JPH05109429A - Laminated body having electron conductor layer and ion conductor layer and its manufacture - Google Patents

Laminated body having electron conductor layer and ion conductor layer and its manufacture

Info

Publication number
JPH05109429A
JPH05109429A JP3293677A JP29367791A JPH05109429A JP H05109429 A JPH05109429 A JP H05109429A JP 3293677 A JP3293677 A JP 3293677A JP 29367791 A JP29367791 A JP 29367791A JP H05109429 A JPH05109429 A JP H05109429A
Authority
JP
Japan
Prior art keywords
layer
conductor layer
electron
active material
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3293677A
Other languages
Japanese (ja)
Inventor
Sachiko Kimura
祥子 木村
Zenichi Akiyama
善一 秋山
Itaru Fujimura
格 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3293677A priority Critical patent/JPH05109429A/en
Publication of JPH05109429A publication Critical patent/JPH05109429A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To extend the surface areas of both layers, in a laminated body having an electron conductor layer and an ion conductor layer at least one of which consists of an inorganic oxide, to enhance reaction efficiency, and smoothly move electrons and ions in an electrode reaction. CONSTITUTION:In a laminated body having an electron conductor layer and an ion conductor layer at least one of which consists of an inorganic oxide, the critical surfaces of both the layers irregularly make contact to each other to increase the areas of the critical surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、無機酸化物からなる電子伝導体
層とイオン伝導体層とを有する積層体およびその製造法
に関する。
TECHNICAL FIELD The present invention relates to a laminate having an electron conductor layer made of an inorganic oxide and an ionic conductor layer, and a method for producing the same.

【0002】[0002]

【従来技術】電池やエレクトロクロミックデバイスのよ
うに電極の電気化学反応を利用した素子は従来溶液系で
利用されているが、最近では各種電気機器、電子機器と
の組合せや宇宙開発等を考慮して素子の固体化が検討さ
れている。固体素子の電極活物質と固体電解質の界面で
は、酸化還元反応と共に電子やイオンの移動がおこるた
め両層の接触状態が大変重要であり、電極活物質と固体
電解質とを張り合わせるだけでは良好な特性が得られに
くい。また、素子の特性である化学反応は界面でおこる
ため反応効率を挙げるには界面の表面積を大きくしてあ
げれば良い。すなわち、良好な特性を有する素子は電子
伝導層とイオン伝導層の界面が高表面積でかつ電子移動
及びイオン移動反応性に優れている必要がある。電子伝
導層とイオン伝導層の界面においては、無機材料同志の
積層構成では材料が固くて脆いため制約が大きく実現が
難しい。本発明はこれらの問題を解決し、高表面積界面
を有する該積層体を得ることを目的とした。界面におけ
る電子移動及びイオン移動反応性を向上させるため、両
層の界面に電極活物質と固体電解質の混合層を設けるこ
とが提案され、効果が示された。すなわち、固体電解質
層に柔軟性に優れ、キャスティングが可能な高分子固体
電解質を、また、活物質層に放電容量の大きい二酸化マ
ンガンを用いて固体電解質中に活物質粉末を分散させた
層を両者の界面に設けて検討がなされている。高分子電
解質は一般にイオン伝導度が低い。一方、イオン伝導度
が高い固体電解質として、NASICON(NalZr
2SixPmO12またはNalZrnSixPmOw:
前式中、l=1+x,m=3−x,n=2−3/x,w
=12−2x/3を表わす)やLISICON(ナイコ
ンのNaがLiに変った組成)等のリチウム伝導性ガラ
スが知られている。これらの無機酸化物は一般に原料で
ある固体粉末を高温で焼成して得られ、一般的に焼結体
は微粒子化や焼結体同志を均一混合するのに限界があ
る。
2. Description of the Related Art Elements such as batteries and electrochromic devices that utilize electrochemical reaction of electrodes have been conventionally used in a solution system, but recently, in consideration of combination with various electric devices and electronic devices, space development, etc. The solidification of the device is being studied. At the interface between the electrode active material and the solid electrolyte of the solid element, the contact state of both layers is very important because the transfer of electrons and ions occurs along with the redox reaction, and it is sufficient to simply bond the electrode active material and the solid electrolyte. It is difficult to obtain the characteristics. Further, since the chemical reaction that is a characteristic of the device occurs at the interface, the surface area of the interface may be increased to increase the reaction efficiency. That is, in the device having good characteristics, the interface between the electron conductive layer and the ion conductive layer needs to have a high surface area and have excellent electron transfer and ion transfer reactivity. At the interface between the electron-conducting layer and the ion-conducting layer, the material is hard and brittle in a laminated structure of inorganic materials, which is difficult to realize. The present invention aims to solve these problems and obtain the laminate having a high surface area interface. In order to improve electron transfer and ion transfer reactivity at the interface, it was proposed to provide a mixed layer of an electrode active material and a solid electrolyte at the interface between both layers, and the effect was shown. That is, a solid polymer electrolyte having excellent flexibility and castability is used for the solid electrolyte layer, and a layer in which the active material powder is dispersed in the solid electrolyte by using manganese dioxide having a large discharge capacity is used for the active material layer. It has been studied by providing it at the interface. Polymer electrolytes generally have low ionic conductivity. On the other hand, as a solid electrolyte with high ionic conductivity, NASICON (NalZr
2 SixPmO 12 or NalZrnSixPmOw:
In the above equation, l = 1 + x, m = 3-x, n = 2-3 / x, w
= 12-2x / 3) and LISICON (composition in which Ni of Na is changed to Li) are known. These inorganic oxides are generally obtained by firing solid powder, which is a raw material, at a high temperature, and generally, there is a limit to making a sintered body into fine particles or to uniformly mix the sintered bodies.

【0003】[0003]

【目的】本発明は、少なくとも一方が無機酸化物からな
る電子伝導体層とイオン伝導体層とを有する積層体にお
いて、前記両層の界面の表面積が広く、該界面で電子移
動及びイオン移動性に優れた積層体を提供することを目
的とする。
An object of the present invention is to provide a laminate having an electron conductor layer and an ionic conductor layer, at least one of which is made of an inorganic oxide, and the surface area of the interface between the both layers is large, and the electron transfer and the ion mobility at the interface are large. The object is to provide a laminate excellent in

【0004】[0004]

【構成】本発明の積層体の1つは、少なくとも一方が無
機酸化物からなる電子伝導体層とイオン伝導体層とを有
する積層体において、両層の界面が凹凸状に接触してい
ることを特徴とするものであり、その2つは、前記電子
伝導体層と、イオン伝導体層の少なくとも一方が凹凸状
であり、かつ該両層の界面にSol−Gel法で形成さ
れた前記電子伝導体とイオン伝導体の混合層が存在する
ことを特徴とする。以下、具体的に説明する。本発明で
用いられる無機酸化物からなる電子伝導体層は、例えば
五酸化バナジウム(V25)や二酸化マンガン(MnO
2)などから構成される。本発明で用いられる無機酸化
物からなるイオン伝導体層は、一般に固体電解質として
知られているβ−アルミナやNASICON、LISI
CONから構成される。これらの電子伝導体層とイオン
伝導体層の双方あるいは一方への凹凸の形成は、例えば
電子伝導体、またはイオン伝導体の焼結体を作製後、機
械的に切削加工を行っても良いし、リソグラフィー技術
を用いてパターニングを行っても良い。あるいは、これ
らの焼結体をSol−Gel法により作製し、ゲル化の
時点で型抜きによりパターン化しても良い。前記のよう
な方法で凹凸をあらかじめ形成した電子伝導体層あるい
はイオン伝導体層の一方の伝導体層上に、Sol−Ge
l法により他の伝導体層を形成することにより、前記両
伝導体層が密着性良く接合した積層体を得ることができ
る。また、前記のような方法により少なくとも一方の伝
導体層に凹凸が形成されている電子伝導体層およびイオ
ン伝導体層を使用する場合には、両伝導体層の界面に、
Sol−Gel法により前記電子伝導体とイオン伝導体
の混合物層を形成させることにより、前記両伝導体層が
密着性良く接合した積層体を得ることができる。Sol
−Gel法による前記混合物層の形成は、例えば、So
l−Gel法によってイオン伝導体層を形成することの
できる塗布液を作成し、該塗布溶液中に無機電子伝導性
粒子を分散させたものを、少なくとも一方の伝導体層に
凹凸が形成されている電子伝導体層および/またはイオ
ン伝導体層上に塗布し、乾燥後焼結して形成することが
できる。Sol−Gel法とは金属アルコキシド等の金
属有機化合物を溶液系で加水分解、重縮合させて金属−
酸素−金属結合を成長させ、最終的に焼結することによ
り完成させる無機酸化物の作製方法である。Sol−G
el法による無機酸化物の作製方法は、具体的には基板
上に金属有機化合物を含む溶液を塗布し、乾燥後焼結を
行う。用いられる金属有機化合物としては、無機酸化物
を構成する金属のメトキシド、エトキシド、プロポキシ
ド、ブトキシド等のアルコキシドやアセテート化合物等
があげられる。硝酸塩、しゅう酸塩、過塩素酸塩、等の
無機塩でも良い。これら化合物から無機酸化物を作製す
るには加水分解および重縮合反応を進める必要があるた
め塗布溶液中には水の添加が必要となる。添加量は系に
より異なるが多すぎると反応が速く進むため得られる膜
質が不均一となり易く、また反応速度の制御が難しい。
水の添加量が少なすぎても反応のコントロールが難し
く、適量がある。さらに、加水分解触媒を添加すると反
応速度及び、反応形態の制御ができる。触媒としては一
般の酸および塩基が用いられる。これらの原料を均一に
溶解させるため溶媒を用いるが、これは上記材料が沈殿
しないもの、すなわち相溶性に優れたものが望ましい。
溶液濃度は塗布方法にもよるが、スピンコート法の場合
溶液粘度が数cP〜十数cPとなるように調整すると良
い。これらの他に金属アルコキシドを安定化するキレー
ト剤等を添加しても良い。Sol−Gel法によれば、
粒子、膜、バルクなどの形態にかかわらず、通常の作製
温度より低温で無機酸化物を得ることができる。粒子の
作製においては粒子の径を小さくすることができ、また
混合が必要なときは出発物質が溶液であるため均一に分
散させることができる。製膜においては、塗布によって
溶液から作製するため、均一で大面積な膜を得ることが
でき、基板との密着性に優れる。またどんな形状の基板
上にも比較的容易に作製することができる。これらの特
徴を利用すると、Sol−Gel法により、電子伝導層
とイオン伝導層が凹凸状に密着良く接触している積層体
を得ることができる。また、両層の界面にイオン伝導体
中に電子伝導性粒子が均一に分散された積層体を凹凸状
に密着させて作製することができた。本発明の積層体は
そのまま固体二次電池やエレクトロクロミック素子、セ
ンサーなどに使用することができる。例えば正極活物質
として五酸化バナジウムや二酸化マンガンを、固体電解
質にLISICONを用い、負極活物質としてリチウム
を使用すれば固体二次電池を作製できる。また、作用極
に酸化タングステン、対極に透明電極を用いて固体電解
質をはさめばエレクトロクロミック素子を作製できる。
これらの固体素子は無機酸化物からなる活物質と固体電
解質界面が両者の混合層の存在により改善されており、
優れたレドックス反応を行うことができる。
[Structure] One of the laminates of the present invention is a laminate having an electron conductor layer and an ionic conductor layer, at least one of which is made of an inorganic oxide, and the interfaces of both layers are in contact with each other in an uneven shape. The two of the two are the electron conductor layer and at least one of the ionic conductor layer having a concavo-convex shape, and the electron formed by the Sol-Gel method at the interface between the two layers. It is characterized by the presence of a mixed layer of conductor and ionic conductor. The details will be described below. The electron conductor layer made of an inorganic oxide used in the present invention is, for example, vanadium pentoxide (V 2 O 5 ) or manganese dioxide (MnO 2 ).
2 ) etc. The ionic conductor layer made of an inorganic oxide used in the present invention is generally known as a solid electrolyte, β-alumina, NASICON, LISI.
Composed of CON. The unevenness may be formed on both or one of the electron conductor layer and the ion conductor layer by, for example, mechanically cutting after producing a sintered body of the electron conductor or the ion conductor. Alternatively, patterning may be performed using a lithography technique. Alternatively, these sintered bodies may be produced by the Sol-Gel method, and may be patterned by die cutting at the time of gelation. Sol-Ge is formed on one of the electron conductor layer or the ion conductor layer on which the unevenness is formed in advance by the above method.
By forming the other conductor layer by the method 1, it is possible to obtain a laminate in which the both conductor layers are bonded together with good adhesion. Further, in the case of using the electron conductor layer and the ionic conductor layer in which at least one conductor layer has irregularities formed by the method as described above, at the interface between both conductor layers,
By forming a mixture layer of the electronic conductor and the ionic conductor by the Sol-Gel method, it is possible to obtain a laminated body in which the both conductor layers are bonded together with good adhesion. Sol
-The formation of the mixture layer by the Gel method is performed using, for example, So.
A coating solution capable of forming an ionic conductor layer by the l-Gel method was prepared, and inorganic electronically conductive particles were dispersed in the coating solution to form irregularities on at least one conductor layer. It can be formed by coating on the electron conductor layer and / or the ionic conductor layer, drying and sintering. The Sol-Gel method is a method of hydrolyzing and polycondensing a metal organic compound such as a metal alkoxide in a solution system to form a metal-
This is a method for producing an inorganic oxide, which is completed by growing oxygen-metal bonds and finally sintering. Sol-G
In the method for producing an inorganic oxide by the el method, specifically, a solution containing a metal organic compound is applied on a substrate, dried and then sintered. Examples of the metal organic compound used include alkoxides such as methoxides, ethoxides, propoxides, butoxides, etc., of metals constituting an inorganic oxide, and acetate compounds. Inorganic salts such as nitrates, oxalates and perchlorates may be used. In order to produce an inorganic oxide from these compounds, it is necessary to proceed with hydrolysis and polycondensation reactions, and therefore it is necessary to add water to the coating solution. The amount of addition varies depending on the system, but if it is too large, the reaction proceeds rapidly and the quality of the film obtained tends to be non-uniform, and it is difficult to control the reaction rate.
If the amount of water added is too small, it is difficult to control the reaction, and there is an appropriate amount. Furthermore, when a hydrolysis catalyst is added, the reaction rate and reaction form can be controlled. Common acids and bases are used as the catalyst. A solvent is used in order to dissolve these raw materials uniformly, and it is desirable that the above materials do not precipitate, that is, those having excellent compatibility.
The solution concentration depends on the coating method, but in the case of the spin coating method, it is preferable to adjust the solution viscosity to be several cP to several tens of cP. In addition to these, a chelating agent or the like which stabilizes the metal alkoxide may be added. According to the Sol-Gel method,
Inorganic oxides can be obtained at a temperature lower than the usual production temperature regardless of the form of particles, film, bulk, and the like. In the production of particles, the diameter of the particles can be reduced, and when mixing is necessary, the starting materials can be a solution and can be dispersed uniformly. Since the film is formed from a solution by coating, a uniform and large-area film can be obtained, and the adhesion to the substrate is excellent. Further, it can be relatively easily manufactured on a substrate having any shape. By utilizing these characteristics, it is possible to obtain a laminate in which the electron conductive layer and the ion conductive layer are in intimate contact with each other in a well-shaped manner by the Sol-Gel method. In addition, a laminate in which electron conductive particles were uniformly dispersed in an ionic conductor could be formed on the interface between both layers in a concavo-convex shape. The laminate of the present invention can be used as it is for a solid secondary battery, an electrochromic device, a sensor, or the like. For example, if vanadium pentoxide or manganese dioxide is used as the positive electrode active material, LISON is used as the solid electrolyte, and lithium is used as the negative electrode active material, a solid secondary battery can be manufactured. Further, an electrochromic device can be produced by inserting a solid electrolyte using tungsten oxide as a working electrode and a transparent electrode as a counter electrode.
In these solid elements, the interface between the active material made of an inorganic oxide and the solid electrolyte is improved by the presence of a mixed layer of both,
An excellent redox reaction can be performed.

【0005】[0005]

【実施例】【Example】

実施例1 電子伝導層(正極)として二酸化マンガンと導電剤であ
るアセチレンブラックの粉末を混合し、プレスして板状
に加工し、表面に巾100μm、深さ5μmの凹凸を10
0μmピッチで形成した。この上にイオン伝導層を2−
メトキシエタノール中にZr(OC37)4,Si(OC2
5)4,PO(OC49)3,Li(OC49)のアルコキシドと
水を溶解した塗布液から製膜し、120℃5分乾燥した
後600℃で焼結した。この塗布〜焼結過程を繰り返し
てLISICONのイオン伝導層を10μm製膜して電
子伝導体とイオン伝導体の積層体を作製した〔図2
(a)〕。次に得られた積層体の固体電解質側に金属リチ
ウム(負極)を1000Å蒸着し、さらに金属ホイルを
圧着してリチウム電池を作製した〔図2(b)〕。インピ
ーダンスの周波数特性の測定による正極と固体電解質の
界面抵抗は充放電を50回繰り返してもほとんど変化が
みられなかった。 実施例2 実施例1と同様にして表面に凹凸を有する二酸化マンガ
ン焼結体を作製し、この上に電子伝導体とイオン伝導体
の混合層を、二酸化マンガン粉末を分散した2−メトキ
シエタノール中にZr(OC37)4,Si(OC25)4,P
O(OC49)3,Li(OC49)のアルコキシドと水を溶
解した塗布液を用いて製膜し、120℃5分乾燥した後
600℃で焼結した。この塗布〜焼結過程を繰り返して
2000Åの混合層を作製した。引き続き、この上に上
記の塗布液から二酸化マンガンを除いた組成の溶液から
LISICONのイオン伝導層を10μm製膜して電子
伝導体とイオン伝導体の積層体を作製した〔図3
(a)〕。次に得られた積層体の固体電解質側に金属リチ
ウム(負極)を1000Å蒸着し、さらに金属ホイルを
圧着してリチウム電池を作製した〔図3(b)〕。インピ
ーダンスの周波数特性の測定による正極と固体電解質の
界面抵抗は充放電を50回繰り返してもほとんど変化が
みられなかった。
Example 1 Manganese dioxide and a powder of acetylene black, which is a conductive agent, were mixed as an electron conductive layer (positive electrode), pressed into a plate shape, and unevenness having a width of 100 μm and a depth of 5 μm was formed on the surface.
It was formed with a pitch of 0 μm. 2-on the ion conductive layer
Zr (OC 3 H 7 ) 4 , Si (OC 2 H in methoxyethanol
5 ) 4 , PO (OC 4 H 9 ) 3 , Li (OC 4 H 9 ) alkoxide and water were dissolved to form a film from a coating solution, dried at 120 ° C. for 5 minutes, and then sintered at 600 ° C. This coating-sintering process was repeated to form a 10 μm film of the LICON ionic conduction layer to prepare a laminated body of an electronic conductor and an ionic conductor [FIG. 2].
(a)]. Next, 1000 liters of metallic lithium (negative electrode) was vapor-deposited on the solid electrolyte side of the obtained laminate, and a metal foil was further pressure-bonded to produce a lithium battery [FIG. 2 (b)]. The interface resistance between the positive electrode and the solid electrolyte measured by measuring the frequency characteristics of impedance showed almost no change even after 50 times of charge and discharge. Example 2 A manganese dioxide sintered body having irregularities on its surface was prepared in the same manner as in Example 1, and a mixed layer of an electron conductor and an ionic conductor was formed on the manganese dioxide sintered body in 2-methoxyethanol in which manganese dioxide powder was dispersed. Zr (OC 3 H 7 ) 4 , Si (OC 2 H 5 ) 4 , P
A film was formed using a coating solution in which an alkoxide of O (OC 4 H 9 ) 3 , Li (OC 4 H 9 ) and water were dissolved, dried at 120 ° C for 5 minutes, and then sintered at 600 ° C. This coating-sintering process was repeated to prepare a 2000 Å mixed layer. Subsequently, an ionic conductive layer of LIICON was formed to a thickness of 10 μm from a solution having a composition obtained by removing manganese dioxide from the above coating solution to prepare a laminated body of an electronic conductor and an ionic conductor [FIG.
(a)]. Next, 1000 liters of metallic lithium (negative electrode) was vapor-deposited on the solid electrolyte side of the obtained laminate, and a metal foil was further pressure-bonded to produce a lithium battery [FIG. 3 (b)]. The interface resistance between the positive electrode and the solid electrolyte measured by measuring the frequency characteristics of impedance showed almost no change even after 50 times of charge and discharge.

【0006】[0006]

【効果】電子伝導体層とイオン伝導体層との界面が凹凸
状に接触していることにより、その界面の表面積を拡大
させ、反応効率を向上させることができた。さらに前記
両層の界面に、前記両伝導体の混合物質を設けることに
より、電極反応における電子やイオンの移動が良好な積
層体が得られた。
[Effect] Since the interface between the electron conductor layer and the ionic conductor layer is in contact with the uneven surface, the surface area of the interface can be increased and the reaction efficiency can be improved. Further, by providing a mixed substance of both the conductors at the interface between the both layers, a laminate having good movement of electrons and ions in the electrode reaction was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、凹凸を有する電子伝導層とイオン伝
導層とよりなる積層体の断面図を示す。 (b)は、イオン伝導層と凹凸を有する電子伝導層との
界面に混合層を設けた積層体の断面図を示す。
FIG. 1A is a cross-sectional view of a laminate including an electron conductive layer having irregularities and an ion conductive layer. (B) shows a cross-sectional view of a laminate in which a mixed layer is provided at the interface between the ion conductive layer and the electron conductive layer having irregularities.

【図2】(a)は、電子伝導層がMnO2、イオン伝導
層がLISICONで構成され、両層の界面が凹凸状で
ある積層体の断面図を示す。 (b)は、前記(a)のLISICON層上に、蒸着L
i層およびLiホイルをそれぞれ設けた積層体の断面図
を示す。
FIG. 2 (a) is a cross-sectional view of a laminate in which the electron conductive layer is MnO 2 and the ion conductive layer is LISICON, and the interface between both layers is uneven. (B) is vapor-deposited L on the LIICON layer of (a) above.
The sectional view of the laminated body which provided the i layer and the Li foil respectively is shown.

【図3】(a)は、LISICON層と凹凸を設けたM
nO2層の界面に、LISICONとMnO2よりなる積
層体の断面図を示す。 (b)は、前記(a)のLISICON層上に、蒸着L
i層およびLiホイルをそれぞれ設けた積層体の断面図
を示す。
FIG. 3 (a) is an M in which a lisicon layer and unevenness are provided.
At the interface of the nO 2 layer, a cross-sectional view of a laminated body made of LISICON and MnO 2 is shown. (B) is vapor-deposited L on the LIICON layer of (a) above.
The sectional view of the laminated body which provided the i layer and the Li foil respectively is shown.

【符号の説明】[Explanation of symbols]

1 電子伝導層 2 混合層 3 イオン伝導層 4 蒸着Li層 5 Liホイル 1 Electron Conductive Layer 2 Mixed Layer 3 Ion Conductive Layer 4 Evaporated Li Layer 5 Li Foil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方が無機酸化物からなる電
子伝導体層とイオン伝導体層とを有する積層体におい
て、前記両層の界面が凹凸状に接触していることを特徴
とする積層体。
1. A laminate having an electron conductor layer and an ionic conductor layer, at least one of which is made of an inorganic oxide, wherein the interfaces of the two layers are in contact with each other in an uneven shape.
【請求項2】 少なくとも一方が無機酸化物からなる電
子伝導体層とイオン伝導体層とを有する積層体におい
て、少なくともその一方が凹凸を有する前記両層の界面
に、Sol−Gel法で形成されたイオン伝導体層中に
電子伝導性粒子が均一に分散した両伝導体の混合層が存
在することを特徴とする積層体。
2. A laminate having an electron conductor layer and an ionic conductor layer, at least one of which is made of an inorganic oxide, at least one of which is formed by a Sol-Gel method at the interface between the both layers having irregularities. A laminated body characterized in that a mixed layer of both conductors in which electron conductive particles are uniformly dispersed is present in the ionic conductor layer.
【請求項3】 凹凸を有する電子伝導体層あるいはイオ
ン伝導体層の一方の層上に、Sol−Gel法により他
方の伝導体層を形成させることを特徴とする請求項1記
載の積層体の製造法。
3. The laminated body according to claim 1, wherein the other conductor layer is formed on one layer of the electron conductor layer or the ion conductor layer having irregularities by the Sol-Gel method. Manufacturing method.
【請求項4】 少なくともその一方に凹凸が形成されて
いる電子伝導体層とイオン伝導体層の界面に、電子伝導
性粒子をその中に均一に分散させたイオン伝導体層形成
用の塗布液を使用し、Sol−Gel法により前記混合
物層を形成させることを特徴とする請求項2記載の積層
体の製造法。
4. A coating liquid for forming an ionic conductor layer, in which electronically conductive particles are uniformly dispersed in an interface between the electronic conductor layer and the ionic conductor layer, at least one of which has irregularities. 3. The method for producing a laminate according to claim 2, wherein the mixture layer is formed by a Sol-Gel method.
【請求項5】 正極活物質層、固体電解質層および負極
活物質層を有する固体電池において、正極活物質層と固
体電解物質層の界面が凹凸状に接触していることを特徴
とする固体電池。
5. A solid-state battery having a positive electrode active material layer, a solid electrolyte layer and a negative electrode active material layer, characterized in that the interface between the positive electrode active material layer and the solid electrolyte material layer is in uneven contact. ..
【請求項6】 正極活物質層、固体電解質層および負極
活物質層を有する固体電池において、少なくともその一
方が凹凸を有する正極活物質層と固体電解質層の界面
に、固体電解質層中に正極活物質粒子が均一に分散した
混合物層が存在することを特徴とする固体電池。
6. A solid battery having a positive electrode active material layer, a solid electrolyte layer and a negative electrode active material layer, wherein at least one of them has irregularities at the interface between the positive electrode active material layer and the solid electrolyte layer and the positive electrode active material in the solid electrolyte layer. A solid state battery having a mixture layer in which material particles are uniformly dispersed.
JP3293677A 1991-10-14 1991-10-14 Laminated body having electron conductor layer and ion conductor layer and its manufacture Pending JPH05109429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3293677A JPH05109429A (en) 1991-10-14 1991-10-14 Laminated body having electron conductor layer and ion conductor layer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3293677A JPH05109429A (en) 1991-10-14 1991-10-14 Laminated body having electron conductor layer and ion conductor layer and its manufacture

Publications (1)

Publication Number Publication Date
JPH05109429A true JPH05109429A (en) 1993-04-30

Family

ID=17797804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3293677A Pending JPH05109429A (en) 1991-10-14 1991-10-14 Laminated body having electron conductor layer and ion conductor layer and its manufacture

Country Status (1)

Country Link
JP (1) JPH05109429A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849819A2 (en) * 1996-12-17 1998-06-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
JP2002519836A (en) * 1998-06-26 2002-07-02 ヴァレンス テクノロジー、 インク. Lithium-containing silicon phosphate and method for producing and using the same
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
JP2007066913A (en) * 2000-10-20 2007-03-15 Massachusetts Inst Of Technol <Mit> Battery having electrode of controlled porosity in mesh shape
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery
JP2009054596A (en) * 2008-10-30 2009-03-12 Ohara Inc Lithium-ion secondary battery, and manufacturing method thereof
JP2009301726A (en) * 2008-06-10 2009-12-24 Kazu Tomoyose Method for manufacturing of lithium-ion battery and method for manufacturing of lithium battery
JP2010056093A (en) * 2009-12-01 2010-03-11 Ohara Inc Lithium ion secondary battery
JP2010108802A (en) * 2008-10-31 2010-05-13 Ohara Inc Separator for battery and method for manufacturing the same
JP2010225432A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Solid secondary battery, and manufacturing method of solid secondary battery
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same
KR101323882B1 (en) * 2010-07-01 2013-10-30 다이니폰 스크린 세이조우 가부시키가이샤 Battery manufacturing method, battery manufactured by such method, vehicle and electronic device
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
JP2017500691A (en) * 2013-10-31 2017-01-05 プラヨン ソシエテ アノニムPrayon S.A. Thin film wet manufacturing method
JP2017103253A (en) * 2012-03-29 2017-06-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
WO2020039999A1 (en) * 2018-08-21 2020-02-27 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
WO2020067107A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0849819A3 (en) * 1996-12-17 2003-09-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
EP0849819A2 (en) * 1996-12-17 1998-06-24 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
JP2002519836A (en) * 1998-06-26 2002-07-02 ヴァレンス テクノロジー、 インク. Lithium-containing silicon phosphate and method for producing and using the same
JP2011253820A (en) * 2000-10-20 2011-12-15 Massachusetts Institute Of Technology Battery having electrode of controlled porosity in mesh shape
JP2007066913A (en) * 2000-10-20 2007-03-15 Massachusetts Inst Of Technol <Mit> Battery having electrode of controlled porosity in mesh shape
JP2012182141A (en) * 2000-10-20 2012-09-20 Massachusetts Institute Of Technology Battery having mesh electrode with controlled porosity
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
US8383268B2 (en) 2002-11-29 2013-02-26 Kabushiki Kaisha Ohara Lithium ion secondary battery and a method for manufacturing the same
JP2005116248A (en) * 2003-10-06 2005-04-28 Nissan Motor Co Ltd Battery and vehicle mounting battery
JP2008135287A (en) * 2006-11-28 2008-06-12 Idemitsu Kosan Co Ltd All-solid battery member and manufacturing method of the member, and all-solid battery
US8999571B2 (en) 2007-05-25 2015-04-07 Massachusetts Institute Of Technology Batteries and electrodes for use thereof
JP2009301726A (en) * 2008-06-10 2009-12-24 Kazu Tomoyose Method for manufacturing of lithium-ion battery and method for manufacturing of lithium battery
JP4575487B2 (en) * 2008-10-30 2010-11-04 株式会社オハラ Lithium ion secondary battery and manufacturing method thereof
JP2009054596A (en) * 2008-10-30 2009-03-12 Ohara Inc Lithium-ion secondary battery, and manufacturing method thereof
JP2010108802A (en) * 2008-10-31 2010-05-13 Ohara Inc Separator for battery and method for manufacturing the same
JP2010225432A (en) * 2009-03-24 2010-10-07 Seiko Epson Corp Solid secondary battery, and manufacturing method of solid secondary battery
JP2010056093A (en) * 2009-12-01 2010-03-11 Ohara Inc Lithium ion secondary battery
KR101323882B1 (en) * 2010-07-01 2013-10-30 다이니폰 스크린 세이조우 가부시키가이샤 Battery manufacturing method, battery manufactured by such method, vehicle and electronic device
US8771383B2 (en) 2010-07-01 2014-07-08 Dainippon Screen Mfg. Co., Ltd. Battery manufacturing method, battery manufactured by such method, vehicle and electronic device
US10164242B2 (en) 2011-04-07 2018-12-25 Massachusetts Institute Of Technology Controlled porosity in electrodes
US9065093B2 (en) 2011-04-07 2015-06-23 Massachusetts Institute Of Technology Controlled porosity in electrodes
WO2013031508A1 (en) * 2011-08-31 2013-03-07 旭硝子株式会社 Lithium-ion conductive glass ceramic and method for producing same
JPWO2013031508A1 (en) * 2011-08-31 2015-03-23 旭硝子株式会社 Lithium ion conductive glass ceramics and method for producing the same
JP2017103253A (en) * 2012-03-29 2017-06-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2017500691A (en) * 2013-10-31 2017-01-05 プラヨン ソシエテ アノニムPrayon S.A. Thin film wet manufacturing method
US10675819B2 (en) 2014-10-03 2020-06-09 Massachusetts Institute Of Technology Magnetic field alignment of emulsions to produce porous articles
US10569480B2 (en) 2014-10-03 2020-02-25 Massachusetts Institute Of Technology Pore orientation using magnetic fields
WO2020039999A1 (en) * 2018-08-21 2020-02-27 エムテックスマート株式会社 Method for manufacturing all-solid-state battery
US11894542B2 (en) 2018-08-21 2024-02-06 Mtek-Smart Corporation Method for manufacturing all-solid-state battery
WO2020067107A1 (en) * 2018-09-27 2020-04-02 富士フイルム株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
CN112585797A (en) * 2018-09-27 2021-03-30 富士胶片株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing electrode sheet
CN112585797B (en) * 2018-09-27 2024-03-12 富士胶片株式会社 Method for manufacturing all-solid-state secondary battery, electrode sheet for all-solid-state secondary battery, and method for manufacturing same
US11967681B2 (en) 2018-09-27 2024-04-23 Fujifilm Corporation Method of manufacturing all-solid state secondary battery, electrode sheet for all-solid state secondary battery, and method of manufacturing electrode sheet for all-solid state secondary battery

Similar Documents

Publication Publication Date Title
JPH05109429A (en) Laminated body having electron conductor layer and ion conductor layer and its manufacture
US7824795B2 (en) Solid electrolyte structure for all-solid-state battery, all-solid-state battery, and their production methods
JP6717889B2 (en) Method of manufacturing thin film lithium-ion microbattery and microbattery obtained by the method
US20180108904A1 (en) Method for the production of electrodes for fully solid batteries
JP4615339B2 (en) Porous solid electrode and all-solid lithium secondary battery using the same
US7993782B2 (en) All-solid lithium battery
US5558680A (en) Preparation of silver vanadium oxide cathodes utilizing sol-gel technology
JP5987103B2 (en) All solid ion secondary battery
JP5905076B2 (en) Battery and battery pack
US10720636B2 (en) Method for producing sintered electrode
JPS58193527A (en) Electrochromic display and manufacture thereof
JP2009238576A (en) All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method
JPH02250264A (en) Lithium ion conductive solid electrolyte
JPH0381908A (en) Lithium ion conductive solid electrolyte
JP2015181120A (en) Method of producing solid electrolyte
EP0638946A2 (en) Preparation of silver vanadium oxide cathodes
Vinod et al. Materials for all-solid-state thin-film rechargeable lithium batteries by sol-gel processing
JPH02155173A (en) Electrochemical element
JP6201569B2 (en) Solid electrolyte material and all solid state battery
JP2020053307A (en) All-solid-state battery
Komaba et al. Redox-active alkali insertion materials as inner contact layer in all-solid-state ion-selective electrodes
JPH05109428A (en) Laminated body having electron conductor layer and ion conductor layer
JP6933351B2 (en) Solid electrolytes and all-solid-state batteries and methods for manufacturing them
JPS6336485B2 (en)
KR100659049B1 (en) Inorganic solid electrolyte