JPH067496B2 - Solid electrochemical device - Google Patents

Solid electrochemical device

Info

Publication number
JPH067496B2
JPH067496B2 JP62279881A JP27988187A JPH067496B2 JP H067496 B2 JPH067496 B2 JP H067496B2 JP 62279881 A JP62279881 A JP 62279881A JP 27988187 A JP27988187 A JP 27988187A JP H067496 B2 JPH067496 B2 JP H067496B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
powder
electrode
solid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62279881A
Other languages
Japanese (ja)
Other versions
JPH01657A (en
JPS64657A (en
Inventor
正樹 永田
直史 安田
繁雄 近藤
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP62279881A priority Critical patent/JPH067496B2/en
Priority to US07/172,166 priority patent/US4810599A/en
Priority to EP88104873A priority patent/EP0284104B1/en
Priority to DE3852412T priority patent/DE3852412T2/en
Priority to KR1019880003331A priority patent/KR970004137B1/en
Publication of JPH01657A publication Critical patent/JPH01657A/en
Publication of JPS64657A publication Critical patent/JPS64657A/en
Publication of JPH067496B2 publication Critical patent/JPH067496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make a device thin and to increase its area by filling a mixture prepared by dispersing solid electrolyte powder and/or electrode material powder in a polymer elastomer in the openings of a net to form a sheet, and using the sheet as a solid electrolyte layer and/or an electrode layer. CONSTITUTION:A solid electrochemical device is obtained by stacking a pair of electrode layers on both sides of a solid electrolyte layer, then uniting them. The solid electrolyte layer and/or the electrode layer are/is obtained by filling a mixture prepared by dispersing solid electrolyte powder and/or electrode material powder in a polymer elastomer in the openings of a net to form a sheet. The volume fraction of the solid electrolyte powder to the polymer elasto mer in the solid electrolyte layer is limited to 55-95%. The volume fraction of the electrode material powder and the solid electrolyte powder which is mixed if necessary to the polymer elastomer in the electrode layer is limited to 75-95%, or the volume fraction of the solid electrolyte to the polymer elasto mer is limited to 55-95%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電気化学素子に関し、さらに詳しくは、固
体電池、固体電気二重層キャパシタ、固体エレクトロク
ロミックデスプレイ等に利用される固体電気化学素子に
関する。
TECHNICAL FIELD The present invention relates to a solid-state electrochemical device, and more particularly to a solid-state electrochemical device used in a solid-state battery, a solid-state electric double layer capacitor, a solid-state electrochromic display, or the like. .

〔従来の技術〕[Conventional technology]

固体電気化学素子は、その材料成分がすべて固体物質で
あるため液漏れがなく、小形化および薄形化が容易であ
る利点を有している。このような素子を構成する場合、
素子内部でイオンを動かすための固体状態のイオン伝導
体、すなわち固体電解質が必要である。該固体電解質は
可動イオン種により区別され、Liイオン伝導性固体
電解質、Agイオン伝導性固体電解質、Cuイオン
伝導性固体電解質、Hイオン伝導性固体電解質等があ
る。該固体電解質と電極材料とを組合わせることにより
固体電気化学素子が構成され、通常、加圧プレスされて
層状となった固体電解質粉の上下面に一対の電極層が配
置される。
The solid-state electrochemical device has the advantages that since all the material components are solid substances, there is no liquid leakage, and it is easy to make the device compact and thin. When constructing such an element,
A solid state ionic conductor for moving ions inside the device, that is, a solid electrolyte is required. The solid electrolyte is distinguished by a mobile ion species, and includes Li + ion conductive solid electrolyte, Ag + ion conductive solid electrolyte, Cu + ion conductive solid electrolyte, H + ion conductive solid electrolyte, and the like. A solid electrochemical element is constructed by combining the solid electrolyte and an electrode material, and usually, a pair of electrode layers are arranged on the upper and lower surfaces of the solid electrolyte powder layered by pressure pressing.

液体電解質を用いる電気化学素子では、電解質と電極材
料との電気的およびイオン的接合は容易であるのに対
し、固体物質を用いる固体電気化学素子では固体電解質
同士、電極材料同士または固体電解質と電極材料との電
気的およびイオン的接合は一般に難しい。液体電解質を
用いる素子では、電解質が流れ出すのを防ぐため、また
は電解質が電極に浸透しすぎて電極の形状が崩れるのを
防ぐため、電解質または電極に粘着剤等の挟雑物が混合
されている。しかし、固体電気化学素子では、挟雑物を
混入すると電気的およびイオン的接合がさらに困難にな
るため、挟雑物を使用することができない。したがっ
て、無機固体粉末である固体電解質や電極財料を用いて
固体電気化学素子を製造する際には高圧プレスによるペ
レット化が必要であり、さらに得られるペレットが硬く
て脆いため、生産性、均一性等を得る上で大きな障害と
なっている。すなわち、電極材料と固体電解質の接合に
おいては、大きな圧力でこれらを密着させる必要がある
が、大面積の固体電気化学素子の場合、均一な密着は得
られ難く、また、圧力をかけすぎると固体電極質層が破
損し内部短絡を引き起こす等の問題が生じる。
In an electrochemical device using a liquid electrolyte, electrical and ionic bonding between the electrolyte and the electrode material is easy, whereas in a solid electrochemical device using a solid substance, solid electrolytes, electrode materials or solid electrolytes and electrodes are used. Electrical and ionic bonding with materials is generally difficult. In an element using a liquid electrolyte, in order to prevent the electrolyte from flowing out or to prevent the electrolyte from penetrating into the electrode too much and causing the shape of the electrode to collapse, the electrolyte or the electrode is mixed with a contaminant such as an adhesive. . However, in the solid-state electrochemical device, if contaminants are mixed in, electrical and ionic bonding becomes more difficult, and thus the contaminants cannot be used. Therefore, when producing a solid electrochemical element using a solid electrolyte or electrode material that is an inorganic solid powder, it is necessary to pelletize by a high pressure press, and since the resulting pellets are hard and brittle, productivity and uniform It is a major obstacle to getting sex. That is, in joining the electrode material and the solid electrolyte, it is necessary to bring them into close contact with each other with a large pressure, but in the case of a large area solid electrochemical element, it is difficult to obtain uniform adhesion, and if too much pressure is applied, the solid This causes problems such as damage to the electrode layer and internal short circuit.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明の目的は、前記従来技術の問題点を解決し、薄形
化および大面積化を図ることができ、また素子構成材料
の取扱いが容易で、素子組立ての際の加工性、生産性等
に優れた固体電気化学素子を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to achieve thinning and a large area, easy handling of element constituent materials, workability in assembling elements, productivity, etc. Another object of the present invention is to provide an excellent solid-state electrochemical device.

〔問題点を解決するための手段〕[Means for solving problems]

固体電解質層と、該固体電解質層を介して上下面に接合
される少なくとも一対の電極層とを有し、上記固体電解
質層および電極層の少なくとも1つが担体として網状体
を用いたシート状成形体である固体電気化学素子であっ
て、固体電解質層が、固体電解質粉を高分子弾性体に分
散させた混合物を含有し、電極層の少なくとも1つが、
固体電解質粉または固体電解質粉と電居材料粉を高分子
弾性体に分散させた混合物を含有し、かつ上記高分子弾
性体が、スチレン−ブタジエン−スチレンブロック共重
合体、スチレン−イソプレン−スチレンブロック共重合
体、スチレン−エチレン−ブチレン−スチレンブロック
共重合体および1,2−ポリブタジエンの少なくとも1
種からなり、さらに前記固体電解質層および電極層の少
なくとも1つがそれぞれの前記混合物を前記網状体の開
口部に充填したものである。
A sheet-like molded product having a solid electrolyte layer and at least a pair of electrode layers joined to the upper and lower surfaces through the solid electrolyte layer, wherein at least one of the solid electrolyte layer and the electrode layer uses a reticulate body as a carrier. Wherein the solid electrolyte layer contains a mixture of solid electrolyte powder dispersed in a polymer elastic body, and at least one of the electrode layers comprises:
It contains a solid electrolyte powder or a mixture of a solid electrolyte powder and a powder of electric charge material dispersed in a polymer elastic body, and the polymer elastic body is a styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block. At least one of a copolymer, a styrene-ethylene-butylene-styrene block copolymer and a 1,2-polybutadiene
At least one of the solid electrolyte layer and the electrode layer is made of a seed, and the mixture is filled in the opening of the mesh body.

本発明における固体電気化学素子は、基本的に固体電解
質層と該層の上下面に少なくとも一対の電極層が接合さ
れ、一体成型して得られる。一体成型する方法は、特に
限定されるものではないが、例えば不活性ガス下100
〜150℃程度の温度で数十秒〜10分間程度加熱加圧
する方法が挙げられる。加熱し、加圧した後、不活性ガ
ス下で密着力を均一にするために1〜3時間程度、熱処
理を行なってもよい。また必要に応じ、一体成型体に引
出し電極(集電体)を配置したのち、簡単な封止技術、
例えばエポキシ樹脂等による樹脂封止またはポリエチレ
ンフィルム、ポリプロピレンフィルム等によるラミネー
ト封止により実用に供される。
The solid electrochemical element in the present invention is basically obtained by integrally molding a solid electrolyte layer and at least a pair of electrode layers on the upper and lower surfaces of the solid electrolyte layer. The method of integrally molding is not particularly limited, but, for example, 100% under an inert gas.
A method of heating and pressurizing at a temperature of about 150 ° C for about several tens of seconds to 10 minutes can be mentioned. After heating and pressurizing, heat treatment may be performed for about 1 to 3 hours in order to make the adhesion force uniform under an inert gas. In addition, if necessary, after placing the extraction electrode (current collector) on the integrally molded body, a simple sealing technique,
For example, it is put into practical use by resin sealing with an epoxy resin or the like or laminate sealing with a polyethylene film, a polypropylene film or the like.

このようにして得られた固体電気化学素子は、製造し易
く柔軟性を有し、薄形で、大面積を有するものも容易に
製造することができる。
The solid-state electrochemical device thus obtained is easy to manufacture, has flexibility, is thin, and has a large area.

本発明に用いられる固体電解質粉としては、LiI、L
iO・HO、LiN・LiSiO−LiPO
等のLiイオン伝導性固体電解質、RbAg
、KAg、AgSI、AgI−Ag
−MoOガラス等のAgイオン伝導性固体電解質、
RbCu2-xCl3+x (x=0.2〜0.6)
CuJ−CuO−MoOガラス等のCuイオン伝
導性固体電解質、HMo12PO40・29HO、H
12PO40・29HO等のHイオン伝導性固体電解
質、ナトリウムベータ−アルミナ(Na−β−Al
)、Na1+aZr2-aSi12(a=0〜3)で
示されるNaイオン伝導性固体電解質等をあげること
ができる。
The solid electrolyte powder used in the present invention includes LiI, L
iO · H 2 O, Li 3 N · Li 4 SiO 4 -Li 3 PO
Li + ion conductive solid electrolyte such as 4, RbAg
4 I 5 , KAg 4 I 5 , Ag 3 SI, AgI-Ag 2 O
-Ag + ion conductive solid electrolyte such as MoO 3 glass,
RbCu 4 I 2−x Cl 3 + x (x = 0.2 to 0.6) ,
CuJ-Cu Cu + ion conductive solid electrolyte such as 2 O-MoO 3 glass, H 3 Mo 12 PO 40 · 29H 2 O, H 3
W 12 PO 40 · 29H 2 O or the like H + ion conductive solid electrolyte, sodium beta - alumina (Na-β-Al 2 O
3 ), Na + ion conductive solid electrolytes represented by Na 1 + a Zr 2 P 2-a Si a O 12 (a = 0 to 3), and the like.

これらの固体電解質のうち、RbCu1.75
3.25、RbCu1.5Cl3.5、RbCu1.25
3.75等のRbCu2-xCl3+x(x=0.2〜0.
6)で表わされるCuイオン伝導性固体電解質は、常
温で10−2s/cmの高イオン伝導性を有しており特に
好ましい。
Of these solid electrolytes, RbCu 4 I 1.75 C
l 3.25 , RbCu 4 I 1.5 Cl 3.5 , RbCu 4 I 1.25 C
R 3.75 etc. RbCu 4 I 2−x Cl 3 + x (x = 0.
The Cu + ion conductive solid electrolyte represented by 6) has a high ion conductivity of 10 −2 s / cm at room temperature and is particularly preferable.

本発明に用いられる電極材料粉としては、黒鉛、アセチ
レンブラック、活性炭等の炭素材料、硫化チタン、硫化
ニオブ、硫化モリブデン、硫化銅、硫化銀、硫化鉛、銀
シュブレル、銅シュブレル、硫化鉄等の硫化物、酸化タ
ングステン、酸化バナジウム、酸化クロム、酸化モリブ
デン、酸化チタン、酸化鉄、酸化銀、酸化銅等の酸化
物、塩化銀、沃化鉛、沃化銅等のハロゲン化物、銅、
銀、リチウム、金、白金、チタン、これらの金属の合
金、ステンレス鋼等の金属材料などがあげられる。
Examples of the electrode material powder used in the present invention include graphite, acetylene black, carbon materials such as activated carbon, titanium sulfide, niobium sulfide, molybdenum sulfide, copper sulfide, silver sulfide, lead sulfide, silver shubrel, copper shubrel, iron sulfide and the like. Oxides such as sulfide, tungsten oxide, vanadium oxide, chromium oxide, molybdenum oxide, titanium oxide, iron oxide, silver oxide and copper oxide, halides such as silver chloride, lead iodide and copper iodide, copper,
Examples thereof include silver, lithium, gold, platinum, titanium, alloys of these metals, and metallic materials such as stainless steel.

また、電極層中に電極材料粉と固体電解質粉とを存在さ
せる場合の電極材料粉/固体電解質粉の割合は1/4〜
5/4(重量比)が好ましい。
Further, when the electrode material powder and the solid electrolyte powder are present in the electrode layer, the ratio of the electrode material powder / the solid electrolyte powder is 1/4 to
5/4 (weight ratio) is preferable.

本発明に用いられる高分子弾性体には、電極材料粉、固
体電解質粉との接着性の点から、スチレン−ブタジエン
−スチレンブロック共重合体、スチレン−イソプレン−
スチレンブロック共重合体、スチレン−エチレン−ブチ
レン−スタレンブロック共重合体および1,2−ポリブ
タジエンの少なくとも1種が用いられる。これらのう
ち、柔軟性の点からASTM−A硬度で90以下のもの
が好ましい。また固体電解質粉の耐熱性の点から150
℃以下での成型加工性を有するものが好ましい。
The polymer elastic material used in the present invention includes a styrene-butadiene-styrene block copolymer, styrene-isoprene-, in terms of adhesiveness with the electrode material powder and the solid electrolyte powder.
At least one of a styrene block copolymer, a styrene-ethylene-butylene-stalene block copolymer and 1,2-polybutadiene is used. Among these, those having an ASTM-A hardness of 90 or less are preferable from the viewpoint of flexibility. Also, from the viewpoint of the heat resistance of the solid electrolyte powder, 150
Those having moldability at a temperature of not higher than 0 ° C are preferable.

本発明における固体電解質層としては、固体電解質粉を
高分子弾性体中に好ましくは体積分率55〜95%、よ
り好ましくは75〜92%で均一に分散せしめた混合物
を、非導電性網状体の開口部に充填してなる電解質シー
トを用いることが好ましい。
As the solid electrolyte layer in the present invention, a solid electrolyte powder is uniformly dispersed in a polymer elastic body at a volume fraction of preferably 55 to 95%, more preferably 75 to 92%. It is preferable to use an electrolyte sheet which is filled in the openings.

固体電解質粉の体積分率が55%未満の場合、イオン導
電率が粉の状態に較べ1/1000〜1/10,000
に低下し、導電率の最も高いRbCu2-xCl3+x
でも1×10-6s/cm以下となり、また体積分率が95
%を越える場合は、シート化の際、得られる固体電解質
シートが脆く、脱落し易くなる場合がある。
When the volume fraction of the solid electrolyte powder is less than 55%, the ionic conductivity is 1/1000 to 1 / 10,000 compared with the powder state.
To 1 × 10 −6 s / cm or less even in the RbCu 4 I 2−x Cl 3 + x system, which has the highest conductivity, and has a volume fraction of 95.
If it exceeds%, the solid electrolyte sheet obtained when formed into a sheet may be brittle and may easily fall off.

本発明における電極層としては、電極材料粉と固体電解
質粉とを、高分子弾性体中に好ましくは体積分率75〜
95%となるように分散せしめた混合物を網状体の開口
部に充填してなる電極層、または固体電解質粉を高分子
弾性体中に好ましくは体積分率55〜95%となるよう
に分散せしめた混合物を、電極材料を兼ねる導電性網状
体の開口部に充填してなる電極層であることが好まし
い。体積分率が75%未満では、電極層中の電極材料粉
と固体電解質粉との接触効率が低下し、電極として充分
な分極特性が得えられず、また体積分率が95%を超え
るとシート化の際、脆くなり脱落し易くなる場合があ
る。
As the electrode layer in the present invention, the electrode material powder and the solid electrolyte powder are preferably contained in the elastic polymer in a volume fraction of 75-
The electrode layer obtained by filling the openings of the mesh body with the mixture dispersed so as to be 95%, or the solid electrolyte powder is dispersed in the polymer elastic body, preferably so as to have a volume fraction of 55 to 95%. It is preferable that the electrode layer is formed by filling the mixture with the mixture in the opening of the conductive mesh body that also serves as an electrode material. If the volume fraction is less than 75%, the contact efficiency between the electrode material powder in the electrode layer and the solid electrolyte powder is reduced, and sufficient polarization characteristics cannot be obtained as an electrode. If the volume fraction exceeds 95%, When it is formed into a sheet, it may become brittle and easily fall off.

また本発明における電極層は、電極材料粉と固体電解質
粉との混合比を段階的に変化させた複数のシートを混合
比の順に積層させ、固体電解質粉の混合割合の大きい電
極層面が固体電解質層と接合するようにすることが好ま
しい。
Further, the electrode layer in the present invention, a plurality of sheets obtained by gradually changing the mixing ratio of the electrode material powder and the solid electrolyte powder are laminated in the order of the mixing ratio, and the solid electrolyte powder has a large mixing ratio of the electrode layer surface. It is preferred to be joined with the layer.

本発明に用いられる固体電解質粉、電極材料粉の形状お
よび粒径は特に限定されるものではないが、高分子弾性
体との混合のし易さ等の点から、100〜200メッシ
ュ(タイラー標準ふるい)を通過するものが好ましい。
The shape and particle size of the solid electrolyte powder and the electrode material powder used in the present invention are not particularly limited, but from the viewpoint of ease of mixing with the elastic polymer, 100-200 mesh (Tyler standard) Those that pass through a sieve are preferred.

固体電解質粉または固体電解質粉と電極材料粉を高分子
弾性体中に均一に分散させて固体電解質層用混合物また
は電極層用混合物を得る方法は、特に限定されるもので
はないが、例えば高分子弾性体を特定の溶剤に溶解させ
た高分子溶液と固体電解質粉、電極材料粉等とをボール
ミル等で混練する方法などがあげられる。この方法は、
混練時の発熱が少なく固体電解質粉、電極材料粉等の変
質および分解が起こり難いこと、さらに混練時に大気と
の接触がほとんどなく、粉の湿気、酸素等による変質お
よび分解が起き難く、周囲の温度、酸素等の状態を特に
調節する必要がないことから製造方法として好ましい。
The method for obtaining a solid electrolyte layer mixture or an electrode layer mixture by uniformly dispersing the solid electrolyte powder or the solid electrolyte powder and the electrode material powder in the polymer elastic body is not particularly limited, but for example, a polymer Examples thereof include a method of kneading a polymer solution in which an elastic body is dissolved in a specific solvent, solid electrolyte powder, electrode material powder and the like with a ball mill or the like. This method
The heat generated during kneading is low, and the solid electrolyte powder, electrode material powder, etc. are unlikely to deteriorate or decompose, and there is almost no contact with the atmosphere during kneading, so it is difficult for the powder to change or decompose due to oxygen, etc. It is preferable as a manufacturing method because it is not necessary to control the temperature, oxygen and other conditions.

この場合用いられる溶剤としては、例えばn−ヘキサ
ン、n−ヘプタン、n−オクタン、シクロヘキサン、ベ
ンゼン、トルエン、キシレン、酢酸エチル、トリクレン
等の非吸水性で固体電解質粉、電極材料粉と反応しない
飽和炭化水素系溶剤、芳香族炭化水素系溶剤、ハロゲン
化炭化水素系溶剤またはエステル系溶剤を使用すること
が好ましい。
The solvent used in this case is, for example, n-hexane, n-heptane, n-octane, cyclohexane, benzene, toluene, xylene, ethyl acetate, trichlene, etc. It is preferable to use a hydrocarbon solvent, an aromatic hydrocarbon solvent, a halogenated hydrocarbon solvent or an ester solvent.

本発明に用いられる網状体の材質としては、例えばセル
ロース、ナイロン6、ナイロン66、ポリプロピレン、
ポリエチレン、シリカ、アルミナ、ガラス等の非導電性
材料、活性炭のような導電性カーボン、銅、ニッケル、
チタン、ステンレス鋼等の導電性材料をあげることがで
き、網状体の具体例としては、これらの材質からなる織
布、不織布をあげることができる。これらの網状体の開
口率は35〜65%の範囲が適当である。開口率は網状
体単位面積当たりの総開口部面積の割合で定義される。
開口率が35%未満であれば固体電解質層とした場合、
導電率が小さくなり、電極層とした場合分極が大きくな
り、また開口率が65%を超えると層としての強度の維
持効果が得られず好ましくない。また、これらの網状体
の比表面積は50〜1000m2/gの範囲が適当であ
る。さらに不織布の場合、目付けは5〜50g/m2
範囲が適当である。網状体の厚みは、網状体自身の強度
および素子の薄形化を考慮して、非導電性網状体の場合
10〜150μm、導電性網状体の場合30〜300μ
mの範囲が好ましく、1開口部当たりの平均面積は1.
6×10-3〜9×10-2mm2および隣接する開口部間
の幅は20〜120μmが好ましい。
Examples of the material of the mesh body used in the present invention include cellulose, nylon 6, nylon 66, polypropylene,
Non-conductive materials such as polyethylene, silica, alumina, glass, conductive carbon such as activated carbon, copper, nickel,
Conductive materials such as titanium and stainless steel can be used, and specific examples of the mesh body include woven and non-woven fabrics made of these materials. The aperture ratio of these mesh bodies is appropriately in the range of 35 to 65%. The opening ratio is defined as the ratio of the total opening area per unit area of the mesh body.
If the solid electrolyte layer has an aperture ratio of less than 35%,
The electrical conductivity becomes small, the polarization becomes large when it is used as an electrode layer, and if the aperture ratio exceeds 65%, the effect of maintaining the strength as a layer cannot be obtained, which is not preferable. Further, the specific surface area of these reticulate bodies is suitably in the range of 50 to 1000 m 2 / g. Further, in the case of a non-woven fabric, a basis weight of 5 to 50 g / m 2 is suitable. The thickness of the reticulated body is 10 to 150 μm in the case of the non-conductive reticulated body and 30 to 300 μm in the case of the conductive reticulated body in consideration of the strength of the reticulated body itself and the thinning of the element.
The range of m is preferable, and the average area per opening is 1.
6 × 10 −3 to 9 × 10 −2 mm 2 and the width between adjacent openings are preferably 20 to 120 μm.

前記固体電解質層用混合物または電極層用混合物を網状
体の開口部に充填する方法としては、例えば、混合物を
溶媒中に分散させたスラリー中に網状体を浸漬し、該網
状体に混合物を充分付着させた後、硬質ゴム、プラスチ
ック、金属等からなるブレード、ロール等により開口部
に充填するとともに過剰に付着している混合物を除去す
る方法があげられる。この際のスラリー中の混合物の固
形分濃度は、好ましくは50〜80重量%である。
As a method of filling the mixture of the solid electrolyte layer or the mixture for the electrode layer into the openings of the reticulated body, for example, the reticulated body is immersed in a slurry in which the mixture is dispersed in a solvent, and the mixture is sufficiently mixed in the reticulated body. After the adhesion, a method of filling the opening with a blade made of hard rubber, plastic, metal or the like, a roll or the like and removing the excessively adhered mixture may be mentioned. The solid content concentration of the mixture in the slurry at this time is preferably 50 to 80% by weight.

このようにして網状体の開口部に混合物を充填した後、
例えば20〜30℃で、好ましくは不活性ガス雰囲気中
で乾燥することにより本発明の固体電気化学素子に用い
られる固体電解質層、電極層が得られる。なお、これら
の層は、網状体の開口部に固体電解質粉、電極材料粉、
高分子弾性体等の混合物を充填してなるものであるが、
電極層、固体電解質層、または引出し電極との密着性お
よび導電率、分極性、容量等を向上させるためには、該
網状体の上下両方または一方に各5〜25μmの該混合
物層を有することが好ましい。
After filling the mixture in the openings of the reticulate body in this way,
For example, by drying at 20 to 30 ° C., preferably in an inert gas atmosphere, the solid electrolyte layer and electrode layer used in the solid electrochemical device of the present invention can be obtained. Incidentally, these layers, solid electrolyte powder, electrode material powder, in the opening of the mesh body,
It is composed of a mixture of polymer elastic material,
In order to improve the adhesion to the electrode layer, the solid electrolyte layer, or the extraction electrode, and the conductivity, polarizability, capacity, etc., the mixture layer having 5 to 25 μm on each of the upper and lower sides or one side of the mesh body is required. Is preferred.

上記方法によれば、網状体を母材とするために極めて厚
み精度の優れた固体電解質層または電極層を得ることが
でき、またこれらは連続的に製造することができるため
大面積層を容易に得ることができる。したがって大面積
で、薄形で、厚みの均一な固体電気化学素子が容易に得
られる。
According to the above method, it is possible to obtain a solid electrolyte layer or an electrode layer having extremely excellent thickness accuracy because the reticulate body is used as a base material, and since these can be continuously manufactured, a large area layer can be easily formed. Can be obtained. Therefore, a solid electrochemical device having a large area, a thin shape, and a uniform thickness can be easily obtained.

また前記固体電解質層および電極層の厚みは、各〜10
〜250μmが好ましい。
The thickness of the solid electrolyte layer and the electrode layer is from 10 to 10, respectively.
˜250 μm is preferable.

本八の固体電解質層および電極層には、それぞれの層と
の接着強度を増すために、例えば混合物中に変性ロジ
ン、ロジン誘導体、テルペン樹脂、クマロン−インデン
樹脂、フェノール変性クマロン−インデン樹脂等のロジ
ン系粘着付与剤、芳香族系粘着付与剤またはテルペン系
粘着付与剤を含有していてもよい。
In order to increase the adhesive strength with the respective layers, the solid electrolyte layer and the electrode layer of the present eight include, for example, modified rosin, rosin derivative, terpene resin, coumarone-indene resin, phenol-modified coumarone-indene resin, etc. in the mixture. It may contain a rosin-based tackifier, an aromatic-based tackifier or a terpene-based tackifier.

前記固体電解質層および電極層に含有される固体電解質
粉または高分子弾性体は、同じでも異なったものでもよ
いが、成型体の均質性、固体電解質層と電極層との接着
性等の面から同じものを用いることが好ましい。
The solid electrolyte powder or the polymer elastic body contained in the solid electrolyte layer and the electrode layer may be the same or different, but from the aspect of the homogeneity of the molded body, the adhesiveness between the solid electrolyte layer and the electrode layer, and the like. It is preferable to use the same one.

本発明に用いられる引出し電極の材料は、特に限定され
るものではないが、電極層との接着性の点から、銅系の
電極層の場合は銅薄板が、銀系の電極層の場合は銀薄板
が好適であるが、銅薄板にニッケルメッキもしくは金メ
ッキを施したもの、またはリン青銅等の合金でもよい。
The material of the extraction electrode used in the present invention is not particularly limited, but from the viewpoint of adhesiveness with the electrode layer, a copper thin plate in the case of a copper-based electrode layer, a silver-based electrode layer in the case of a silver-based electrode layer. A silver thin plate is preferable, but a copper thin plate plated with nickel or gold, or an alloy such as phosphor bronze may be used.

本発明において電極層は、固体電解質層と接する面から
固体電解質粉と電極材料粉との混合比を段階的に変化せ
しめ、固体電解質層と接する面で固体電解質粉の比率が
大きく、引出し電極に近づくに従い、固体電解質粉の比
率が小さくなるように複数のシートが混合比の順に積層
され多層化された電極層とすることが好ましい。この場
合の電極層の多層化の程度は、特に限定されるものでは
なく2層でも効果を有するが、好ましくは3〜9層であ
る。ただし加工の煩雑さや厚型化を避ける意味から3〜
6層が適当である。このように電極層を多層化すること
により、電極−電解質間の界面抵抗を低減し、電流容量
を大きくする効果が得られる。
In the present invention, the electrode layer gradually changes the mixing ratio of the solid electrolyte powder and the electrode material powder from the surface in contact with the solid electrolyte layer, the ratio of the solid electrolyte powder in the surface in contact with the solid electrolyte layer is large, and the extraction electrode It is preferable that a plurality of sheets are laminated in the order of the mixing ratio to form a multilayered electrode layer so that the ratio of the solid electrolyte powder becomes smaller as it gets closer. The degree of multi-layering of the electrode layer in this case is not particularly limited, and two layers are effective, but preferably 3 to 9 layers. However, in order to avoid the complexity of processing and thickening,
Six layers are suitable. By thus forming the multi-layered electrode layer, the effect of reducing the interface resistance between the electrode and the electrolyte and increasing the current capacity can be obtained.

本発明においては、前記固体電解質と、固体電解質と電
気化学的にイオンの授受を行なう電極材料、例えば二硫
化チタン、銅シュブレル等を組合わせることにより固体
2次電池とすることができ、また前記固体電解質と、固
体電解質と電気化学的にイオンの授受を行なって光学的
変化をする電極材料、例えば、酸化タングステンを用い
ることにより、固体の電気化学表示素子(エレクトロク
ロミックデスプレイ)とすることができる。さらに前記
固体電解質と、固体電解質とはイオンの授受は行なわな
いが固体電解質との界面で電気二重層を形成する電極材
料、例えば活性炭等を用いることにより固体の電気二重
キャパシタとすることができる。
In the present invention, a solid secondary battery can be obtained by combining the solid electrolyte with an electrode material that electrochemically gives and receives ions to and from the solid electrolyte, such as titanium disulfide and copper shubrel. A solid electrochemical display element (electrochromic display) can be obtained by using a solid electrolyte and an electrode material that electrochemically exchanges ions with the solid electrolyte to cause an optical change, for example, tungsten oxide. . Further, a solid electric double capacitor can be formed by using an electrode material which does not exchange ions between the solid electrolyte and the solid electrolyte but forms an electric double layer at the interface with the solid electrolyte, such as activated carbon. .

このような固体電気化学素子も本発明によれば、柔軟性
に富み機械的衝撃に対し極めて強い優れたものとなる。
According to the present invention, such a solid-state electrochemical device is also excellent in flexibility and extremely strong against mechanical impact.

〔実施例〕〔Example〕

以下、本発明を実施例により説明するが、本発明はこれ
らに限定されるものではない。
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1 CuCl、CuIおよびRbClをモル比でCuCl:
CuI:RbCl=2.5:1.5:1の割合となるよ
うに、それぞれ秤量した。
Example 1 CuCl, CuI and RbCl in molar ratio CuCl:
Each was weighed so that the ratio was CuI: RbCl = 2.5: 1.5: 1.

前記CuClおよびCulを塩酸中で再結晶させ、これ
らをP乾燥剤入りのデシケーター中で真空乾燥さ
せ、一方、前記RbClを100℃で真空乾燥させ、こ
れら成分塩を所定量混合し、130℃で17時間加熱し
て完全に脱水し、これをパイレックスガラス管中に真空
封入し、融解させたのち室温まで除冷し、固化したもの
をトルエンを分散剤としてボールミルでよく粉砕し、粉
砕した粉末を加圧成型し、これをN中130℃で17
時間程度処理し、さらに得られた加圧成型物を再度ボー
ルミルで粉砕して、RbCu1.5Cl3.5粉末を得
た。
The CuCl and Cul were recrystallized in hydrochloric acid, and these were vacuum dried in a desiccator containing a P 2 O 5 desiccant, while the RbCl was vacuum dried at 100 ° C. and a predetermined amount of these component salts were mixed, After heating at 130 ° C for 17 hours to completely dehydrate, this was vacuum-enclosed in a Pyrex glass tube, thawed and then cooled to room temperature, and the solidified substance was well pulverized with a ball mill using toluene as a dispersant, and pulverized. The resulting powder was pressure-molded, and this was molded in N 2 at 130 ° C. for 17 hours.
After being treated for about an hour, the obtained pressure-molded product was pulverized again with a ball mill to obtain RbCu 4 I 1.5 Cl 3.5 powder.

次に高分子弾性体としてスチレン−ブタジエン−スチレ
ンゴムブロック共重合体(比重:0.96、日本合成ゴ
ム社製、TR−2000)1部(重量部、以下同じ)を
トルエン中に溶解させ高分子溶液を得、これに4.22
部の粒径200メッシュ以下のRbCu1.5Cl3.5
からなる固体電解質粉(比重:4.5)を加えてボール
ミルにて2時間混練し、得られた混合物をポリエチレン
製容器に移し、固形分濃度を79重量%に調製した。一
方、織布として厚み50μm、1開口部当たりの平均面
積5.5×10-3mm2および隣接する開口部間の幅5
0μmのナイロン製織布を用い、この織布をポリエチレ
ン製容器中の混合物中に浸漬させ、織布表面に混合物を
充分に付着させた後、フッ素ゴム製のブレードで織布を
挟み、充分な挟持力を加えつつ、織布をブレードより引
張り出し、混合物を織布の開口部に充填した。得られた
シートを窒素気流中で充分に乾燥させ、トルエンを除去
し、混合物中の固体電解質粉の体積分率が90%、厚み
70μmの固体電解質シートを得た。
Next, 1 part (part by weight, the same applies hereinafter) of styrene-butadiene-styrene rubber block copolymer (specific gravity: 0.96, manufactured by Nippon Synthetic Rubber Co., Ltd.) as a polymer elastic material was dissolved in toluene to give a high polymer. A molecular solution is obtained, to which 4.22
RbCu 4 I 1.5 Cl 3.5 with a particle size of 200 mesh or less
Was added and kneaded for 2 hours in a ball mill, and the resulting mixture was transferred to a polyethylene container to prepare a solid content concentration of 79% by weight. On the other hand, as a woven fabric, the thickness is 50 μm, the average area per opening is 5.5 × 10 −3 mm 2, and the width between adjacent openings is 5
Using a 0 μm nylon woven fabric, this woven fabric is dipped in a mixture in a polyethylene container to allow the mixture to adhere sufficiently to the surface of the woven fabric, and then the woven fabric is sandwiched with a blade made of fluororubber, While applying a clamping force, the woven fabric was pulled out from the blade, and the mixture was filled in the opening of the woven fabric. The obtained sheet was sufficiently dried in a nitrogen stream to remove toluene to obtain a solid electrolyte sheet having a volume fraction of solid electrolyte powder in the mixture of 90% and a thickness of 70 μm.

次にCuの粉末、CuSの粉末およびRbCu
1.5Cu3.5からなる固体電解質粉を重量比でCu:Cu
S:RbCu1.5Cl3.5=2.9:2.7:1の
割合で混合し、ペレット状にプレス成型した後、ガラス
管に真空封入し200℃で17時間加熱し、このペレッ
トを200メッシュ以下の粉末に粉砕して負極用粉末を
得た。この負極用粉末と前記スチレン−ブタジエン−ス
チレンブロック共重合体とを前記固体電解質シート作製
の場合と同様の方法で混練し、得られた混合物を引延し
乾燥空気中にてトルエンを蒸発させ、体積分率90%、
厚み70μmの負極シート(負の電極層)を得た。
Next, Cu powder, Cu 2 S powder and RbCu 4 I
Solid electrolyte powder consisting of 1.5 Cu 3.5 in a weight ratio of Cu: Cu
2 S: RbCu 4 I 1.5 Cl 3.5 = 2.9: 2.7: 1, mixed and pressed into pellets, vacuum sealed in a glass tube and heated at 200 ° C. for 17 hours. The powder for a negative electrode was obtained by pulverizing to a powder of 200 mesh or less. This negative electrode powder and the styrene-butadiene-styrene block copolymer are kneaded in the same manner as in the case of the solid electrolyte sheet preparation, and the resulting mixture is drawn to evaporate toluene in dry air, 90% volume fraction,
A negative electrode sheet (negative electrode layer) having a thickness of 70 μm was obtained.

また、Cuの粉末とTiSの粉末をモル比で0.1
5:1の割合で混合してペレットにプレス成型し、石英
管に真空封入して550℃で72時間加熱し、得られた
Cu0.15TiSペレットを200メッシュ以下となる
ように粉砕し、この粉末とRbCu1.5Cl3.5から
なる固体電解質粉を重量比で1:1に混合し、正極用粉
末を得た。この正極用粉末と上記スチンレン−ブタジエ
ン−スチレンブロック共重合体とを前記負極シート作製
の場合と同様の方法で混練し、成型し、体積分率90
%、厚み70μmの正極シート(正の電極層)を得た。
Further, the Cu powder and the TiS 2 powder have a molar ratio of 0.1.
The mixture was mixed at a ratio of 5: 1, pressed into pellets, vacuum-sealed in a quartz tube, heated at 550 ° C. for 72 hours, and the obtained Cu 0.15 TiS 2 pellets were pulverized to 200 mesh or less. The powder and a solid electrolyte powder composed of RbCu 4 I 1.5 Cl 3.5 were mixed at a weight ratio of 1: 1 to obtain a positive electrode powder. The powder for positive electrode and the above-mentioned stinlene-butadiene-styrene block copolymer were kneaded and molded in the same manner as in the case of preparing the negative electrode sheet, and the volume fraction was 90.
%, A positive electrode sheet (positive electrode layer) having a thickness of 70 μm was obtained.

得られた正極シート、固体電解質シート、負極シートを
順に積層し、引出し電極に銅薄板を用いて130℃でプ
レス成型し、周辺部をエポキシ樹脂で封止し、電池を作
製した。
The obtained positive electrode sheet, solid electrolyte sheet, and negative electrode sheet were laminated in order, press-molded at 130 ° C. using a thin copper plate for the extraction electrode, and the periphery was sealed with an epoxy resin to prepare a battery.

第1図に得られた電池の断面図を示した。図中、1は固
体電解質シート、2は正極シート、3は負極シート、4
および5は引出し電極、6は封止材である。得られた電
池の厚みおよび全導電率、自己放電特性、充放電サイク
ル、低温特性、開路電圧の試験結果を第1表に示した。
FIG. 1 shows a sectional view of the obtained battery. In the figure, 1 is a solid electrolyte sheet, 2 is a positive electrode sheet, 3 is a negative electrode sheet, 4
Reference numerals 5 and 5 are extraction electrodes, and 6 is a sealing material. Table 1 shows the test results of the thickness, total conductivity, self-discharge characteristics, charge / discharge cycle, low temperature characteristics, and open circuit voltage of the obtained battery.

さらに樹脂封止を行なう前の積層化した状態での耐屈曲
性も評価した。結果をあわせて第1表に示した。
Furthermore, the bending resistance in a laminated state before resin sealing was also evaluated. The results are also shown in Table 1.

なお、前記全導電率(s/cm)は、交流1KHでのイン
ピーダンスをLCRメータ(横河ヒューレットパッカー
ド社製、YHP427A)で評価し、その直流成分より
求めた。
The total conductivity (s / cm) was obtained from the DC component by evaluating the impedance at an alternating current of 1 KH with an LCR meter (YHP427A manufactured by Yokogawa Hewlett-Packard Co.).

自己放電特性は、4mAh/ccの充放電サイクル(2時
間放電、1時間放電)での電池電圧の変化より求めた。
The self-discharge characteristics were obtained from the change in battery voltage during a charge / discharge cycle of 4 mAh / cc (2 hours discharge, 1 hour discharge).

充放電サイクルは、2.5mAh/ccの充放電サイクル
で、放電電圧が0.35ボルト以下になるサイクル数で
示した。
The charging / discharging cycle was a charging / discharging cycle of 2.5 mAh / cc, and the discharging voltage was 0.35 V or less.

低温特性は、−10℃における充放電特性で示した。The low temperature characteristics are shown by the charge / discharge characteristics at -10 ° C.

耐屈曲性は半径80mm曲げ試験を行ない、シートのヒビ
割れないしは破断が発生した回数で評価した。
The bending resistance was evaluated by conducting a bending test with a radius of 80 mm and evaluating the number of times the sheet was cracked or fractured.

実施例2 実施例1と同様の方法で固体電解質シート(混合物中の
固体電解質粉の体積分率90%、厚み70μm)を作製
した。負極シートとして、Cuの粉末、CuSの粉末
およびRbCu1.5Cl3.5よりなる固体電解質粉末
を重量比で、Cu:CuS:RbCu1.5Cl3.5
=2.9:2.7:3(負極シート(1)、厚み30μ
m)、2.9:2.7:2(負極シート(2)、厚み30
μm)および2.9:2.7:1(負極シート(3)、厚
み30μm)の割合で混合したものを体積分率が90%
となるようにそれぞれ実施例1と同様の方法で作製し
た。また正極用シートとして、Cu0.15TiSの粉末
とRbCu1.5Cl3.5からなる固体電解質粉を重量
比でCu0.15TiS:RbCu1.5Cl3.5=1:
3(正極シート(1)、厚み30μm)、1:2(正極シ
ート(2)、厚み30μm)および1:1(正極シート
(3)、厚み30μm)の割合で混合したものを体積分率
が90%となるようにそれぞれ実施例1と同様の方法で
作製した。
Example 2 A solid electrolyte sheet (90% volume fraction of solid electrolyte powder in the mixture, 70 μm in thickness) was prepared in the same manner as in Example 1. As the negative electrode sheet, Cu powder, Cu 2 S powder, and solid electrolyte powder composed of RbCu 4 I 1.5 Cl 3.5 in a weight ratio of Cu: Cu 2 S: RbCu 4 I 1.5 Cl 3.5.
= 2.9: 2.7: 3 (negative electrode sheet (1), thickness 30μ
m) 2.9: 2.7: 2 (negative electrode sheet (2), thickness 30)
μm) and 2.9: 2.7: 1 (negative electrode sheet (3), thickness 30 μm) mixed in a ratio of 90%.
Were manufactured in the same manner as in Example 1. As the positive electrode sheet, a solid electrolyte powder composed of Cu 0.15 TiS 2 powder and RbCu 4 I 1.5 Cl 3.5 is used in a weight ratio of Cu 0.15 TiS 2 : RbCu 4 I 1.5 Cl 3.5 = 1:
3 (positive electrode sheet (1), thickness 30 μm), 1: 2 (positive electrode sheet (2), thickness 30 μm) and 1: 1 (positive electrode sheet
(3) A mixture having a thickness of 30 μm) was mixed in the same manner as in Example 1 so that the volume fraction was 90%.

得られたシートを正極シート(3)/正極シート(2)/正極
シート(1)/固体電解質シート/負極シート(1)/負極シ
ート(2)/負極シート(3)の順で積層し、引出し電極に銅
薄板を用い、実施例1と同様の方法で電池を作製した。
第2図に得られた電池の断面図を示した。図中、2aは
正極シート(1)、2bは正極シート(2)、2cは正極シー
ト(3)、3aは負極シート(1)、3bは負極シート(2)、
3cは負極シート(3)である。得られた電池を実施例1
と同様にして試験を行ない、その結果を第1表に示し
た。
The obtained sheets are laminated in the order of positive electrode sheet (3) / positive electrode sheet (2) / positive electrode sheet (1) / solid electrolyte sheet / negative electrode sheet (1) / negative electrode sheet (2) / negative electrode sheet (3), A battery was produced in the same manner as in Example 1 using a thin copper plate as the extraction electrode.
FIG. 2 shows a sectional view of the obtained battery. In the figure, 2a is a positive electrode sheet (1), 2b is a positive electrode sheet (2), 2c is a positive electrode sheet (3), 3a is a negative electrode sheet (1), 3b is a negative electrode sheet (2),
3c is a negative electrode sheet (3). The obtained battery was used in Example 1.
Tests were conducted in the same manner as above, and the results are shown in Table 1.

実施例3 実施例1と同様にして得たRbCu1.75Cl3.25
表わされる銅イオン伝導性固体電解質粉末を用い、高分
子弾性体としてスチレン−エチレン−ブチレン−スチレ
ンブロック共重合体(SEBS)を用いた以外は実施例
1と同様にして固体電解質の体積分率が90%の厚み8
0μmの固体電解質シートを得た。
Example 3 A copper ion conductive solid electrolyte powder represented by RbCu 4 I 1.75 Cl 3.25 obtained in the same manner as in Example 1 was used, and a styrene-ethylene-butylene-styrene block copolymer (SEBS) was used as a polymer elastic body. A solid electrolyte having a volume fraction of 90% and a thickness of 8
A solid electrolyte sheet of 0 μm was obtained.

次に電極材料としてCuMo7.8で表わされる銅
シュブレル化合物粉末(平均粒径=2μm)とRbCu
1.75Cl3.25からなる固体電解質粉を重量比で1:
1の混合物を固体電解質シートと同様にして体積分率9
0%、厚み100μmの電極シートを得た。
Next, as a material for the electrode, a Cu suvrel compound powder represented by Cu 2 Mo 6 S 7.8 (average particle size = 2 μm) and RbCu were used.
4 I 1.75 Cl 3.25 solid electrolyte powder in a weight ratio of 1:
The volume fraction of the mixture of 1 was 9 in the same manner as the solid electrolyte sheet.
An electrode sheet having a thickness of 0% and a thickness of 100 μm was obtained.

得られた電極シートと固体電解質シートとを、電極シー
ト、固体電解質シート、電極シートの順に積層し、引出
し電極に厚さ10μmのステンレス鋼板を用いて130
℃でプレス成型し、周辺部をエポキシ樹脂で封止し、第
1図に示す断面の構造を有する電池を作製した。
The obtained electrode sheet and solid electrolyte sheet were laminated in the order of the electrode sheet, the solid electrolyte sheet, and the electrode sheet, and a stainless steel plate having a thickness of 10 μm was used for the extraction electrode.
Press molding was carried out at 0 ° C., and the peripheral portion was sealed with an epoxy resin to prepare a battery having the structure of the cross section shown in FIG.

得られた電池を実施例1と同様にして試験を行ない、そ
の結果を第2表に示した。
The battery thus obtained was tested in the same manner as in Example 1, and the results are shown in Table 2.

実施例4 実施例1と同様にして得たRbCu1.25Cl3.75
表わされる銅イオン導電性固体電解質粉末と、高分子弾
性体としてスチレン−エチレン−ブチレン−スチレンブ
ロック共重合体(SEBS)とを用い実施例1と同様に
して混練し、得られた混合物を引延し乾燥空気中にてト
ルエンを蒸発させ、体積分率が85%の厚み65μmの
固体電解質シートを得た。次に電極材料としてCu
7.8で表わされる銅シュブレル化合物粉末(平均
粒径=2μm)とRbCu1.25Cl3.75からなる固
体電解質粉末を重量比で1:1の混合物を用い、目付け
が10g/m2の厚み80μmのポリプロピレン製不織
布を用いた以外は実施例1の固体電解質シートと同様に
して体積分率95%、厚み100μmの正極シートを得
た。さらに、電極材料としてCuMoで表わさ
れる銅シュブレル化合物粉末(平均粒径=2μm)を用
いた以外は前記正極シートと同様にして体積分率95
%、厚み100μmの負極シートを得た。得られた電極
シートと固体電解質シートとを、正極シート、固体電解
質シート、負極シート順に積層し、引出し電極として正
極側に厚さ10μmのステンレス鋼板を、負極側に厚さ
10μmの銅板を配置して130℃でプレス成型し、周
辺部をエポキシ樹脂で封止し、第1図で示したのと同様
の断面の構造を有する電池を作製した。得られた電池を
実施例1と同様にして試験を行ない、その結果を第2表
に示した。
Example 4 A copper ion conductive solid electrolyte powder represented by RbCu 4 I 1.25 Cl 3.75 obtained in the same manner as in Example 1 and styrene-ethylene-butylene-styrene block copolymer (SEBS) as a polymer elastic body. Was kneaded in the same manner as in Example 1 and the resulting mixture was drawn and toluene was evaporated in dry air to obtain a solid electrolyte sheet having a volume fraction of 85% and a thickness of 65 μm. Next, Cu 2 M as an electrode material
o 6 S 7.8 copper suvrel compound powder (average particle size = 2 μm) and solid electrolyte powder consisting of RbCu 4 I 1.25 Cl 3.75 in a weight ratio of 1: 1 and a basis weight of 10 g / m 2 A positive electrode sheet having a volume fraction of 95% and a thickness of 100 μm was obtained in the same manner as the solid electrolyte sheet of Example 1 except that a polypropylene non-woven fabric of 80 μm was used. Further, a volume fraction of 95 was obtained in the same manner as in the positive electrode sheet, except that a Cu-Sbrell compound powder represented by Cu 4 Mo 6 S 8 (average particle size = 2 μm) was used as an electrode material.
%, And a negative electrode sheet having a thickness of 100 μm was obtained. The obtained electrode sheet and solid electrolyte sheet were laminated in this order on the positive electrode sheet, the solid electrolyte sheet, and the negative electrode sheet, and a stainless steel plate having a thickness of 10 μm was arranged on the positive electrode side and a copper plate having a thickness of 10 μm was arranged on the negative electrode side as extraction electrodes. By press molding at 130 ° C. and sealing the peripheral portion with an epoxy resin to produce a battery having the same cross-sectional structure as shown in FIG. The battery thus obtained was tested in the same manner as in Example 1, and the results are shown in Table 2.

実施例5 実施例1と同様にして得たRbCu1.5Cl3.5で表
わされる銅イオン伝導性固体電解質粉末と、高分子弾性
体としてスチレン−エチレン−ブチレン−スチレンブロ
ック共重合体(SEBS)とを用い実施例1と同様にし
て混練し、得られた混合を引延し乾燥空気中にてトルエ
ンを蒸発させ、体積分率が75%の厚み55μmの固体
電解質シートを得た。次に前記混合物を、電極材料を兼
ねる導電性網状体である活性炭繊維よりなる厚さ200
μmの織布(比表面積=900m2/g)の開口部に充
填し、窒素気流中で充分に乾燥させ、トルエンを除去
し、乾燥シートの固体電解質粉の含有率が20重量%の
厚さ250μmの電極シートを得た。得られた電極シー
トと固体電解質シートとを、電極シート、固体電解質シ
ート、電極シートの順に積層し、引出し電極として厚さ
10μmのステンレス鋼板を配置して130℃でプレス
成型し、周辺部をエポキシ樹脂で封止し、第1図で示し
たのと同様の断面の構造を有する電気二重層キャパシタ
を作製した。得られた素子を実施例1の電池と同様の方
法で試験を行ない、その結果を第2表に示した。ただ
し、自己放電特性は、充放電時間を電池の場合の20分
の1にし、0.2mAh/ccでの試験を行なった。充放
電サイクルも同様に20分の1の0.125mAh/cc
で行なった。
Example 5 A copper ion conductive solid electrolyte powder represented by RbCu 4 I 1.5 Cl 3.5 obtained in the same manner as in Example 1 and styrene-ethylene-butylene-styrene block copolymer (SEBS) as a polymer elastic body. Was kneaded in the same manner as in Example 1 and the resulting mixture was expanded and toluene was evaporated in dry air to obtain a solid electrolyte sheet having a volume fraction of 75% and a thickness of 55 μm. Next, the mixture was made to have a thickness of 200 including an activated carbon fiber which is a conductive mesh that also serves as an electrode material.
A woven cloth (specific surface area = 900 m 2 / g) of μm was filled in the opening, sufficiently dried in a nitrogen stream to remove toluene, and the dry sheet had a solid electrolyte powder content of 20% by weight. An electrode sheet of 250 μm was obtained. The obtained electrode sheet and solid electrolyte sheet were laminated in the order of the electrode sheet, the solid electrolyte sheet, and the electrode sheet, a stainless steel plate having a thickness of 10 μm was arranged as a lead electrode, and press molding was performed at 130 ° C., and the peripheral portion was epoxy. An electric double layer capacitor having a cross-sectional structure similar to that shown in FIG. 1 was manufactured by sealing with a resin. The device thus obtained was tested in the same manner as in the battery of Example 1, and the results are shown in Table 2. However, the self-discharge characteristics were tested at 0.2 mAh / cc with the charging / discharging time being one-twentieth of that of the battery. The charge / discharge cycle is also 0.125 mAh / cc, which is one-twentieth.
I did it in.

実施例6 実施例1と同様にして得たRbCu1.5Cl3.5で表
わされる銅イオン伝導性固体電解質粉末と、高分子弾性
体としてスチレン−ブタジエン−スチレンブロック共重
合体(SBS)とを用い実施例1と同様にして混練し、
得られた混合物を引延し乾燥空気中にてトルエンを蒸発
させ、体積分率が70%の厚み55μmの固体電解質シ
ートを得た。次に前記混合物を、電極材料を兼ねる導電
性網状体である活性炭繊維よりなる厚さ200μmの織
布(比表面積=900m2/g)の開口部に充填し、窒
素気流中で充分に乾燥させ、トルエンを除去し、乾燥シ
ート中の固体電解質粉の含有率が20重量%、厚さ25
0μmの正極シートを得た。一方、電極材料としてCu
Moで表わされる銅シュブレル化合物粉末(平
均粒径=2μm)と、前記固体電解質粉末を重量比で
1:1としたものとSBSとを実施例1と同様の方法に
より混練して得た混合物を、厚みが100μmの200
メッシュの銅ネットの開口部に充填して、混合物中にお
ける固体電解質粉と銅シュブレル粉の合計量の体積分率
が95%の厚さが110μmの負極シートを得た。得ら
れた電極シートと固体電解質シートとを、正極シート2
枚、固体電解質シート、負極シートの順に積層し、引出
し電極として正極側には厚さ10μmのステンレス鋼板
を、負極側には厚さ10μmの真鍮板を配置して130
℃でプレス成型し、周辺部をエポキシ樹脂で封止し、第
1図で示したのと同様の断面の構造を有する電気二重層
キャパシタを作製した。得られた素子を実施例1の電池
と同様の方法で試験を行ない、その結果を第2表に示し
た。ただし、自己放電特性は、充放電時間を電池の場合
の5分の1にし、0.8mAh/ccでの試験を行なっ
た。充放電サイクルも同様に5分の1の0.5mAh/
ccで行なった。
Example 6 A copper ion conductive solid electrolyte powder represented by RbCu 4 I 1.5 Cl 3.5 obtained in the same manner as in Example 1 and a styrene-butadiene-styrene block copolymer (SBS) as a polymer elastic body were used. Kneading in the same manner as in Example 1,
The obtained mixture was drawn and toluene was evaporated in dry air to obtain a solid electrolyte sheet having a volume fraction of 70% and a thickness of 55 μm. Next, the mixture was filled into an opening of a 200 μm-thick woven cloth (specific surface area = 900 m 2 / g) made of activated carbon fiber which was a conductive mesh that also serves as an electrode material, and was sufficiently dried in a nitrogen stream. , Toluene was removed, and the content of the solid electrolyte powder in the dry sheet was 20% by weight and the thickness was 25.
A positive electrode sheet of 0 μm was obtained. On the other hand, Cu as an electrode material
4 Mo 6 S 8 A copper shubrel compound powder (average particle size = 2 μm), a solid electrolyte powder having a weight ratio of 1: 1 and SBS were kneaded in the same manner as in Example 1. The obtained mixture was mixed with 200 μm of 100 μm in thickness.
The openings of the mesh copper net were filled to obtain a negative electrode sheet having a thickness of 110 μm and a volume fraction of the total amount of the solid electrolyte powder and the copper shubrel powder in the mixture of 95%. The obtained electrode sheet and solid electrolyte sheet are combined into a positive electrode sheet 2
One piece, a solid electrolyte sheet, and a negative electrode sheet are laminated in this order, and a stainless steel plate having a thickness of 10 μm is arranged on the positive electrode side and a brass plate having a thickness of 10 μm is arranged on the negative electrode side as an extraction electrode.
Press molding was carried out at 0 ° C., and the peripheral portion was sealed with an epoxy resin to produce an electric double layer capacitor having a structure of a cross section similar to that shown in FIG. The device thus obtained was tested in the same manner as in the battery of Example 1, and the results are shown in Table 2. However, the self-discharge characteristics were tested at 0.8 mAh / cc with the charging / discharging time being one-fifth that of the battery. The charge / discharge cycle is also 1/5, 0.5 mAh /
It was done with cc.

実施例7 固体電解質として平均粒径10μmのHMo12PO40
・29HOで表わされるHイオン伝導性固体電解質
粉とスチレン−ブタジエン−スチレンブロック共重合体
(SBS)とを用い実施例1と同様にして混練し、得ら
れた混合物を実施例1と同様にしてナイロン製織布に充
填して固体電解質の体積分率が90%の厚み80μmの
固体電解質シートを得た。次に前記混合物を、電極材料
を兼ねる導電性網状体である活性炭繊維よりなる厚さ2
00μmの織布(比表面積=900m2/g)の開口部
に充填し、窒素気流中で充分に乾燥させ、トルエンを除
去し、乾燥シート中の固体電解質粉末を含有率が20重
量%の厚さ250μmの対極シートを得た。一方、表示
材料として平均粒径が8μmの三酸化タングステン(W
)と前記固体電解質とを重量比が1:1となるよう
に実施例1と同様にSBS中に分散し、混練し、得られ
た混合物を引延し大気中でトルエンを蒸発させた固体電
解質粉とWO粉の合計量の体積分率が85%の厚み8
0μmの表示極シートを得た。
Example 7 H 3 Mo 12 PO 40 having an average particle size of 10 μm as a solid electrolyte
-H + ion conductive solid electrolyte powder represented by 29H 2 O and styrene-butadiene-styrene block copolymer (SBS) were kneaded in the same manner as in Example 1, and the resulting mixture was used as Example 1. Similarly, it was filled into a nylon woven cloth to obtain a solid electrolyte sheet having a solid electrolyte volume fraction of 90% and a thickness of 80 μm. Next, the above mixture was applied to a thickness of 2 consisting of activated carbon fiber which is a conductive mesh that also serves as an electrode material.
The opening of a woven fabric of 00 μm (specific surface area = 900 m 2 / g) was filled, dried sufficiently in a nitrogen stream to remove toluene, and the solid electrolyte powder in the dried sheet had a thickness of 20% by weight. A counter electrode sheet having a size of 250 μm was obtained. On the other hand, as a display material, tungsten trioxide (W
O 3 ) and the solid electrolyte were dispersed in SBS in the same manner as in Example 1 so that the weight ratio was 1: 1 and kneaded, and the obtained mixture was spread and toluene was evaporated in the atmosphere. Thickness 8 with a volume fraction of the total amount of solid electrolyte powder and WO 3 powder of 85%
A display electrode sheet of 0 μm was obtained.

得られた表示極シート、対極シート、固体電解質シート
とを、表示極シート、固体電解質シート、対極シートの
順に積層し、引出し電極として表示極側には厚さ50μ
mのポリエステル製シート上に厚さ0.3μmのITO
透明電極を設けたシートを、対極側には厚さ10μmの
ステンレス鋼板を配置して80℃でプレス成型し、周辺
部をエポキシ樹脂で封止し、第1図で示したのと同様の
断面の構造を有するエレクトロクロミック表示素子を得
た。得られた素子を実施例1の電池と同様の方法で試験
を行ない、その結果を第2表に示した。また、単位素子
面積当たり20ミリクーロン(mC)での発色−消色サ
イクル試験を行なったところ10回を超えてもほぼ初
期と変わらない特性が得られた。
The obtained display electrode sheet, counter electrode sheet, and solid electrolyte sheet were laminated in this order on the display electrode sheet, the solid electrolyte sheet, and the counter electrode sheet.
ITO of 0.3 μm thickness on m polyester sheet
A sheet having a transparent electrode is placed on the opposite side of a stainless steel plate having a thickness of 10 μm, press-molded at 80 ° C., and the periphery is sealed with an epoxy resin. The same cross section as shown in FIG. An electrochromic display device having the structure of was obtained. The device thus obtained was tested in the same manner as in the battery of Example 1, and the results are shown in Table 2. Further, when a color development-decolorization cycle test was carried out at 20 millicoulombs (mC) per unit device area, almost the same characteristics as the initial values were obtained even after 10 5 times.

以上、固体電解質として銅イオンあるいはプロトン伝導
性固体電解質を用いた場合について示したが、その他の
固体電解質、例えば銀イオン伝導性、リチウムイオン伝
導性、ナトリウムイオン伝導性等を用いても同様の効果
が得らえることはいうまでもない。
Although the case where a copper ion or a proton conductive solid electrolyte is used as the solid electrolyte has been described above, the same effect can be obtained by using other solid electrolytes such as silver ion conductivity, lithium ion conductivity and sodium ion conductivity. It goes without saying that you can get

〔発明の効果〕〔The invention's effect〕

本発明の固体電気科学素子によれば、イオン伝導性が優
れ、また加工性、生産性、放置安定性および柔軟性に優
れ、かつ素子を製造する際の固体電解質層および電極層
間の密着性に優れ、素子の薄形化および大面積化を図る
ことができる。
According to the solid electro-chemical element of the present invention, excellent ionic conductivity, processability, productivity, leaving stability and flexibility are excellent, and in the adhesion between the solid electrolyte layer and the electrode layer when manufacturing the element. It is excellent, and the device can be made thinner and the area can be increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の実施例1に係る固体電解質電池の断
面図、第2図は、本発明の実施例2に係る固体電解質電
池の断面図である。 1…固体電解質シート、2…正極シート、2a…正極シ
ート(1)、2b…正極シート(2)、2c…正極シート
(3)、3…負極シート、3a…負極シート(1)、3b…負
極シート(2)、3c…負極シート(3)、4および5…引出
し電極、6…封止材。
1 is a sectional view of a solid electrolyte battery according to Example 1 of the present invention, and FIG. 2 is a sectional view of a solid electrolyte battery according to Example 2 of the present invention. DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte sheet, 2 ... Positive electrode sheet, 2a ... Positive electrode sheet (1), 2b ... Positive electrode sheet (2), 2c ... Positive electrode sheet
(3), 3 ... Negative electrode sheet, 3a ... Negative electrode sheet (1), 3b ... Negative electrode sheet (2), 3c ... Negative electrode sheet (3), 4 and 5 ... Extraction electrode, 6 ... Encapsulating material.

フロントページの続き (72)発明者 近藤 繁雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 外邨 正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭58−123670(JP,A)Front page continuation (72) Inventor Shigeo Kondo 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Tadashi Sotobe 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. References JP-A-58-123670 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体電解質層と、該固体電解質層を介して
上下面に接合される少なくとも一対の電極層とを有し、
上記固体電解質層および電極層の少なくとも1つが担体
として網状体を用いたシート状成形体である固体電気化
学素子であって、固体電解質層が、固体電解質粉を高分
子弾性体に分散させた混合物を含有し、電極層の少なく
とも1つが、固体電解質粉または固体電解質粉と電極材
料粉を高分子弾性体に分散させた混合物を含有し、かつ
上記高分子弾性体が、スチレン−ブタジエン−スチレン
ブロック共重合体、スチレン−イソプレン−スチレンブ
ロック共重合体、スチレン−エチレン−ブチレン−スチ
レンブロック共重合体および1,2−ポリブタジエンの
少なくとも1種からなり、さらに前記固体電解質層およ
び電極層の少なくとも1つがそれぞれの前記混合物を前
記網状体の開口部に充填してなるものであることを特徴
とする固体電気化学素子。
1. A solid electrolyte layer, and at least a pair of electrode layers joined to the upper and lower surfaces through the solid electrolyte layer,
A solid electrochemical element in which at least one of the solid electrolyte layer and the electrode layer is a sheet-like molded body using a mesh body as a carrier, and the solid electrolyte layer is a mixture in which solid electrolyte powder is dispersed in a polymer elastic body. At least one of the electrode layers contains solid electrolyte powder or a mixture of solid electrolyte powder and electrode material powder dispersed in a polymer elastic body, and the polymer elastic body is a styrene-butadiene-styrene block. At least one of a copolymer, a styrene-isoprene-styrene block copolymer, a styrene-ethylene-butylene-styrene block copolymer and 1,2-polybutadiene, and at least one of the solid electrolyte layer and the electrode layer. Solid state electrification, characterized in that the mixture is filled in the openings of the mesh body. Element.
【請求項2】固体電解質層が、固体電解質粉を高分子弾
性体中に体積分率55〜95%で分散させた混合物を、
非導電性網状体の開口部に充填してなるシート状成形体
であることを特徴とする特許請求の範囲第1項記載の固
体電気化学素子。
2. A solid electrolyte layer comprising a mixture of solid electrolyte powder dispersed in a polymer elastic body at a volume fraction of 55 to 95%.
The solid electrochemical device according to claim 1, which is a sheet-shaped molded body obtained by filling the openings of the non-conductive mesh body.
【請求項3】電極層が、電極材料粉と必要に応じ固体電
解質粉とを、高分子弾性体中に体積分率75〜95%で
分散させた混合物を、網状体の開口部に充填してなるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の固体電気化学素子。
3. An electrode layer is filled with a mixture of an electrode material powder and, if necessary, a solid electrolyte powder dispersed in a polymer elastic body at a volume fraction of 75 to 95%, and filling the opening of a mesh body. The solid electrochemical element according to claim 1 or 2, characterized in that
【請求項4】電極層が、固体電解質粉を高分子弾性体中
に分散せしめた混合物を、電極材料を兼ねる導電性網状
体の開口部に充填してなることを特徴とする特許請求の
範囲第1項または第2項記載の固体電気化学素子。
4. The electrode layer is formed by filling a mixture in which a solid electrolyte powder is dispersed in a polymer elastic body into an opening of a conductive reticulate body which also serves as an electrode material. The solid-state electrochemical device according to item 1 or 2.
【請求項5】電極層が、電極材料粉と固体電解質粉との
混合比を段階的に変化させた複数のシートを混合比の順
に積層させたものであり、固体電解質粉の混合割合の大
きい電極層面が固体電解質層と接合するようにしたこと
を特徴とする特許請求の範囲第1項ないし第3項のいず
れかに記載の固体電気化学素子。
5. The electrode layer is formed by stacking a plurality of sheets in which the mixing ratio of the electrode material powder and the solid electrolyte powder is changed step by step, in the order of the mixing ratio, and the mixing ratio of the solid electrolyte powder is large. The solid electrochemical element according to any one of claims 1 to 3, wherein the electrode layer surface is joined to the solid electrolyte layer.
JP62279881A 1987-03-27 1987-11-05 Solid electrochemical device Expired - Lifetime JPH067496B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62279881A JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device
US07/172,166 US4810599A (en) 1987-03-27 1988-03-23 Structure suitable for solid electrochemical elements
EP88104873A EP0284104B1 (en) 1987-03-27 1988-03-25 Structure suitable for solid electrochemical elements
DE3852412T DE3852412T2 (en) 1987-03-27 1988-03-25 Structure, suitable for use in solid electrochemical elements.
KR1019880003331A KR970004137B1 (en) 1987-03-27 1988-03-26 Structure suitable for solid electro chemical elements

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7373087 1987-03-27
JP62-73730 1987-03-27
JP62279881A JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device

Publications (3)

Publication Number Publication Date
JPH01657A JPH01657A (en) 1989-01-05
JPS64657A JPS64657A (en) 1989-01-05
JPH067496B2 true JPH067496B2 (en) 1994-01-26

Family

ID=26414880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279881A Expired - Lifetime JPH067496B2 (en) 1987-03-27 1987-11-05 Solid electrochemical device

Country Status (1)

Country Link
JP (1) JPH067496B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564193B2 (en) * 1989-12-07 1996-12-18 日本合成ゴム株式会社 Method for manufacturing solid electrolyte battery element
JP4901189B2 (en) * 2004-11-19 2012-03-21 株式会社フコク Storage rubber and lithium battery using the same
WO2011086658A1 (en) * 2010-01-12 2011-07-21 トヨタ自動車株式会社 Solid-state battery and process for production thereof
JP2019016484A (en) * 2017-07-05 2019-01-31 日立造船株式会社 Negative electrode for all solid-state battery and all solid-state battery including the same
WO2020067023A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Thread battery
WO2020067017A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Thread battery and thread battery with connector
JPWO2023140342A1 (en) * 2022-01-24 2023-07-27

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3200757C1 (en) * 1982-01-13 1983-07-21 Fa. Carl Freudenberg, 6940 Weinheim Flexible electrolytic cell

Also Published As

Publication number Publication date
JPS64657A (en) 1989-01-05

Similar Documents

Publication Publication Date Title
US4810599A (en) Structure suitable for solid electrochemical elements
CA2016517C (en) Solid state electrochemical cell having microroughened current collector
EP0260679A2 (en) Solid electrochemical element and production process thereof
US4985317A (en) Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
JPH02250264A (en) Lithium ion conductive solid electrolyte
JPH067496B2 (en) Solid electrochemical device
JPH0381908A (en) Lithium ion conductive solid electrolyte
JPH01657A (en) solid state electrochemical device
JP2000311692A (en) Manufacture of electrochemical element
JP2564193B2 (en) Method for manufacturing solid electrolyte battery element
JP2511947B2 (en) Solid electrolyte molding
JPH0482166A (en) Manufacture of solid electrolytic sheet
JPH02301972A (en) Solid electrolyte sheet and battery thereof
JPH0576138B2 (en)
JPH02148656A (en) Body structure
JPH01195677A (en) Flexible solid electric chemical element
JPH01122567A (en) Manufacture of solid electrolyte sheet
JPH02253569A (en) Manufacture of solid state secondary battery
JPS63239776A (en) Solid electrolyte sheet and its manufacture
JPS63244569A (en) Manufacture of electrochemical element
JPH0261912A (en) Manufacture of solid electrolytic sheets
JPH02250205A (en) Conductive sheet and solid electrochemical element
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH01260765A (en) Electrochemical device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080126

Year of fee payment: 14