JPH02253569A - Manufacture of solid state secondary battery - Google Patents

Manufacture of solid state secondary battery

Info

Publication number
JPH02253569A
JPH02253569A JP1075353A JP7535389A JPH02253569A JP H02253569 A JPH02253569 A JP H02253569A JP 1075353 A JP1075353 A JP 1075353A JP 7535389 A JP7535389 A JP 7535389A JP H02253569 A JPH02253569 A JP H02253569A
Authority
JP
Japan
Prior art keywords
electrolyte
layer
binder
porous body
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1075353A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Tadashi Tonomura
正 外邨
Shuji Ito
修二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1075353A priority Critical patent/JPH02253569A/en
Publication of JPH02253569A publication Critical patent/JPH02253569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase adhesion between layers and to improve performance and life by arranging a thermoplastic resin porous member on one side of positive or negative electrode layer and on each side of an electrolyte layer, then by press-bonding them at a resin softening temperature or higher. CONSTITUTION:In a process in which an electrolyte layer is interposed between positive and negative electrode layers and they are bonded by heating, a thermoplastic resin porous member is arranged on each one side of positive and negative electrode layers, and on both sides of the electrolyte layer, then they are press-bonded at a resin-softening temperature or higher. Increase in internal resistance is decreased compared with where a large amount of binder is added to the electrode or the electrolyte, and decrease in adhesion between layers caused by expansion attendant on charge-discharge cycles is retarded. Capacity shortage in the early charge-discharge stage and short charge-discharge cycles are prevented, and the discharge capacity, self discharge, and cycle life of a solid state secondary battery are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電池
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a so-called solid state secondary battery whose constituent materials are all solid.

従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は、液漏れがなり、シたが
って高信頼性が期待でき、小形軽量化も可能などの理由
で一次、二次電池ともに注目されてきた。現在のところ
各種機器のメモリーバックアップ用が中心である。
Conventional technology Among the batteries used as various power sources, so-called solid-state batteries, whose constituent materials are all solid, are used primarily for reasons such as leakage, high reliability, and the ability to be made smaller and lighter. Both secondary batteries have been attracting attention. Currently, it is mainly used for memory backup of various devices.

この固体電池では、固体電解質がとくに重要であり、L
i L  Li5HなどのLi0イオン導電性固体電解
質、Rb A g a Is、Agl−Ag2O、Ag
I−MoonなどのAg4イオン導電性固体電解質、H
″″イオン導電性固体電解質、さらにRbCu4I +
、s Cl g、6、Cu l−Cu20−M2O3な
どのCu”イオン導電性固体電解質などがある。
In this solid-state battery, the solid electrolyte is particularly important, and L
i L Li0 ion conductive solid electrolyte such as Li5H, Rb A g a Is, Agl-Ag2O, Ag
Ag4 ion conductive solid electrolyte such as I-Moon, H
″″Ionic conductive solid electrolyte, further RbCu4I +
, s Cl g, 6, Cu'' ion conductive solid electrolytes such as Cu l-Cu20-M2O3.

まな、正極用材料としてはCue、+T i S2、A
gs、+Ti5e、Cu@、+NbS*1 Aga、+
NbS*1Wow、さらにCu y M o s S 
* −! 、 F e y M o e S * −z
などのシェブレル相化合物があげられている。
Mana, positive electrode materials include Cue, +T i S2, and A.
gs, +Ti5e, Cu@, +NbS*1 Aga, +
NbS*1Wow, and more Cu y M o s S
*-! , F ey M oe S * -z
Chevrel phase compounds such as

一方、負極にはCulA glL i +、5WOs、
さらに正極用と同様のシェブレル相化合物が試みられて
いる。
On the other hand, the negative electrode contains CulA glL i +, 5WOs,
Furthermore, Chevrel phase compounds similar to those for positive electrodes have been attempted.

これら電池の製法としては他の電池同様多くの方法があ
るが、工業的に有効な一つの方法として電極活物質と結
着剤を主とする層を両面に、中央に電解質と結着剤を主
とする層を配し、加熱により一体化し、その外側に結着
剤を含む導電性の層を設け、これも加熱により一体化す
る工程があげられる。
As with other batteries, there are many methods for manufacturing these batteries, but one method that is industrially effective is to form a layer containing mainly an electrode active material and a binder on both sides, and a layer containing an electrolyte and a binder in the center. Examples include a step of disposing a main layer and integrating it by heating, providing an electrically conductive layer containing a binder on the outside thereof, and also integrating it by heating.

発明が解決しようとする課題 固体電池の製法としての電極材料と結着剤を主とする層
を両面に、中央に電解質と結着剤を主とする層を配し、
加熱により一体化する方法は、他の一般の溶液を電解質
とする電池では採用できない簡単で連続的に生産できる
優れた製法である。
Problems to be Solved by the Invention As a manufacturing method for a solid-state battery, a layer mainly containing an electrode material and a binder is placed on both sides, and a layer mainly containing an electrolyte and a binder is arranged in the center.
The method of integrating by heating is an excellent manufacturing method that is simple and allows for continuous production, which cannot be used in batteries that use other general solutions as electrolytes.

しかし、電極材料の層と電解質層の密着性を充分に行な
うため結着剤の量を多くし過ぎると、内部抵抗が大きく
なって充放電特性が低下する。ところが逆に少なくする
と密着性の点で劣るだけではなく、充放電の過程で生ず
る、とくに電極の若干の膨張を抑制できないので充放電
特性も劣化することになる。すなわち、いずれにしても
放電特性、寿命それに自己放電特性などに改良の余地を
残している。
However, if the amount of binder is increased too much to ensure sufficient adhesion between the electrode material layer and the electrolyte layer, the internal resistance will increase and the charge/discharge characteristics will deteriorate. However, if the amount is too small, not only will the adhesion be poor, but the charging and discharging characteristics will also deteriorate because it is impossible to suppress the slight expansion of the electrodes that occurs during the charging and discharging process. That is, in any case, there is still room for improvement in discharge characteristics, lifespan, self-discharge characteristics, etc.

本発明はこのような従来技術の課題を解決することを目
的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 本発明は、電極材料と結着剤を主とする層を両面に、中
央に電解質と結°′着剤を主とする層を配し、加熱によ
り一体化する製法において、正および負極材料と結着剤
を主とする層を熱可塑性樹脂からなる多孔体上に形成し
、この多孔体面を一体化する電解質層に接し、この多孔
体が軟化融解する温度あるいはそれ以上の温度で加圧一
体化する。
Means for Solving the Problems The present invention provides a manufacturing method in which layers mainly containing electrode materials and binders are arranged on both sides, and a layer mainly containing electrolyte and binder is placed in the center, and the layers are integrated by heating. In this method, a layer mainly containing positive and negative electrode materials and a binder is formed on a porous body made of thermoplastic resin, and the surface of this porous body is brought into contact with an electrolyte layer that integrates it, and the layer is heated to a temperature at which the porous body softens and melts or above. Pressurize and integrate at a temperature above.

また電解質と結着剤を主とする層の両面に熱可塑性樹脂
からなる多孔体を配し両軍極層とこの多孔体が軟化融解
する温度あるいはそれ以上の温度で加圧一体化してもよ
い。なお、多孔体としては、特別の物でなく熱可塑性樹
脂製のスクリーン、パンチングメタル状、エキスパンド
メタル吠の物でよい。
Alternatively, a porous body made of thermoplastic resin may be placed on both sides of a layer mainly containing an electrolyte and a binder, and the two polar layers and this porous body may be integrated under pressure at a temperature at or above the temperature at which the porous body softens and melts. . Note that the porous body is not a special material, and may be a screen made of thermoplastic resin, a punched metal shape, or an expanded metal shape.

作用 本発明は、電極層を両面に、中央に電解質層を配し、加
熱により一体化する製法において、正極および負極層の
場合はその一方の面に、電解質層の場合は両面に、少な
くともどちらかには熱可塑性樹脂からなる多孔体を配し
、両軍極層と電解質層をこの多孔体が軟化融解する温度
あるいはそれ以上の温度で加圧一体化する。このことに
より、両軍極層と電解質層との接合部分の多孔体が融解
してこの部分に多孔性の接着剤が多く存在した形になり
層の密着性が向上する。したがって、電極や電解質中に
多くの結着剤を加えた場合はど内部抵抗の増大がなく、
また、充放電時での膨張による電極と電解質の密着性の
低下も抑制できるので初期の容量不足や少ない充放電サ
イクルでの劣化を防ぐことができる。
Function The present invention provides a manufacturing method in which electrode layers are placed on both sides and an electrolyte layer is placed in the center, and integrated by heating. A porous body made of thermoplastic resin is disposed in the crab, and both polar layers and the electrolyte layer are integrated under pressure at a temperature at which the porous body softens and melts or at a temperature higher than that. As a result, the porous material at the joint portion between the polar layer and the electrolyte layer melts, and a large amount of porous adhesive is present in this portion, improving the adhesion of the layers. Therefore, when a large amount of binder is added to the electrode or electrolyte, there is no increase in internal resistance.
Furthermore, it is possible to suppress the decrease in adhesion between the electrode and the electrolyte due to expansion during charging and discharging, thereby preventing initial capacity shortage and deterioration during a small number of charging and discharging cycles.

実施例 以下に、本発明の詳細な説明する。Example The present invention will be explained in detail below.

正極用材料として銅シェブレル(Cu、Mo・S・)を
用い、これに電解質としてRbCuaI+、@C1a、
sを30wt%、結着剤としてポリエチレンが7wt%
になるように、その熱ベンゼン溶液を加え充分攪拌して
後、線径0.1mmで30メツシユのポリエチレン製の
スクリーン上に0.35mmの厚さに、公知のドクター
ブレード法によりシートを形成する。
Copper Chevrell (Cu, Mo・S・) was used as the material for the positive electrode, and RbCuaI+, @C1a,
30wt% of S, 7wt% of polyethylene as a binder.
After adding the hot benzene solution and stirring thoroughly, a sheet with a wire diameter of 0.1 mm and a thickness of 0.35 mm is formed on a 30-mesh polyethylene screen using the known doctor blade method. .

一方、負極にも銅シェブレル(CuaMOaS*)を用
い正極と同様に電解質RbCuJI+、%C1s。
On the other hand, the negative electrode also uses copper Chevrell (CuaMOaS*) and the electrolyte RbCuJI+, %C1s, like the positive electrode.

6を30wt%、同じ条件で結着剤を用い充分攪拌して
後、同様にポリエチレン製のスクリーン上に0.35m
mの厚さに、公知のドクターブレード法によりシートを
形成する。
After thoroughly stirring 30 wt% of 6 using a binder under the same conditions, 0.35 m of 6 was placed on a polyethylene screen.
A sheet is formed to a thickness of m by a known doctor blade method.

それに電解質としてRb Cua I +、sCl s
、sを用い、やはり同じ結着剤で厚さ0.22mmのシ
ートを作成する。ここではスクリーンは用いなかった。
In addition, Rb Cua I +, sCl s as electrolytes
, s, and the same binder to prepare a sheet with a thickness of 0.22 mm. No screen was used here.

つぎに、電解質層を中心に、正、負極はいずれもスクリ
ーン側を電解質層にして重ね、さらにその外側にゴム中
にカーボンブラックを分散させた市販のカーボンフィル
ムを集電体として当てた後、160℃、500Kg/c
m”の条件でローラブレス機により連続的に加圧一体化
した。電極の大きさが30X30mmになるように裁断
し、正、負両極にそれぞれにリード線を取り付けた後常
温硬化型のエポキシ樹脂で被覆して電池を構成した。
Next, the positive and negative electrodes are stacked with the electrolyte layer at the center, with the screen side facing the electrolyte layer, and a commercially available carbon film with carbon black dispersed in rubber is applied to the outside as a current collector. 160℃, 500Kg/c
The electrodes were continuously pressurized and integrated using a roller press machine under conditions of 1.5 m''.The electrodes were cut into pieces with a size of 30 x 30 mm, and lead wires were attached to both the positive and negative electrodes, followed by room-temperature curing epoxy resin. A battery was constructed by coating with

この電池をAとする。This battery is called A.

つぎに、比較のために、電極の一方面にスクリーンを用
いないで他は電池Aと同様に製作した電池をBとして加
えた。
Next, for comparison, a battery B was prepared in the same manner as Battery A except that a screen was not used on one side of the electrode.

以上の電池の通常の充放電での放電容量は、たとえば、
0.25mAで0.54Vまでの充電−0,35mAで
0.25Vまでの放電の条件で調べたところ電池Aでは
10.5mAhであり、電池Bでは9.2mAhであっ
た。
The discharge capacity of the above batteries during normal charging and discharging is, for example,
When examined under the conditions of charging to 0.54 V at 0.25 mA and discharging to 0.25 V at 0.35 mA, battery A had a power of 10.5 mAh, and battery B had a power of 9.2 mAh.

そこでつぎにこの充放電の条件で各電池の寿命特性を調
べた。電池は、いずれも10セル用いた。
Therefore, we next investigated the life characteristics of each battery under these charging and discharging conditions. In each case, 10 cells were used.

周囲温度を45℃とした。その結果、放電容量が初期の
60%にまで劣化するサイクル数が電池Aでは1100
〜1200サイクルであったのに対して電池Bでは95
0〜1050サイクルであった。
The ambient temperature was 45°C. As a result, the number of cycles at which the discharge capacity deteriorated to 60% of its initial value was 1100 for battery A.
~1200 cycles compared to 95 cycles for battery B.
It was 0-1050 cycles.

この結果から明らかなように電池Aの方が長寿命であっ
た。
As is clear from this result, battery A had a longer life.

なお、先の例では多孔体としてのポリエチレン製のスク
リーンを電極層中に用いた結果について示したが、この
多孔体は電解質層中でも同様に優れた性能を有すること
が確認できた。
In addition, although the previous example showed the results of using a polyethylene screen as a porous body in the electrode layer, it was confirmed that this porous body had similarly excellent performance in the electrolyte layer.

なお、実施例では多孔体としてスクリーンを用いたが、
その他にパンチングメタル状やエキスパンドメタル状の
物でもよく、材料としては、他の熱可塑性樹脂たとえば
ポリ塩化ビニル、ポリアクリル系樹脂、ポリアミドな′
どでもよい。
In addition, although a screen was used as the porous body in the example,
In addition, punched metal or expanded metal materials may also be used, and materials such as other thermoplastic resins such as polyvinyl chloride, polyacrylic resins, and polyamides may also be used.
I don't care.

発明の効果 本発明は、正極および負極層の場合はその一方の面に、
電解質層の場合は両面に、少なくともどちらかには熱可
塑性樹脂からなる多孔体を配し、両電極層と電解質層を
この多孔体が軟化融解する温度あるいはそれ以上の温度
で加圧一体化することにより、両電極層と電解質層との
接合部分の密着性が向上する。その結果°、固体二次電
池の放電容量、自己放電特性それにサイクル寿命などが
改良できる効果を発揮する。
Effects of the Invention The present invention provides a positive electrode layer and a negative electrode layer on one side of the positive electrode layer and the negative electrode layer.
In the case of an electrolyte layer, a porous body made of thermoplastic resin is placed on both sides, at least on one side, and both electrode layers and the electrolyte layer are integrated under pressure at a temperature at or above the temperature at which the porous body softens and melts. This improves the adhesion of the joint between both electrode layers and the electrolyte layer. As a result, the discharge capacity, self-discharge characteristics, cycle life, etc. of the solid-state secondary battery can be improved.

Claims (3)

【特許請求の範囲】[Claims] (1)電極材料と結着剤を主とする層を両面に、中央に
電解質と結着剤を主とする層を配し、加熱により一体化
する固体二次電池の製造法において、正および負極材料
と結着剤を主とする層を、熱可塑性樹脂からなる多孔体
上に形成し、この多孔体が存在する面を一体化するため
の電解質層に接し、この多孔体が軟化融解する温度ある
いはそれ以上の温度で加圧一体化することを特徴とする
固体二次電池の製造法。
(1) In the manufacturing method of a solid-state secondary battery, the positive and A layer consisting mainly of negative electrode material and a binder is formed on a porous body made of thermoplastic resin, and the surface where this porous body is brought into contact with an electrolyte layer to integrate it, and this porous body softens and melts. A method for manufacturing a solid-state secondary battery characterized by pressurizing and integrating it at or above a temperature.
(2)電極材料と結着剤を主とする層を両面に、中央に
電解質と結着剤を主とする層を配し、加熱により一体化
する固体二次電池の製造法において、電解質と結着剤を
主とする層の両面に、熱可塑性樹脂からなる多孔体を配
し電解質層と両電極層とを、この多孔体が軟化融解する
温度あるいはそれ以上の温度で加圧一体化することを特
徴とする固体二次電池の製造法。
(2) In the manufacturing method of a solid-state secondary battery, a layer mainly containing an electrode material and a binder is arranged on both sides, and a layer mainly containing an electrolyte and a binder is placed in the center, and the electrolyte and the binder are integrated by heating. A porous body made of thermoplastic resin is placed on both sides of a layer mainly containing a binder, and the electrolyte layer and both electrode layers are integrated under pressure at a temperature at which the porous body softens and melts or at a temperature higher than that. A method for manufacturing a solid-state secondary battery characterized by the following.
(3)多孔体がスクリーン、パンチングメタル状、エキ
スパンドメタル状であることを特徴とする請求項1又は
2記載の固体二次電池の製造法。
(3) The method for producing a solid secondary battery according to claim 1 or 2, wherein the porous body is in the form of a screen, punched metal, or expanded metal.
JP1075353A 1989-03-27 1989-03-27 Manufacture of solid state secondary battery Pending JPH02253569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075353A JPH02253569A (en) 1989-03-27 1989-03-27 Manufacture of solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075353A JPH02253569A (en) 1989-03-27 1989-03-27 Manufacture of solid state secondary battery

Publications (1)

Publication Number Publication Date
JPH02253569A true JPH02253569A (en) 1990-10-12

Family

ID=13573789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075353A Pending JPH02253569A (en) 1989-03-27 1989-03-27 Manufacture of solid state secondary battery

Country Status (1)

Country Link
JP (1) JPH02253569A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848445A1 (en) * 1996-12-04 1998-06-17 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
EP0954043A1 (en) * 1997-11-19 1999-11-03 Mitsubishi Denki Kabushiki Kaisha Bonding agent for cells and cell using the same
EP0954042A1 (en) * 1997-11-19 1999-11-03 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
EP0967677A1 (en) * 1997-12-15 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
WO2000060690A1 (en) * 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Method of bonding a separator and an electrode, more particularly a cathode or an anode, as well as a battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0848445A1 (en) * 1996-12-04 1998-06-17 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and method of fabricating thereof
EP0954043A1 (en) * 1997-11-19 1999-11-03 Mitsubishi Denki Kabushiki Kaisha Bonding agent for cells and cell using the same
EP0954042A1 (en) * 1997-11-19 1999-11-03 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery and manufacture thereof
EP0954042A4 (en) * 1997-11-19 2005-01-19 Mitsubishi Electric Corp Lithium ion secondary battery and manufacture thereof
EP0954043A4 (en) * 1997-11-19 2005-01-19 Mitsubishi Electric Corp Bonding agent for cells and cell using the same
EP0967677A1 (en) * 1997-12-15 1999-12-29 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
EP0967677A4 (en) * 1997-12-15 2007-02-21 Mitsubishi Electric Corp Lithium ion secondary battery
WO2000060690A1 (en) * 1999-03-31 2000-10-12 Koninklijke Philips Electronics N.V. Method of bonding a separator and an electrode, more particularly a cathode or an anode, as well as a battery

Similar Documents

Publication Publication Date Title
JPH08138724A (en) Manufacture of all solid lithium secondary battery
CN209571500U (en) A kind of lithium ion battery
JPH11149916A (en) Organic electrolytic battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JP2770388B2 (en) Manufacturing method of all solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JPH0355767A (en) Manufacture of solid secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JP2759992B2 (en) Manufacturing method of solid state secondary battery
KR100445416B1 (en) Battery collector capable of preventing short circuit and separation of active materials, and manufacturing method thereof
JPH0513098A (en) Solid secondary battery and manufacture thereof
JPH0315167A (en) Solid state secondary battery
JPH02247979A (en) All-solid secondary battery and manufacture thereof
JPH02174077A (en) Solid secondary battery and manufacture thereof
JPH02247980A (en) Manufacture of all-solid secondary battery
JPH02114460A (en) Manufacture of solid secondary battery
JPH02114462A (en) Solid secondary battery
JP2023151100A (en) Solid electrolyte sheet and solid-state battery