, on the negative electrode side surface of the solid electrolyte layer.

粉末成形体部は、固体電解質の粉末をそのまま、或いは固体電解質を粉砕して粉末状としたもの、を加圧成形することにより得られたものである。このようにして得られた粉末成形体部は、厚さが通常50μm以上である。本発明において、粉末成形体部の厚さは特に限定されないが、500μm未満であることが好ましく、より好ましくは300μm以下である。粉末成形体部の厚さを500μm未満とすることで、電池の高密度化や薄型化を図ることができる。また、固体電解質の粉末成形体(粉末成形体部)は、固体電解質の薄膜(表面蒸着膜)に比べて効率よく製造することができ、生産性やコストの面で有利である。   The powder molded body part is obtained by pressure-molding a solid electrolyte powder as it is or by crushing a solid electrolyte into a powder form. The powder compact thus obtained has a thickness of usually 50 μm or more. In the present invention, the thickness of the powder compact is not particularly limited, but is preferably less than 500 μm, more preferably 300 μm or less. By setting the thickness of the powder molded body part to less than 500 μm, it is possible to increase the density and thickness of the battery. In addition, a solid electrolyte powder molded body (powder molded body portion) can be produced more efficiently than a solid electrolyte thin film (surface-deposited film), which is advantageous in terms of productivity and cost.

表面蒸着膜は、厚さが1μm以上50μm未満であることが好ましい。表面蒸着膜の厚さを1μm以上とすることで、電池の内部短絡を効果的に防止することができる。また、表面蒸着膜の厚さを50μm未満とすることで、電池の高密度化や薄型化を実現できると共に、生産性の面で有利である。   The surface deposited film preferably has a thickness of 1 μm or more and less than 50 μm. By setting the thickness of the surface deposited film to 1 μm or more, an internal short circuit of the battery can be effectively prevented. Further, by setting the thickness of the surface vapor-deposited film to less than 50 μm, it is possible to increase the density and thickness of the battery, and it is advantageous in terms of productivity.

負極は、気相法により形成されていることが好ましい。負極は、箔状の負極材料(インジウム箔やリチウム箔など)を固体電解質層の表面に圧接することにより形成することも可能である。しかし、圧接する場合、機械的な外力が固体電解質層に作用するため、固体電解質層が損傷する虞がある。これに対し、固体電解質層の表面に負極を気相法により形成する場合、機械的な外力が固体電解質層に作用することがなく、圧接する場合に比べて、固体電解質層の損傷を効果的に防ぐことができる。特に、固体電解質層の表面蒸着膜の表面に気相法により負極を形成した方が、粉末成形体部の表面に形成する場合と比較して、表面蒸着膜が緻密な構造を有している分、均一な厚さの負極を形成し易い。   The negative electrode is preferably formed by a vapor phase method. The negative electrode can also be formed by pressing a foil-like negative electrode material (such as indium foil or lithium foil) against the surface of the solid electrolyte layer. However, in the case of pressure contact, a mechanical external force acts on the solid electrolyte layer, so that the solid electrolyte layer may be damaged. On the other hand, when the negative electrode is formed on the surface of the solid electrolyte layer by a vapor phase method, mechanical external force does not act on the solid electrolyte layer, and the damage to the solid electrolyte layer is more effective than when pressed. Can be prevented. In particular, when the negative electrode is formed on the surface of the solid electrolyte layer by a vapor phase method, the surface deposited film has a dense structure as compared with the case where the negative electrode is formed on the surface of the powder molded body. Therefore, it is easy to form a negative electrode having a uniform thickness.

固体電解質層は、リチウムイオン伝導性の高い硫化物系固体電解質で構成されていることが好ましい。このような硫化物系固体電解質としては、Li-P-S系やLi-P-S-O系のものが挙げられる。その他、Li-P-O系やLi-P-O-N系の酸化物系固体電解質を用いてもよい。ここで、粉末成形体部を構成する第一固体電解質と表面蒸着膜を構成する第二固体電解質とは、同種の材質であってもよいし、異種の材質であってもよい。同種の材質とした場合、粉末成形体部と表面蒸着膜との接着強度が高い。一方、異種の材質とする場合は、粉末成形体部と表面蒸着膜のうち、厚い方をリチウムイオン伝導性の高い硫化物系固体電解質で構成することが好ましい。通常、粉末成形体部は表面蒸着膜と比較して厚みが厚くなるので、第一固体電解質を硫化物系固体電解質とし、第二固体電解質を酸化物系固体電解質とすることが適していると考えられる。   The solid electrolyte layer is preferably composed of a sulfide solid electrolyte having high lithium ion conductivity. Examples of such sulfide-based solid electrolytes include Li-P-S and Li-P-S-O types. In addition, a Li-P-O-based or Li-P-O-N-based oxide-based solid electrolyte may be used. Here, the first solid electrolyte constituting the powder molded body part and the second solid electrolyte constituting the surface vapor deposition film may be the same material or different materials. When the same kind of material is used, the adhesive strength between the powder compact and the surface deposited film is high. On the other hand, when different materials are used, it is preferable that the thicker one of the powder compact and the surface vapor-deposited film is composed of a sulfide-based solid electrolyte having high lithium ion conductivity. Usually, since the powder molded body part is thicker than the surface-deposited film, it is suitable that the first solid electrolyte is a sulfide solid electrolyte and the second solid electrolyte is an oxide solid electrolyte. Conceivable.

正極の活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)及びオリビン型鉄リン酸リチウム(LiFePO4)から選択される1種のリチウム金属酸化物や、酸化マンガン(MnO2)、或いはこれらの混合物を用いることができる。その他、イオウ(S)や、硫化第二鉄(FeS)、二硫化鉄(FeS2)、硫化リチウム(Li2S)及び硫化チタニウム(TiS2)から選ばれる1種の硫化物や、或いはこれらの混合物を用いてもよい。中でも、リチウム金属酸化物、特にLiCoO2は、電子伝導性に優れており、好適である。 As the active material of the positive electrode, one kind selected from lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and olivine type lithium iron phosphate (LiFePO 4 ) Lithium metal oxide, manganese oxide (MnO 2 ), or a mixture thereof can be used. In addition, sulfur (S), ferric sulfide (FeS), iron disulfide (FeS 2 ), one sulfide selected from lithium sulfide (Li 2 S) and titanium sulfide (TiS 2 ), or these A mixture of these may also be used. Among these, lithium metal oxides, particularly LiCoO 2, are excellent because of their excellent electron conductivity.

負極の活物質としては、金属リチウム(Li金属単体)又はリチウム合金(Liと添加元素からなるもの)の他、グラファイトなどの炭素(C)やシリコン(Si)、インジウム(In)を用いることができる。中でも、リチウムを含む材料、特に金属リチウムは、電池の高容量化、高電圧化の点で優位であり、好適である。前記リチウム合金の添加元素としては、アルミニウム(Al)、シリコン(Si)、錫(Sn)、ビスマス(Bi)、亜鉛(Zn)及びインジウム(In)などを用いることができる。   As the negative electrode active material, carbon (C) such as graphite, silicon (Si), and indium (In) are used in addition to lithium metal (Li simple substance) or a lithium alloy (made of Li and an additive element). it can. Among them, a material containing lithium, particularly metallic lithium, is advantageous in terms of increasing the capacity and voltage of the battery, and is preferable. As the additive element of the lithium alloy, aluminum (Al), silicon (Si), tin (Sn), bismuth (Bi), zinc (Zn), indium (In), or the like can be used.

気相法としては、スパッタリング法、真空蒸着法、及びイオンプレーティング法といった物理的蒸着(PVD)法や、化学的蒸着(CVD)法を利用することができる。   As the vapor phase method, a physical vapor deposition (PVD) method such as a sputtering method, a vacuum vapor deposition method, or an ion plating method, or a chemical vapor deposition (CVD) method can be used.

本発明の全固体リチウム二次電池は、固体電解質層が表面蒸着膜を備えることで、電池の内部短絡を防止することができ、信頼性が高く、充放電サイクル特性に優れる。   The all-solid-state lithium secondary battery of the present invention has a surface-deposited film on the solid electrolyte layer, thereby preventing an internal short circuit of the battery, high reliability, and excellent charge / discharge cycle characteristics.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

全固体リチウム二次電池の基本構造は、図1に示すように、正極1、固体電解質層3、負極2が順に積層された構造である。ここで、本発明の最も特徴とするところは、固体電解質層3が、固体電解質の粉末を成形した粉末成形体部31と、固体電解質を気相法により堆積した表面蒸着膜32とを備えるところにある。   As shown in FIG. 1, the basic structure of the all solid lithium secondary battery is a structure in which a positive electrode 1, a solid electrolyte layer 3, and a negative electrode 2 are laminated in this order. Here, the most characteristic feature of the present invention is that the solid electrolyte layer 3 includes a powder molded body portion 31 obtained by molding a solid electrolyte powder and a surface vapor deposition film 32 obtained by depositing the solid electrolyte by a vapor phase method. It is in.

本発明における固体電解質層は、次の方法により得ることができる。   The solid electrolyte layer in the present invention can be obtained by the following method.

まず、固体電解質の粉末を用意する。この固体電解質の粉末は、粉末状の固体電解質をそのまま用いたり、固体電解質を粉砕して粉末状としたものを用いることができる。固体電解質の作製方法としては、例えばメカニカルミリング法や溶融急冷法を用いることができる。例えば、Li-P-S系の固体電解質を作製する場合は、出発原料となるLi2SとP2S5とを所定の割合で秤量し、遊星型ボールミルを用いてメカニカルミリング処理することにより作製することができる。 First, a solid electrolyte powder is prepared. As the solid electrolyte powder, a powdered solid electrolyte can be used as it is, or a powder obtained by pulverizing a solid electrolyte can be used. As a method for producing the solid electrolyte, for example, a mechanical milling method or a melt quenching method can be used. For example, when producing a Li-PS solid electrolyte, Li 2 S and P 2 S 5 as starting materials are weighed at a predetermined ratio, and are produced by mechanical milling using a planetary ball mill. be able to.

固体電解質層の粉末成形体部は、この固体電解質の粉末を加圧成形することで形成することができる。また、固体電解質層の表面蒸着膜は、この粉末成形体部の表面に上記固体電解質を気相法により堆積することで形成することができる。   The powder molded body portion of the solid electrolyte layer can be formed by pressure molding the solid electrolyte powder. The surface-deposited film of the solid electrolyte layer can be formed by depositing the solid electrolyte on the surface of the powder molded body portion by a vapor phase method.

このような固体電解質層は、粉末成形体部の表面に表面蒸着膜が存在することで、電池の内部短絡を効果的に防止することができる。特に、負極に金属リチウムを用いた場合であっても、電池の内部短絡を防止することができるので、信頼性が高く、充放電サイクル特性に優れた全固体リチウム二次電池とすることができる。また、高電流密度で充放電を行なった場合などであっても、電池の内部短絡を防止することができるので、信頼性が高く、充放電サイクル特性に優れた全固体リチウム二次電池とすることができる。   Such a solid electrolyte layer can effectively prevent an internal short circuit of the battery due to the presence of the surface-deposited film on the surface of the powder molded body portion. In particular, even when metallic lithium is used for the negative electrode, the internal short circuit of the battery can be prevented, so that an all solid lithium secondary battery having high reliability and excellent charge / discharge cycle characteristics can be obtained. . In addition, even when charging / discharging at a high current density, etc., the internal short circuit of the battery can be prevented, so that the all-solid lithium secondary battery is highly reliable and has excellent charge / discharge cycle characteristics. be able to.

[実施例1]
図1に示すような、正極1、固体電解質層3、負極2を順に積層した構造の本発明の全固体リチウム二次電池を作製し、充放電サイクル試験を実施した。
[Example 1]
As shown in FIG. 1, an all solid lithium secondary battery of the present invention having a structure in which a positive electrode 1, a solid electrolyte layer 3, and a negative electrode 2 were laminated in this order was produced, and a charge / discharge cycle test was performed.

(固体電解質粉末の作製)
Li2SとP2S5とをモル比で4:1の割合で秤量し混合した後、この混合物をメカニカルミリング処理して、硫化物系固体電解質(Li-P-S系)の粉末を得た。その後、この粉末に230℃の条件でアニール処理を施した。この粉末のリチウムイオン伝導度を測定したところ、リチウムイオン伝導度は25℃において5×10-4S/cmであった。
(Preparation of solid electrolyte powder)
Li 2 S and P 2 S 5 were weighed and mixed at a molar ratio of 4: 1, and this mixture was mechanically milled to obtain a sulfide-based solid electrolyte (Li-PS-based) powder. . Thereafter, the powder was annealed at 230 ° C. When the lithium ion conductivity of this powder was measured, the lithium ion conductivity was 5 × 10 −4 S / cm at 25 ° C.

(正極合剤の作製)
LiCoO2の粉末と上記固体電解質の粉末とを重量比で7:3となるように配合し、これを乳鉢で混合して、正極合剤を得た。なお、LiCoO2の粉末の表面には、静電噴霧法を用いてLiNbO3の緩衝層を10nm形成した。この緩衝層は、正極と固体電解質層との界面における界面抵抗の低減に寄与する。
(Preparation of positive electrode mixture)
The LiCoO 2 powder and the solid electrolyte powder were blended in a weight ratio of 7: 3 and mixed in a mortar to obtain a positive electrode mixture. A LiNbO 3 buffer layer having a thickness of 10 nm was formed on the surface of the LiCoO 2 powder by electrostatic spraying. This buffer layer contributes to a reduction in interface resistance at the interface between the positive electrode and the solid electrolyte layer.

<電池の作製>
上記の正極合剤20mg及び固体電解質粉末40mgを10mmΦの金型に順に配置し、プレスすることにより、正極1と粉末成形体部31との組合せ体を作製した。このとき、粉末成形体部31の厚さは250μmであった。
<Production of battery>
20 mg of the positive electrode mixture and 40 mg of the solid electrolyte powder were sequentially placed in a 10 mmΦ mold and pressed to produce a combination of the positive electrode 1 and the powder molded body portion 31. At this time, the thickness of the powder molded body 31 was 250 μm.

次に、粉末成形体部31の正極1が設けられた表面とは反対側の表面に、レーザアブレーション法を用いて上記固体電解質を堆積させ、厚さ20μmの表面蒸着膜32を形成した。   Next, the solid electrolyte was deposited using a laser ablation method on the surface of the powder molded body 31 opposite to the surface on which the positive electrode 1 was provided, thereby forming a surface evaporated film 32 having a thickness of 20 μm.

その後、表面蒸着膜32の表面に、真空蒸着法を用いて厚さ10μmのLi金属膜を形成し、これを負極2とした。   Thereafter, a Li metal film having a thickness of 10 μm was formed on the surface of the surface vapor-deposited film 32 by using a vacuum vapor deposition method.

以上のようにして得られた電池を試料1とした。また、粉末成形体部31と表面蒸着膜32とからなる固体電解質層3の断面を走査型電子顕微鏡(SEM)により観察したところ、表面蒸着膜32は、粉末成形体部31と比較して、十分に緻密な構造を有していた。   The battery obtained as described above was designated as Sample 1. Further, when the cross section of the solid electrolyte layer 3 composed of the powder molded body portion 31 and the surface vapor-deposited film 32 was observed with a scanning electron microscope (SEM), the surface vapor-deposited film 32 was compared with the powder molded body portion 31, It had a sufficiently dense structure.

比較として、固体電解質層に表面蒸着膜を備えない点を除いて、試料1と同様にして、全固体リチウム二次電池を作製した。この電池の固体電解質層(粉末成形体部のみ)の厚さは250μmであった。この電池を比較例1とした。   For comparison, an all-solid lithium secondary battery was fabricated in the same manner as Sample 1, except that the surface electrolyte film was not provided on the solid electrolyte layer. The thickness of the solid electrolyte layer (only the powder molded body part) of this battery was 250 μm. This battery was referred to as Comparative Example 1.

<電池の評価>
試料1及び比較例1の正負両電極にそれぞれリード端子を取り付け、試料1及び比較例1について、充電上限電圧:4.2V、放電下限電圧:3.0V、充放電電流:0.05mAの条件で、充電・放電を1サイクルとする充放電サイクル試験を実施した。
<Battery evaluation>
Lead terminals are attached to both the positive and negative electrodes of Sample 1 and Comparative Example 1, and charging is performed for Sample 1 and Comparative Example 1 under the conditions of an upper limit voltage for charging: 4.2 V, a lower limit voltage for discharging: 3.0 V, and a charge / discharge current: 0.05 mA. -A charge / discharge cycle test was conducted with one discharge cycle.

その結果、試料1では、30サイクル後の放電容量が120mAh/gであり、30サイクルを超える充放電が可能であった。これに対し、比較例1では、1サイクル目に電圧挙動が不安定となり、内部短絡が生じていた。   As a result, in Sample 1, the discharge capacity after 30 cycles was 120 mAh / g, and charge / discharge exceeding 30 cycles was possible. In contrast, in Comparative Example 1, the voltage behavior became unstable in the first cycle, and an internal short circuit occurred.

[実施例2]
次に、実施例1と同様にして、固体電解質層の表面蒸着膜の厚さを変更した全固体リチウム二次電池(試料2-1〜2-4)を作製した。各電池の表面蒸着膜の厚さを表1に示す。また、実施例1と同様にして、各電池について充放電サイクル試験を実施した。各電池の評価結果を表1に併せて示す。
[Example 2]
Next, in the same manner as in Example 1, all-solid lithium secondary batteries (samples 2-1 to 2-4) in which the thickness of the surface deposited film of the solid electrolyte layer was changed were produced. Table 1 shows the thickness of the surface deposited film of each battery. Moreover, the charge / discharge cycle test was implemented about each battery like Example 1. FIG. The evaluation results of each battery are also shown in Table 1.

Figure 0005348607
Figure 0005348607

表2の結果から、固体電解質層の表面蒸着膜の厚さを1μm以上とした場合、電池の内部短絡を効果的に防止できることが分かる。   From the results of Table 2, it can be seen that when the thickness of the surface deposited film of the solid electrolyte layer is 1 μm or more, an internal short circuit of the battery can be effectively prevented.

このように、本発明の全固体リチウム二次電池は、高い信頼性と優れた充放電サイクル特性を示すことが確認できた。   Thus, it has been confirmed that the all solid lithium secondary battery of the present invention exhibits high reliability and excellent charge / discharge cycle characteristics.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、固体電解質層の粉末成形体部及び表面蒸着膜の厚さを適宜変更したり、負極活物質として金属リチウム以外の材料を用いてもよい。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the thickness of the powder molded body part of the solid electrolyte layer and the thickness of the surface vapor-deposited film may be appropriately changed, or a material other than metallic lithium may be used as the negative electrode active material.

本発明の全固体リチウム二次電池は、高い信頼性と優れた充放電サイクル特性が要求されるリチウム二次電池に好適に利用することができる。   The all-solid lithium secondary battery of the present invention can be suitably used for a lithium secondary battery that requires high reliability and excellent charge / discharge cycle characteristics.

本発明の実施の形態に係る全固体電池の概略構成図である。It is a schematic block diagram of the all-solid-state battery which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 正極 2 負極
3 固体電解質層 31 粉末成形体部 32 表面蒸着膜
1 Positive electrode 2 Negative electrode
3 Solid electrolyte layer 31 Molded powder part 32 Surface deposited film

Claims (4)

正極と負極、及びこれら正負極間に介在される固体電解質層を有する全固体リチウム二次電池であって、
前記固体電解質層は、硫化物系固体電解質の粉末を成形した粉末成形体部と、正極側又は負極側の少なくとも一方の表面に硫化物系固体電解質を気相法により堆積した表面蒸着膜とを備え
前記表面蒸着膜の厚さが1μm以上50μm未満(ただし、1μmを除く)であり、
前記負極は、気相法により金属リチウムで形成されていることを特徴とする全固体リチウム二次電池。
An all-solid lithium secondary battery having a positive electrode and a negative electrode, and a solid electrolyte layer interposed between the positive and negative electrodes,
The solid electrolyte layer includes a powder molded body portion obtained by molding a sulfide-based solid electrolyte powder, and a surface-deposited film in which a sulfide-based solid electrolyte is deposited on a surface of at least one of a positive electrode side and a negative electrode side by a vapor phase method. Prepared ,
The surface deposited film has a thickness of 1 μm or more and less than 50 μm (excluding 1 μm),
The all-solid lithium secondary battery , wherein the negative electrode is formed of metallic lithium by a vapor phase method .
前記表面蒸着膜の厚さが5μm以上であることを特徴とする請求項1に記載の全固体リチウム二次電池。The all-solid lithium secondary battery according to claim 1, wherein the surface-deposited film has a thickness of 5 μm or more. 前記粉末成形体部の厚さが50μm以上500μm未満であることを特徴とする請求項1又は2に記載の全固体リチウム二次電池。3. The all-solid lithium secondary battery according to claim 1, wherein the powder compact has a thickness of 50 μm or more and less than 500 μm. 前記正極は、正極活物質の粉末と固体電解質の粉末とを混合してなり、前記正極活物質の粉末の表面にLiNbOThe positive electrode is a mixture of a positive electrode active material powder and a solid electrolyte powder, and the surface of the positive electrode active material powder is LiNbO. 3Three の緩衝層が形成されていることを特徴とする請求項1〜3のいずれか一項に記載の全固体リチウム二次電池。The all-solid-state lithium secondary battery as described in any one of Claims 1-3 by which the buffer layer of this is formed.
JP2008157145A 2008-06-16 2008-06-16 All-solid lithium secondary battery Expired - Fee Related JP5348607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157145A JP5348607B2 (en) 2008-06-16 2008-06-16 All-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157145A JP5348607B2 (en) 2008-06-16 2008-06-16 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2009301959A JP2009301959A (en) 2009-12-24
JP5348607B2 true JP5348607B2 (en) 2013-11-20

Family

ID=41548641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157145A Expired - Fee Related JP5348607B2 (en) 2008-06-16 2008-06-16 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5348607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671933A1 (en) 2018-12-17 2020-06-24 Panasonic Intellectual Property Management Co., Ltd. All-solid-state battery

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026480A1 (en) * 2010-08-26 2012-03-01 住友電気工業株式会社 Nonaqueous electrolyte battery and method for manufacturing same
US9413034B2 (en) 2011-07-27 2016-08-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid battery
JP5910737B2 (en) * 2012-05-24 2016-04-27 株式会社村田製作所 All solid battery
WO2014010043A1 (en) 2012-07-11 2014-01-16 トヨタ自動車株式会社 All-solid-state battery, and production method therefor
JP6331282B2 (en) * 2013-07-30 2018-05-30 富士通株式会社 Solid electrolyte composite, all solid-state ion battery, and method for producing solid electrolyte composite
JP6070471B2 (en) * 2013-08-06 2017-02-01 トヨタ自動車株式会社 All-solid lithium secondary battery and method for producing all-solid lithium secondary battery
WO2015098551A1 (en) 2013-12-26 2015-07-02 トヨタ自動車株式会社 Solid-state lithium battery, solid-state lithium battery module, and method for producing solid-state lithium battery
JP6394057B2 (en) * 2014-05-15 2018-09-26 富士通株式会社 Solid electrolyte structure and all solid state battery
US20180226633A1 (en) 2017-02-07 2018-08-09 Samsung Electronics Co., Ltd. Anode for all solid-state secondary battery, all solid-state secondary battery including the anode, and method of manufacturing the anode
US10854877B2 (en) 2017-08-25 2020-12-01 Samsung Electronics Co., Ltd. All-solid-state secondary battery
JP7172486B2 (en) 2018-11-15 2022-11-16 トヨタ自動車株式会社 All-solid lithium secondary battery and method for determining deterioration of all-solid lithium secondary battery
KR102550614B1 (en) * 2019-04-18 2023-06-30 주식회사 엘지에너지솔루션 A electrolyte membrane for all solid-state battery and an all solid-state battery comprising the same
JP2022131191A (en) 2021-02-26 2022-09-07 トヨタ自動車株式会社 Manufacturing method of all-solid battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244569A (en) * 1987-03-31 1988-10-12 Matsushita Electric Ind Co Ltd Manufacture of electrochemical element
JP4016344B2 (en) * 1998-12-03 2007-12-05 住友電気工業株式会社 Lithium secondary battery
JP2008091328A (en) * 2006-09-04 2008-04-17 Sumitomo Electric Ind Ltd Lithium secondary cell and its manufacturing method
JP5110850B2 (en) * 2006-10-31 2012-12-26 株式会社オハラ Lithium ion conductive solid electrolyte and method for producing the same
JP5281896B2 (en) * 2006-11-14 2013-09-04 日本碍子株式会社 Solid electrolyte structure for all solid state battery, all solid state battery, and manufacturing method thereof
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3671933A1 (en) 2018-12-17 2020-06-24 Panasonic Intellectual Property Management Co., Ltd. All-solid-state battery
US11431023B2 (en) 2018-12-17 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. All-solid-state battery

Also Published As

Publication number Publication date
JP2009301959A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5348607B2 (en) All-solid lithium secondary battery
US11777088B2 (en) Anode material and battery using same
US11631853B2 (en) Battery
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
CN111864207B (en) All-solid battery
JP5108205B2 (en) All solid-state lithium secondary battery
JP5692184B2 (en) All solid lithium ion secondary battery
JP5376412B2 (en) Non-aqueous electrolyte battery
WO2010021205A1 (en) Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery
KR102198115B1 (en) Electrode, method of producing the same, battery, and electronic device
WO2012077225A1 (en) Electrode body and all-solid-state battery
WO2011043267A1 (en) Non-aqueous electrolyte cell
KR20210007483A (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP2009211910A (en) All-solid lithium secondary battery
CN112868122A (en) Solid electrolyte material with improved chemical stability
US20120231345A1 (en) Nonaqueous electrolyte battery and solid electrolyte for nonaqueous electrolyte battery
KR20140021072A (en) Solid secondary battery and battery system
KR20210133085A (en) All-solid-state secondary battery
US20240136571A1 (en) Positive electrode material and battery
JP2011113735A (en) Nonaqueous electrolyte battery
JP6748348B2 (en) All solid state battery
JP5454459B2 (en) Non-aqueous electrolyte battery
JP2013089417A (en) Nonaqueous electrolyte battery
US20220052375A1 (en) Battery
JP6697155B2 (en) All solid state battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130811

LAPS Cancellation because of no payment of annual fees