JPS63244569A - Manufacture of electrochemical element - Google Patents

Manufacture of electrochemical element

Info

Publication number
JPS63244569A
JPS63244569A JP62077768A JP7776887A JPS63244569A JP S63244569 A JPS63244569 A JP S63244569A JP 62077768 A JP62077768 A JP 62077768A JP 7776887 A JP7776887 A JP 7776887A JP S63244569 A JPS63244569 A JP S63244569A
Authority
JP
Japan
Prior art keywords
solid electrolyte
molded body
copper
electrolyte molded
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077768A
Other languages
Japanese (ja)
Inventor
Tadashi Tonomura
正 外邨
Shigeo Kondo
繁雄 近藤
Masaki Nagata
正樹 永田
Tadashi Yasuda
直史 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Panasonic Holdings Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP62077768A priority Critical patent/JPS63244569A/en
Publication of JPS63244569A publication Critical patent/JPS63244569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To make electrical, ionic bonding good by depositing a conductor on the part, where is to be in contact with an electrode material, of a solid electrolyte, then connecting the electrode material there. CONSTITUTION:Solid electrolyte particles and a binder are mixed and the mixture is molded to form a molding, then a conductor is deposited on the molding. An electrode material is connected to the molding. Thereby, the bonding of the conductor to the electrolyte molding is kept good against deformation of the molding caused by the force applied from the outside and the electrical, ionic bonding between them is also kept good. For example, if the solid electrolyte is a copper ion conductive solid electrolyte indicated in RbCu4I2-xCl3+x (x=0.25-1.0) and the electrode material is metallic copper, metallic copper is used as the conductive material. Thereby, the solid electrolyte molding and the electrode material are effectively bonded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、構成材料がすべて固体物質である固体電気化
学素子の製造法に関する。さらに詳しくは、合成ゴム等
の結着剤と固体電解質とを含有してなる可撓性を有する
固体電解質成形体と電極材料との接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a solid-state electrochemical device whose constituent materials are all solid substances. More specifically, the present invention relates to a method of bonding an electrode material to a flexible solid electrolyte molded body containing a binder such as synthetic rubber and a solid electrolyte.

従来の技術 構成要素がすべて固体物質である固体電気化学素子は、
一定の大きさが必要な液体電解質を用いる素子に較べ、
漏液とかガス発生の心配等がない。また、一定の大きさ
の容器が不必要なことから、形状も任意に選べ、小形、
うす形化がきわめて容易であり、他の電子部品と同一の
パッケージ内に納めることができる等、従来にはない数
多くの利点を有している。
Solid-state electrochemical devices, in which all conventional technical components are solid materials,
Compared to devices using liquid electrolytes that require a certain size,
There is no need to worry about liquid leakage or gas generation. In addition, since a container of a certain size is not necessary, the shape can be chosen arbitrarily, and small,
It has many advantages over conventional devices, such as being extremely easy to make it thin and being able to be housed in the same package as other electronic components.

本発明で言う、固体電気化学素子とは、固体電解質電池
、固体電気二重層キャパシタ、固体エレクトロクロミッ
ク表示素子等、電気化学反応を利用した固体素子をいう
In the present invention, the solid electrochemical device refers to a solid device that utilizes electrochemical reactions, such as a solid electrolyte battery, a solid electric double layer capacitor, and a solid electrochromic display device.

しかしながら、構成要素がすべて固体であることから機
械的衝撃に対してきわめてもろく破損され易く、構成要
素間の接合、特に固体電解質と電極材料との接合が損な
われ易いという欠点を固体電気化学素子は有する。
However, since all of the components are solid, solid-state electrochemical devices have the disadvantage that they are extremely brittle and easily damaged by mechanical shock, and the bond between the components, especially the bond between the solid electrolyte and the electrode material, is easily damaged. have

この欠点を除くために、本発明者らは結着剤を固体電解
質に混合する方法を提案している。フッ素樹脂2舎成ゴ
ム等の結着剤と固体電解質とから成る可撓性のある固体
電解質成形体を構成要素の一つとして用いることで機械
的衝撃に対しても固体電解質と電極材料との接合が損な
われ難くしようとするものである。
In order to eliminate this drawback, the present inventors have proposed a method of mixing a binder with a solid electrolyte. By using a flexible solid electrolyte molded body made of a binder such as fluororesin rubber and a solid electrolyte as one of the constituent elements, the solid electrolyte and electrode material are resistant to mechanical shock. The purpose is to make the bond less likely to be damaged.

発明が解決しようとする問題点 十分な可撓性を付与するには、結着剤の混合量が多けれ
ば多いほどよいわけであるが、混合量が多くなるほど、
構成要素間の機械的な接合は良くなり剥がれにくくなる
ものの、電気的、イオン的接合は逆に悪くなり、素子全
体としては、出力電流が小さくなったり、分極が大きく
放電するとすぐに電圧が低下するという問題がある。
Problems to be Solved by the Invention In order to impart sufficient flexibility, the greater the amount of binder mixed, the better.
Although the mechanical bond between the components improves and becomes less likely to peel off, the electrical and ionic bond deteriorates, and the voltage of the device as a whole decreases as soon as the output current becomes small or the polarization becomes large. There is a problem with doing so.

本発明は以上の問題を軽減するため、結着剤と固体電解
質を含有してなる固体電解質成形体と電極材料との接合
方法を提供しようとするものである。
In order to alleviate the above problems, the present invention provides a method for joining an electrode material to a solid electrolyte molded body containing a binder and a solid electrolyte.

問題点を解決するための手段 本発明においては、固体電解質成形体の電極材料に当接
される部分に導電体を蒸着した後、固体電解質成形体と
電極材料が接合される。例えば、固体電解質がRbCu
+Iz−xce!l+X (X= 0.25〜1.0)
で表わされる鋼イオン導電性固体電解質であり、電極材
料が金属鋼である場合は、導電体材料として金属鋼を用
いることで固体電解質成形体と電極材料の接合を有効に
行うものである。
Means for Solving the Problems In the present invention, after a conductor is deposited on the portion of the solid electrolyte molded body that comes into contact with the electrode material, the solid electrolyte molded body and the electrode material are joined. For example, if the solid electrolyte is RbCu
+Iz-xce! l+X (X=0.25~1.0)
When the electrode material is metal steel, the solid electrolyte molded body and the electrode material are effectively bonded by using metal steel as the conductor material.

作用 本発明に従い、固体電解質成形体面に蒸着された導電体
は、固体電解質成形体の外部がらの力による変形に対し
ても、固体電解質成形体内部との電気的、イオン的接合
を良好に保つことができる。従って、この面に電極材料
を接合することによって電気的、イオン的接合が良好に
保持された状態で固体電解質成形体と電極材料とが接合
される。
Function According to the present invention, the conductor deposited on the surface of the solid electrolyte molded body maintains good electrical and ionic bonding with the inside of the solid electrolyte molded body even when deformed by external forces of the solid electrolyte molded body. be able to. Therefore, by bonding the electrode material to this surface, the solid electrolyte molded body and the electrode material are bonded with good electrical and ionic bonding maintained.

実施例 以下具体的実施例について説明する。Example Specific examples will be described below.

(実施例1) 所定の割合でRbCe 、Cu I、CuCeを配合し
た混合物を、密封容器中で200℃で17時間加熱、さ
らに130℃で17時間加熱することで得た鋼イオン導
電性固体電解質、 Rb Cu4 I 1.δc(l s、s粉末100重
量部に、スチレン・ブタジェン・ゴム(日本合成ゴム製
JSR−1500、以下SBRと呼ぶ)を15重量%含
むトルエン溶液100重量部を加え、アルミナボールミ
ル中で24時間均一に撹はん混合してスラリーを得た。
(Example 1) Steel ion conductive solid electrolyte obtained by heating a mixture of RbCe, Cu I, and CuCe in a predetermined ratio at 200°C for 17 hours in a sealed container, and then further heating at 130°C for 17 hours. , Rb Cu4 I 1. 100 parts by weight of a toluene solution containing 15% by weight of styrene-butadiene rubber (JSR-1500 manufactured by Japan Synthetic Rubber Co., Ltd., hereinafter referred to as SBR) was added to 100 parts by weight of δc(ls,s powder), and the mixture was heated in an alumina ball mill for 24 hours. A slurry was obtained by uniformly stirring and mixing.

このスラリーをテフロン製基板上にトルエンを散逸した
後の厚みが約70μmとなるようにドクターブレードで
展開した後、トルエンを散逸させ、しかる後にテフロン
製基板より剥がして厚さ約70μmの固体電解質成形体
を得た。
This slurry is spread on a Teflon substrate with a doctor blade so that the thickness after dissipating the toluene is approximately 70 μm. After dissipating the toluene, the slurry is peeled off from the Teflon substrate to form a solid electrolyte with a thickness of approximately 70 μm. I got a body.

一方電極材料として、純度99.99%、厚さ0.2+
ll1l、表面の平滑度±0.5μmの銅板を直径9.
8mの円板状に打ち抜き、水素炉で300℃、3時間還
元処理したものを用意した。先に作った固体電解質成形
体上に銅を真空度2 X I O−5Torr 。
On the other hand, as an electrode material, purity 99.99%, thickness 0.2+
ll1l, a copper plate with a surface smoothness of ±0.5 μm and a diameter of 9.
A disk of 8 m in length was punched out and subjected to reduction treatment at 300° C. for 3 hours in a hydrogen furnace. Copper was placed on the previously prepared solid electrolyte molded body at a vacuum level of 2×IO-5 Torr.

蒸着温度950℃の抵抗加熱蒸着法により約0゜04μ
mの厚さで島状に形成し、表面に銅を蒸着した固体電解
質成形体(a)を得た。そしてこのようにして得た固体
電解質成形体を、直径10wmの円板状に打ち抜いた。
Approximately 0゜04μ by resistance heating evaporation method with evaporation temperature of 950℃
A solid electrolyte molded body (a) was obtained, which was formed into an island shape with a thickness of m and had copper deposited on its surface. The solid electrolyte molded body thus obtained was punched out into a disk shape with a diameter of 10 wm.

この円板の上下に先に用意した銅円板を配置して20b
/−の圧力で銅円板と固体電解質成形体円板を接合した
。これをセルAとする。
Place the copper disks prepared earlier above and below this disk and make 20b.
The copper disk and the solid electrolyte molded disk were joined at a pressure of /-. This is called cell A.

次に、固体電解質成形体表面に銅を蒸着しない直径10
Il111の固体電解質成形体(b)の円板を用いた以
外は同様の方法で銅円板を接合してセルBを得た。
Next, a diameter of 10 mm without copper vapor deposited on the surface of the solid electrolyte molded body was
Cell B was obtained by joining copper disks in the same manner except that the disk of the solid electrolyte molded body (b) of Il111 was used.

また、先に合成した固体電解質のみを厚さ約70am、
直径10+mの円板状に200 kg / cdの圧力
で加圧成形することで得られた固体電解質成形体(C)
の円板に、セルAと同様に銅円板を接合してセルCを得
た。
In addition, only the previously synthesized solid electrolyte was made to a thickness of about 70 am,
Solid electrolyte molded body (C) obtained by pressure molding at a pressure of 200 kg/cd into a disc shape with a diameter of 10+ m
Cell C was obtained by joining a copper disk to the disk in the same manner as Cell A.

電気的、イオン的接合度の試験 Ovを中心に75mVの振幅で、周波数が0 、067
 Hzの対称な三角波の直流電圧をセルA、セルB、セ
ルCについて各々、上下銅板間に印加して、その際各セ
ル内に流れる電流の大きさを測定することで電気的、イ
オン的接合度の評価を行った。
Electrical and ionic connectivity test With an amplitude of 75 mV centered on Ov, the frequency is 0,067
By applying a symmetrical triangular wave DC voltage of Hz between the upper and lower copper plates of Cell A, Cell B, and Cell C, and measuring the magnitude of the current flowing in each cell, electrical and ionic bonding is established. We evaluated the degree of

この際、上下2枚の銅円板のうち、他方の銅円板に対し
て正の電圧が印加されている銅円板と固体電解質成形体
の接合部分では、銅円板から固体電解質成形体への銅イ
オン(Cu” )の溶解が起こり、他の銅円板と固体電
解質成形体との接合部分では固体電解質成形体中のCu
+の銅円板上への析出反応が起こる。これらCu十の溶
解・析出の電気化学反応に伴う電流が各セル内を流れる
電流として測定される。
At this time, at the joint part between the copper disk and the solid electrolyte molded body, where a positive voltage is applied to the other copper disk of the upper and lower copper disks, the solid electrolyte molded body is moved from the copper disk to the solid electrolyte molded body. Copper ions (Cu”) are dissolved into the solid electrolyte molded body, and at the joint between the other copper disk and the solid electrolyte molded body, the Cu in the solid electrolyte molded body is dissolved.
A precipitation reaction of + onto the copper disk occurs. The current accompanying the electrochemical reaction of dissolving and depositing Cu is measured as a current flowing in each cell.

第1図は、セルA、セルB、セルCについてこのように
して得られた電流の20℃での値を、横軸を上下銅円板
に印加した電圧、縦、軸を電流値のグラフとして示した
ものである。
Figure 1 is a graph of the current values obtained in this manner at 20°C for Cells A, B, and C, with the horizontal axis representing the voltage applied to the upper and lower copper disks, and the vertical axis representing the current value. It is shown as follows.

本発明に従い、固体電解質成形体上に銅を蒸着した後胴
円板と接合して得られたセルAでは、結着剤を全く含ま
ない固体電解質成形体を用いたセルCとほぼ同程度の大
きな電流を与えるが、表面に鋼を蒸着していない固体電
解質成形体と銅円板とを接合することで得たセルBでは
、銅の溶解・析出に伴う電流はほとんど流れない。なお
第1図においてセルBの電圧と電流の関係を示す曲線に
ついて−50m Vから+50mVの間で電流が変化し
ないのは、′ここでは銅の溶解・析出が全く起こってい
ないことを示している。
In accordance with the present invention, cell A obtained by bonding a solid electrolyte molded body with copper vapor-deposited rear body disk has almost the same level of performance as cell C using a solid electrolyte molded body containing no binder. Although a large current is applied, in cell B obtained by joining a copper disk to a solid electrolyte molded body on which no steel is vapor-deposited, almost no current flows due to the dissolution and precipitation of copper. Regarding the curve showing the relationship between voltage and current for cell B in Figure 1, the fact that the current does not change between -50 mV and +50 mV indicates that no dissolution or precipitation of copper occurs here. .

剥離試験 50mm角に裁断し水素炉内で還元処理をした厚さ0.
2順の銅板に、先に製作した銅を蒸着していない大きさ
40薗角の固体電解質成形体を20kg / co(の
圧力で130℃で1分間熱圧着した試料について市販セ
ロテープによる5 mm X 5 nunの基盤目テス
トを行ったところ剥離は全(起こらなかった。
Peeling test: Cut into 50 mm square pieces and reduced in a hydrogen furnace with a thickness of 0.
A sample was prepared by thermo-compression bonding the previously produced solid electrolyte molded body with a size of 40 square meters on which copper was not vapor-deposited, at a pressure of 20 kg/co (at a pressure of 20 kg/co) at 130°C for 1 minute, on a copper plate of 2 layers. When a 5-nun substrate test was performed, no peeling occurred.

次に銅を蒸着した固体電解質成形体について、同一の条
件下で剥離試験をおこなったところ、剥離は全く起こら
なかった。
Next, when a peel test was conducted under the same conditions on the solid electrolyte molded body on which copper was vapor-deposited, no peeling occurred at all.

(実施例2) 固体電解質にRbCu41 t、5ce3.5、結着剤
として日本合成ゴム製のアクリロニトリルブタジェンゴ
ム(以下NBRと呼ぶ)を用いた以外は実施例1と同様
の方法により、固体電解質成形体(e)を作った。この
固体電解質成形体に実施例1と同様の方法で金属鋼を0
.02μmの厚さで島状に抵抗加熱蒸着し、表面に銅を
蒸着した固体電解質成形体(d)を得た。
(Example 2) A solid electrolyte was prepared in the same manner as in Example 1, except that RbCu41t, 5ce3.5 was used as the solid electrolyte, and acrylonitrile butadiene rubber (hereinafter referred to as NBR) manufactured by Nippon Synthetic Rubber was used as the binder. A molded body (e) was produced. Metal steel was added to this solid electrolyte molded body in the same manner as in Example 1.
.. A solid electrolyte molded body (d) having a thickness of 0.02 μm and having copper deposited on its surface by resistive heating vapor deposition in the form of islands was obtained.

これら固体電解質成形体、およびNBRを含まない固体
電解質のみを厚さ約100μmt= 200kg / 
cdの圧力で加圧成形することで得られた固体電解質成
形体(f)を用いて、実施例1と同様な方法でセルD(
表面に銅を蒸着した固体電解質成形体を用いたセル)、
セルE(表面に銅を蒸着していない固体電解質成形体を
用いたセル)、セルF(NBRを含まない固体電解質を
用いたセル)を構成した。
These solid electrolyte molded bodies and only the solid electrolyte that does not contain NBR have a thickness of about 100 μm = 200 kg /
Cell D (
cell using a solid electrolyte molded body with copper vapor-deposited on its surface),
Cell E (a cell using a solid electrolyte molded body with no copper deposited on its surface) and Cell F (a cell using a solid electrolyte not containing NBR) were constructed.

実施例1と同様の電気的、イオン的接合度の試験を行つ
た。結果を第2図に示す。
The same electrical and ionic bonding tests as in Example 1 were conducted. The results are shown in Figure 2.

また、実施例1と同様の剥離試験を行ったところ、表面
に銅を蒸着した固体電解質成形体、表面に銅を蒸着して
いない固体電解質成形体ともに全く剥離はなかった。
Further, when a peeling test similar to that in Example 1 was conducted, there was no peeling at all in both the solid electrolyte molded body with copper vapor-deposited on the surface and the solid electrolyte molded body without copper vapor-deposited on the surface.

(実施例3) 固体電解質にRb Cu41 t、5ces、s、結着
剤として実施例1で用いた5BR1および実施例2で用
いたNBRの50 : 50 (重量部)の混合物より
成る合成ゴムを用いた以外は、実施例1と同様の方法に
より、厚さ約150μmの固体電解質成形体()l)を
作った。また、実施例1と同様の方法でその表面に銅を
厚さ0.05μmに抵抗加熱蒸着法で蒸着した固体電解
質成形体(g)を得た。
(Example 3) A synthetic rubber consisting of a 50:50 (parts by weight) mixture of Rb Cu41t, 5ces, s as a solid electrolyte, 5BR1 used in Example 1 as a binder, and NBR used in Example 2 as a binder was used as a solid electrolyte. A solid electrolyte molded body ()l) having a thickness of approximately 150 μm was produced in the same manner as in Example 1, except that the following was used. Further, in the same manner as in Example 1, a solid electrolyte molded body (g) was obtained in which copper was deposited on the surface to a thickness of 0.05 μm by resistance heating vapor deposition.

また、固体電解質のみの厚さ約150μmの固体電解質
成形体(i)を200 kg / c!の圧力で加圧成
形することにより得た。
In addition, 200 kg/c! of solid electrolyte molded body (i) with a thickness of approximately 150 μm consisting only of solid electrolyte! It was obtained by pressure molding at a pressure of .

実施例1,2と同様な方法でセルG(表面に鋼を蒸着し
た固体電解質成形体を用いたセル)、セルH(表面に鋼
を蒸着していない固体電解質成形体を用いたセル)、セ
ルI(固体電解質のみの成形体を用いたセル)を構成し
た。
In the same manner as in Examples 1 and 2, Cell G (a cell using a solid electrolyte molded body with steel deposited on its surface), Cell H (a cell using a solid electrolyte molded body without steel deposited on its surface), Cell I (a cell using a molded body containing only a solid electrolyte) was constructed.

実施例1.2と同様の電気的、イオン的接合度の試験を
行った。結果を第3図に示す。
The same electrical and ionic bonding tests as in Example 1.2 were conducted. The results are shown in Figure 3.

また、実施例1,2と同様の剥離試験を行ったところ、
表面に銅を蒸着した固体電解質成形体、表面に鋼を蒸着
していない固体電解質成形体ともに全(剥離はなかった
In addition, when a peel test similar to Examples 1 and 2 was conducted,
Both the solid electrolyte molded body with copper vapor-deposited on its surface and the solid electrolyte molded body without steel vapor-deposited on its surface (no peeling occurred).

(実施例4) 実施例1から3で作った、結着剤を含有しない固体電解
質成形体(c) 、 (f) 、 (i)、結着剤を含
有するが表面に金属鋼を蒸着していない固体電解質成形
体(b) 、 (e) 、 (h)、本発明に従い結着
剤を含有しかつ表面に金属鋼が蒸着されている固体電解
質成形体(a) 、 (d) 、 (g)について、そ
れぞれ直径10+nmの円板状に打ち抜いた試料を用い
て、以下に示す方法で固体電解質電池を組み立てた。
(Example 4) Solid electrolyte molded bodies (c), (f), (i) which did not contain a binder and which were made in Examples 1 to 3, and which contained a binder but had metal steel deposited on the surface. Solid electrolyte molded bodies (b), (e), (h) which are not made of solid electrolyte, and solid electrolyte molded bodies (a), (d), (h) which contain a binder and have metal steel deposited on the surface according to the present invention. Regarding g), solid electrolyte batteries were assembled by the method shown below using disk-shaped samples each having a diameter of 10+ nm.

正極:CugMOeSa50重量部と固体電解質、 R
b Cut 1 +、gsCe s、vs50重量部、
SBRを20重量パーセント含有するトルエン溶液10
0重量部をアルミナボールミルで24時間混合して得た
電極スラリーをステンレス箔上に塗布して厚さ約200
μmの電極シートを得、これを直径10wmに打ち抜き
正極とした。
Positive electrode: 50 parts by weight of CugMOeSa and solid electrolyte, R
b Cut 1 +, gsCe s, vs 50 parts by weight,
Toluene solution containing 20 weight percent SBR 10
An electrode slurry obtained by mixing 0 parts by weight in an alumina ball mill for 24 hours was coated on stainless steel foil to a thickness of approximately 200 mm.
An electrode sheet with a diameter of 10 wm was obtained and punched out to form a positive electrode.

負極:実施例1で用いたのと同様の銅円板。Negative electrode: copper disk similar to that used in Example 1.

固体電解質成形体を介して正極、負極円板を上下に配置
して圧力20 kg / ciで加圧成形して表に示す
固体電解質電池!lhlから嵐9を組み立てた。
The solid electrolyte battery shown in the table is produced by arranging the positive electrode and negative electrode disks one above the other through a solid electrolyte molded body and press-molding at a pressure of 20 kg/ci! I assembled Arashi 9 from lhl.

これら電池の両端に0.6vの一定電圧を17時間に渡
り印加(充電)した後、1mAの一定電流を1分間通じ
、この際の電池電圧と一定電流を通じる前の電池電圧の
差を測定し分極値とした。
After applying (charging) a constant voltage of 0.6V to both ends of these batteries for 17 hours, a constant current of 1mA was passed for 1 minute, and the difference between the battery voltage at this time and the battery voltage before passing the constant current was measured. and the polarization value.

この結果を表にまとめて示す。The results are summarized in a table.

本発明に従う表面に金属鋼を蒸着した固体電解質成形体
(a) 、 (d) 、 (g)を用いた固体電解質電
池1゜4.7では、固体電解質成形体が結着剤を含んで
いるにもかかわらず、結着剤を含んでいない固体電解質
成形体(c) 、 (f) 、 (i)を用いた電池3
.6.9と遜色ない小さな分極値を与える。しかし、表
面に金属銅を蒸着していない固体電解質成形体(b)。
In the solid electrolyte battery 1°4.7 using the solid electrolyte molded bodies (a), (d), and (g) on the surface of which metal steel is vapor-deposited according to the present invention, the solid electrolyte molded body contains a binder. Nevertheless, batteries 3 using solid electrolyte molded bodies (c), (f), and (i) that do not contain a binder
.. It gives a small polarization value comparable to 6.9. However, the solid electrolyte molded body (b) does not have metallic copper deposited on its surface.

(e)、(〜を用いた電池2,5.8では分極値は20
0近くあるいはそれを越える大きな値を示し、電池とし
ての実用性に欠ける。
(e), (In battery 2, 5.8 using ~, the polarization value is 20
It shows a large value close to or exceeding 0, and lacks practicality as a battery.

なお、本発明に使用される結着剤としては、例えば1.
4−ポリブタンジエン、天然ゴム、ポリイソプレン、S
BR,NBR,EPDM、EPM。
In addition, examples of the binder used in the present invention include 1.
4-Polybutane diene, natural rubber, polyisoprene, S
BR, NBR, EPDM, EPM.

ウレタンゴム、ポリエステル系ゴム、クロロブレンゴム
、エピクロルヒドリンゴム、シリコーンゴム、スチレン
−ブタジェン−スチレンブロック共重合体(SBS)、
スチレン−イソプレン−スチレンブロック共重合体(S
IS)、スチレン−エチレン−ブチレン−スチレン共重
合体(SEBS)。
Urethane rubber, polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene-styrene block copolymer (SBS),
Styrene-isoprene-styrene block copolymer (S
IS), styrene-ethylene-butylene-styrene copolymer (SEBS).

ブチルゴム、ホスファゼンゴム、ポリエチレン。Butyl rubber, phosphazene rubber, polyethylene.

ポリプロピレン、ポリエチレンオキシド9.ポリフロピ
レンオキシド、ポリスチレン、塩化ビニル、エチレン−
酢酸エチル共重合体、1.2−ポリブタジェン、エポキ
シ樹脂、フェノール樹脂。
Polypropylene, polyethylene oxide9. Polypropylene oxide, polystyrene, vinyl chloride, ethylene-
Ethyl acetate copolymer, 1,2-polybutadiene, epoxy resin, phenol resin.

環化ポリブタジェン、環化ポリイソプレンポリメタクリ
ル酸メチル、フッ素ゴムおよびこれらの混合物等が挙げ
られる。
Examples include cyclized polybutadiene, cyclized polyisoprene polymethyl methacrylate, fluororubber, and mixtures thereof.

電気化学素子としては、固体電解質電池を始めとして、
電気二重層キャパシタ、エレクトロクロミック表示素子
にも用いることができる。また、導電体の蒸着方法とし
て、通常の物理蒸着法、例えば抵抗加熱による真空蒸発
法やスパッタリング法が用いられる。
Electrochemical devices include solid electrolyte batteries,
It can also be used in electric double layer capacitors and electrochromic display elements. Further, as a method for vapor deposition of the conductor, a normal physical vapor deposition method, such as a vacuum evaporation method using resistance heating or a sputtering method, is used.

蒸着工程において、熱エネルギー、運動エネルギーを得
て蒸発した導電体は、固体電解質成形体面でそのエネル
ギーを成形体に与え凝固する。この際導電体蒸気から受
けとったエネルギーにより固体電解質成形体面近傍の結
着剤の一部が溶融状態を示すことにより流動し、導電体
が(さび状に固体電解質成形体に打ち込まれた状態でそ
の表面に蒸着される。この、くさび状に打ち込まれた導
電体により固体電解質成形体と電極材料とが良好に電気
的、イオン的に接合される。
In the vapor deposition process, the conductor that is evaporated by obtaining thermal energy and kinetic energy imparts that energy to the solid electrolyte molded body and solidifies on the surface of the solid electrolyte molded body. At this time, due to the energy received from the conductor vapor, a part of the binder near the surface of the solid electrolyte molded body becomes molten and flows, and the conductor is driven into the solid electrolyte molded body in a wedge-like state. The solid electrolyte molded body and the electrode material are well electrically and ionically bonded to each other by this wedge-shaped conductor.

発明の効果 以上、本発明に従う方法によれば、固体電解質成形体と
電極材料を接合する際、機械的強度のみならず電気的、
イオン的接合に優れた接合を有する電気化学素子を実現
できる。
In addition to the effects of the invention, according to the method according to the invention, when joining a solid electrolyte molded body and an electrode material, it is possible to improve not only mechanical strength but also electrical strength.
An electrochemical element having excellent ionic bonding can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図は鋼イオンの溶解析出の際
に流れる電流とセル印加電圧との関係図である。 代理人の氏名 弁理士 中尾敏男 ほか1名第1図 第2図 第3図
FIG. 1, FIG. 2, and FIG. 3 are diagrams showing the relationship between the current flowing during molten precipitation of steel ions and the voltage applied to the cell. Name of agent: Patent attorney Toshio Nakao and one other person Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)固体電解質粒子と結着剤を混合し、成形して成形
体を得、前記成形体の表面に導電体を蒸着し、さらに電
極を接合したことを特徴とする電気化学素子の製造法。
(1) A method for manufacturing an electrochemical device, characterized in that solid electrolyte particles and a binder are mixed, molded to obtain a molded body, a conductor is vapor-deposited on the surface of the molded body, and an electrode is further bonded. .
(2)成形体の両面に蒸着層を形成し、前記蒸着面に電
極を接合したことを特徴とする特許請求の範囲第1項記
載の電気化学素子の製造法。
(2) A method for manufacturing an electrochemical device according to claim 1, characterized in that vapor deposition layers are formed on both sides of the molded body, and electrodes are bonded to the vapor deposition surfaces.
(3)電極は一方が金属膜であり、他方は片面に金属膜
を形成した電極活物質成形体であることを特徴とする特
許請求の範囲第2項記載の電気化学素子の製造法。
(3) The method for manufacturing an electrochemical device according to claim 2, wherein one side of the electrode is a metal film and the other side is an electrode active material molded body with a metal film formed on one side.
JP62077768A 1987-03-31 1987-03-31 Manufacture of electrochemical element Pending JPS63244569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077768A JPS63244569A (en) 1987-03-31 1987-03-31 Manufacture of electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077768A JPS63244569A (en) 1987-03-31 1987-03-31 Manufacture of electrochemical element

Publications (1)

Publication Number Publication Date
JPS63244569A true JPS63244569A (en) 1988-10-12

Family

ID=13643123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077768A Pending JPS63244569A (en) 1987-03-31 1987-03-31 Manufacture of electrochemical element

Country Status (1)

Country Link
JP (1) JPS63244569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (en) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd All-solid lithium secondary battery
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2011054457A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd All-solid secondary battery and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009301959A (en) * 2008-06-16 2009-12-24 Sumitomo Electric Ind Ltd All-solid lithium secondary battery
JP2010205449A (en) * 2009-02-27 2010-09-16 Nippon Zeon Co Ltd Electrolyte layer for all-solid secondary battery, laminate for all-solid secondary battery, and all-solid secondary battery
JP2011054457A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd All-solid secondary battery and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP0284104B1 (en) Structure suitable for solid electrochemical elements
TWI265652B (en) Lithium ion secondary battery and a method for manufacturing the same
Jeon et al. Characterization of all-solid-state thin-film batteries with V 2 O 5 thin-film cathodes using ex situ and in situ processes
JPH01195676A (en) Solid lithium cell
Croce et al. The lithium polymer electrolyte battery IV. Use of composite electrolytes
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
Haslam et al. Stable lithium plating in “lithium metal-free” solid-state batteries enabled by seeded lithium nucleation
JP2001006987A (en) Electric double layer capacitor and its manufacture
JPS63244569A (en) Manufacture of electrochemical element
JPS63244570A (en) Manufacture of electrochemical element
JPS63244571A (en) Manufacture of electrochemical element
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPS63298980A (en) Solid electrolyte battery
JPH067496B2 (en) Solid electrochemical device
JPS6047372A (en) Solid battery
JPH01657A (en) solid state electrochemical device
JP2001521674A (en) Anode material based on titanium oxysulfide for electrochemical power plant and method for producing the same
JPS63244572A (en) Manufacture of electrochemical element
JP2564193B2 (en) Method for manufacturing solid electrolyte battery element
JPS63237361A (en) Solid electrolyte compact
JPH01195677A (en) Flexible solid electric chemical element
JPH02301972A (en) Solid electrolyte sheet and battery thereof
JP3879197B2 (en) Method for producing electrode for lithium ion secondary battery
JPS5990360A (en) Solid secondary battery
JPH0576138B2 (en)