JP2008135287A - All-solid battery member and manufacturing method of the member, and all-solid battery - Google Patents

All-solid battery member and manufacturing method of the member, and all-solid battery Download PDF

Info

Publication number
JP2008135287A
JP2008135287A JP2006320560A JP2006320560A JP2008135287A JP 2008135287 A JP2008135287 A JP 2008135287A JP 2006320560 A JP2006320560 A JP 2006320560A JP 2006320560 A JP2006320560 A JP 2006320560A JP 2008135287 A JP2008135287 A JP 2008135287A
Authority
JP
Japan
Prior art keywords
layer
solid
thin film
solid electrolyte
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006320560A
Other languages
Japanese (ja)
Inventor
Takeki Koto
武樹 小藤
Minoru Chiga
実 千賀
Nobuo Kawasaki
信夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006320560A priority Critical patent/JP2008135287A/en
Publication of JP2008135287A publication Critical patent/JP2008135287A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid battery with excellent battery characteristics capable of reducing interface resistance between an electrode material layer and a solid electrolyte layer by enlarging a contact and jointing area of the electrode material layer and the solid electrolyte layer in the all-solid battery. <P>SOLUTION: The all-solid battery member has a thin film layer with a thickness of 10 nm-1 μm and a solid electrolyte layer with a thickness of 1-500 μm laminated in this order on an electrode material layer, and the thin film layer is composed of same material as the solid electrolyte layer and same material as the electrode material layer or an admixture of these. Furthermore, the all-solid battery has a solid electrolyte layer with a thickness of 1-500 μm interposed between a positive electrode layer and a negative electrode layer and further, has respectively a thin film layer with a thickness of 10 nm-1 μm between the positive electrode layer and the negative electrode layer and the solid electrolyte layer, and the two thin film layers are respectively composed of same material as the solid electrolyte layer and same material as the electrode material layer or an admixture of these. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、全固体電池用部材、該部材の製造方法並びに全固体電池に関する。   The present invention relates to an all-solid battery member, a method for producing the member, and an all-solid battery.

近年、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、モーターを動力源とする自動二輪車、電気自動車、ハイブリッド電気自動車等に用いられる高性能リチウム電池等二次電池の需要が増加している。このように、使用される用途が広がるのに伴い、二次電池の更なる安全性の向上及び高性能化が要求されている。
リチウム電池の安全性を確保する方法としては、有機溶媒電解質に代えて無機固体電解質を用いることが有効である。無機固体電解質は、その性質上一般に不燃又は難燃で、通常使用される有機溶媒電解質と比較し安全性の高い材料である。そのため、該電解質を用いた高い安全性を備えた全固体リチウム電池の開発が望まれている。
In recent years, the demand for secondary batteries such as high-performance lithium batteries used in personal digital assistants, portable electronic devices, small household power storage devices, motorcycles powered by motors, electric vehicles, hybrid electric vehicles, etc. has increased. Yes. As described above, as the applications for use expand, further improvements in safety and performance of secondary batteries are required.
In order to ensure the safety of the lithium battery, it is effective to use an inorganic solid electrolyte instead of the organic solvent electrolyte. Inorganic solid electrolytes are generally nonflammable or flame retardant in nature and are safer materials than commonly used organic solvent electrolytes. Therefore, development of an all-solid lithium battery with high safety using the electrolyte is desired.

ところで、全固体電池において、極材層(正極層および負極層)と電解質層の界面接合を図るためには、電池自体を加圧したり、極材層及び電解質層を形成する材料の粒子径の組合せをコントロールし、接触面を確保する必要があった。ここで、電解質層を形成する材料の粒子径は小さいほど接触面積は大きくなるが、固体電解質は、例えばサブミクロンオーダーに粉砕することが難しく、ミクロンオーダーの粒径の電解質と極材を接合させても、良好な界面接合が得られなかった。   By the way, in an all-solid-state battery, in order to achieve interfacial bonding between the electrode material layer (positive electrode layer and negative electrode layer) and the electrolyte layer, the battery itself is pressurized or the particle diameter of the material forming the electrode material layer and the electrolyte layer is adjusted. It was necessary to control the combination and secure the contact surface. Here, the smaller the particle size of the material forming the electrolyte layer, the larger the contact area. However, it is difficult to pulverize the solid electrolyte to, for example, the submicron order, and the electrolyte and electrode material having a particle size of the micron order are joined. However, good interface bonding could not be obtained.

例えば、特許文献1には、硫化リチウムと五硫化二燐を原料とするリチウムイオン伝導性固体電解質、該固体電解質とカーボングラファイトを混合して製造した負極材料、コバルト酸リチウムを正極活物質とする正極材料を組み合わせて製造した全固体二次電池が開示されている(特許文献1、実施例3参照)。この全固体二次電池は、作動電位が3.5Vと優れた値を示すが、リチウムイオン伝導性固体電解質はサブミクロンオーダーではないため、負極活物質であるカーボングラファイトと混合して負極層を形成させても、固体電解質層との接合面の確保は必ずしも十分とはいえず、特に放電電流密度などの点でさらなる改良が望まれていた。   For example, Patent Document 1 discloses a lithium ion conductive solid electrolyte using lithium sulfide and phosphorous pentasulfide as raw materials, a negative electrode material produced by mixing the solid electrolyte and carbon graphite, and lithium cobalt oxide as a positive electrode active material. An all-solid secondary battery manufactured by combining positive electrode materials is disclosed (see Patent Document 1 and Example 3). This all-solid-state secondary battery shows an excellent operating potential of 3.5 V. However, since the lithium ion conductive solid electrolyte is not in the submicron order, the negative electrode layer is formed by mixing with carbon graphite as a negative electrode active material. Even if it is formed, it is not always sufficient to secure the joint surface with the solid electrolyte layer, and further improvement has been desired particularly in terms of discharge current density and the like.

また、特許文献2には、Li,PおよびSで実質的に構成された無機固体電解質薄膜の形成方法が開示され、レーザーアブレーション法、真空蒸着法、スパッタリング法、イオンプレーティング法により、リチウム金属薄膜上に、前記の無機固体電解質からなる0.5μm程度の薄膜層を形成させている。しかし、特許文献2では、該方法により得られた積層体を有機電解液とともに用いる二次電池についての開示はあるが、これを利用した全固体電池についての記載はなく、従って全固体電池における上述のような課題については開示も示唆する記載もない。   Patent Document 2 discloses a method for forming an inorganic solid electrolyte thin film substantially composed of Li, P, and S. A lithium ablation method, a vacuum evaporation method, a sputtering method, an ion plating method, and a lithium metal A thin film layer of about 0.5 μm made of the inorganic solid electrolyte is formed on the thin film. However, although Patent Document 2 discloses a secondary battery using the laminate obtained by the method together with an organic electrolyte, there is no description of an all-solid battery using this, and therefore the above-mentioned in all-solid batteries is described. There is no disclosure or suggestion about such issues.

国際公開2005/119706International Publication 2005/119706 特開2005−32731号公報JP 2005-32731 A

本発明は、上記問題点に鑑み、全固体電池における極材層と固体電解質層の接触・接合面積を大きくして、極材層と固体電解質層の界面抵抗を低下させ、良好な電池特性を得ようとするものである。   In view of the above problems, the present invention increases the contact / bonding area between the electrode material layer and the solid electrolyte layer in the all-solid battery, lowers the interface resistance between the electrode material layer and the solid electrolyte layer, and provides good battery characteristics. I want to get it.

本発明者らは、鋭意研究を重ねた結果、ナノレベルのスパッター粒、イオンビームや抵抗加熱で生成するナノレベルの微細な粒を極材層の表面に堆積させ、特定の薄膜層を形成することで、極材層と固体電解質層の接触・接合面積を大きくし得ることを見出した。本発明はかかる知見に基づいて完成されたものである。   As a result of intensive research, the inventors have deposited nano-level sputtered grains and nano-level fine grains generated by ion beam or resistance heating on the surface of the electrode material layer to form a specific thin film layer. Thus, it has been found that the contact / joint area between the electrode material layer and the solid electrolyte layer can be increased. The present invention has been completed based on such findings.

すなわち、本発明は、
[1]極材層の上に厚さ10nm〜1μmの薄膜層と厚さ1〜500μmの固体電解質層をこの順に積層してなる全固体電池用部材であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材、
[2]前記薄膜層が気相成長法又は化学気相蒸着法(CVD法)により得られ、前記固体電解質層が微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により得られる上記[1]に記載の全固体電池用部材、
[3]極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成する全固体電池用部材の製造方法であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材の製造方法、
[4]厚さ1〜500μmの固体電解質層を形成し、該固体電解質層の表面に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層を形成し、さらにその上に極材層を設ける全固体電池用部材の製造方法であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材の製造方法、
[5]前記固体電解質層が塗布又は粉体の圧縮により得られる上記[4]に記載の全固体電池用部材の製造方法、
[6]正極層と負極層の間に少なくとも厚さ10nm〜2μmの薄膜層を介在させてなる全固体電池であって、該薄膜層が固体電解質材料からなることを特徴とする全固体電池、
[7]正極層及び負極層の上にそれぞれ厚さ10nm〜1μmの薄膜層を積層し、これを接合してなる全固体電池であって、2つの薄膜層のうち少なくとも一方が固体電解質材料からなることを特徴とする全固体電池、
[8]前記薄膜層が気相成長法又は化学気相蒸着法(CVD法)により得られる上記[6]又は[7]に記載の全固体電池、
[9]正極層と負極層の間に厚さ1〜500μmの固体電解質層を介在させてなる全固体電池であって、正極層及び負極層と前記固体電解質層との間のそれぞれにさらに厚さ10nm〜1μmの薄膜層を有し、該2つの薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池、
[10]極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜2μmの薄膜層を形成し、その上に極材層を設ける全固体電池の製造方法、
[11]極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成し、さらにその上に極材層を設ける全固体電池の製造方法、
[12]極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成して全固体電池用部材を製造し、他の極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成して電極を製造し、該全固体電池用部材と該電極を固体電解質層と第2の薄膜層が接触するように接合する全固体電池の製造方法であって、該第1の薄膜層及び第2の薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法、
[13]上記[1]又は[2]に記載の全固体電池用部材を2つ用意し、該全固体電池用部材をそれぞれの固体電解質層が接触するように接合する全固体電池の製造方法、
[14]極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成し、その上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成し、さらにその上に極材層を設ける全固体電池の製造方法であって、第1の薄膜層及び第2の薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法、
[15]厚さ1〜500μmの固体電解質層を形成し、該固体電解質層の表面及び裏面に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層をそれぞれ形成し、さらにその上に極材層を設ける全固体電池の製造方法であって、該2つの薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法、及び
[16]上記[6]〜[9]のいずれかに記載の全固体電池を組み合わせてなる組電池、
を提供するものである。
That is, the present invention
[1] An all-solid battery member in which a thin film layer having a thickness of 10 nm to 1 μm and a solid electrolyte layer having a thickness of 1 to 500 μm are laminated in this order on an electrode material layer, the thin film layer being a solid electrolyte layer An all-solid-state battery member comprising the same material, the same material as the electrode layer, or a mixture thereof,
[2] The above-mentioned [1], wherein the thin film layer is obtained by a vapor deposition method or a chemical vapor deposition method (CVD method), and the solid electrolyte layer is obtained by coating, spraying, coating, or powder compression by fine particle collision. A member for an all-solid-state battery,
[3] A thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying, coating, or powdering by fine particle collision is formed thereon. A method for producing an all-solid battery member in which a solid electrolyte layer having a thickness of 1 to 500 μm is formed by compression of a body, wherein the thin film layer is the same material as the solid electrolyte layer, the same material as the electrode material layer, or these A method for producing a member for an all-solid-state battery, comprising a mixture,
[4] A solid electrolyte layer having a thickness of 1 to 500 μm is formed, and a thin film layer having a thickness of 10 nm to 1 μm is formed on the surface of the solid electrolyte layer by a vapor deposition method or a chemical vapor deposition method (CVD method). Further, a method for producing an all-solid battery member in which an electrode material layer is provided thereon, wherein the thin film layer is made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. A method for producing an all-solid battery member,
[5] The method for producing an all-solid battery member according to the above [4], wherein the solid electrolyte layer is obtained by coating or compressing powder.
[6] An all solid state battery in which a thin film layer having a thickness of at least 10 nm to 2 μm is interposed between the positive electrode layer and the negative electrode layer, wherein the thin film layer is made of a solid electrolyte material,
[7] An all-solid battery obtained by laminating a thin film layer having a thickness of 10 nm to 1 μm on each of the positive electrode layer and the negative electrode layer and bonding the thin film layers, and at least one of the two thin film layers is made of a solid electrolyte material. An all-solid-state battery,
[8] The all-solid-state battery according to the above [6] or [7], wherein the thin film layer is obtained by vapor deposition or chemical vapor deposition (CVD).
[9] An all-solid battery in which a solid electrolyte layer having a thickness of 1 to 500 μm is interposed between a positive electrode layer and a negative electrode layer, and each of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer is further thickened. An all-solid battery comprising a thin film layer having a thickness of 10 nm to 1 μm, wherein the two thin film layers are each made of the same material as the solid electrolyte layer, the same material as the electrode layer, or a mixture thereof,
[10] A method for producing an all-solid-state battery in which a thin film layer having a thickness of 10 nm to 2 μm is formed on an electrode material layer by vapor deposition or chemical vapor deposition (CVD method), and an electrode material layer is provided thereon. ,
[11] A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and vapor deposition or chemical vapor is formed thereon. An all-solid-state battery manufacturing method in which a second thin film layer having a thickness of 10 nm to 1 μm is formed by a vapor deposition method (CVD method), and an electrode material layer is further provided thereon;
[12] A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying by fine particle collision, A solid electrolyte layer having a thickness of 1 to 500 μm is formed by coating or powder compression to produce a member for an all solid state battery, and a vapor deposition method or a chemical vapor deposition method (CVD method) is formed on the other electrode material layer. ) To form a second thin film layer having a thickness of 10 nm to 1 μm to produce an electrode, and join the all-solid battery member and the electrode so that the solid electrolyte layer and the second thin film layer are in contact with each other. A method of manufacturing a battery, wherein the first thin film layer and the second thin film layer are each made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. Solid battery manufacturing method,
[13] A method for producing an all-solid battery, comprising preparing two members for an all-solid battery according to [1] or [2], and joining the members for an all-solid battery so that the respective solid electrolyte layers are in contact with each other. ,
[14] A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying by fine particle collision, A solid electrolyte layer having a thickness of 1 to 500 μm is formed by coating or powder compression, and a second thin film layer having a thickness of 10 nm to 1 μm is formed thereon by a vapor phase growth method or a chemical vapor deposition method (CVD method). An all-solid battery manufacturing method in which an electrode material layer is further formed thereon, wherein the first thin film layer and the second thin film layer are the same material and the same electrode material layer as the solid electrolyte layer, respectively. An all-solid-state battery manufacturing method comprising a material or a mixture thereof,
[15] A solid electrolyte layer having a thickness of 1 to 500 μm is formed, and a thin film layer having a thickness of 10 nm to 1 μm is formed on the front and back surfaces of the solid electrolyte layer by vapor deposition or chemical vapor deposition (CVD), respectively. An all-solid battery manufacturing method in which an electrode material layer is further formed thereon, wherein the two thin film layers are made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. A method for producing an all-solid battery, and [16] an assembled battery obtained by combining the all-solid battery according to any one of [6] to [9],
Is to provide.

本発明によれば、全固体電池における極材層と固体電解質層の接触・接合面積を大きくし、極材層と固体電解質層の界面抵抗を低下させることができ、良好な電池特性を有する全固体電池を提供することができる。また、本発明によれば、薄型の全固体電池を提供することができる。   According to the present invention, the contact / bonding area between the electrode material layer and the solid electrolyte layer in the all-solid battery can be increased, the interfacial resistance between the electrode material layer and the solid electrolyte layer can be reduced, and all the batteries having good battery characteristics can be obtained. A solid state battery can be provided. Moreover, according to this invention, a thin all-solid-state battery can be provided.

本発明の全固体電池用部材は、極材層の上に厚さ10nm〜1μmの薄膜層と厚さ1〜500μmの固体電解質層をこの順に積層してなる。
ここで極材層とは、全固体電池における正極層及び負極層を意味する。
The all-solid-state battery member of the present invention is formed by laminating a thin film layer having a thickness of 10 nm to 1 μm and a solid electrolyte layer having a thickness of 1 to 500 μm in this order on an electrode material layer.
Here, the electrode material layer means a positive electrode layer and a negative electrode layer in an all solid state battery.

[正極材]
正極層を構成する正極材としては、電池分野において正極活物質として使用されているものであれば特に限定されず、例えば、硫化物系では、硫化チタン(TiS2)、硫化モリブデン(MoS2)、硫化鉄(FeS、FeS2)、硫化銅(CuS)及び硫化ニッケル(Ni32)等が使用できる。これらのうち、本発明ではTiS2が好適に使用できる。
また、酸化物系では、酸化ビスマス(Bi23)、鉛酸ビスマス(Bi2Pb25)、酸化銅(CuO)、酸化バナジウム(V613)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)等が使用できる。なお、これらは1種単独でも、また2種以上を混合して用いてもよい。これらのうち、本発明では、コバルト酸リチウムが特に好ましい。
なお、上記の他に、セレン化ニオブ(NbSe3)も使用することができる。
また、正極材としては、上記の化合物と後述する電解質層で使用する固体電解質とを混合してなる、いわゆる正極合材も使用することができる。以下、本発明において、正極材という場合には、この正極合材も含まれる。
[Positive electrode material]
The positive electrode material constituting the positive electrode layer is not particularly limited as long as it is used as a positive electrode active material in the battery field. For example, in a sulfide system, titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ). Iron sulfide (FeS, FeS 2 ), copper sulfide (CuS), nickel sulfide (Ni 3 S 2 ) and the like can be used. Of these, TiS 2 can be suitably used in the present invention.
In the oxide system, bismuth oxide (Bi 2 O 3 ), bismuth leadate (Bi 2 Pb 2 O 5 ), copper oxide (CuO), vanadium oxide (V 6 O 13 ), lithium cobaltate (LiCoO 2 ) Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ) and the like can be used. These may be used alone or in combination of two or more. Of these, lithium cobaltate is particularly preferred in the present invention.
In addition to the above, niobium selenide (NbSe 3 ) can also be used.
Moreover, what is called a positive electrode mixture formed by mixing said compound and the solid electrolyte used by the electrolyte layer mentioned later as a positive electrode material can also be used. Hereinafter, in the present invention, the positive electrode material includes this positive electrode mixture.

また、正極材中には、導電助剤として、電子が正極活物質内で円滑に移動するようにするための電気的に導電性を有する物質を適宜添加してもよい。電気的に導電性を有する物質としては特に限定はないが、アセチレンブラック、カーボンブラック、カーボンナノチューブのような導電性炭素材料又はポリアニリン、ポリアセチレン、ポリピロールのような導電性高分子を1種単独で、又は2種以上を混合して用いることができる。   Moreover, in the positive electrode material, a substance having electrical conductivity for allowing electrons to move smoothly in the positive electrode active material may be appropriately added as a conductive assistant. The electrically conductive substance is not particularly limited, but a conductive carbon material such as acetylene black, carbon black, and carbon nanotube or a conductive polymer such as polyaniline, polyacetylene, and polypyrrole is used alone. Or 2 or more types can be mixed and used.

[負極材]
次に、負極材としては、電池分野において負極活物質として使用されているものであれば特に限定されず、例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素が挙げられる。これらは1種単独でも又は2種以上を混合して用いてもよい。上記材料のうち、人造黒鉛が特に好ましい。
また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素などの金属、又はこれらの金属と他の元素又は化合物とを組合せた合金を、負極材として用いることもできる。
さらに、上記炭素材料や金属等と後述する電解質層で使用する固体電解質とを混合してなる、いわゆる負極合材も使用することができる。以下、本発明において、負極材という場合には、この負極合材も含まれる。
[Negative electrode material]
Next, the negative electrode material is not particularly limited as long as it is used as a negative electrode active material in the battery field. For example, a carbon material, specifically, artificial graphite, graphite carbon fiber, resin-fired carbon, heat Decomposed vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin calcined carbon, polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite and non-graphitizable carbon. These may be used alone or in combination of two or more. Of the above materials, artificial graphite is particularly preferable.
A metal such as metallic lithium, metallic indium, metallic aluminum, metallic silicon, or an alloy obtained by combining these metals with another element or compound can also be used as the negative electrode material.
Furthermore, a so-called negative electrode mixture formed by mixing the carbon material, metal, or the like and a solid electrolyte used in an electrolyte layer described later can also be used. Hereinafter, in the present invention, the negative electrode material includes this negative electrode mixture.

[極材層の形成]
全固体電池の部材である固体状の電極材料(極材)においては、電子伝導性に加えてイオン伝導度を向上させるため、極材の粒子同士が密着し、粒子間の接合点や面を多く存在させ、イオン伝導パスをより多く確保することが重要である。そのため、上述のように、例えば、電解質等のイオン伝導活物質を混合し、極材とする方法が用いられる。
また、極材粒子間の隙間に生じる空間(単位体積における空間体積と極材粒子の体積の割合:空隙率)が少ない程、極材層が密に詰まっており、イオン伝導度が高くなるため好ましい。
[Formation of electrode material layer]
In a solid electrode material (electrode material) that is a member of an all-solid battery, in order to improve ion conductivity in addition to electron conductivity, the particles of the electrode material are in close contact with each other, and the junction points and surfaces between the particles are determined. It is important to ensure that there are many ion conduction paths. Therefore, as described above, for example, a method in which an ion conductive active material such as an electrolyte is mixed to form an electrode material is used.
In addition, the smaller the space generated in the gaps between the polar particles (the ratio of the volume of the polar particles to the volume of the polar particles: the porosity), the denser the polar layer and the higher the ionic conductivity. preferable.

本発明における極材層は、上記極材(正極材又は負極材)を集電体の少なくとも一部に膜状に形成することで作製できる。製膜方法としては、ブラスト法、エアロゾルデポジション法、コールドスプレー法、スパッタリング法、気相成長法又は溶射法等が挙げられる。また、集電体に上記極材を溶液化し、塗布する方法、あるいは上記極材を集電体上に圧縮して積層させる方法により、極材層を形成することもできる。
このような方法により製膜することで、極材層の空隙率をより小さくすることができ、イオン伝導度を向上させることができる。
上記方法のうち、簡便な装置であり、かつ室温条件下、すなわち電解質の結晶状態を変化させない温度範囲で製膜できることから、ブラスト法やエアロゾルデポジション法が好ましい。
なお、本発明では集電体として、銅、マグネシウム、ステンレス鋼、チタン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ゲルマニウム、インジウム、リチウム、又は、これらの合金等からなる板状体や箔状体等が使用できる。
The electrode material layer in the present invention can be produced by forming the electrode material (positive electrode material or negative electrode material) in a film shape on at least a part of the current collector. Examples of the film forming method include a blast method, an aerosol deposition method, a cold spray method, a sputtering method, a vapor deposition method, and a thermal spraying method. Alternatively, the electrode material layer can be formed by a method in which the electrode material is dissolved and applied to a current collector, or a method in which the electrode material is compressed and laminated on the current collector.
By forming a film by such a method, the porosity of the electrode material layer can be further reduced, and the ionic conductivity can be improved.
Among the above methods, the blast method and the aerosol deposition method are preferable because they are simple apparatuses and can be formed at room temperature, that is, in a temperature range that does not change the crystal state of the electrolyte.
In the present invention, the current collector is a plate or foil made of copper, magnesium, stainless steel, titanium, iron, cobalt, nickel, zinc, aluminum, germanium, indium, lithium, or an alloy thereof. Etc. can be used.

[薄膜層の形成]
本発明の全固体電池用部材においては、上記極材層の上に厚さ10nm〜1μmの薄膜層が積層されていることが特徴である。この薄膜層は、全固体電池における極材層と固体電解質層の接触・接合面積を大きくして、極材層と固体電解質層の界面抵抗を低下させる機能を果たすものである。
薄膜層を構成する材料は、後述する固体電解質層を構成する材料と同一の材料、上記極材層を構成する材料と同一の材料、又はこれらの混合物を用いる。これらの材料を用いることで、極材層と固体電解質層の界面抵抗を低下させることができる。なお、ここで極材層を構成する材料とは、薄膜層が接する極材層を構成する材料であって、正極層に接する薄膜層においては正極層の材料と同一であることを意味し、負極層に接する薄膜層においては、負極層の材料と同一であることを意味する。
また、薄膜層の厚さは10nm〜1μmの範囲である。該厚さが10nm未満であると、該薄膜が極材層上に均一に成膜できない場合があり好ましくない。一方、該薄膜層の厚さが1μmを超えると、該全固体電池用部材の生産性の点で好ましくない。以上の観点から薄膜層の厚さは50nm〜1μmの範囲であることがさらに好ましく、50nm〜500nmの範囲であることが特に好ましい。
[Formation of thin film layer]
The member for an all-solid-state battery of the present invention is characterized in that a thin film layer having a thickness of 10 nm to 1 μm is laminated on the electrode material layer. The thin film layer functions to increase the contact / bonding area between the electrode material layer and the solid electrolyte layer in the all-solid battery and to reduce the interface resistance between the electrode material layer and the solid electrolyte layer.
As the material constituting the thin film layer, the same material as the material constituting the solid electrolyte layer described later, the same material as the material constituting the electrode layer, or a mixture thereof is used. By using these materials, the interface resistance between the electrode material layer and the solid electrolyte layer can be reduced. Here, the material constituting the electrode material layer means the material constituting the electrode material layer in contact with the thin film layer, and means that the material in the thin film layer in contact with the positive electrode layer is the same as the material of the positive electrode layer, In the thin film layer which touches a negative electrode layer, it means that it is the same as the material of a negative electrode layer.
The thickness of the thin film layer is in the range of 10 nm to 1 μm. When the thickness is less than 10 nm, the thin film may not be uniformly formed on the electrode material layer, which is not preferable. On the other hand, if the thickness of the thin film layer exceeds 1 μm, it is not preferable in terms of productivity of the member for an all solid state battery. From the above viewpoint, the thickness of the thin film layer is more preferably in the range of 50 nm to 1 μm, and particularly preferably in the range of 50 nm to 500 nm.

薄膜層は通常、薄膜層を構成する材料が微粒子状に積層されることで形成されるが、該微粒子の平均粒子径は10〜500nmの範囲であることが好ましい。この範囲の平均粒子径を有することで、極材層と固体電解質層の界面抵抗を効果的に低下させることができる。以上の観点から、薄膜層を構成する材料の平均粒子径は、10〜50nmの範囲であることがさらに好ましい。   The thin film layer is usually formed by laminating materials constituting the thin film layer in the form of fine particles, and the average particle diameter of the fine particles is preferably in the range of 10 to 500 nm. By having an average particle diameter in this range, the interface resistance between the electrode material layer and the solid electrolyte layer can be effectively reduced. From the above viewpoint, the average particle size of the material constituting the thin film layer is more preferably in the range of 10 to 50 nm.

次に、薄膜層の形成方法としては種々の方法があるが、気相成長法又は化学気相蒸着法(CVD法)による方法が好ましい。より具体的には、スパッタリング法、真空蒸着法、レーザーアブレーション法、イオンプレーティング法などが挙げられる。なお、気相成長法における真空度は、1.33×10-4Pa(1×10-6Torr)以下であることが好ましい。 Next, there are various methods for forming the thin film layer, but a vapor deposition method or a chemical vapor deposition method (CVD method) is preferable. More specifically, a sputtering method, a vacuum deposition method, a laser ablation method, an ion plating method, and the like can be given. Note that the degree of vacuum in the vapor phase growth method is preferably 1.33 × 10 −4 Pa (1 × 10 −6 Torr) or less.

[固体電解質層の形成]
本発明の全固体電池用部材は、極材層の上に上記薄膜層と厚さ1〜500μmの固体電解質層をこの順に積層してなる。
固体電解質層の厚さが1μm未満であると、電解質層で短絡が起こる可能性があり、500μmを超えるとイオン伝導性の低下をもたらす場合がある。以上の観点から固体電解質層の厚さは10〜100μmの範囲であることがさらに好ましい。
[Formation of solid electrolyte layer]
The all-solid-state battery member of the present invention is formed by laminating the thin film layer and a solid electrolyte layer having a thickness of 1 to 500 μm in this order on an electrode material layer.
If the thickness of the solid electrolyte layer is less than 1 μm, a short circuit may occur in the electrolyte layer, and if it exceeds 500 μm, ion conductivity may be lowered. From the above viewpoint, the thickness of the solid electrolyte layer is more preferably in the range of 10 to 100 μm.

固体電解質層の形成方法としては種々の方法があり、微粒子衝突によるコーティング、溶射、塗布、粉体の圧縮などの方法が好ましい。
微粒子衝突によるコーティングとは、サブミクロン径の原料粉を低真空下で高速に吹き付けることで、微結晶からなる膜を形成する手法であり、エアロゾルデポジション法(AD法)、ガスデポジション法(GD法)、コールドスプレー法、サンドブラスト法(SB法)などが挙げられる。
これらのうち、特にAD法を用いることが好ましい。AD法は、微粒子又は超微粒子状の固体物質をガスと混合してエアロゾル化し、ノズルを通して薄膜層に噴射して、リチウムイオン伝導性固体物質からなる固体電解質層を形成するのに好適である。この方法によれば、リチウムイオン伝導性固体物質を高温下に曝すことなく電解質層を形成することができる。
なお、AD法で使用する装置や製膜条件等は、例えば、特開2004−213938号公報や特開2005−78985号公報を参照できる。
次に、溶射とは、固体電解質を加熱溶融してガス等で吹き付ける方法であり、塗布とは、固体電解質と溶媒やバインダー(結着材や高分子化合物等)を混合させた溶液を塗布、塗工した後、溶媒を除去し成膜化する方法をいう。また、粉体の圧縮とは、固体電解質自体や固体電解質とバインダー(結着材や高分子化合物等)や支持体(固体電解質層の強度を補強したり、固体電解質自体の短絡を防ぐための材料や化合物等)を混合したものを加圧プレスすることで成膜化する方法をいう。
なお、固体電解質層を構成する固体電解質の平均粒子径は1〜10μmの範囲であることが、より薄い固体電解質層を形成できる点で好ましい。
There are various methods for forming the solid electrolyte layer, and methods such as coating by fine particle collision, thermal spraying, coating, and powder compression are preferable.
Coating by fine particle collision is a method of forming a film made of microcrystals by spraying submicron diameter raw material powder at high speed under a low vacuum, and includes an aerosol deposition method (AD method), a gas deposition method ( GD method), cold spray method, sand blast method (SB method) and the like.
Among these, it is particularly preferable to use the AD method. The AD method is suitable for forming a solid electrolyte layer made of a lithium ion conductive solid material by mixing a solid material in the form of fine particles or ultrafine particles with a gas to form an aerosol and injecting it into a thin film layer through a nozzle. According to this method, the electrolyte layer can be formed without exposing the lithium ion conductive solid material to a high temperature.
In addition, for example, Japanese Patent Application Laid-Open No. 2004-213938 and Japanese Patent Application Laid-Open No. 2005-78985 can be referred to for apparatuses and film forming conditions used in the AD method.
Next, thermal spraying is a method in which a solid electrolyte is heated and melted and sprayed with a gas or the like, and coating is a solution in which a solid electrolyte is mixed with a solvent or a binder (such as a binder or a polymer compound). After coating, the solvent is removed to form a film. In addition, the compression of the powder means that the solid electrolyte itself, the solid electrolyte and the binder (binder, polymer compound, etc.) and the support (strengthening the strength of the solid electrolyte layer or preventing short circuit of the solid electrolyte itself) A method of forming a film by press-pressing a mixture of materials and compounds.
In addition, it is preferable that the average particle diameter of the solid electrolyte which comprises a solid electrolyte layer is the range of 1-10 micrometers in the point which can form a thinner solid electrolyte layer.

本発明の固体電池用部材は、上述のように極材層の上に薄膜層と固体電解質層を積層することにより製造することができる。
また、先に厚さ1〜500μmの固体電解質層を形成しておき、該固体電解質層の表面に気相成長法又は化学気相蒸着法(CVD法)の方法により厚さ10nm〜1μmの薄膜層を形成し、さらにその上に極材層を設けることにより、本発明の固体電池用部材を製造することもできる。
ここで、固体電解質層の形成方法としては、特に限定されず、粉体の圧縮や、基材上に固体電解質を微粒子衝突によってコーティングする方法、又は固体電解質を溶射、塗布することによっても得ることができる。これらのうち、簡便である粉体の圧縮による方法又は塗布による方法が特に好ましい。
なお、極材層を設ける方法としては、例えば、固体電解質層の上に極材層を積層して、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある
The solid battery member of the present invention can be produced by laminating a thin film layer and a solid electrolyte layer on the electrode material layer as described above.
In addition, a solid electrolyte layer having a thickness of 1 to 500 μm is previously formed, and a thin film having a thickness of 10 nm to 1 μm is formed on the surface of the solid electrolyte layer by a vapor deposition method or a chemical vapor deposition method (CVD method). The solid battery member of the present invention can also be produced by forming a layer and further providing an electrode material layer thereon.
Here, the method for forming the solid electrolyte layer is not particularly limited, and it can also be obtained by compressing the powder, coating the solid electrolyte on the substrate by fine particle collision, or spraying and applying the solid electrolyte. Can do. Of these, a method by compression of powder or a method by coating, which is simple, is particularly preferable.
In addition, as a method of providing an electrode material layer, for example, a method of laminating an electrode material layer on a solid electrolyte layer, pressurizing and pressure bonding, a method of applying pressure between two rolls (roll to roll), and the like. is there

[固体電解質]
次に、本発明で用いる固体電解質について、以下詳細に説明する。
本発明で使用する固体電解質としては特に限定されないが、高出力電池であるとの観点からリチウムイオン伝導性固体電解質が好ましい。リチウムイオン伝導性固体電解質を構成する物質は、特に限定されず、有機化合物、無機化合物、あるいは有機・無機両化合物からなる材料を用いることができ、リチウムイオン電池分野で公知のものが使用できる。ただし、上記、極材層上に形成される薄膜層に用いられる固体電解質は、気相成長法又は化学気相蒸着法(CVD法)という手法が使用できることが要求される。
[Solid electrolyte]
Next, the solid electrolyte used in the present invention will be described in detail below.
Although it does not specifically limit as a solid electrolyte used by this invention, A lithium ion conductive solid electrolyte is preferable from a viewpoint that it is a high output battery. The substance which comprises a lithium ion conductive solid electrolyte is not specifically limited, The material which consists of an organic compound, an inorganic compound, or both organic and inorganic compounds can be used, A well-known thing can be used in the lithium ion battery field | area. However, the solid electrolyte used for the thin film layer formed on the electrode material layer is required to be able to use a technique called vapor deposition or chemical vapor deposition (CVD).

このような固体電解質として、硫化物系の無機固体電解質が好適に用いられる。硫化物系の無機固体電解質は、イオン伝導度が他の無機化合物より高いことが知られており、特開平4−202024号公報等に記載の無機固体電解質を使用できる。具体的には、Li2SとSiS2、GeS2、P2S5、B2S3の組合せから成る無機固体電解質に、適宜、Li3PO4やハロゲン、ハロゲン化合物を添加した無機固体電解質を用いることができる。しかしながら、特開2005−32731号公報に記載されているように、極材の材質との適合性を考慮する必要があり、適合する無機固体電解質を選択する必要がある。   As such a solid electrolyte, a sulfide-based inorganic solid electrolyte is preferably used. A sulfide-based inorganic solid electrolyte is known to have higher ionic conductivity than other inorganic compounds, and an inorganic solid electrolyte described in JP-A-4-202024 can be used. Specifically, an inorganic solid electrolyte obtained by appropriately adding Li3PO4, a halogen, or a halogen compound to an inorganic solid electrolyte composed of a combination of Li2S and SiS2, GeS2, P2S5, and B2S3 can be used. However, as described in Japanese Patent Application Laid-Open No. 2005-32731, it is necessary to consider compatibility with the material of the pole material, and it is necessary to select a compatible inorganic solid electrolyte.

極材の材質との適合性、あるいはリチウムイオン伝導性が高い点で、硫化リチウムと五硫化二燐、又は硫化リチウムと単体燐及び単体硫黄、さらには硫化リチウム、五硫化二燐、単体燐及び/又は単体硫黄から生成するリチウムイオン伝導性無機固体電解質を使用することが好ましい。以下、好ましい固体電解質について説明する。   Lithium sulfide and diphosphorus pentasulfide, or lithium sulfide and simple phosphorus and simple sulfur, as well as lithium sulfide, diphosphorus pentasulfide, simple phosphorus and the like in terms of compatibility with the electrode material or high lithium ion conductivity It is preferable to use a lithium ion conductive inorganic solid electrolyte generated from / or elemental sulfur. Hereinafter, a preferable solid electrolyte will be described.

リチウムイオン伝導性無機固体電解質は、硫化リチウムと、五硫化二燐(P25)及び/又は、単体燐及び単体硫黄から製造することができる。具体的には、後に詳述するように、これらの原料を溶融反応させた後、急冷することにより製造できる。また、これらの原料をメカニカルミリング法(以下、MM法と示すことがある。)により処理して得られる硫化物ガラス、あるいはこれを加熱処理したものである。 The lithium ion conductive inorganic solid electrolyte can be produced from lithium sulfide and diphosphorus pentasulfide (P 2 S 5 ) and / or simple phosphorus and simple sulfur. Specifically, as described in detail later, these raw materials can be melt-reacted and then rapidly cooled. In addition, sulfide glass obtained by treating these raw materials by a mechanical milling method (hereinafter, sometimes referred to as MM method), or a heat-treated product thereof.

硫化リチウムは、特に制限なく工業的に入手可能なものが使用できるが、以下に説明するように高純度のものが好ましい。
すなわち、硫化リチウムは、少なくとも硫黄酸化物のリチウム塩の総含有量が0.15質量%以下、好ましくは0.1質量%以下であり、かつN−メチルアミノ酪酸リチウムの含有量が0.15質量%以下、好ましくは0.1質量%以下である。硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、後記する溶融急冷法やメカニカルミリング法で得られる固体電解質は、ガラス状電解質(完全非晶質)である。即ち、硫黄酸化物のリチウム塩の総含有量が0.15質量%を越えると、得られる電解質は、最初から結晶化物であり、この結晶化物のイオン伝導度は低い。さらに、この結晶化物について下記の熱処理を施しても結晶化物には変化がなく、高イオン伝導度のリチウムイオン伝導性無機固体電解質を得ることはできない。
As lithium sulfide, those commercially available without limitation can be used, but those having high purity are preferable as described below.
That is, lithium sulfide has a total content of at least a lithium salt of sulfur oxide of 0.15% by mass or less, preferably 0.1% by mass or less, and a content of lithium N-methylaminobutyrate of 0.15%. It is not more than mass%, preferably not more than 0.1 mass%. When the total content of the lithium salt of sulfur oxide is 0.15% by mass or less, the solid electrolyte obtained by the melt quenching method or the mechanical milling method described later is a glassy electrolyte (fully amorphous). That is, when the total content of the lithium salt of sulfur oxide exceeds 0.15% by mass, the obtained electrolyte is a crystallized product from the beginning, and the ionic conductivity of this crystallized product is low. Furthermore, even if the crystallized product is subjected to the following heat treatment, the crystallized product is not changed, and a lithium ion conductive inorganic solid electrolyte having a high ion conductivity cannot be obtained.

また、N−メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N−メチルアミノ酪酸リチウムの劣化物がリチウム電池のサイクル性能を低下させることがない。
このように、高イオン伝導性電解質を得るためには、不純物が低減された硫化リチウムを用いる必要がある。
Further, when the content of lithium N-methylaminobutyrate is 0.15% by mass or less, the deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium battery.
Thus, in order to obtain a high ion conductive electrolyte, it is necessary to use lithium sulfide with reduced impurities.

高イオン伝導性電解質の製造に用いられる硫化リチウムの製造法としては、少なくとも上記不純物を低減できる方法であれば特に制限はなく、例えば、特開平7−330312号公報に記載された方法が採用できる。硫化リチウムの精製方法としては、特に制限はないが、好ましい精製法としては、例えば、国際公開WO2005/40039号等に記載の方法が挙げられる。   The method for producing lithium sulfide used in the production of the high ion conductive electrolyte is not particularly limited as long as it can reduce at least the above-mentioned impurities. For example, the method described in JP-A-7-330312 can be employed. . Although there is no restriction | limiting in particular as a purification method of lithium sulfide, As a preferable purification method, the method as described in international publication WO2005 / 40039 etc. is mentioned, for example.

五硫化二燐(P25)は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。なお、P25に代えて、相当するモル比の単体リン(P)及び単体硫黄(S)を用いることもできる。単体リン(P)及び単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。 Any phosphorous pentasulfide (P 2 S 5 ) can be used without particular limitation as long as it is industrially produced and sold. In place of P 2 S 5 , elemental phosphorus (P) and elemental sulfur (S) in a corresponding molar ratio can also be used. Simple phosphorus (P) and simple sulfur (S) can be used without particular limitation as long as they are industrially produced and sold.

本発明において、固体電解質としては、ガラス状固体電解質及び結晶成分を含有する固体電解質の両方が使用できる。必要とする特性に合わせて種類を選定すればよい。また、両方を使用してもよい。   In the present invention, as the solid electrolyte, both a glassy solid electrolyte and a solid electrolyte containing a crystal component can be used. The type should be selected according to the required characteristics. Both may be used.

上記硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25である。特に好ましくは、Li2S:P25=68:32〜74:26(モル比)程度である。 The mixing molar ratio of the lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25. Particularly preferably, it is about Li 2 S: P 2 S 5 = 68: 32 to 74:26 (molar ratio).

ガラス状電解質である硫化物ガラスの製造方法としては、例えば、溶融急冷法やメカニカルミリング法が挙げられる。
溶融急冷法による場合、P25とLi2Sを所定量乳鉢にて混合し、ペレット状にしたものをカーボンコートした石英管中に入れ真空封入する。所定の反応温度で反応させた後、氷中に投入し急冷することにより、硫化物ガラスが得られる。
この際の反応温度は、好ましくは400℃〜1000℃、より好ましくは、800℃〜900℃である。また、反応時間は、好ましくは0.1時間〜12時間、より好ましくは、1〜12時間である。上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は1〜10000K/sec程度、好ましくは1〜1000K/secである。
Examples of the method for producing a sulfide glass that is a glassy electrolyte include a melt quenching method and a mechanical milling method.
In the case of the melt quenching method, a predetermined amount of P 2 S 5 and Li 2 S are mixed in a mortar, and the pellets are placed in a carbon-coated quartz tube and sealed in a vacuum. After reacting at a predetermined reaction temperature, the glass is put into ice and quenched to obtain a sulfide glass.
The reaction temperature at this time is preferably 400 ° C to 1000 ° C, more preferably 800 ° C to 900 ° C. Moreover, reaction time becomes like this. Preferably it is 0.1 to 12 hours, More preferably, it is 1 to 12 hours. The quenching temperature of the reaction product is usually 10 ° C. or lower, preferably 0 ° C. or lower, and the cooling rate is about 1 to 10,000 K / sec, preferably 1 to 1000 K / sec.

MM法による場合、P25とLi2Sを所定量乳鉢にて混合し、所定時間反応させることにより、硫化物ガラスが得られる。
上記原料を用いたメカニカルミリング法は、室温で反応を行うことができる。MM法によれば、室温でガラス状電解質を製造できるため、原料の熱分解が起らず、仕込み組成のガラス状電解質を得ることができるという利点がある。また、MM法では、ガラス状電解質の製造と同時に、ガラス状電解質を微粉末化できるという利点もある。
In the case of the MM method, sulfide glass is obtained by mixing a predetermined amount of P 2 S 5 and Li 2 S in a mortar and reacting for a predetermined time.
The mechanical milling method using the above raw materials can be reacted at room temperature. According to the MM method, since a glassy electrolyte can be produced at room temperature, there is an advantage that a raw material is not thermally decomposed and a glassy electrolyte having a charged composition can be obtained. Further, the MM method has an advantage that the glassy electrolyte can be made into fine powder simultaneously with the production of the glassy electrolyte.

MM法は種々の形式の粉砕法を用いることができるが、遊星型ボールミルを使用するのが特に好ましい。遊星型ボールミルは、ポットが自転回転しながら、台盤が公転回転し、非常に高い衝撃エネルギーを効率良く発生させることができる。
MM法の回転速度及び回転時間は特に限定されないが、回転速度が速いほど、ガラス状電解質の生成速度は速くなり、回転時間が長いほどガラス質状電解質ヘの原料の転化率は高くなる。
Although various types of pulverization methods can be used for the MM method, it is particularly preferable to use a planetary ball mill. The planetary ball mill can efficiently generate very high impact energy by rotating the platform while the pot rotates.
Although the rotation speed and rotation time of the MM method are not particularly limited, the faster the rotation speed, the faster the glassy electrolyte production rate, and the longer the rotation time, the higher the conversion rate of the raw material into the glassy electrolyte.

このようにして得られた電解質は、ガラス状電解質であり、通常、イオン伝導度は1.0×10-5〜8.0×10-4(S/cm)程度である。
なお、MM法の条件としては、例えば、遊星型ボールミル機を使用した場合、回転速度を数十〜数百回転/分とし、0.5時間〜100時間処理すればよい。
以上、溶融急冷法及びMM法による硫化物ガラスの具体例を説明したが、温度条件や処理時間等の製造条件は、使用設備等に合わせて適宜調整することができる。
The electrolyte thus obtained is a glassy electrolyte and usually has an ionic conductivity of about 1.0 × 10 −5 to 8.0 × 10 −4 (S / cm).
As conditions for the MM method, for example, when a planetary ball mill is used, the rotational speed is set to several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours.
Although specific examples of the sulfide glass by the melt quenching method and the MM method have been described above, manufacturing conditions such as temperature conditions and processing time can be appropriately adjusted according to the equipment used.

その後、得られた硫化物ガラスを所定の温度で熱処理することにより、結晶成分を含有する固体電解質が生成する。このような固体電解質を生成させる熱処理温度は、好ましくは190℃〜340℃、より好ましくは、195℃〜335℃、特に好ましくは、200℃〜330℃である。190℃より低いと高イオン伝導性の結晶が得られにくい場合があり、340℃より高いとイオン伝導性の低い結晶が生じる恐れがある。
熱処理時間は、190℃以上220℃以下の温度の場合は、3〜240時間が好ましく、特に4〜230時間が好ましい。また、220℃より高く340℃以下の温度の場合は、0.1〜240時間が好ましく、特に0.2〜235時間が好ましく、さらに、0.3〜230時間が好ましい。熱処理時間が0.1時間より短いと、高イオン伝導性の結晶が得られにくい場合があり、240時間より長いと、イオン伝導性の低い結晶が生じるとなる恐れがある。
このようにして得られた、結晶成分を含有するリチウムイオン伝導性無機固体電解質は、通常、イオン伝導度は、7.0×10-4〜5.0×10-3(S/cm)程度である。
Thereafter, the obtained sulfide glass is heat-treated at a predetermined temperature to produce a solid electrolyte containing a crystal component. The heat treatment temperature for producing such a solid electrolyte is preferably 190 ° C to 340 ° C, more preferably 195 ° C to 335 ° C, and particularly preferably 200 ° C to 330 ° C. When the temperature is lower than 190 ° C., it may be difficult to obtain a crystal with high ion conductivity. When the temperature is higher than 340 ° C., a crystal with low ion conductivity may be generated.
In the case of a temperature of 190 ° C. or higher and 220 ° C. or lower, the heat treatment time is preferably 3 to 240 hours, particularly preferably 4 to 230 hours. Moreover, in the case of the temperature higher than 220 degreeC and 340 degrees C or less, 0.1 to 240 hours are preferable, 0.2 to 235 hours are especially preferable, Furthermore, 0.3 to 230 hours are preferable. If the heat treatment time is shorter than 0.1 hour, it may be difficult to obtain a crystal with high ion conductivity, and if it is longer than 240 hours, a crystal with low ion conductivity may be formed.
The lithium ion conductive inorganic solid electrolyte containing the crystal component thus obtained usually has an ionic conductivity of about 7.0 × 10 −4 to 5.0 × 10 −3 (S / cm). It is.

このリチウムイオン伝導性無機固体電解質は、X線回折(CuKα:λ=1.5418Å)において、2θ=17.8±0.3deg,18.2±0.3deg,19.8±0.3deg,21.8±0.3deg,23.8±0.3deg,25.9±0.3deg,29.5±0.3deg,30.0±0.3degに回折ピークを有することが好ましい。このような結晶構造を有する固体電解質が、極めて高いリチウムイオン伝導性を有する。   This lithium ion conductive inorganic solid electrolyte has 2θ = 17.8 ± 0.3 deg, 18.2 ± 0.3 deg, 19.8 ± 0.3 deg, X-ray diffraction (CuKα: λ = 1.54184), It is preferable to have diffraction peaks at 21.8 ± 0.3 deg, 23.8 ± 0.3 deg, 25.9 ± 0.3 deg, 29.5 ± 0.3 deg, 30.0 ± 0.3 deg. A solid electrolyte having such a crystal structure has extremely high lithium ion conductivity.

本発明で使用するリチウムイオン伝導性固体物質としては、また、リチウム(Li)元素、リン(P)元素及び硫黄(S)元素を含有する固体電解質であって、下記(1)及び(2)の条件を満たすものが好ましい。
(1)固体電解質の固体31P−NMRスペクトルが、90.9±0.4ppm及び86.5±0.4ppmに、結晶に起因するピークを有する。
(2)固体電解質に占める(1)のピークを生じる結晶の比率(xc)が60mol%〜100mol%である。
条件(1)の2つのピークは、高イオン伝導性結晶成分が固体電解質に存在する場合に観測されるものである。具体的には、結晶中のP27 4-とPS4 3-に起因するピークである。
The lithium ion conductive solid material used in the present invention is also a solid electrolyte containing lithium (Li) element, phosphorus (P) element and sulfur (S) element, and the following (1) and (2) Those satisfying the condition are preferred.
(1) The solid 31 P-NMR spectrum of the solid electrolyte has peaks due to crystals at 90.9 ± 0.4 ppm and 86.5 ± 0.4 ppm.
(2) The ratio (xc) of crystals that produce the peak (1) in the solid electrolyte is 60 mol% to 100 mol%.
The two peaks of condition (1) are observed when a high ion conductive crystal component is present in the solid electrolyte. Specifically, a peak due to P 2 S 7 4- and PS 4 3- in the crystal.

条件(2)は、固体電解質中に占める上記結晶の比率xcを規定するものである。固体電解質中において高イオン伝導性の結晶成分が所定量以上、具体的には60mol%以上存在すると、リチウムイオンが高イオン伝導性の結晶を主に移動するようになる。従って、固体電解質中の非結晶部分(ガラス部分)や、高イオン伝導性を示さない結晶格子(例えば、P26 4-)を移動する場合に比べて、リチウムイオン伝導度が向上する。比率xcは65mol%〜100mol%であることが好ましい。上記結晶の比率xcは、原料である硫化物ガラスの熱処理時間及び温度を調整することにより制御できる。 Condition (2) defines the ratio xc of the crystal in the solid electrolyte. When a high ion conductive crystal component is present in a predetermined amount or more, specifically 60 mol% or more in the solid electrolyte, lithium ions move mainly through the high ion conductive crystal. Therefore, the non-crystalline portion in the solid electrolyte (glass portion) and a crystal lattice that does not exhibit high ionic conductivity (e.g., P 2 S 6 4-) than when moving, thereby improving lithium ion conductivity. The ratio xc is preferably 65 mol% to 100 mol%. The crystal ratio xc can be controlled by adjusting the heat treatment time and temperature of the sulfide glass as a raw material.

なお、固体31P−NMRスペクトルの測定は、例えば、日本電子株式会社製のJNM−CMXP302NMR装置を使用して、観測核を31P、観測周波数を121.339MHz、測定温度を室温、測定法をMAS法として行なう。
比率xcの測定方法は、固体31P−NMRスペクトルについて、70〜120ppmに観測される共鳴線を、非線形最小二乗法を用いてガウス曲線に分離し、各曲線の面積比から算出する。詳細は特願2005−356889を参照すればよい。
The solid 31 P-NMR spectrum can be measured, for example, using a JNM-CMXP302 NMR apparatus manufactured by JEOL Ltd., with an observation nucleus of 31 P, an observation frequency of 121.339 MHz, a measurement temperature of room temperature, and a measurement method. Performed as MAS method.
The method for measuring the ratio xc is to calculate a resonance line observed at 70 to 120 ppm into a Gaussian curve using a nonlinear least square method and calculate from the area ratio of each curve for the solid 31 P-NMR spectrum. For details, refer to Japanese Patent Application No. 2005-356889.

この固体電解質では、固体7Li−NMR法で測定される室温(25℃)におけるスピン−格子緩和時間T1Liが400ms以下であることが好ましい。緩和時間T1Liは、ガラス状態又は結晶状態とガラス状態を含む固体電解質内における分子運動性の指標となり、T1Liが短いと分子運動性が高くなる。従って、放電時におけるリチウムイオンの拡散がし易いため、イオン伝導度が高くなる。本発明においては、上述したように、高イオン伝導性の結晶成分が所定量以上含むため、T1Liを400ms以下にできる。T1Liは、好ましくは350ms以下である。 In this solid electrolyte, the spin-lattice relaxation time T 1Li at room temperature (25 ° C.) measured by solid-state 7 Li-NMR method is preferably 400 ms or less. Relaxation time T 1Li becomes a molecular mobility of indicators in the solid electrolyte in comprising a glass state or a crystalline state and a glass state, molecular mobility is high and T 1Li short. Accordingly, since lithium ions are easily diffused during discharge, the ion conductivity is increased. In the present invention, as described above, since a high ion conductive crystal component is contained in a predetermined amount or more, T 1Li can be 400 ms or less. T 1Li is preferably 350 ms or less.

なお、7Liのスピン−格子緩和時間T1Liは、例えば以下のようにして求めることができる。
日本電子株式会社製のJNM−CMXP302NMR装置を使用して、下記の条件で測定すると0−1ppmの範囲にピークがある7Li−NMRスペクトルが得られる。
・NMR測定条件
観測核 :7Li
観測周波数:116.489MHz
測定温度 :室温(25℃)
測定法 :飽和回復法(パルス系列:特願2005−356889の図7参照)
90°パルス幅:4μs
マジック角回転の回転数:6000Hz
FID測定後、次のパルス印加までの待ち時間:5s
積算回数:64回
化学シフトは、外部基準としてLiBr(化学シフト−2.04ppm)を用いて決定する。
The spin-lattice relaxation time T 1Li of 7 Li can be obtained, for example, as follows.
When a JNM-CMXP302 NMR apparatus manufactured by JEOL Ltd. is used and measured under the following conditions, a 7 Li-NMR spectrum having a peak in the range of 0-1 ppm is obtained.
· NMR measurement conditions observing nucleus: 7 Li
Observation frequency: 116.489 MHz
Measurement temperature: Room temperature (25 ° C)
Measurement method: Saturation recovery method (Pulse sequence: see FIG. 7 of Japanese Patent Application No. 2005-356889)
90 ° pulse width: 4μs
Magic angle rotation speed: 6000Hz
Wait time until the next pulse application after FID measurement: 5s
Accumulation count: 64 times The chemical shift is determined using LiBr (chemical shift-2.04 ppm) as an external reference.

上記特願2005−356889の図7のτを変化させて測定を行った時に得られるこのピークの強度の変化を、非線形最小二乗法を用いて、以下の式に最適化することによりT1Liを決定する。 T 1 Li is obtained by optimizing the change in the intensity of this peak obtained when measurement is performed by changing τ in FIG. 7 of Japanese Patent Application No. 2005-356889 using the nonlinear least square method. decide.

M(τ)=M(∞)(1−e-τ/T1LiM (τ) = M (∞) (1-e τ / T1Li )

M(τ):τのときのピーク強度   M (τ): Peak intensity at τ

この固体電解質は、少なくとも10V以上の分解電圧を持つ。また、リチウムイオン輸率が1であるという特性を保持しつつ、室温において10-3S/cm台という極めて高いリチウムイオン伝導性を示す。従って、リチウム電池の固体電解質用の材料として極めて適している。また、耐熱性の優れた固体電解質である。 This solid electrolyte has a decomposition voltage of at least 10V or more. Further, while maintaining the property that the lithium ion transport number is 1, it exhibits extremely high lithium ion conductivity of 10 −3 S / cm level at room temperature. Therefore, it is extremely suitable as a material for a solid electrolyte of a lithium battery. Moreover, it is a solid electrolyte excellent in heat resistance.

[全固体電池]
次に、本発明の全固体電池について、図1を用いて説明する。
本発明の全固体電池1は、集電体6の上にそれぞれ設けられた正極層4と負極層5の間に厚さ1〜500μmの固体電解質層(第2の固体電解質層)2を介在させてなり、正極層4と固体電解質層2及び負極層5と固体電解質層2との間に、それぞれ、さらに厚さ10nm〜1μmの薄膜層3及び3’を有することを特徴とする。
薄膜層3及び3’を構成する材料は、上記固体電解質層を構成する材料と同一の材料、上記極材層を構成する材料と同一の材料、又はこれらの混合物を用いる。2つの薄膜層3及び3’は同一の材料で形成されていてもよいし、また異なる材料で形成されていてもよく、例えば、正極層4側の薄膜層3を固体電解質で形成し、負極層5側の薄膜層3’を、負極層5を構成する材料と同一の材料で構成してもよい。一方、負極層5側の薄膜層3’を固体電解質で形成し、正極層4側の薄膜層3を、正極層4を構成する材料と同一の材料で構成してもよい。さらには、正極層4側の薄膜層3を、正極層4を構成する材料と同一の材料で構成し、負極層5側の薄膜層3’を、負極層5を構成する材料と同一の材料で構成してもよい。
[All-solid battery]
Next, the all solid state battery of the present invention will be described with reference to FIG.
In the all solid state battery 1 of the present invention, a solid electrolyte layer (second solid electrolyte layer) 2 having a thickness of 1 to 500 μm is interposed between a positive electrode layer 4 and a negative electrode layer 5 respectively provided on a current collector 6. The thin film layers 3 and 3 ′ having a thickness of 10 nm to 1 μm are further provided between the positive electrode layer 4 and the solid electrolyte layer 2 and between the negative electrode layer 5 and the solid electrolyte layer 2, respectively.
As the material constituting the thin film layers 3 and 3 ′, the same material as the material constituting the solid electrolyte layer, the same material as the material constituting the electrode layer, or a mixture thereof is used. The two thin film layers 3 and 3 ′ may be formed of the same material or different materials. For example, the thin film layer 3 on the positive electrode layer 4 side is formed of a solid electrolyte, and the negative electrode The thin film layer 3 ′ on the layer 5 side may be made of the same material as that of the negative electrode layer 5. On the other hand, the thin film layer 3 ′ on the negative electrode layer 5 side may be formed of a solid electrolyte, and the thin film layer 3 on the positive electrode layer 4 side may be made of the same material as that of the positive electrode layer 4. Further, the thin film layer 3 on the positive electrode layer 4 side is made of the same material as the material constituting the positive electrode layer 4, and the thin film layer 3 ′ on the negative electrode layer 5 side is made of the same material as the material constituting the negative electrode layer 5. You may comprise.

また、薄膜層3及び3’の少なくとも一方が固体電解質層を構成する材料と同一である場合、本発明の固体電池は、固体電解質層2が介在しない構成であってもよい。すなわち、この態様における本発明の全固体電池は、正極層及び負極層の上にそれぞれ厚さ10nm〜1μmの薄膜層を積層し、これを接合してなる全固体電池であって、2つの薄膜層のうち少なくとも一方が固体電解質材料からなるものである。このような構成をとることで、固体電池としての十分な性能を有し、かつ、短絡等の問題がない薄型の全固体電池を得ることができる。
そして、薄膜層の一方が固体電解質材料からなる場合には、他の薄膜層は固体電解質材料であってもよいし、極材層と同一の材料又は極材層を構成する材料と固体電解質材料との混合物からなっていてもよい。
また、薄膜層が固体電解質材料からなる場合には、該薄膜層が1層からなっていてもよく、より具体的には、正極層と負極層の間に少なくとも厚さ10nm〜2μmの薄膜層を介在させてなる全固体電池も本発明に含まれる。
When at least one of the thin film layers 3 and 3 ′ is the same as the material constituting the solid electrolyte layer, the solid battery of the present invention may have a configuration in which the solid electrolyte layer 2 is not interposed. That is, the all solid state battery of the present invention in this aspect is an all solid state battery in which a thin film layer having a thickness of 10 nm to 1 μm is laminated on each of a positive electrode layer and a negative electrode layer, and the thin film layers are joined. At least one of the layers is made of a solid electrolyte material. By adopting such a configuration, it is possible to obtain a thin all-solid battery that has sufficient performance as a solid battery and has no problems such as a short circuit.
When one of the thin film layers is made of a solid electrolyte material, the other thin film layer may be a solid electrolyte material, or the same material as the electrode material layer or the material constituting the electrode material layer and the solid electrolyte material It may consist of a mixture of
When the thin film layer is made of a solid electrolyte material, the thin film layer may be composed of one layer, and more specifically, a thin film layer having a thickness of at least 10 nm to 2 μm between the positive electrode layer and the negative electrode layer. An all-solid-state battery including the intervening material is also included in the present invention.

上記態様における薄膜層の形成方法については、前記と同様であり、気相成長法又は化学気相蒸着法(CVD法)を用いることが好ましい。なお、該態様における薄膜層の厚さは10nm〜2μmの範囲である。該厚さが10nm未満であると、薄膜が極材層上に均一に成膜できない場合があり、また短絡の可能性があり、好ましくない。一方、該薄膜層の厚さが2μmを超えると、該全固体電池の生産性の点で好ましくない。   About the formation method of the thin film layer in the said aspect, it is the same as that of the above, and it is preferable to use a vapor phase growth method or a chemical vapor deposition method (CVD method). In addition, the thickness of the thin film layer in this aspect is in the range of 10 nm to 2 μm. When the thickness is less than 10 nm, the thin film may not be uniformly formed on the electrode material layer, and there is a possibility of short circuit, which is not preferable. On the other hand, when the thickness of the thin film layer exceeds 2 μm, it is not preferable in terms of productivity of the all-solid-state battery.

[全固体電池の製造方法]
本発明の全固体電池の製造方法について、以下、図2を用いて説明する。本発明の全固体電池の製造方法としては、上記本発明の全固体電池用部材を使用することが効率的である。具体的には、以下のような手順による。
まず、集電体6上に形成された極材層(正極層)4の上に厚さ10nm〜1μmの第1の薄膜層3と厚さ1〜500μmの固体電解質層2をこの順に積層してなる本発明の全固体電池用部材を製造しておく。一方、集電体6上に形成された他の極材層(負極層)5の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層3’を形成して電極を製造し、前記全固体電池用部材と該電極を固体電解質層2と第2の薄膜層3’が接触するように接合することで、本発明の全固体電池を製造することができる。この際、第1の薄膜層3及び第2の薄膜層3’を構成する材料としては、上述のように固体電解質層を構成する材料と同一の材料、上記極材層を構成する材料と同一の材料、又はこれらの混合物を用いる。なお、第1の薄膜層3と第2の薄膜層3’は同一の固体電解質で形成されていてもよいし、また、第1の薄膜層3と第2の薄膜層3’のいずれか一方が固体電解質で形成され、他の一方が接触する極材層と同一の材料から形成されていてもよい。また第1の薄膜層3と第2の薄膜層3’のいずれもが、それぞれ接する極材層と同一の材料から形成されていてもよい。
また、本発明の全固体電池用部材を2つ用意し、それぞれの部材の固体電解質層が接触するように接合することで、本発明の全固体電池を製造することができる(図3参照)。
[All-solid battery manufacturing method]
Hereinafter, a method for producing an all solid state battery of the present invention will be described with reference to FIG. As the method for producing the all solid state battery of the present invention, it is efficient to use the member for all solid state battery of the present invention. Specifically, the procedure is as follows.
First, a first thin film layer 3 having a thickness of 10 nm to 1 μm and a solid electrolyte layer 2 having a thickness of 1 to 500 μm are laminated in this order on an electrode material layer (positive electrode layer) 4 formed on a current collector 6. An all-solid battery member of the present invention is manufactured in advance. On the other hand, a second thin film layer having a thickness of 10 nm to 1 μm is formed on the other electrode material layer (negative electrode layer) 5 formed on the current collector 6 by vapor deposition or chemical vapor deposition (CVD). 3 ′ is formed to manufacture an electrode, and the all solid state battery of the present invention is manufactured by joining the all solid state battery member and the electrode so that the solid electrolyte layer 2 and the second thin film layer 3 ′ are in contact with each other. Can be manufactured. At this time, the material constituting the first thin film layer 3 and the second thin film layer 3 ′ is the same as the material constituting the solid electrolyte layer as described above, and the same material as the electrode material layer. Or a mixture thereof. The first thin film layer 3 and the second thin film layer 3 ′ may be formed of the same solid electrolyte, or one of the first thin film layer 3 and the second thin film layer 3 ′. May be formed of the same material as the electrode layer that is formed of a solid electrolyte and the other one contacts. Further, both the first thin film layer 3 and the second thin film layer 3 ′ may be formed of the same material as the electrode material layer in contact therewith.
Moreover, the all-solid-state battery of this invention can be manufactured by preparing two members for the all-solid-state battery of this invention, and joining so that the solid electrolyte layer of each member may contact (refer FIG. 3). .

また上述の薄膜層3及び3’の少なくとも一方が固体電解質層を構成する材料と同一であり、固体電解質層2を有さない態様の場合には、以下の方法により全固体電池を製造することができる。すなわち、集電体6上に形成された極材層(正極層)4の上に、気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層3を形成しておく。一方、集電体6上に形成された他の極材層(負極層)5の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層3’を形成して電極を製造し、これらをそれぞれの薄膜層3及び3’が接触するように接合することで、本発明の全固体電池を製造することができる。   In the case where at least one of the above-described thin film layers 3 and 3 ′ is the same as the material constituting the solid electrolyte layer and does not have the solid electrolyte layer 2, an all-solid battery is manufactured by the following method. Can do. That is, the first thin film layer 3 having a thickness of 10 nm to 1 μm is formed on the electrode material layer (positive electrode layer) 4 formed on the current collector 6 by vapor deposition or chemical vapor deposition (CVD). Is formed. On the other hand, a second thin film layer having a thickness of 10 nm to 1 μm is formed on the other electrode material layer (negative electrode layer) 5 formed on the current collector 6 by vapor deposition or chemical vapor deposition (CVD). An electrode is manufactured by forming 3 ', and these are joined so that each thin film layer 3 and 3' may contact, and the all-solid-state battery of this invention can be manufactured.

固体電解質層同士、又は固体電解質層と薄膜層を接合する方法としては、積層して、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)等がある。また、接合面にイオン伝導性を有する活物質や、イオン伝導性を阻害しない接着物質を介して接合してもよい。さらには、接合において、固体電解質の結晶構造が変化しない範囲で加熱融着してもよい。   As a method of joining solid electrolyte layers or a solid electrolyte layer and a thin film layer, there are a method of laminating and pressurizing and pressure bonding, a method of pressurizing between two rolls (roll to roll), and the like. Moreover, you may join to the joining surface through the active material which has ion conductivity, and the adhesive material which does not inhibit ion conductivity. Furthermore, in the joining, heat fusion may be performed as long as the crystal structure of the solid electrolyte does not change.

また、他の製造方法について図1を用いて説明する。まず、集電体6上に形成された極材層(正極層)4の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層3を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層2を形成して、本発明の全固体電池用部材を製造しておき、この固体電解質層2の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層3’を形成し、さらにその上に極材層(負極層)5を設ける方法をとることもできる。なお、第2の薄膜層3’上に極材層(負極層)5を設ける方法としては特に制限されず、積層して、加圧・圧着する方法や、2つのロール間を通して加圧する方法(roll to roll)、イオン伝導性を阻害しない接着物質を介して接合する方法などが挙げられる。
また、上述の薄膜層3及び3’の少なくとも一方が固体電解質層を構成する材料と同一であり、固体電解質層2を有さない態様の場合には、まず、集電体6上に形成された極材層(正極層)4の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層3を形成し、その上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層3’を形成し、さらにその上に極材層(負極層)5を設ける方法をとることもできる。
Another manufacturing method will be described with reference to FIG. First, the first thin film layer 3 having a thickness of 10 nm to 1 μm is formed on the electrode material layer (positive electrode layer) 4 formed on the current collector 6 by vapor deposition or chemical vapor deposition (CVD). Formed thereon, the solid electrolyte layer 2 having a thickness of 1 to 500 μm is formed by coating, spraying, coating or powder compression by colliding with fine particles, and the member for an all-solid battery of the present invention is manufactured, A second thin film layer 3 ′ having a thickness of 10 nm to 1 μm is formed on the solid electrolyte layer 2 by vapor deposition or chemical vapor deposition (CVD), and an electrode material layer (negative electrode layer) is further formed thereon. ) 5 may be used. The method of providing the electrode material layer (negative electrode layer) 5 on the second thin film layer 3 ′ is not particularly limited, and is a method of laminating and pressurizing and pressing, or a method of pressing through two rolls ( roll to roll), a method of bonding via an adhesive substance that does not inhibit ionic conductivity, and the like.
In the case where at least one of the thin film layers 3 and 3 ′ is the same as the material constituting the solid electrolyte layer and does not have the solid electrolyte layer 2, first, it is formed on the current collector 6. A first thin film layer 3 having a thickness of 10 nm to 1 μm is formed on the electrode material layer (positive electrode layer) 4 by a vapor deposition method or a chemical vapor deposition method (CVD method), and a vapor deposition method is formed thereon. Alternatively, a method of forming a second thin film layer 3 ′ having a thickness of 10 nm to 1 μm by a chemical vapor deposition method (CVD method) and further providing an electrode material layer (negative electrode layer) 5 thereon can be employed.

さらに、他の製造方法として、厚さ1〜500μmの固体電解質層2を形成し、該固体電解質層の表面及び裏面に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層3及び3’を形成し、さらに、それぞれの薄膜層3及び3’の上に極材層4(正極層)及び5(負極層)を設ける方法をとることもできる。なお、極材層4及び5を設ける方法としては上記と同様の方法を用いることができる。   Furthermore, as another manufacturing method, a solid electrolyte layer 2 having a thickness of 1 to 500 μm is formed, and a thickness of 10 nm to 10 nm is formed on the front and back surfaces of the solid electrolyte layer by vapor deposition or chemical vapor deposition (CVD). A method of forming 1 μm thin film layers 3 and 3 ′ and further providing electrode material layers 4 (positive electrode layer) and 5 (negative electrode layer) on the respective thin film layers 3 and 3 ′ may be employed. In addition, as a method for providing the electrode material layers 4 and 5, the same method as described above can be used.

次に、本発明の組電池は、上述のような高性能の全固体電池を複数個接続して高い出力を得るものである。本発明の全固体電池は、薄型化が可能であるため、積層して高出力を得ることができ、また、高度の集積が可能である。
組電池を製造する方法については、本発明の全固体電池を直列に接続すればよく特に制限はないが、接続部分に正極を構成する正極活物質と負極を構成する負極活物質が1枚の集電体の両側に保持されるバイポーラ型電極を用いることで、さらに電池内部での電気抵抗を低減することができる。
Next, the assembled battery of the present invention is obtained by connecting a plurality of high performance all solid state batteries as described above to obtain a high output. Since the all-solid-state battery of the present invention can be thinned, it can be stacked to obtain a high output, and can be highly integrated.
The method for producing the assembled battery is not particularly limited as long as the all solid state battery of the present invention is connected in series, but the connection part has one positive electrode active material constituting the positive electrode and one negative electrode active material constituting the negative electrode. By using bipolar electrodes held on both sides of the current collector, the electric resistance inside the battery can be further reduced.

以下、本発明を実施例によってさらに具体的に説明する。
製造例
(1)硫化リチウム(Li2S)の製造
硫化リチウムは、特開平7−330312号公報の第1の態様(2工程法)の方法にしたがって製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN−メチル−2−ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。続いてこの反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
Hereinafter, the present invention will be described more specifically with reference to examples.
Production Example (1) Production of Lithium Sulfide (Li 2 S) Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, N-methyl-2-pyrrolidone (NMP) 3326.4 g (33.6 mol) and lithium hydroxide 287.4 g (12 mol) were charged into a 10 liter autoclave equipped with a stirring blade, and 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours. Subsequently, this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide. As the temperature increased, water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system. While water was distilled out of the system, the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.

(2)硫化リチウムの精製
上記(1)で得られた500mLのスラリー反応溶液(NMP−硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP 100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP 100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
(2) Purification of lithium sulfide After decanting NMP in the 500 mL slurry reaction solution (NMP-lithium sulfide slurry) obtained in (1) above, 100 mL of dehydrated NMP was added and stirred at 105 ° C. for about 1 hour. did. NMP was decanted at that temperature. Further, 100 mL of NMP was added, stirred at 105 ° C. for about 1 hour, NMP was decanted at that temperature, and the same operation was repeated a total of 4 times. After completion of the decantation, lithium sulfide was dried at 230 ° C. (temperature higher than the boiling point of NMP) under a nitrogen stream for 3 hours under normal pressure. The impurity content in the obtained lithium sulfide was measured.

尚、亜硫酸リチウム(Li2SO3)、硫酸リチウム(Li2SO4)並びにチオ硫酸リチウム(Li223)の各硫黄酸化物、及びN−メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。
このようにして精製したLi2Sを、以下の実施例及び比較例で使用した。
Incidentally, lithium sulfite (Li 2 SO 3), the content of each sulfur oxide lithium sulfate (Li 2 SO 4) and lithium thiosulfate (Li 2 S 2 O 3) , and N- methylamino acid lithium (LMAB) Was quantified by ion chromatography. As a result, the total content of sulfur oxides was 0.13% by mass, and LMAB was 0.07% by mass.
The Li 2 S thus purified was used in the following examples and comparative examples.

実施例1
(1)固体電解質の製造
上記製造例にて製造した高純度硫化リチウム(Li2S、純度:99.9%)を0.6508g(0.01417mol)と五硫化二燐(アルドリッチ社製)を1.3492g(0.00607mol)をよく混合し、これらの粉末をアルミナ製ポットに投入し完全密閉した。このポットを遊星型ボールミル機に取り付け、メカニカルミリングを行なった。この際、はじめの数分間は出発原料を十分に混合する目的で、低速回転(85rpm)でミリングを行った。その後、徐々に回転数を上げ370rpmで20時間メカニカルミリングを行った。得られた粉末をX線測定により評価した結果、ガラス化(硫化物ガラス)していることが確認できた。
得られた硫化物ガラスを、330℃で1時間熱処理し、ガラスセラミック化することによって、固体電解質を作製した。
この固体電解質のイオン伝導度を交流インピーダンス法(測定周波数100Hz〜15MHz)により測定したところ、室温で4.5×10-3S/cmを示した。又、固体31P−NMRの測定で得られたスペクトルが、90.9ppm及び86.5ppmの位置に、結晶に起因するピークを有し、前記結晶の比率が78mol%であった。
Example 1
(1) Production of solid electrolyte 0.6508 g (0.01417 mol) of high purity lithium sulfide (Li 2 S, purity: 99.9%) produced in the above production example and diphosphorus pentasulfide (manufactured by Aldrich) 1.3492 g (0.00607 mol) was mixed well, and these powders were put into an alumina pot and completely sealed. The pot was attached to a planetary ball mill and mechanical milling was performed. At this time, milling was performed at a low speed (85 rpm) for the first few minutes in order to sufficiently mix the starting materials. Thereafter, the rotational speed was gradually increased and mechanical milling was performed at 370 rpm for 20 hours. As a result of evaluating the obtained powder by X-ray measurement, it was confirmed that it was vitrified (sulfide glass).
The obtained sulfide glass was heat-treated at 330 ° C. for 1 hour to form a glass ceramic, thereby producing a solid electrolyte.
When the ionic conductivity of this solid electrolyte was measured by the alternating current impedance method (measurement frequency: 100 Hz to 15 MHz), it showed 4.5 × 10 −3 S / cm at room temperature. The spectrum obtained by solid 31 P-NMR measurement had peaks due to crystals at 90.9 ppm and 86.5 ppm, and the ratio of the crystals was 78 mol%.

(2)正極層の形成
上記(1)で合成した固体電解質とコバルト酸リチウムを、質量比で5:8(固体電解質:コバルト酸リチウム)の割合で混合し、プレス成形機を用いて、厚さ1.0mmで直径10mmのステンレス製集電体の上に、厚さ0.5mmで直径10mmの正極層を形成した。
(2) Formation of positive electrode layer The solid electrolyte synthesized in the above (1) and lithium cobalt oxide are mixed at a mass ratio of 5: 8 (solid electrolyte: lithium cobaltate), and the thickness is measured using a press molding machine. A positive electrode layer having a thickness of 0.5 mm and a diameter of 10 mm was formed on a stainless steel current collector having a thickness of 1.0 mm and a diameter of 10 mm.

(3)負極層の形成
上記(1)で合成した固体電解質とカーボングラファイトとを1:1(質量比)で混合し、プレス成形機を用いて、厚さ1.0mmで直径10mmのステンレス製集電体の上に、厚さ0.5mmで直径10mmの負極層を形成した。
(3) Formation of negative electrode layer The solid electrolyte synthesized in (1) above and carbon graphite are mixed at a ratio of 1: 1 (mass ratio), and are made of stainless steel having a thickness of 1.0 mm and a diameter of 10 mm using a press molding machine. A negative electrode layer having a thickness of 0.5 mm and a diameter of 10 mm was formed on the current collector.

(4)薄膜層の形成
上記(2)で得た正極層の上に、イオンプレーティング装置を用い、上記(1)にて製造した固体電解質を蒸着させ、正極層上に薄膜層を形成した。蒸着は薄膜層の平均膜厚が200nmとなるように行った。なお、イオンプレーティング装置としてはULVAC(株)製「IPB−450−VHS」を用いた。
次いで、上記(3)で得た負極層の上に、上記と同様にイオンプレーティング装置を用い、上記(1)にて製造した固体電解質を蒸着させ、負極層上に薄膜層を形成した。蒸着は薄膜層の平均膜厚が200nmとなるように行った。なお、使用した装置は上記と同様である。
(4) Formation of thin film layer On the positive electrode layer obtained in (2) above, the solid electrolyte produced in (1) above was vapor-deposited using an ion plating apparatus to form a thin film layer on the positive electrode layer. . The vapor deposition was performed so that the average film thickness of the thin film layer was 200 nm. As the ion plating apparatus, “IPB-450-VHS” manufactured by ULVAC, Inc. was used.
Next, on the negative electrode layer obtained in the above (3), the solid electrolyte produced in the above (1) was vapor-deposited using an ion plating apparatus in the same manner as described above, thereby forming a thin film layer on the negative electrode layer. The vapor deposition was performed so that the average film thickness of the thin film layer was 200 nm. The apparatus used is the same as described above.

(5)単層全固体電池の製造
上記(4)にて得られた薄膜層を有する正極層と負極層の薄膜層側の間に上記(1)にて製造した固体電解質粉末を挟み、プレス成形機を用いて、980MPaの圧力を加えて、固体電解質層を形成し、単層の全固体電池を作製した。SEMによる断面写真を観測したところ、固体電解質層と2つの薄膜層の合計の平均膜厚は0.1mm(100μm)であった。
この単層全固体電池を、図4に示す装置を用いて外装体で被覆した。すなわち、該単層全固体電池1を樹脂封止用金型10中に装填し、溶融樹脂Pとしてポリブタジエン樹脂(出光興産株式会社製「エポール」)をキャビィティ7に注入した。冷却して該ブタジエン樹脂を硬化させた後、金型をはずし、外装体11で封止された積層電池をとりだした(図5参照)。なお、最上部の集電体6と最下部の集電体6には、樹脂による被覆の前にステンレス製の電極端子9を溶接で接合した。
該単層全固体電池の初期充放電効率は83%であり、作動電位は3.6Vであった。また、放電電流密度を測定したところ、18.3mA/cm2であった。
(5) Production of single-layer all-solid battery The solid electrolyte powder produced in (1) above is sandwiched between the positive electrode layer having the thin film layer obtained in (4) above and the thin film layer side of the negative electrode layer, and pressed. Using a molding machine, a pressure of 980 MPa was applied to form a solid electrolyte layer, and a single-layer all-solid battery was produced. When the cross-sectional photograph by SEM was observed, the total average film thickness of the solid electrolyte layer and the two thin film layers was 0.1 mm (100 μm).
This single-layer all-solid-state battery was covered with an exterior body using the apparatus shown in FIG. That is, the single-layer all-solid battery 1 was loaded into a resin sealing mold 10, and a polybutadiene resin (“Epol” manufactured by Idemitsu Kosan Co., Ltd.) as a molten resin P was injected into the cavity 7. After cooling and curing the butadiene resin, the mold was removed, and the laminated battery sealed with the outer package 11 was taken out (see FIG. 5). A stainless steel electrode terminal 9 was joined to the uppermost current collector 6 and the lowermost current collector 6 by welding before coating with resin.
The initial charge / discharge efficiency of the single-layer all-solid battery was 83%, and the operating potential was 3.6V. Moreover, it was 18.3 mA / cm < 2 > when the discharge current density was measured.

比較例1
上記(2)及び(3)で得た正極層及び負極層を用い、薄膜層を形成することなく、正極層と負極層の間に上記(1)にて製造した固体電解質粉末を挟み、プレス成形機を用いて、980MPaの圧力を加えて、固体電解質層を形成し、単層の全固体電池を作製した。SEMによる断面写真を観測したところ、固体電解質層の平均膜厚は0.1mm(100μm)であった。
該単層の全固体電池を実施例1と同様に外装体で被覆し、実施例1と同様に評価した。該単層全固体電池の初期充放電効率は81%であり、作動電位は3.4Vであった。また、放電電流密度を測定したところ、8.7mA/cm2であった。
Comparative Example 1
Using the positive electrode layer and the negative electrode layer obtained in (2) and (3) above, without forming a thin film layer, the solid electrolyte powder produced in (1) above is sandwiched between the positive electrode layer and the negative electrode layer, and pressed. Using a molding machine, a pressure of 980 MPa was applied to form a solid electrolyte layer, and a single-layer all-solid battery was produced. When the cross-sectional photograph by SEM was observed, the average film thickness of the solid electrolyte layer was 0.1 mm (100 micrometers).
The single-layer all-solid-state battery was covered with an exterior body in the same manner as in Example 1 and evaluated in the same manner as in Example 1. The single-layer all-solid battery had an initial charge / discharge efficiency of 81% and an operating potential of 3.4V. The discharge current density was measured and found to be 8.7 mA / cm 2 .

実施例2
実施例1で製造した単層全固体電池(外装体被覆前)5個を直列に積層した組電池を、実施例1と同様に外装体で被覆し、実施例1と同様に評価した。
得られた組電池の初期充放電効率は、80%であり、作動電位は、17.2Vであった。又、放電電流密度を測定したところ、16.5mA/cm2であった。
Example 2
An assembled battery in which five single-layer all-solid-state batteries manufactured in Example 1 (before coating the outer package) were stacked in series was covered with the outer package in the same manner as in Example 1 and evaluated in the same manner as in Example 1.
The obtained assembled battery had an initial charge / discharge efficiency of 80% and an operating potential of 17.2V. Moreover, it was 16.5 mA / cm < 2 > when the discharge current density was measured.

本発明によれば、全固体電池における極材層と固体電解質層の接触・接合面積を大きくし、極材層と固体電解質層の界面抵抗を低下させることができ、良好な電池特性、特に良好な放電電流密度を有する全固体電池を提供することができる。従って、ハイブリッド自動車などの自動車又はオートバイの駆動用、蓄電用、非常電源用、携帯電話、パーソナルコンピューター等の電源用として幅広い用途に好適に用いることができる。   According to the present invention, the contact / bonding area between the electrode material layer and the solid electrolyte layer in the all-solid-state battery can be increased, the interface resistance between the electrode material layer and the solid electrolyte layer can be reduced, and the battery characteristics are particularly good. An all-solid battery having a high discharge current density can be provided. Therefore, it can be suitably used for a wide range of applications such as driving a vehicle such as a hybrid vehicle or a motorcycle, a power storage device, an emergency power source, a mobile phone, a personal computer, and the like.

本発明の全固体電池の構造を示す模式図である。It is a schematic diagram which shows the structure of the all-solid-state battery of this invention. 本発明の全固体電池の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the all-solid-state battery of this invention. 本発明の全固体電池の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the all-solid-state battery of this invention. 固体電池素子を外装体で被覆する装置を示す模式図である。It is a schematic diagram which shows the apparatus which coat | covers a solid battery element with an exterior body. 外装体で被覆された全固体電池を示す模式図である。It is a schematic diagram which shows the all-solid-state battery coat | covered with the exterior body.

符号の説明Explanation of symbols

1:全固体電池
2:固体電解質層
3、3’:薄膜層
4:極材層(正極層)
5:極材層(負極層)
6:集電体
7:キャビティ
8:加圧用治具
9:電極端子
10:樹脂封止用金型
11:外装体
P:溶融樹脂
1: All-solid-state battery 2: Solid electrolyte layer 3, 3 ': Thin film layer 4: Electrode material layer (positive electrode layer)
5: Polar material layer (negative electrode layer)
6: Current collector 7: Cavity 8: Pressurizing jig 9: Electrode terminal 10: Mold for resin sealing 11: Exterior body P: Molten resin

Claims (16)

極材層の上に厚さ10nm〜1μmの薄膜層と厚さ1〜500μmの固体電解質層をこの順に積層してなる全固体電池用部材であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材。   An all-solid battery member in which a thin film layer having a thickness of 10 nm to 1 μm and a solid electrolyte layer having a thickness of 1 to 500 μm are laminated in this order on an electrode material layer, the thin film layer being the same as the solid electrolyte layer An all-solid-state battery member comprising the material, the same material as the electrode material layer, or a mixture thereof. 前記薄膜層が気相成長法又は化学気相蒸着法(CVD法)により得られ、前記固体電解質層が微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により得られる請求項1に記載の全固体電池用部材。   2. The total film according to claim 1, wherein the thin film layer is obtained by a vapor deposition method or a chemical vapor deposition method (CVD method), and the solid electrolyte layer is obtained by coating, spraying, coating, or powder compression by fine particle collision. Solid battery member. 極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成する全固体電池用部材の製造方法であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材の製造方法。   A thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying, coating or powder compression by fine particle collision is formed thereon. Is a method for producing an all-solid battery member that forms a solid electrolyte layer having a thickness of 1 to 500 μm, wherein the thin film layer is made of the same material as the solid electrolyte layer, the same material as the electrode layer, or a mixture thereof. A method for producing an all solid state battery member. 厚さ1〜500μmの固体電解質層を形成し、該固体電解質層の表面に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層を形成し、さらにその上に極材層を設ける全固体電池用部材の製造方法であって、該薄膜層が固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池用部材の製造方法。   A solid electrolyte layer having a thickness of 1 to 500 μm is formed, and a thin film layer having a thickness of 10 nm to 1 μm is formed on the surface of the solid electrolyte layer by a vapor deposition method or a chemical vapor deposition method (CVD method). A method for producing an all-solid battery member in which an electrode material layer is provided, wherein the thin film layer is made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. A method for producing a battery member. 前記固体電解質層が塗布又は粉体の圧縮により得られる請求項4に記載の全固体電池用部材の製造方法。   The manufacturing method of the member for all-solid-state batteries of Claim 4 with which the said solid electrolyte layer is obtained by application | coating or compression of powder. 正極層と負極層の間に少なくとも厚さ10nm〜2μmの薄膜層を介在させてなる全固体電池であって、該薄膜層が固体電解質材料からなることを特徴とする全固体電池。   An all-solid battery comprising a thin film layer having a thickness of at least 10 nm to 2 μm interposed between a positive electrode layer and a negative electrode layer, wherein the thin film layer is made of a solid electrolyte material. 正極層及び負極層の上にそれぞれ厚さ10nm〜1μmの薄膜層を積層し、これを接合してなる全固体電池であって、2つの薄膜層のうち少なくとも一方が固体電解質材料からなることを特徴とする全固体電池。   It is an all solid state battery in which a thin film layer having a thickness of 10 nm to 1 μm is laminated on each of a positive electrode layer and a negative electrode layer and bonded together, and at least one of the two thin film layers is made of a solid electrolyte material. All-solid battery featuring. 前記薄膜層が気相成長法又は化学気相蒸着法(CVD法)により得られる請求項6又は7に記載の全固体電池。   The all-solid-state battery according to claim 6 or 7, wherein the thin film layer is obtained by a vapor deposition method or a chemical vapor deposition method (CVD method). 正極層と負極層の間に厚さ1〜500μmの固体電解質層を介在させてなる全固体電池であって、正極層及び負極層と前記固体電解質層との間のそれぞれにさらに厚さ10nm〜1μmの薄膜層を有し、該2つの薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池。   An all-solid battery in which a solid electrolyte layer having a thickness of 1 to 500 μm is interposed between a positive electrode layer and a negative electrode layer, and further a thickness of 10 nm to each of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer. An all-solid battery comprising a thin film layer of 1 μm, wherein the two thin film layers are each made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. 極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜2μmの薄膜層を形成し、その上に極材層を設ける全固体電池の製造方法。   A method for producing an all-solid-state battery, in which a thin film layer having a thickness of 10 nm to 2 μm is formed on a polar material layer by vapor deposition or chemical vapor deposition (CVD), and the polar material layer is provided thereon. 極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成し、さらにその上に極材層を設ける全固体電池の製造方法。   A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and then vapor deposition or chemical vapor deposition ( A method for producing an all-solid battery in which a second thin film layer having a thickness of 10 nm to 1 μm is formed by a CVD method, and an electrode material layer is further provided thereon. 極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成して全固体電池用部材を製造し、他の極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成して電極を製造し、該全固体電池用部材と該電極を固体電解質層と第2の薄膜層が接触するように接合する全固体電池の製造方法であって、該第1の薄膜層及び第2の薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法。   A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying, coating or powdering by fine particle collision is formed thereon. A solid electrolyte layer having a thickness of 1 to 500 μm is formed by compressing the body to produce a member for an all-solid battery, and is thickened by vapor deposition or chemical vapor deposition (CVD) on another electrode material layer. Manufacturing an electrode by forming a second thin film layer having a thickness of 10 nm to 1 μm, and manufacturing the all solid state battery in which the all solid state battery member and the electrode are joined so that the solid electrolyte layer and the second thin film layer are in contact with each other A method for an all solid state battery, wherein the first thin film layer and the second thin film layer are each made of the same material as the solid electrolyte layer, the same material as the electrode layer, or a mixture thereof. Production method. 請求項1又は2に記載の全固体電池用部材を2つ用意し、該全固体電池用部材をそれぞれの固体電解質層が接触するように接合する全固体電池の製造方法。   A method for producing an all-solid battery, comprising preparing all the members for an all-solid-state battery according to claim 1 or 2 and joining the members for an all-solid-state battery so that the respective solid electrolyte layers are in contact with each other. 極材層の上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第1の薄膜層を形成し、その上に、微粒子衝突によるコーティング、溶射、塗布又は粉体の圧縮により厚さ1〜500μmの固体電解質層を形成し、その上に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの第2の薄膜層を形成し、さらにその上に極材層を設ける全固体電池の製造方法であって、第1の薄膜層及び第2の薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法。   A first thin film layer having a thickness of 10 nm to 1 μm is formed on the electrode material layer by vapor deposition or chemical vapor deposition (CVD), and coating, spraying, coating or powdering by fine particle collision is formed thereon. A solid electrolyte layer having a thickness of 1 to 500 μm is formed by compressing the body, and a second thin film layer having a thickness of 10 nm to 1 μm is formed thereon by a vapor deposition method or a chemical vapor deposition method (CVD method), Furthermore, there is provided a method for producing an all-solid battery in which an electrode material layer is provided thereon, wherein the first thin film layer and the second thin film layer are respectively the same material as the solid electrolyte layer, the same material as the electrode material layer, or these A method for producing an all-solid battery comprising a mixture of 厚さ1〜500μmの固体電解質層を形成し、該固体電解質層の表面及び裏面に気相成長法又は化学気相蒸着法(CVD法)により厚さ10nm〜1μmの薄膜層をそれぞれ形成し、さらにその上に極材層を設ける全固体電池の製造方法であって、該2つの薄膜層が、それぞれ固体電解質層と同一の材料、極材層と同一の材料又はこれらの混合物からなることを特徴とする全固体電池の製造方法。   A solid electrolyte layer having a thickness of 1 to 500 μm is formed, and a thin film layer having a thickness of 10 nm to 1 μm is formed on the front and back surfaces of the solid electrolyte layer by a vapor deposition method or a chemical vapor deposition method (CVD method), Furthermore, the manufacturing method of an all-solid-state battery in which an electrode material layer is provided thereon, wherein the two thin film layers are each made of the same material as the solid electrolyte layer, the same material as the electrode material layer, or a mixture thereof. A method for producing an all-solid battery. 請求項6〜9のいずれかに記載の全固体電池を組み合わせてなる組電池。   The assembled battery formed by combining the all-solid-state battery in any one of Claims 6-9.
JP2006320560A 2006-11-28 2006-11-28 All-solid battery member and manufacturing method of the member, and all-solid battery Pending JP2008135287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006320560A JP2008135287A (en) 2006-11-28 2006-11-28 All-solid battery member and manufacturing method of the member, and all-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006320560A JP2008135287A (en) 2006-11-28 2006-11-28 All-solid battery member and manufacturing method of the member, and all-solid battery

Publications (1)

Publication Number Publication Date
JP2008135287A true JP2008135287A (en) 2008-06-12

Family

ID=39559993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006320560A Pending JP2008135287A (en) 2006-11-28 2006-11-28 All-solid battery member and manufacturing method of the member, and all-solid battery

Country Status (1)

Country Link
JP (1) JP2008135287A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (en) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd All-solid lithium secondary battery
JP2010080168A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp All-solid lithium secondary battery
JP2010092828A (en) * 2008-09-11 2010-04-22 Toyota Motor Corp Sulfide-based solid electrolyte
JP2010123463A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp All-solid battery, electrode for all-solid battery, and its manufacturing method
WO2010064288A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
JP2011124137A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method for maintaining assembled battery
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
WO2012081366A1 (en) * 2010-12-15 2012-06-21 株式会社 村田製作所 Solid battery
WO2013146454A1 (en) * 2012-03-29 2013-10-03 住友電気工業株式会社 Electrode material, all-solid-state lithium secondary battery, and manufacturing method
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
CN104412440A (en) * 2012-07-11 2015-03-11 丰田自动车株式会社 All-solid-state battery, and production method therefor
WO2015146315A1 (en) * 2014-03-24 2015-10-01 日本碍子株式会社 All-solid battery
US9413034B2 (en) 2011-07-27 2016-08-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid battery
US10218030B2 (en) 2016-09-21 2019-02-26 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack and vehicle
US10340511B2 (en) 2016-09-20 2019-07-02 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, battery pack and vehicle
WO2019151363A1 (en) 2018-02-05 2019-08-08 富士フイルム株式会社 Solid-electrolyte-containing sheet, all-solid secondary battery electrode sheet, all-solid secondary battery, electronic apparatus, electric automobile, and production methods for same
US10541442B2 (en) 2016-03-17 2020-01-21 Kabushiki Kaisha Toshiba Battery, battery pack, and vehicle
CN111048819A (en) * 2018-10-15 2020-04-21 现代自动车株式会社 Method for manufacturing all-solid-state battery
KR20200050855A (en) * 2018-11-02 2020-05-12 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
CN111146492A (en) * 2018-11-02 2020-05-12 三星电子株式会社 All-solid-state secondary battery and method for manufacturing same
WO2021157896A1 (en) * 2020-02-07 2021-08-12 삼성에스디아이(주) Solid ion conductor compound, solid electrolyte comprising same, electrochemical cell comprising same, and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109429A (en) * 1991-10-14 1993-04-30 Ricoh Co Ltd Laminated body having electron conductor layer and ion conductor layer and its manufacture
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05109429A (en) * 1991-10-14 1993-04-30 Ricoh Co Ltd Laminated body having electron conductor layer and ion conductor layer and its manufacture
JP2004247317A (en) * 1998-12-03 2004-09-02 Sumitomo Electric Ind Ltd Lithium secondary battery
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (en) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd All-solid lithium secondary battery
JP2010092828A (en) * 2008-09-11 2010-04-22 Toyota Motor Corp Sulfide-based solid electrolyte
JP2010080168A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp All-solid lithium secondary battery
JP2010123463A (en) * 2008-11-20 2010-06-03 Toyota Motor Corp All-solid battery, electrode for all-solid battery, and its manufacturing method
WO2010064288A1 (en) * 2008-12-01 2010-06-10 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-mounted apparatus, and method for production of solid electrolyte battery
JPWO2010064288A1 (en) * 2008-12-01 2012-04-26 トヨタ自動車株式会社 Solid electrolyte battery, vehicle, battery-equipped device, and method for manufacturing solid electrolyte battery
JP2011124137A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Method for maintaining assembled battery
JP2012069248A (en) * 2010-09-21 2012-04-05 Hitachi Zosen Corp Manufacturing method for all-solid battery
JPWO2012081366A1 (en) * 2010-12-15 2014-05-22 株式会社村田製作所 Solid battery
WO2012081366A1 (en) * 2010-12-15 2012-06-21 株式会社 村田製作所 Solid battery
CN103262330A (en) * 2010-12-15 2013-08-21 株式会社村田制作所 Solid battery
US9413034B2 (en) 2011-07-27 2016-08-09 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid battery
WO2013146454A1 (en) * 2012-03-29 2013-10-03 住友電気工業株式会社 Electrode material, all-solid-state lithium secondary battery, and manufacturing method
CN104412440A (en) * 2012-07-11 2015-03-11 丰田自动车株式会社 All-solid-state battery, and production method therefor
CN104412440B (en) * 2012-07-11 2016-10-19 丰田自动车株式会社 All-solid-state battery and manufacture method thereof
US9843071B2 (en) 2012-07-11 2017-12-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery and method for manufacturing the same
JP2015032535A (en) * 2013-08-06 2015-02-16 トヨタ自動車株式会社 Laminated electrode body having dense electrolyte layer on negative electrode layer side before lamination press
WO2015146315A1 (en) * 2014-03-24 2015-10-01 日本碍子株式会社 All-solid battery
US10541442B2 (en) 2016-03-17 2020-01-21 Kabushiki Kaisha Toshiba Battery, battery pack, and vehicle
US10340511B2 (en) 2016-09-20 2019-07-02 Kabushiki Kaisha Toshiba Electrode, nonaqueous electrolyte battery, battery pack and vehicle
US10218030B2 (en) 2016-09-21 2019-02-26 Kabushiki Kaisha Toshiba Electrode structure, secondary battery, battery pack and vehicle
WO2019151363A1 (en) 2018-02-05 2019-08-08 富士フイルム株式会社 Solid-electrolyte-containing sheet, all-solid secondary battery electrode sheet, all-solid secondary battery, electronic apparatus, electric automobile, and production methods for same
KR20200089719A (en) 2018-02-05 2020-07-27 후지필름 가부시키가이샤 Solid electrolyte-containing sheet, electrode sheet for all-solid-state secondary batteries, all-solid-state secondary batteries, electronic devices and electric vehicles, and methods for manufacturing the same
KR20200042365A (en) * 2018-10-15 2020-04-23 현대자동차주식회사 Preparation process of all-solid battery
JP2020064710A (en) * 2018-10-15 2020-04-23 現代自動車株式会社Hyundai Motor Company Method for manufacturing all solid battery
CN111048819A (en) * 2018-10-15 2020-04-21 现代自动车株式会社 Method for manufacturing all-solid-state battery
JP7221019B2 (en) 2018-10-15 2023-02-13 現代自動車株式会社 Method for manufacturing all-solid-state battery
KR102654524B1 (en) * 2018-10-15 2024-04-03 현대자동차주식회사 Preparation process of all-solid battery
KR20200050855A (en) * 2018-11-02 2020-05-12 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
CN111146492A (en) * 2018-11-02 2020-05-12 三星电子株式会社 All-solid-state secondary battery and method for manufacturing same
KR20210087919A (en) * 2018-11-02 2021-07-13 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
KR102312990B1 (en) * 2018-11-02 2021-10-13 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
KR102407143B1 (en) * 2018-11-02 2022-06-10 삼성전자주식회사 All solid secondary battery and method of manufacturing the same
US11424512B2 (en) * 2018-11-02 2022-08-23 Samsung Electronics Co., Ltd. All-solid secondary battery and method of manufacturing the same
CN111146492B (en) * 2018-11-02 2024-05-14 三星电子株式会社 All-solid-state secondary battery and method for manufacturing same
WO2021157896A1 (en) * 2020-02-07 2021-08-12 삼성에스디아이(주) Solid ion conductor compound, solid electrolyte comprising same, electrochemical cell comprising same, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2008135287A (en) All-solid battery member and manufacturing method of the member, and all-solid battery
JP5848801B2 (en) Lithium ion conductive solid electrolyte sheet and method for producing the same
JP4989183B2 (en) Electrode and solid secondary battery using the same
JP6085318B2 (en) Electrode material and lithium ion battery using the same
JP5368711B2 (en) Solid electrolyte membrane, positive electrode membrane, or negative electrode membrane for all solid lithium secondary battery, method for producing the same, and all solid lithium secondary battery
JP5615551B2 (en) Heat-resistant positive electrode mixture and all-solid lithium secondary battery using the same
JP2008103229A (en) Manufacturing method of solid electrolyte molded body and full solid battery provided with the same
JP5348853B2 (en) Sulfide-based electrolyte molded body and all-solid battery comprising the same
JP2008103284A (en) All-solid battery
JP2008103204A (en) Cathode active material and secondary battery using it
JP2008103146A (en) Solid electrolyte and secondary battery using it
JP2007311084A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2008103203A (en) Solid electrolyte and all-solid secondary battery using it
JP2008103280A (en) Positive electrode plied timber and all-solid secondary battery using it
JP2008234843A (en) Electrode and member for all-solid secondary battery
JP2008103288A (en) All-solid battery
JP5001621B2 (en) Solid electrolyte and solid secondary battery using the same
JP2013222530A (en) All solid state battery and method for charging/discharging all solid state battery
JP2014086222A (en) Method for manufacturing secondary battery
JP2008103287A (en) Method for forming inorganic solid electrolyte layer
JP2008103292A (en) All-solid battery for household electric appliance
JP5096722B2 (en) Battery material manufacturing method and all solid state battery
JP2008021424A (en) Electrolyte, member for battery, electrode, and all-solid secondary battery
JP2010146823A (en) Composition for solid electrolyte sheet, solid electrolyte sheet, and solid secondary battery
JP2008103285A (en) All solid bipolar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605