JPH02155173A - Electrochemical element - Google Patents

Electrochemical element

Info

Publication number
JPH02155173A
JPH02155173A JP1204582A JP20458289A JPH02155173A JP H02155173 A JPH02155173 A JP H02155173A JP 1204582 A JP1204582 A JP 1204582A JP 20458289 A JP20458289 A JP 20458289A JP H02155173 A JPH02155173 A JP H02155173A
Authority
JP
Japan
Prior art keywords
electrolyte
solution
electrode
dispersed
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1204582A
Other languages
Japanese (ja)
Other versions
JP3062203B2 (en
Inventor
Sachiko Yoneyama
米山 祥子
Toshiyuki Osawa
利幸 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16370010&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02155173(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of JPH02155173A publication Critical patent/JPH02155173A/en
Application granted granted Critical
Publication of JP3062203B2 publication Critical patent/JP3062203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1516Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
    • G02F1/15165Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To enhance reliability in repeating and to make the formation of a uniform thin layer possible by dispersing uniform spherical particles in a solid electrolyte. CONSTITUTION:A solid electrolyte in which uniform spherical particles are dispersed is prepared in such a way that if the solid electrolyte solidified or gelled by heat or light is used, a solution in which spherical particles are dispersed is casted, then heat or light is irradiated to the solution. The reliability of an electrochemical element using this solid polymer electrolyte is enhanced by the existence of dispersed spherical substances. The formation of a thin film is made possible and a uniform thin electrolyte layer is easily obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電池、エレクトロクロミック素子、コンデン
サー等に有用な高分子固体電解質に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid polymer electrolyte useful for batteries, electrochromic devices, capacitors, and the like.

[従来の技術] 電気化学反応を利用した電池やエレクトロクロミック素
子等の電気化学素子の固体化が強く望まれている。
[Prior Art] There is a strong desire to solidify electrochemical devices such as batteries and electrochromic devices that utilize electrochemical reactions.

従来より、これらのデバイスは電解質溶液を使用してい
るため、液のもれや揮発等がおこり信頼性に問題があっ
た。これら耐漏液性、保存性を向上させる手段として、
電解質溶液のゲル化(特開昭82−5506) 、固体
化(特開昭83−58704)が検討されている。また
、高いイオン伝導性を有する高分子固体電解質が報告さ
れ、[P。
Conventionally, these devices have used electrolyte solutions, which have caused reliability problems due to leakage and volatilization of the solution. As a means to improve leakage resistance and storage stability,
Gelation (Japanese Unexamined Patent Publication No. 82-5506) and solidification (Japanese Unexamined Patent Publication No. 83-58704) of electrolyte solutions have been studied. In addition, a solid polymer electrolyte with high ionic conductivity has been reported [P.

1yver、14,589(1973)]上記の問題を
確実に解決する手段の1つとして、溶媒を含有しない高
分子固体電解質に関する研究も活発になされている。し
かしながら、ゲル状電解質は強度に欠けるため薄型の素
子に適用すると電極間の短絡や素子の破壊等がおこり易
い。また、高分子固体電解質に関しても一般に高いイオ
ン伝導性を有する材料は柔らかく自己保持性に欠ける傾
向があるため同様な問題がおこり易い。また素子の内部
抵抗を低くするためには電解質の薄層化が必要であり、
これは大きな課題である。これらの欠点を解決する手段
として、固体電解質中に多孔質体やフィラー等を一体化
させることにより電気化学素子の電極間の短絡等を解決
する方法が提案されている。(特開昭80−19587
8.60また薄層化の方法としてポリエチレンオキシド
の電極基板への蒸着なども試みられている。
1yver, 14, 589 (1973)] As one means for reliably solving the above problems, research on polymer solid electrolytes that do not contain solvents is also being actively conducted. However, since gel electrolytes lack strength, when applied to thin devices, short circuits between electrodes and destruction of the device are likely to occur. In addition, similar problems tend to occur with respect to solid polymer electrolytes, since materials that generally have high ionic conductivity tend to be soft and lack self-retention. Also, in order to lower the internal resistance of the device, it is necessary to make the electrolyte thinner.
This is a major challenge. As a means to solve these drawbacks, a method has been proposed in which a porous body, a filler, etc. are integrated into a solid electrolyte to solve problems such as short circuits between electrodes of an electrochemical element. (Unexamined Japanese Patent Publication No. 80-19587
8.60 Also, attempts have been made to deposit polyethylene oxide on the electrode substrate as a method of thinning the layer.

しかし前者の方法では均一な電解質層は得られず、エレ
クトロクロミック素子においては色ムラの原因となった
り、繰り返し信頼性は不十分である。
However, the former method does not provide a uniform electrolyte layer, causes color unevenness in electrochromic devices, and has insufficient repeat reliability.

また、後者においては均一化薄層化は可能であるものの
大面積化等による微短絡が生じたり、また製法も難しい
In the latter case, although it is possible to make the layer uniform and thin, micro short circuits may occur due to a large area, and the manufacturing method is also difficult.

電池においても従来より固体状の薄型電池の要求が高ま
っているが、電解質層を均一に薄膜化させるには従来の
方法では十分でない。
In the field of batteries as well, there has been an increasing demand for solid thin batteries, but conventional methods are not sufficient to uniformly thin the electrolyte layer.

[発明が解決しようとする課題] 本発明は、こうした実情に鑑み、固体状電解質を用いた
電気化学素子において高信頼性電気化学素子を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] In view of these circumstances, an object of the present invention is to provide a highly reliable electrochemical device using a solid electrolyte.

[課題を解決するための手段] 本発明者らは、上記した課題を解決するため、従来より
研究を重ねてきたが、この過程で繰返し使用する間の特
性の劣化は、素子における高分子固体電解質層の膜厚が
不均一であるため均一な電界がかからないことに起因す
るのではないかと推定し、なお研究を続けたところ、高
分子電解質に均一な球状粒子を9散させることが有効で
あることを見出した。また、本発明により膜の薄化が可
能となり、さらに均一な薄膜電解質層が容易に得られる
ようになった。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted extensive research, but in this process, the deterioration of characteristics during repeated use has been found in polymer solids in devices. We assumed that this was due to the fact that a uniform electric field was not applied due to the uneven thickness of the electrolyte layer, and as we continued our research, we found that it was effective to disperse uniform spherical particles into the polymer electrolyte. I discovered something. Furthermore, the present invention has made it possible to reduce the thickness of the membrane, making it easier to obtain a more uniform thin film electrolyte layer.

すなわち、本発明は少なくとも2つの電極間に固体状電
解質を有する電気化学素子において、固体電解質中に均
一な球状粒子を分散させたことを特徴とする電気化学素
子である。
That is, the present invention is an electrochemical device having a solid electrolyte between at least two electrodes, characterized in that uniform spherical particles are dispersed in the solid electrolyte.

本発明に使用する球状粒子の材質は、電子伝導性を持た
ないものでなくてはならない。さらにイオン伝導性を有
していれば、イオンの移動を妨げないので、素子特性を
低下させることはない。また、球状粒子がイオン伝導性
を有していれば電解質層に解離できる電解質塩のキャリ
アーイオン濃度を低下させないため、安定したイオンの
供給が可能となり、結果的に安定した素子特性が得られ
ることになる。
The material of the spherical particles used in the present invention must have no electronic conductivity. Furthermore, if it has ion conductivity, it will not impede the movement of ions and will not deteriorate the device characteristics. In addition, if the spherical particles have ionic conductivity, they will not reduce the carrier ion concentration of the electrolyte salt that can be dissociated into the electrolyte layer, making it possible to supply stable ions, resulting in stable device characteristics. become.

以上のように球状粒子の材質はイオン伝導性を有してい
る方が好ましいが、特にイオン伝導性を持たないもので
もよい。
As described above, it is preferable that the material of the spherical particles has ion conductivity, but it is also possible to use a material that does not have ion conductivity.

均一な球状粒子の材質を具体的にいえばプラスチック、
ガラス等である。例えばプラスチックではフェノール樹
脂、ジビニルベンゼン架橋体、ポリメチルメタクリレー
ト、ポリスチレン、ナイロン樹脂、ポリエチレン、ポリ
エチレンオキシド、ポリプロピレンオキシド、あるいは
これらの共重合、あるいはこれを側鎖に有する高分子等
が、また無機化合物ではソーダガラス、NASICON
 1LISICONなどのガラス、酸化アルミニウム、
二酸化チタンなどの微粒子があげられる。
Specifically speaking, the material of the uniform spherical particles is plastic.
Glass, etc. For example, plastics include phenol resin, divinylbenzene crosslinked product, polymethyl methacrylate, polystyrene, nylon resin, polyethylene, polyethylene oxide, polypropylene oxide, copolymers of these, or polymers having these in their side chains, and inorganic compounds. Soda glass, NASICON
Glass such as 1LISICON, aluminum oxide,
Examples include fine particles such as titanium dioxide.

さらにこれら球状粒子は球状を保持する範囲で微多孔質
であれば孔の内部もイオン伝導に寄与することができ好
ましい。これら粒子をエレクトロクロミック素子に応用
する場合は白色又は無色透明であればなおよい。
Furthermore, it is preferable that these spherical particles are microporous to the extent that they maintain their spherical shape, since the inside of the pores can also contribute to ion conduction. When applying these particles to electrochromic devices, it is preferable that they be white or colorless and transparent.

粒径は0.1〜50μmが好ましく、さらに好ましくは
0.5〜10μmである。従って固体状電解質の膜厚も
0.1〜50μ−の範囲内が適当である。
The particle size is preferably 0.1 to 50 μm, more preferably 0.5 to 10 μm. Therefore, the film thickness of the solid electrolyte is also suitably within the range of 0.1 to 50 .mu.-.

ここで均一とは、偏平率が0〜5%、球径分布が5%以
下であることが好ましい。
Here, uniformity preferably means that the oblateness is 0 to 5% and the sphere diameter distribution is 5% or less.

球状粒子の作成法は例えばプラスチックであれば乳化重
合、懸濁重合等で得る方法があげられる。また、ガラス
等では粒塊を粉砕して造粒する方法があげられる。さら
に、結晶成長を利用する方法もあり、これらに限定され
るものではない。
Examples of methods for producing spherical particles include methods such as emulsion polymerization and suspension polymerization in the case of plastics. In addition, for glass etc., a method of pulverizing agglomerates and granulating them can be mentioned. Furthermore, there are also methods that utilize crystal growth, and the method is not limited to these.

固体状電解質の膜中には球状粒子は一層で均一に分散さ
れており 1ma+ ’中に粒径に応じて2000個以
内の範囲で分散されている。例えば2〜3μ−の粒子で
は50〜200個ぐらいが適当である。密度としては、
O,1Vo1%〜50111o1%、好ましくは1Vo
1%〜20 Vo1%で調整すると良い。
The spherical particles are uniformly dispersed in a single layer in the solid electrolyte membrane, and up to 2000 particles are dispersed in 1 ma+' depending on the particle size. For example, about 50 to 200 particles of 2 to 3 μm are appropriate. As for the density,
O,1Vo1% to 50111o1%, preferably 1Vo
It is best to adjust it between 1% and 20 Vo1%.

上記の球状粒子を分散させる本発明で用いられる固体状
電解質はイオン伝導性が良好で、かつ電子伝導性の低い
材料であり、少なくともマトリックスとなる高分子とキ
ャリアとなる電解質塩とから構成されている。
The solid electrolyte used in the present invention for dispersing the above-mentioned spherical particles is a material with good ionic conductivity and low electronic conductivity, and is composed of at least a polymer serving as a matrix and an electrolyte salt serving as a carrier. There is.

さらに高沸点を有し、誘電率の高い有機化合物や低粘性
化合物添加してもよい。
Furthermore, an organic compound having a high boiling point and high dielectric constant or a low viscosity compound may be added.

電解液に電子線、光、熱等により硬化する例えばアクリ
ルモノマー、エポキシモノマー等をラジカル発生剤と共
に添加することによって作製されるゲル状または固体状
電解質も含まれる。
Also included are gel-like or solid electrolytes produced by adding, for example, acrylic monomers, epoxy monomers, etc., which are cured by electron beams, light, heat, etc., together with radical generators, to electrolytic solutions.

高分子マトリックスとしては例えばポリアクリロニトリ
ル、ポリビニリデンフルオライド、ポリエチレンオキシ
ド、ポリエチレンイミン、あるいは −+Cl1z C
1(0+ (R−H5C0z )、−+ CH2C11
2Nil+を主鎖または側鎖に含むものがあげられる。
Examples of the polymer matrix include polyacrylonitrile, polyvinylidene fluoride, polyethylene oxide, polyethyleneimine, or -+Cl1z C
1(0+ (R-H5C0z), -+ CH2C11
Examples include those containing 2Nil+ in the main chain or side chain.

本発明においては特にポリエチレンオキシド架橋体を用
いたときに良好な特性が得られた。
In the present invention, particularly good characteristics were obtained when a crosslinked polyethylene oxide was used.

高分子固体電解質のキャリアとなる電解質塩としては、
SCN″″ CI−Br−1−BF4−  PF5− 
 AsFi−Cl04SbF  6−  、CF2 S
O3−B(CH3)4B  (C2H5)  4−  
 B  (C3H7)  4B (C4H9)−BCC
6Hs)4−等のアニオンと、Li2 Na”  K”
等のアルカリ金属カチオン、(C4HI)4N”  (
C2H5)4N+等の有機カチオン等のカチオンとから
なる電解質塩が挙げられる。
Electrolyte salts that serve as carriers for polymer solid electrolytes include:
SCN″″ CI-Br-1-BF4- PF5-
AsFi-Cl04SbF6-, CF2S
O3-B(CH3)4B (C2H5) 4-
B (C3H7) 4B (C4H9)-BCC
6Hs) 4- and other anions, and Li2 Na”K”
Alkali metal cations such as (C4HI)4N'' (
Examples include electrolyte salts consisting of cations such as organic cations such as C2H5)4N+.

固体状電解質に添加する化合物としては、ポリエチレン
グリコール、モノメトキシポリエチレングリコール、ジ
メトキシポリエチレングリコール、ポリプロピレングリ
コール、ジメトキシエタン、エトキシメトキシエタン、
ジェトキシエタン、ジエチレングリコールジメチルエー
テル、ジエチレングリコールジエチルエーテル、ジエチ
レングリコールジブチルエーテル、テトラヒドロフラン
およびその誘導体などのエーテル系化合物、プロピレン
カーボネート、エチレンカーボネート、γ−ブチロラク
トン、1.3−ジオキソラン、4−メチルジオキソラン
、スルホラン、3−メチルスルホラン、ジメチルホルム
アミド、ジメチルアセトアミド等が挙げられる。また、
2種類以上の溶媒を混合しても良い。これら化合物を添
加することにより、イオン伝導性は著しく増大した。
Compounds added to the solid electrolyte include polyethylene glycol, monomethoxypolyethylene glycol, dimethoxypolyethylene glycol, polypropylene glycol, dimethoxyethane, ethoxymethoxyethane,
Ether compounds such as jetoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, tetrahydrofuran and its derivatives, propylene carbonate, ethylene carbonate, γ-butyrolactone, 1,3-dioxolane, 4-methyldioxolane, sulfolane, 3-methylsulfolane , dimethylformamide, dimethylacetamide and the like. Also,
Two or more types of solvents may be mixed. By adding these compounds, the ionic conductivity was significantly increased.

本発明の均一な球状粒子を分散した固体状電解質を作製
するには例えば以下の方法が用いられる。
For example, the following method is used to produce the solid electrolyte in which uniform spherical particles of the present invention are dispersed.

固体状電解質が熱あるいは光等により固化またはゲル化
するのであれば球状粒子を分散させた該溶液をキャステ
ィングしたあと熱、光を照射すれば良い。さらに、固体
状電解質がPEO等の高分子固体電解質からなるもので
あれば、高分子固体電解質を溶かした溶液に球状粒子を
分散させ、キャスティングすれば良い。電解質を架橋さ
せるにはポリマー中へ架橋性を有する官能基を導入する
か、あるいは架橋剤を添加すれば良い。この場合架橋は
キャスティング後に行う必要がある。
If the solid electrolyte is solidified or gelled by heat or light, it is sufficient to cast the solution in which spherical particles are dispersed and then irradiate it with heat or light. Furthermore, if the solid electrolyte is made of a solid polymer electrolyte such as PEO, spherical particles may be dispersed in a solution containing the solid polymer electrolyte and then cast. To crosslink the electrolyte, a functional group having crosslinking properties may be introduced into the polymer, or a crosslinking agent may be added. In this case crosslinking must be carried out after casting.

本発明の電気化学素子を構成する電極、特に機能を有す
る電極としてはタングステン酸等のクロミック材料、二
酸化マンガン、二硫化チタン、リチウム等の電池用電極
材料等の無機材料の他、導電性高分子材料等の有機材料
が挙げられる。
Electrodes constituting the electrochemical device of the present invention, particularly functional electrodes, include chromic materials such as tungstic acid, inorganic materials such as battery electrode materials such as manganese dioxide, titanium disulfide, and lithium, and conductive polymers. Examples include organic materials such as materials.

本発明の均一な球状粒子を分散した固体状電解質は電気
化学素子にセパレーターとして用いることもできる。こ
の場合セパレーター自身がイオン伝導性を有するため素
子の内部インピーダンスを低下させることができる。又
、特にリチウム電池に応用すると、リチウムのデンドラ
イトが従来のものにくらべ成長しにくいため、繰り返し
寿命の向上に寄与できる。
The solid electrolyte in which uniform spherical particles of the present invention are dispersed can also be used as a separator in electrochemical devices. In this case, since the separator itself has ion conductivity, the internal impedance of the element can be reduced. In addition, especially when applied to lithium batteries, lithium dendrites are more difficult to grow than conventional ones, so it can contribute to improving the cycle life.

次に本発明の均一な球状粒子を分散した固体状電解質を
用い、さらに導電性高分子を活物質として用いた電極と
組合せて電気化学素子を作成した。
Next, an electrochemical device was created by using the solid electrolyte in which the uniform spherical particles of the present invention were dispersed and further combining it with an electrode using a conductive polymer as an active material.

上記導電性高分子は化学重合、電解重合、プラズマ重合
により合成することができるが特に電解重合法により製
造する場合は、通常、電解電極上に高分子材料が膜状で
均一に生成するので、電解電極として集電体を用いれば
、電極活物質の製造と同時に電極を得ることができ、後
の工程上都合が良い。
The above-mentioned conductive polymer can be synthesized by chemical polymerization, electrolytic polymerization, or plasma polymerization, but especially when manufactured by electrolytic polymerization, the polymer material is usually formed uniformly in the form of a film on the electrolytic electrode. If a current collector is used as an electrolytic electrode, the electrode can be obtained at the same time as the electrode active material is produced, which is convenient for later steps.

電解重合法は、例えばJ、EIectrochem、S
oc、。
Electrolytic polymerization methods are described, for example, in J. EIectrochem, S.
oc,.

130.1508(19g3)で示されている。単量体
を電解質溶液あるいは固体電解質内に添加し2つの電極
を浸漬、あるいは接触させて電解をがけることにより陽
極酸化重合、または陰極還元重合がおこる。電解質と溶
媒の代りに固体電解質中で電解重合を行うと固体電解質
と導電性高分子の複合体を得ることも可能である。また
、化学重合法は、例えばConductjng Pol
ygers、、105(1987)などに示されている
It is shown as 130.1508 (19g3). Anodic oxidation polymerization or cathodic reduction polymerization occurs by adding a monomer to an electrolyte solution or solid electrolyte and applying electrolysis by dipping or bringing two electrodes into contact. It is also possible to obtain a composite of a solid electrolyte and a conductive polymer by performing electrolytic polymerization in a solid electrolyte instead of an electrolyte and a solvent. In addition, chemical polymerization methods include, for example, Conductjng Pol
ygers, 105 (1987).

上記電気化学素子を電池とした場合、該電池はアニオン
またはカチオンによって導電性高分子がドープされてエ
ネルギーを貯え、脱ドープによって外部回路を通じてエ
ネルギーを放出するものである。また、本発明の電池に
おいては、このドープ−脱ドープが可逆的に行われるの
で、二次電池として使用することができる。
When the electrochemical device is a battery, the battery stores energy by doping a conductive polymer with anions or cations, and releases energy through an external circuit by dedoping. Furthermore, in the battery of the present invention, this doping-dedoping is performed reversibly, so it can be used as a secondary battery.

本発明の固体状電解質は均一な薄膜が作製可能なため、
特に薄型電池に応用すると、両電極間に均一な電界をか
けることが可能となり、また、薄膜化による微短絡も防
ぐことができるため電池電極の大面積化薄型化に有効で
ある。
Since the solid electrolyte of the present invention allows production of a uniform thin film,
In particular, when applied to thin batteries, it is possible to apply a uniform electric field between both electrodes, and it is also possible to prevent minute short circuits due to thinning the film, making it effective for making battery electrodes larger in area and thinner.

また、本発明で作製したエレクトロクロミック素子はド
ープ、脱ドープにより色変化を呈する導電性高分子の特
性を利用したものである。
Furthermore, the electrochromic device produced according to the present invention utilizes the property of conductive polymers that exhibit color changes upon doping and dedoping.

本発明の固体状電解質を用いることにより、微短絡がな
く、均一に電界がかかるため大面積化に有効である。
By using the solid electrolyte of the present invention, there is no micro short circuit and an electric field is uniformly applied, which is effective for increasing the area.

本発明で用いられる導電性高分子はビロールチオフェン
、フラン、ベンゼン、アズレン、アニリン、ジフェニル
ベンジジン、ジフェニルアミン、トリフェニルアミンあ
るいはこれら誘導体を重合した導電性あるいは半導電性
高分子があげられる。これら重合体は、重合と同時に電
解質アニオンと錯体を形成し、酸化還元反応にともなっ
てアニオンが出入りするが、カチオンと錯体を形成する
ポリマーとしてはポリチオフェン、ポリフェニレンの他
ポリフェニレンビニレン、ポリフェニレンキシリレンな
どがあげられ、これらはイオンのドーピングにより錯体
を形成して高電気伝導度となり、エネルギーを蓄積する
ことができる。
Examples of the conductive polymer used in the present invention include virolthiophene, furan, benzene, azulene, aniline, diphenylbenzidine, diphenylamine, triphenylamine, and conductive or semiconductive polymers obtained by polymerizing derivatives thereof. These polymers form a complex with an electrolyte anion at the same time as they are polymerized, and the anion moves in and out as a result of redox reactions.Polymers that form complexes with cations include polythiophene, polyphenylene, polyphenylene vinylene, polyphenylene xylylene, etc. These compounds form complexes through ion doping, resulting in high electrical conductivity and can store energy.

導電性高分子と錯体を形成するイオンとしては例えば、
ClO4−PF5−  ASF6SbFh−BF4−、
パラトルエンスルホン酸アニオン、ニトロベンゼンスル
ホン酸アニオン、Fe (CN)b−などの錯アニオン
、水素、Na”  K”  Li+などのアルカリ金属
、(CH3)4 N”   (C2H5)4 N”(C
3H7)4N+などのアンモニウムカチオンあるいはA
lCl3 FeC1a CaC13などのルイス酸等をあげることができる。
Examples of ions that form complexes with conductive polymers include:
ClO4-PF5- ASF6SbFh-BF4-,
Paratoluenesulfonate anion, nitrobenzenesulfonate anion, complex anions such as Fe (CN)b-, hydrogen, alkali metals such as Na"K"Li+, (CH3)4N"(C2H5)4N"(C
3H7) Ammonium cations such as 4N+ or A
Examples include Lewis acids such as lCl3 FeC1a CaC13.

本発明において素子を構成する導電性高分子のドーパン
トとしては高分子固体電解質中のイオンと同種のものが
望ましい。したがって固体電解質中のイオンと同種のド
ーパントを用いて導電性高分子を合成し、そのまま素子
に用いるか、または−旦異種のイオンを用いて重合して
脱ドーピング処理をし、さらに固体電解質中のイオンと
同種のドーパントを再びドーピングして素子に用いるの
が好ましい。脱ドーピング処理は化学的脱ドーピングと
電気化学的脱ドーピングがあるがどちらの方法を用いて
も良い。
In the present invention, the dopant for the conductive polymer constituting the device is preferably the same type of ion as the ion in the solid polymer electrolyte. Therefore, conductive polymers can be synthesized using dopants of the same type as the ions in the solid electrolyte and used as they are in devices, or they can be polymerized and dedoped using ions of a different type, and then It is preferable to use the device by doping again with a dopant of the same type as the ion. The dedoping treatment includes chemical dedoping and electrochemical dedoping, and either method may be used.

素子を構成するもう1つの電極としてはカチオンをドー
プすることのできるポリアセチレン、ポリチオフェン、
ポリパラフェニレンの他、ポリフェニレンビニレン、ポ
リフェニレンキシリレン等の導電性高分子、L t、N
aSKSAg、Zn、Al5Cu等の金属、あるいはL
iとAI% Mg% S tSPb、Gas In等と
の合金等を挙げることができる。
Another electrode constituting the device is polyacetylene, polythiophene, which can be doped with cations,
In addition to polyparaphenylene, conductive polymers such as polyphenylene vinylene and polyphenylene xylylene, L t, N
Metals such as aSKSAg, Zn, Al5Cu, or L
Examples include alloys of i and AI% Mg% S tSPb, Gas In, and the like.

これらの導電性高分子、メタルはそれ自身が集電機能を
有しているが、Nj、AI、Pt1Au等の金属、ステ
ンレス鋼等の合金、SnO2、InzOz等の金属、炭
素体、ポリピロールなどの高電気伝導度を持つ集電材料
を圧着、あるいは蒸着、無電解メツキ等により密着し、
集電効率を向上させることが好ましい。
These conductive polymers and metals themselves have a current collecting function, but metals such as Nj, AI, Pt1Au, alloys such as stainless steel, metals such as SnO2, InzOz, carbon bodies, polypyrrole, etc. A current collecting material with high electrical conductivity is adhered by pressure bonding, vapor deposition, electroless plating, etc.
It is preferable to improve current collection efficiency.

[実施例] 以下に実施例を挙げ、本発明を更に詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 以下の手順で4層積層12Vの電池を作製した。Example 1 A 4-layer laminated 12V battery was fabricated using the following procedure.

lOg国のアルミニウム基板上に金を1000人、次い
でリチウムを1000人蒸着した。この上に以下の組成
よりなる溶液をスプレー式にふきつけて成膜させた。該
溶液とはメチルエチルケトン10g中にセラミック球体
(平均粒子径2μl11)を2g分散させ、ここにPE
010g 、 L i BF40.85g 、ジブチル
錫ジラウレート0.01g、、TDl 0、l15gを
溶解させたものである。該溶液から電解質層を成膜した
あと、70℃で20分加熱し、PEOを架橋させた。次
に電解質層の上にプラズマ重合法により、ポリピロール
を1000人成長させた。さらにこの上に金、リチウム
、電解質、ポリピロールの順に積層して合計4セルから
なる12V級電池を作成した(第1図)。
1,000 people deposited gold and then 1,000 people deposited lithium on aluminum substrates in Japan. A solution having the following composition was sprayed onto this to form a film. This solution consists of dispersing 2 g of ceramic spheres (average particle size 2 μl) in 10 g of methyl ethyl ketone, and then dispersing PE into 10 g of methyl ethyl ketone.
010 g, L i BF 40.85 g, dibutyltin dilaurate 0.01 g, TDl 0,1 15 g were dissolved. After forming an electrolyte layer from the solution, it was heated at 70° C. for 20 minutes to crosslink PEO. Next, 1000 polypyrroles were grown on the electrolyte layer by plasma polymerization. Furthermore, gold, lithium, electrolyte, and polypyrrole were laminated in this order to create a 12V class battery consisting of a total of 4 cells (Figure 1).

この電池の厚さXを求めた。また、15Vで定電圧充電
し、理論充電量に達した後のもれ電流を’111定した
。また、10V〜15vノ間テO,O1mAテ充放電試
験を行い、正極活物質あたりの放電容量を求めた。
The thickness X of this battery was determined. In addition, constant voltage charging was performed at 15 V, and the leakage current after reaching the theoretical charge amount was constant. In addition, a charge/discharge test was conducted between 10 V and 15 V at 0 and 1 mA to determine the discharge capacity per positive electrode active material.

実施例2 アニリン0.5Mを含む1.5N硫酸水溶液中で反応極
としてITOガラス電極を用いて1mA/C鳳2の定電
流によりアニリンの重合を行った。
Example 2 Aniline was polymerized in a 1.5N aqueous sulfuric acid solution containing 0.5M of aniline at a constant current of 1 mA/C using an ITO glass electrode as a reaction electrode.

通電量は3C/cs 2とした。得られた電極を流水で
充分洗浄したのち、0.2N硫酸中で−0,4VvsS
、C,E、まで電位をかけて充分に脱ドーピングを行っ
た。流水で充分洗浄したのち、3.5 MのLiBF4
を溶かしたプロピレンカーボネート溶液中でリチウムに
対して3.8Vまで電位をか・けてドーピングを行った
。これを乾燥させたのち、該電極上に球状粒°子を分散
させた高分子固体電解質を溶液からキャスティングした
The amount of current applied was 3C/cs2. After thoroughly washing the obtained electrode with running water, -0.4V vs S in 0.2N sulfuric acid.
, C, and E to perform sufficient dedoping. After thoroughly washing with running water, add 3.5 M LiBF4.
Doping was carried out by applying a potential of 3.8 V to lithium in a propylene carbonate solution in which lithium was dissolved. After drying this, a solid polymer electrolyte with spherical particles dispersed therein was cast from the solution onto the electrode.

キャスティング溶液はメチルエチルケトン10g中に乳
化重合により合成したイオン伝導性の球状ポリエチレン
グリコールジアクリレート重合体(平均粒子径5μff
1)を2g分散させ、ここにポリエチレンオキシドトリ
オール(PEO)  lOg。
The casting solution was an ion-conductive spherical polyethylene glycol diacrylate polymer (average particle size 5 μff) synthesized by emulsion polymerization in 10 g of methyl ethyl ketone.
Disperse 2g of 1) and add 10g of polyethylene oxide triol (PEO) thereto.

L i B F 4 0.85g1ジブチル錫ジラウレ
ート0.01g 、  )リレン−284−ジイソシア
ネート(TDI)  0.85gを溶解して調製した。
It was prepared by dissolving 0.85 g of L i B F 4 , 0.01 g of dibutyltin dilaurate, and 0.85 g of rylene-284-diisocyanate (TDI).

該溶液を複合電極上にアプリケーターにより成膜し、こ
の上に10μIの金属リチウムホイルとガラス電極を圧
着して第2図に示す電池を作成し電極面に垂直方向に1
kg重の圧力をかけながら、70℃で20分加熱してP
EOを架橋させた。この電池の厚さXを測定した。この
電池を3.7■で定電圧充電し、理論充電量に達した後
のもれ電流値を測定した。また、0.01mA/Cm 
”の定電流で2.5〜3.7vの間で充放電試験を行い
、正極活物質あたりの放電容量を求めた。
The solution was formed into a film on the composite electrode using an applicator, and a 10 μI metal lithium foil and a glass electrode were pressed onto this to create the battery shown in Figure 2.
Heat at 70°C for 20 minutes while applying a kg of pressure.
EO was crosslinked. The thickness X of this battery was measured. This battery was charged at a constant voltage of 3.7μ, and the leakage current value was measured after reaching the theoretical charge amount. Also, 0.01mA/Cm
A charge/discharge test was conducted at a constant current of 2.5 to 3.7 V to determine the discharge capacity per positive electrode active material.

実施例3 実施例2においてキャスティング溶液として以下のもの
を用いて電極上にキャスティングした。
Example 3 In Example 2, the following casting solution was used to cast onto the electrode.

キャスティング溶液はプロピレンカーボネート tog
中にミクロバールS P −205を2g分散させ、コ
コニL iB F 40 、9gを加え、H”CI:加
熱した。ここにポリフッ化ビニリデンを加えて調製した
。成膜後10μmのリチウム金属ホイルを圧着し、電極
面と垂直方向に1kg重の圧力をかけながら再び80℃
に加熱し、電池を作成した。
Casting solution is propylene carbonate tog
2 g of Microvar SP-205 was dispersed in the solution, 9 g of Coconi LiB F 40 was added, and H"CI was heated. Polyvinylidene fluoride was added thereto to prepare the film. After film formation, a 10 μm lithium metal foil was added. Crimp and heat to 80℃ again while applying 1kg of pressure in the direction perpendicular to the electrode surface.
Heated it to create a battery.

評価は実施例2と同様に行った。Evaluation was performed in the same manner as in Example 2.

実施例4 実施例2においてポリアニリン重合時の通電量を30i
C/cm2とし、キャスティング溶液を以下のものを用
いて電極上にキャスティングした。
Example 4 In Example 2, the amount of current applied during polyaniline polymerization was set to 30i.
C/cm2, and the casting solution was cast onto the electrode using the following:

キャスティング溶液はプロピレンカーボネート7g51
,2−ジメトキシエタン3gの混合溶媒にセラミック球
体(平均粒子径2μm)を2g分散させ、ここにL i
 B F 40.9gを加え、さらにゲル化剤としてジ
ビニルベンゼンを0.1g添加して調製した。該溶液を
電極上にキャスティングし、50”Cで1分加熱した後
、リチウムを1g厘蒸着したガラス電極を積層し、さら
に50℃で20分間加熱して溶液をゲル化させて電池を
作成した。評価は実施例1と同様に行った。
Casting solution is propylene carbonate 7g51
, 2-dimethoxyethane, 2 g of ceramic spheres (average particle size 2 μm) were dispersed in a mixed solvent of 3 g of 2-dimethoxyethane, and Li
It was prepared by adding 40.9 g of B F and further adding 0.1 g of divinylbenzene as a gelling agent. The solution was cast onto an electrode, heated at 50"C for 1 minute, a glass electrode on which 1 g of lithium was deposited was laminated, and the solution was gelled by further heating at 50"C for 20 minutes to create a battery. .Evaluation was performed in the same manner as in Example 1.

実施例5 実施例2においてポリアニリン重合量を30mC/e■
2とし、得られたポリアニリン電極上に以下の溶液を用
いて電解質層を同様にキャスティングした。
Example 5 In Example 2, the amount of polyaniline polymerized was 30 mC/e■
2, and an electrolyte layer was similarly cast on the obtained polyaniline electrode using the following solution.

キャスティング溶液は、メチルエチルケトン10g中に
セラミック球体(平均粒子径2μ畷)を2g分散させ、
ここにPE010g5LiBF*0.89g 、ジブチ
ル錫ジラウレート0.01g%TD10.85g 、プ
ロピレンカーボネート1.0gを溶解して調製した。該
溶液を複合電極上にアプリケーターにより成膜し、70
℃で20分加熱してPEOを架橋させた。次にポリアニ
リン電極と対向した固体電解質表面にリチウムを1μ−
蒸着してポリアニリン−Li電池を作製した。
The casting solution was prepared by dispersing 2 g of ceramic spheres (average particle size 2 μm) in 10 g of methyl ethyl ketone.
It was prepared by dissolving PE010g5LiBF*0.89g, dibutyltin dilaurate 0.01g% TD10.85g, and propylene carbonate 1.0g. The solution was formed into a film on the composite electrode using an applicator, and
The PEO was crosslinked by heating at ℃ for 20 minutes. Next, 1μ− of lithium was applied to the solid electrolyte surface facing the polyaniline electrode.
A polyaniline-Li battery was fabricated by vapor deposition.

評価は実施例1と同様にして行った。Evaluation was performed in the same manner as in Example 1.

実施例6 実施例2で示したポリアニリン電極と、実施例2で示し
たキャスティング溶液より 1,5μlに成膜した架橋
膜をセパレーターとし、負極としてlOg廁の金属リチ
ウムホイルを用いて電池を作製した。電解液としてはプ
ロピレンカーボネート/ジメトキシエタン−7/3の混
合溶液に4.4MのL i BF4を溶解させたものを
用いた。評価は実施例1と同様に行った。
Example 6 A battery was fabricated using the polyaniline electrode shown in Example 2 and a crosslinked film formed in a volume of 1.5 μl from the casting solution shown in Example 2 as a separator, and a metal lithium foil of 1Og as a negative electrode. . As the electrolytic solution, 4.4M Li BF4 was dissolved in a mixed solution of propylene carbonate/dimethoxyethane-7/3. Evaluation was performed in the same manner as in Example 1.

実施例7 正極活物質として二硫化チタンを用いて、他は実施例5
と同様に電池を作製し、評価を行った。正極は10重量
部のTi5z、1重量部のカーボンブラックからなる混
合粉体を10重量%となるようにトルエンに分散させた
溶媒よりキャスチングした。
Example 7 Titanium disulfide was used as the positive electrode active material, and the rest was the same as Example 5.
A battery was prepared and evaluated in the same manner as above. The positive electrode was cast from a solvent in which a mixed powder consisting of 10 parts by weight of Ti5z and 1 part by weight of carbon black was dispersed in toluene at a concentration of 10% by weight.

実施例8 1Mの塩酸に0.8Mとなるようにアニリンを溶かし、
ここにIMの塩酸に0.25Mとなるように硫酸アンモ
ニウムを溶解した溶液を滴下し、10℃で2時間反応さ
せてポリアニリンを重合した。これを20%ヒドラジン
メタノール溶液中で一晩撹拌して還元した。得られたポ
リアニリン30gとカーボンブラック3gを以下の電解
質溶液に分散し、ガラス電極基板上にキャスティングし
た。電解質溶液はメチルエチルケトン10g中1:PE
010g 、 L i BF40.89g 、ジブチル
すずジラウレート0.01g 、 T D 10.85
g 、プロピレンカーボネートIgを溶解して調製した
。該ポリアニリン/固体状電解質をアプリケーターを用
いて30μlにキャスティングし、70℃で20分加熱
した。この上に先の電解質溶液にミクロパールSP−2
05を2g分散させたものをキャスティングし、さらに
70℃で20分加熱した後、30μ−のリチウムホイル
、ガラス電極を積層して、第2図の電池を作製した。評
価は同様に行った。
Example 8 Dissolve aniline in 1M hydrochloric acid to a concentration of 0.8M,
A solution of ammonium sulfate dissolved in IM hydrochloric acid to a concentration of 0.25 M was added dropwise thereto, and the mixture was reacted at 10° C. for 2 hours to polymerize polyaniline. This was reduced by stirring overnight in a 20% hydrazine methanol solution. 30 g of the obtained polyaniline and 3 g of carbon black were dispersed in the following electrolyte solution and cast onto a glass electrode substrate. The electrolyte solution is 1:PE in 10g of methyl ethyl ketone.
010g, L i BF40.89g, dibutyltin dilaurate 0.01g, T D 10.85
g, prepared by dissolving propylene carbonate Ig. The polyaniline/solid electrolyte was cast in 30 μl using an applicator and heated at 70° C. for 20 minutes. On top of this, add Micropearl SP-2 to the previous electrolyte solution.
After casting 2 g of 05 dispersed therein and further heating at 70° C. for 20 minutes, a 30 μ-lithium foil and a glass electrode were laminated to produce the battery shown in FIG. 2. Evaluation was performed in the same manner.

実施例9 厚さ75μIのポリエステルフィルムに10cmX3G
cmテI T Oを蒸着した。この■TO′rIs極上
に50−Mの過塩素酸テトラブチルアンモニウムを溶か
したプロピレンカーボネート溶液中で3−メチルチオフ
ェンをlOLmAIC112の定電流電解により 35
fllClC112電荷を投入して重合させた。次に該
電極上にスプレ一方式に電解質層を積層した。電解質溶
液は、メチルエチルケトン10g中にミクロパールSP
−214を2g分散させ、ここにPEOlOg、 KC
1041,24g 、ジブチル錫ジラウレート 0.0
1g、 T D I O,85gを溶解して調製した。
Example 9 10cm x 3G on a polyester film with a thickness of 75μI
cm of ITO was deposited. 3-Methylthiophene was added to this TO'rIs electrode in a propylene carbonate solution containing 50M tetrabutylammonium perchlorate by constant current electrolysis using 1OLmAIC112.
A fllClC112 charge was introduced to polymerize. Next, an electrolyte layer was laminated on the electrode by spraying. The electrolyte solution is Micropearl SP in 10g of methyl ethyl ketone.
2g of -214 was dispersed, and PEOlOg, KC
1041.24g, dibutyltin dilaurate 0.0
It was prepared by dissolving 1g of TDIO and 85g of TDIO.

成膜後70℃で20分間加熱してPEOを架橋させ、ポ
リ3メチルチオフエンと対向した固体電解質表面に金を
1000 A蒸着して、エレクトロクロミック素子を作
製した。該素子は±5、Ovでドープ、脱ドープ操作を
行い、色変化を観察した。
After film formation, PEO was crosslinked by heating at 70° C. for 20 minutes, and gold was vapor-deposited at 1000 A on the surface of the solid electrolyte facing poly-3-methylthiophene to produce an electrochromic device. The device was subjected to doping and dedoping operations at ±5 Ov, and color changes were observed.

実施例10 実施例9における電解質溶液としてプロピレンカーボネ
ート10g中にミクロパール5P−214を2gを分散
させ、ここにKClO4を1.32g加え80℃に加熱
し、ここにポリフッ化ビニリデンを加えて調製したもの
を用いて、ポリ 3−メチルチオフェン膜上にキャステ
ィングした。この上に金を1000人蒸着したガラス電
極を重ね、さらに70℃で20分加熱して電極と固体状
電解質との密着性を高め、第3図に示すEC素子を作製
した。評価は同様に行った。
Example 10 As the electrolyte solution in Example 9, 2 g of Micropearl 5P-214 was dispersed in 10 g of propylene carbonate, 1.32 g of KClO4 was added thereto, heated to 80°C, and polyvinylidene fluoride was added thereto. It was cast onto a poly 3-methylthiophene film using A glass electrode on which 1,000 gold particles had been vapor-deposited was placed on top of this, and further heated at 70° C. for 20 minutes to improve the adhesion between the electrode and the solid electrolyte, thereby producing the EC device shown in FIG. 3. Evaluation was performed in the same manner.

比較例1 実施例1において電解質中に球状粒子を含まない以外は
全く同様な電池を作製し、評価を行った。
Comparative Example 1 A battery completely similar to Example 1 except that the electrolyte did not contain spherical particles was prepared and evaluated.

比較例2  EC素子の作製 実施例9で示した電極上に球状粒子を含まない高分子固
体電解質を溶液からキャスティングした。
Comparative Example 2 Preparation of EC Device A solid polymer electrolyte containing no spherical particles was cast from a solution onto the electrode shown in Example 9.

キャスティング溶液はPEOIOg。The casting solution is PEOIOg.

K CI O41,24g 、ジブチル錫ジラウレート
0.01g 、 T D I 0.85gをメチルエチ
ルケトンtogに溶かして調製した。該溶液を複合電極
を重ね、電極面と垂直方向に1kg重の圧力をかけなが
ら70℃で20分間加熱してPEOを架橋させた。得ら
れたエレクトロクロミック素子(3cmx 3cm)は
、同様に評価を行った。
It was prepared by dissolving 1.24 g of K CI O4, 0.01 g of dibutyltin dilaurate, and 0.85 g of T D I in methyl ethyl ketone tog. The solution was stacked on a composite electrode and heated at 70° C. for 20 minutes while applying a pressure of 1 kg in a direction perpendicular to the electrode surface to crosslink PEO. The obtained electrochromic device (3 cm x 3 cm) was similarly evaluated.

上記各実施例、比較例の評価結果を表1.2.3に示す
The evaluation results of each of the above examples and comparative examples are shown in Table 1.2.3.

表−1 注 PEO;ポリエチレンオキシド  DME ;ジメ
トキシエタンPPy:ポリビロール      Pc:
プロピレンカーボネートPAn :ポリアニリン   
   γ−BL−γ−ブチロラクトンP3MeT:ポリ
3−メチルチオフェンPVDF :ポリふっ化ビニリデ
ン 表−2 ■)正極活物質1gあたりの放電容量 2)コイン型電池CR201B実装後の放電容量表−5
(EC素子の評価) [発明の効果] 以上説明したように、本発明の固体高分子電解質は、そ
の中に分散された粒子状物質の存在により、これを用い
た電気化学素子の信頼性を顕著に改善することができる
Table-1 Note PEO; Polyethylene oxide DME; Dimethoxyethane PPy: Polyvirol Pc:
Propylene carbonate PAn: polyaniline
γ-BL-γ-Butyrolactone P3MeT: Poly 3-methylthiophene PVDF: Polyvinylidene fluoride Table-2 ■) Discharge capacity per 1 g of positive electrode active material 2) Discharge capacity after mounting coin-type battery CR201B Table-5
(Evaluation of EC device) [Effect of the invention] As explained above, the solid polymer electrolyte of the present invention improves the reliability of an electrochemical device using the solid polymer electrolyte due to the presence of particulate matter dispersed therein. can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1における二次電池の構成を説明する図
、第2図は実施例8における二次電池の構成を説明する
図、第3図は実施例10におけるEC素子の構成を説明
する図。
FIG. 1 is a diagram for explaining the configuration of the secondary battery in Example 1, FIG. 2 is a diagram for explaining the configuration of the secondary battery in Example 8, and FIG. 3 is a diagram for explaining the configuration of the EC element in Example 10. Figure to do.

Claims (1)

【特許請求の範囲】[Claims] (1)少くとも2つの電極間に固体状電解質を有する電
気化学素子において、固体電解質中に均一な球状粒子を
分散させたことを特徴とする電気化学素子。
(1) An electrochemical device having a solid electrolyte between at least two electrodes, characterized in that uniform spherical particles are dispersed in the solid electrolyte.
JP01204582A 1988-08-09 1989-08-09 Electrochemical element Expired - Lifetime JP3062203B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19717388 1988-08-09
JP63-197173 1988-08-09

Publications (2)

Publication Number Publication Date
JPH02155173A true JPH02155173A (en) 1990-06-14
JP3062203B2 JP3062203B2 (en) 2000-07-10

Family

ID=16370010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01204582A Expired - Lifetime JP3062203B2 (en) 1988-08-09 1989-08-09 Electrochemical element

Country Status (1)

Country Link
JP (1) JP3062203B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276164A (en) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd Solid electrolyte thin film
JP2009283581A (en) * 2008-05-21 2009-12-03 Nichicon Corp Driving electrolyte for electrolytic capacitor
JP2015111559A (en) * 2013-11-06 2015-06-18 ダイキン工業株式会社 Sodium secondary battery
CN109873195A (en) * 2017-12-04 2019-06-11 肖特股份有限公司 Lithium ion conduction composite material and the method that lithium ion conductor is prepared by it
JP2019139153A (en) * 2018-02-14 2019-08-22 株式会社デンソー Electro-optic element and method for manufacturing the same
JP2019139154A (en) * 2018-02-14 2019-08-22 株式会社デンソー Electrochromic material and production method of the same
JP2020528203A (en) * 2017-09-12 2020-09-17 エルジー・ケム・リミテッド Polymer electrolyte for secondary batteries and lithium secondary batteries containing them

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003685B2 (en) 2006-11-08 2012-08-15 コニカミノルタホールディングス株式会社 Display element
WO2008146573A1 (en) 2007-05-25 2008-12-04 Konica Minolta Holdings, Inc. Method for production of display element
US8049948B2 (en) 2007-06-08 2011-11-01 Konica Minolta Holdings, Inc. Process for producing electrochemical display element and electrochemical display element
EP3145018B1 (en) * 2015-09-16 2018-03-28 Kabushiki Kaisha Toshiba Secondary battery, composite electrolyte, battery pack, and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276164A (en) * 1989-04-18 1990-11-13 Matsushita Electric Ind Co Ltd Solid electrolyte thin film
JP2009283581A (en) * 2008-05-21 2009-12-03 Nichicon Corp Driving electrolyte for electrolytic capacitor
JP2015111559A (en) * 2013-11-06 2015-06-18 ダイキン工業株式会社 Sodium secondary battery
JP2020528203A (en) * 2017-09-12 2020-09-17 エルジー・ケム・リミテッド Polymer electrolyte for secondary batteries and lithium secondary batteries containing them
US11539073B2 (en) 2017-09-12 2022-12-27 Lg Energy Solution, Ltd. Polymer electrolyte for secondary battery comprising lithium salt and polymer and lithium secondary battery including the same
CN109873195A (en) * 2017-12-04 2019-06-11 肖特股份有限公司 Lithium ion conduction composite material and the method that lithium ion conductor is prepared by it
JP2019139153A (en) * 2018-02-14 2019-08-22 株式会社デンソー Electro-optic element and method for manufacturing the same
JP2019139154A (en) * 2018-02-14 2019-08-22 株式会社デンソー Electrochromic material and production method of the same

Also Published As

Publication number Publication date
JP3062203B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
US5011751A (en) Electrochemical device
KR100284914B1 (en) Secondary Battery and Manufacturing Process Thereof
US5176969A (en) Electrode for secondary battery
CN110176591B (en) Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material
CN101630729B (en) Composite electrode materials for high power lithium secondary battery and preparation method thereof
US5571292A (en) Method of producing a composite electrode
KR20070094474A (en) Non-aqueous electrolyte battery
DE69911779T2 (en) Manufacture and use of electrodes made of highly porous, conjugated polymers in electrochemical systems
JPH02155173A (en) Electrochemical element
US5037713A (en) Secondary battery
TWI740221B (en) Improved solid electrolyte for organic batteries
JP4569063B2 (en) Polymer solid electrolyte and polymer solid electrolyte lithium battery
Huang et al. Design of conductive binders for LiFePO4 cathodes with long-term cycle life
Zhang et al. Electrochemical construction of functional polymers and their application advances in lithium batteries
Naren et al. Stabilizing lithium metal batteries by synergistic effect of high ionic transfer separator and lithium–boron composite material anode
JPH03129679A (en) Polyaniline battery and manufacture of polyaniline powder using in this battery
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
Long et al. An integrated flexible self-healing Zn-ion battery using dendrite-suppressible hydrogel electrolyte and free-standing electrodes for wearable electronics
JP4214691B2 (en) Electrode material, method for producing the electrode material, battery electrode using the electrode material, and battery using the electrode
JPH07302586A (en) Battery electrode and its manufacture
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
JPH07134987A (en) Positive electrode member for secondary battery and secondary battery using the member
JPH1197026A (en) Electrode for li cell
JP2000173598A (en) Manufacture of electrode and battery
JP2955177B2 (en) Composite electrode, method for producing the same, and lithium secondary battery