JPH0315167A - Solid state secondary battery - Google Patents

Solid state secondary battery

Info

Publication number
JPH0315167A
JPH0315167A JP1147888A JP14788889A JPH0315167A JP H0315167 A JPH0315167 A JP H0315167A JP 1147888 A JP1147888 A JP 1147888A JP 14788889 A JP14788889 A JP 14788889A JP H0315167 A JPH0315167 A JP H0315167A
Authority
JP
Japan
Prior art keywords
electrolyte
positive
binder
solid
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1147888A
Other languages
Japanese (ja)
Other versions
JPH0750617B2 (en
Inventor
Hitoshi Matsumoto
仁 松本
Teruhisa Kanbara
神原 輝寿
Kazunori Takada
和典 高田
Shigeo Kondo
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1147888A priority Critical patent/JPH0750617B2/en
Publication of JPH0315167A publication Critical patent/JPH0315167A/en
Publication of JPH0750617B2 publication Critical patent/JPH0750617B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent minor short circuit caused by pinholes by forming a layer mainly comprising a positive electrode material, and electrolyte, and a binder and a layer mainly comprising a negative electrode material, the electrolyte, and the binder at some intervals on one side of a layer mainly comprising the electrolyte and the binder. CONSTITUTION:Positive and negative carbon current collectors 2 are formed at some intervals on a base plate 1, and positive and negative electrodes 3 are formed on the carbon current collectors 2. Solid electrolyte layers 4 are formed by extending over the positive electrode 3 and the negative electrode 3. Since the solid electrolyte layer 4 which is not in contact with the electrode 3 exists between the electrodes, short circuit is avoided and self-discharge is also decreased. A copper chevrel compound is used as the electrode materials of both electrodes, and a copper ion conductor such as RbCu4IxCly solid electrolyte is preferably used as the electrolyte. AgxV2O5 may be used in the positive and negative electrodes and a silver ion conductor such as Ag6I4WO4 may also be used as the electrolyte.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構戒材料がすべて固体のいわゆる固体二次電池
に関すん 従来の技術 各種の電源として使われる電池のうち構或材料がすべて
固体であムーいわゆる固体電池は液漏れがなく、したが
って高信頼性が期待でき、小形軽量化も可能などの理由
で一次 二次電池ともに注目されてきた 現在のところ
各種機器のメモリーバックアップ用を中心に考えられて
いもこの固体電池で&よ 電池内でイオンを動かすため
の固体電解質としてLi゜イオン導電性固体電解質、A
g”イオン導電性固体電解質、H゜イオン導電性固体電
解質それにRbCu4r+.sC ls.s、CuI−
Cu20一M o O sなどのCu”イオン導電性固
体電解質などが取り上げられていも また 正極用材料としてはC us.+T i Sa、
Ag@.tT i StSC us−+N b Ss、
Ags.+NbS*、W O s、それにCuvMo*
S*−z,AgvMo@Sm−2などのシェブレル相化
合物があげられていも方 負極にはC u,A g,L
 iI− s W O ss  それに正極用と同様の
シェブレル相化合物が試みられていム これら電池の構造として(友 他の電池と同様に正 負
極として電極活物質と結着剤を主とする層を両面に 中
央に電解質と結着剤を主とする層を配するのが一般的で
あも な抵 好ましい例として正鳳 負極とも作動する電極材
料としてたとえばCuvMo●S●−2などのシェブレ
ル相化合物を用へ 電解質としてRbCu41 +.i
C l s.s銅イオン導電性固体電解質を用いた場合
、充電で銅イオンバ 正極から負極へ移動し 放電では
その逆が生ずム 好ましい例として挙げた銅イオン導電性固体電解質を用
いた電池では 回路電圧i&0.5〜0.6 V,  
作動電圧は0.1 〜0.5Vと小さ(t 通家電池は
1.5v又はそれ以上の電圧で使用するので、実用化の
ためには積層しなくてはならなへ したがって集電依 
電鳳 固体電解質とも全て印刷方式で形成できれば印刷
パターンを変えるだけで積層数を自由に変えれるので、
高い電圧の電池を容易に製造することができ、工業的に
優れた製法となも 発明が解決しようとする課題 ところが他の電池と同様に玉 負極として電極活物質と
結着剤を主とする層を両面に 中央に電解質と結着剤を
主とする層を配した上記従来の構造で(上 電解質層の
ビンホールのため短絡した電池ができやすく初期容量の
高い電池を得ることが難しUち 又ある程度の初期容量が得られた場合でも自己放電が大
きいという問題があり、全印刷式固体電池の製造は難し
かっ九 課題を解決するための手段 従来の電池のように電解質を中心に その両面に正極と
負極を配するのではなく、電解質と結着剤を主とする層
の一方の面に 正極材料と電解質と結着剤を主とする層
と負極材料と電解質と結着剤を主とする層を間隔を保っ
て形威すも その形成法としては 集電依 電鳳 固体
電解質の全てを印刷法で行なう。さらにこれら層の形成
の過程でプレス機による加圧と結着剤の大幅な軟化を生
ずる温度以上の加熱を行なうことが好まし鶏な耘 電極
材料として<1  CuvMo@S●−2、AgvMo
ss●−1などのシエブレル相化合物やA g XV 
e O sがあげられも 作   用 電解質層の一方の面に 電解質を含む正極層と同じく電
解質を含む負極層とを間隔を保って形威すも したがっ
て、この間隔が従来の電池構戒での極間距離に相当すん
 そこで電極層の幅にもよるh文 従来の電池構戒に比
べると、とくに対極と反対側の電極層部分は極間距離が
大きく、したがって大きな負荷の用途には適さなI.%
  Lか獣 電極に接触しない電解質層が両極間に存在
するので、印刷法で形成させた場合のように薄い電解質
層を用いた際に懸念される短絡の恐れは全くなI,Xo
Lたがって、自己放電特性に関しても有利になaまた 
電解質層の一方の面にのみ五 負両極の層を形威するの
で、五 負極の組或が同じ場合は両極を一度に電解質層
の片面に印刷できるため製法を大幅に簡易化できも 実施例 図(友 本発明の一実施例における固体二次電池の断面
図であり、 3素子積層の例を示していもまずポリエチ
レンテレフタレート基板1の上にカーボンペーストを1
mmの間隔をあけて印届IL  乾燥し 正および負の
カーボン集電体2を形威すも電極用材料として銅シェブ
レル(C u 2M o sS =)を用1.%  こ
れに電解質としてRbCu4I+.iCls1を2 0
 W t 9A  結着剤として市販のメチルメタクリ
レートが8Wt%になるように そのトルエン溶液を加
え充分撹拌してペーストを得も 前記正および負のカー
ボン集電体2の上に このぺ−ストをメタルスクリーン
を用いて印届IL  乾燥し正および負の電極3を形威
すも 次に 電解質としてRbCu4I+.sC lz
.sを用1,\  結着剤として市販のメチルメタクリ
レートが8Wt%になるように そのトルエン溶液を加
え充分撹拌してペーストを作威したの&E  負極3、
 3にまたがって固体電解質ペーストをメタルスクリー
ンを用いて印刷し 固体電解質層4を形威すも 印刷工
程は全部で3回であも 次に 130℃で乾燥した後1
50℃に昇温したローラブレス機を通して50Q}(g
/Cm”で加熱加圧しtも  電極3及び電解質層4の
厚さは両方とも0.10mmであった 正負極3、 3
の大きさは両方とも20X5mmとし九 また重量は2
 6mgであっ九 最後に電池面上を、まずポリアクリ
ル系樹脂で被!L  さらに常温硬化型のエボキシ樹脂
をその上に塗着して電池を構戊しf,  この電池をA
とする。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to so-called solid-state secondary batteries whose structural materials are all solid.The present invention relates to so-called solid-state secondary batteries whose structural materials are all solid. So-called solid-state batteries have attracted attention as both primary and secondary batteries because they do not leak, are expected to be highly reliable, and can be made smaller and lighter.Currently, they are being considered mainly for memory backup in various devices. With this solid battery &yo Li゜ ion conductive solid electrolyte, A as a solid electrolyte for moving ions in the battery
g" ion conductive solid electrolyte, H ゜ ion conductive solid electrolyte and RbCu4r+.sC ls.s, CuI-
Although Cu" ion conductive solid electrolytes such as Cu20-MoOs have been discussed, positive electrode materials include Cus. + TiSa,
Ag@. tT i StSC us-+N b Ss,
Ags. +NbS*, W O s, and CuvMo*
Chevrel phase compounds such as S*-z, AgvMo@Sm-2 are listed.
In addition, Chevrel phase compounds similar to those used for positive electrodes have been tried.As for the structure of these batteries (like other batteries, the positive electrode and the negative electrode have layers mainly composed of an electrode active material and a binder on both sides). It is common to arrange a layer mainly containing an electrolyte and a binder in the center.A preferable example is a positive electrode.As an electrode material that also works with the negative electrode, for example, a Chevrel phase compound such as CuvMo●S●-2 is used. For use as electrolyte RbCu41 +.i
C l s. s When a copper ion conductive solid electrolyte is used, copper ions move from the positive electrode to the negative electrode during charging, and vice versa during discharge.In the battery using the copper ion conductive solid electrolyte mentioned as a preferable example, the circuit voltage i & 0. 5~0.6V,
The operating voltage is small at 0.1 to 0.5V (t) Household batteries are used at a voltage of 1.5V or higher, so they must be stacked for practical use.
Denho: If all solid electrolytes can be formed using a printing method, the number of layers can be freely changed just by changing the printing pattern.
High-voltage batteries can be manufactured easily, and the manufacturing method is industrially superior.However, the problem that the invention aims to solve is that, like other batteries, the electrode active material and the binder are used as the negative electrode. With the conventional structure described above, which has layers on both sides and a layer containing mainly electrolyte and binder in the center (top), it is difficult to obtain a battery with a high initial capacity due to the bottle holes in the electrolyte layer, which tends to cause short-circuited batteries. In addition, even if a certain initial capacity is obtained, there is a problem of large self-discharge, making it difficult to manufacture fully printed solid-state batteries. Instead of arranging a positive electrode and a negative electrode, a layer mainly containing an electrolyte and a binder is placed on one side, and a layer mainly containing a positive electrode material, an electrolyte, and a binder, and a layer mainly containing a negative electrode material, an electrolyte, and a binder. All of the solid electrolyte is formed using a printing method.In addition, in the process of forming these layers, pressure is applied by a press and a large amount of binder is applied. It is preferable to perform heating at a temperature higher than that at which softening occurs.As the electrode material, <1 CuvMo@S●-2, AgvMo
Siebrel phase compounds such as ss●-1 and A g
Even if eOs is raised, a positive electrode layer containing an electrolyte and a negative electrode layer also containing an electrolyte are formed on one side of the electrolyte layer with a distance maintained between them. Therefore, it depends on the width of the electrode layer.Compared to conventional battery construction, the distance between the electrodes is large, especially on the electrode layer on the opposite side of the counter electrode, and therefore it is not suitable for applications with large loads. I. %
Since there is an electrolyte layer between the two electrodes that does not contact the electrodes, there is no fear of short circuits when using a thin electrolyte layer as in the case of printing.I,Xo
Therefore, it is also advantageous in terms of self-discharge characteristics.
Since the layers of the five negative electrodes are formed only on one side of the electrolyte layer, if the set of five negative electrodes is the same, both electrodes can be printed on one side of the electrolyte layer at the same time, which greatly simplifies the manufacturing method. Figure (Friend) is a cross-sectional view of a solid-state secondary battery in one embodiment of the present invention, and even though it shows an example of a three-element stack, carbon paste is first applied on a polyethylene terephthalate substrate 1.
Copper Chevrell (C u 2Mo sS =) was used as the material for the electrodes.1. % RbCu4I+. as an electrolyte. iCls1 2 0
W t 9A Add a toluene solution of commercially available methyl methacrylate as a binder to a concentration of 8 wt % and stir thoroughly to obtain a paste. Spread this paste onto the positive and negative carbon current collectors 2. Dry the seal using a screen and form the positive and negative electrodes 3. Next, use RbCu4I+ as the electrolyte. sC lz
.. Using s1,\ A toluene solution of commercially available methyl methacrylate was added as a binder to a concentration of 8 wt%, and the mixture was thoroughly stirred to create a paste. &E Negative electrode 3,
The solid electrolyte paste is printed across layers 3 using a metal screen to form solid electrolyte layer 4. Although the printing process is repeated three times in total, after drying at 130°C,
50Q} (g) through a roller press machine heated to 50℃
The electrodes 3 and the electrolyte layer 4 were both 0.10 mm thick. Positive and negative electrodes 3, 3
The size of both is 20 x 5 mm, and the weight is 2.
6mg is enough.Finally, cover the battery surface with polyacrylic resin! L Furthermore, a room-temperature-curing epoxy resin is applied on top of it to construct a battery, f, and this battery is A.
shall be.

次に 電解質を中心にその両面に電極層を形戊した従来
構或の電池を比較のために作威した 即板 ポリエチレ
ンテレフタレート基板の上に正集電体をまず印刷法でつ
け、その上に順次正鳳 電解質、負凰 負集電体と印刷
法で形成し熱圧着することにより従来構戒の電池を作或
した この場合は印刷工程は5回であ瓜 この電池をB
とすへ尚正極と負極の面積および重量はAと一致させた
AとBの電池をそれぞれlO個ずつ作或し性能を比較し
た まず通常の充放電での放電電圧と容量を調べtラ50μ
Aで1.5Vまでの充電−50μAで0.9Vまでの放
電を行なったとこム Aでは放電容量は全て250μA
hをこ丸 平均280μAhであっf,  これに対し
て、Bでは短絡するものが多く、 7個が10μAh以
下であり、最も容量の大きいものでも120μAhと性
能が低かった つぎに各電池の自己放電性を調べ7’=
1.5Vまで充電後30℃でlケ月間放置した後容量を
調べたところ維持率がAでは98%と殆ど低下していな
いのにBでは全て10%以下に低下しており、やはりA
が優れていtも Bでは自己放電が大きいのは電解質層にビンホールがあ
り、微小短絡しているためだと考えられも このピンホ
ールを少なくするために電解質層を2回印刷し電解質層
の厚さを2倍近くまで厚くした電池についても自己放電
を調べ九 性能は若干改善され容量が10μAh以下の
電池は3個にとどまり、最も容量の大きいもので210
μAhが得られた しかし初期容量の比較的大きな電池
でも自己放電は大きく、上記と同じ試験で維持率は2l
%とAに比べてまだまだ悪1,%以上の実施例は 電極
3としてCuaMosS自とR b C u a r 
+.sC I i.sの混合物を、固体電解質層4の電
解質としてRbCu4I+.sC ls.sを用いた場
合の結果である力t 電極としてAg●.テV20sと
AgsI4W○4の混合物を、電解質としてAgsIJ
 W O 4を用いた場合でもレート特性は劣るが同様
のことかい丸 正極と負極を横に並べて配置した横型の
固体二次電池は歩留まりよく高い初期容量が得られ 自
己放電も小さしも 見 積層数は3層の場合について述べたがもっと多くし
たものも印刷パターンを変えることにより容易に作るこ
とができ、 60層積層した電池で、充電電圧30v1
 終止電圧15Vと高電圧の電池も得られていも 発明の効果 本発明の固体二次電池(よ 電解質と結着剤を主とする
層の一方の面に 正極材料と電解質と結着剤を主とする
層と、負極材料と電解質と結着剤を主とする層とを間隔
を保って形成しているので、電極間でピンホールによる
微小短絡を生じす 優れた自己放電特性が得られ かっ
歩留まりが高く、高電圧のものが容易に得られ また全
印刷式でかつその印刷回数も少なくて済み製法が簡易化
される颯 大なる効果が発揮される。
Next, for comparison, a battery with a conventional structure consisting of an electrolyte and electrode layers formed on both sides was fabricated.A positive current collector was first printed on a ready-to-board polyethylene terephthalate substrate, and then A conventional battery was created by sequentially forming positive electrolyte, negative current collector, and negative current collector using a printing method and bonding them under heat.In this case, the printing process was performed five times.This battery was made into B
The areas and weights of the positive and negative electrodes were the same as those of A.I made 10 batteries each of A and B and compared their performance.First, I checked the discharge voltage and capacity during normal charging and discharging.
Charging to 1.5V at A and discharging to 0.9V at 50μA. All discharge capacity at A is 250μA.
On the other hand, in B, there were many short-circuits, and 7 batteries had a capacity of less than 10 μAh, and even the one with the highest capacity had a low performance of 120 μAh.Next, we looked at the self-discharge of each battery. Check the gender 7'=
After charging to 1.5V and leaving it at 30℃ for 1 month, we checked the capacity and found that the retention rate for A was 98%, which had hardly decreased, but for B, it had all decreased to less than 10%, which is also true for A.
The reason why the self-discharge is large in t and B is thought to be due to the presence of pinholes in the electrolyte layer, which causes minute short circuits.In order to reduce these pinholes, the electrolyte layer is printed twice, and the thickness of the electrolyte layer is increased. Self-discharge was also investigated for batteries that were nearly twice as thick as the battery.The performance improved slightly, with only three batteries having a capacity of 10μAh or less, and the largest having a capacity of 210μAh.
μAh was obtained.However, even batteries with a relatively large initial capacity had a large self-discharge, and in the same test as above, the maintenance rate was 2L.
% and A is still worse than 1%, and the embodiment with % or more is CuaMoS self and R b Cu a r as electrode 3.
+. sC I i. A mixture of RbCu4I+.s is used as the electrolyte of the solid electrolyte layer 4. sCls. The force t is the result when using s Ag●. AgsIJ using a mixture of TeV20s and AgsI4W○4 as an electrolyte.
Even when using WO4, the rate characteristics are inferior, but the same thing can be said.A horizontal solid-state secondary battery in which the positive and negative electrodes are arranged side by side has a good yield and a high initial capacity, and the self-discharge is also small, but the number of layers is Although we have described the case of 3 layers, it is possible to easily create a battery with more layers by changing the printing pattern.A battery with 60 layers stacked has a charging voltage of 30v1.
Although a high voltage battery with a final voltage of 15V has been obtained, the effects of the invention are as follows. Since the layer containing the negative electrode material, electrolyte, and binder are formed with a certain distance between each other, it is difficult to obtain excellent self-discharge characteristics due to the possibility of minute shorts caused by pinholes between the electrodes. The yield is high, high voltage products can be easily obtained, and the manufacturing method is simplified because it is entirely printed and the number of times of printing is small, which is a great advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例における固体二次電池の部分縦断
面図であも
The figure is a partial longitudinal cross-sectional view of a solid state secondary battery in an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)集電体、電極、固体電解質が全て印刷法で形成さ
れた固体二次電池において、電解質と結着剤を主とする
層の一方の面に、正極材料と電解質と結着剤を主とする
層と、負極材料と電解質と結着剤を主とする層とが間隔
を保って形成されていることを特徴とする固体二次電池
(1) In a solid secondary battery in which the current collector, electrode, and solid electrolyte are all formed by a printing method, the positive electrode material, electrolyte, and binder are coated on one side of the layer that mainly contains the electrolyte and binder. A solid secondary battery characterized in that a main layer and a layer mainly containing a negative electrode material, an electrolyte, and a binder are formed with an interval maintained between them.
(2)電極材料が正極、負極とも銅シェブレル相化合物
で、電解質がRbCu_4I_xCl_y系固体電解質
などの銅イオン導電体である請求項1記載の固体二次電
池。
(2) The solid secondary battery according to claim 1, wherein the electrode material is a copper Chevrel phase compound for both the positive electrode and the negative electrode, and the electrolyte is a copper ion conductor such as an RbCu_4I_xCl_y solid electrolyte.
(3)固体二次電池の電極材料が正極、負極ともAg_
xV_2O_5で、電解質がAg_■I_4WO_4な
どの銀イオン導電体である請求項1記載の固体二次電池
(3) The electrode material of the solid-state secondary battery is Ag_ for both the positive and negative electrodes.
2. The solid secondary battery according to claim 1, wherein xV_2O_5 and the electrolyte is a silver ion conductor such as Ag_■I_4WO_4.
JP1147888A 1989-06-09 1989-06-09 Solid secondary battery Expired - Fee Related JPH0750617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1147888A JPH0750617B2 (en) 1989-06-09 1989-06-09 Solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1147888A JPH0750617B2 (en) 1989-06-09 1989-06-09 Solid secondary battery

Publications (2)

Publication Number Publication Date
JPH0315167A true JPH0315167A (en) 1991-01-23
JPH0750617B2 JPH0750617B2 (en) 1995-05-31

Family

ID=15440460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1147888A Expired - Fee Related JPH0750617B2 (en) 1989-06-09 1989-06-09 Solid secondary battery

Country Status (1)

Country Link
JP (1) JPH0750617B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434871A (en) * 1990-05-29 1992-02-05 Yuasa Corp Manufacture of battery
JP2005063958A (en) * 2003-07-29 2005-03-10 Mamoru Baba Thin-film solid lithium secondary battery and its manufacturing method
JP2010055764A (en) * 2008-08-26 2010-03-11 Seiko Epson Corp Battery and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5006462B1 (en) * 2011-09-09 2012-08-22 ファイラックインターナショナル株式会社 Manufacturing method of solid-state secondary battery and solid-state secondary battery based on the manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434871A (en) * 1990-05-29 1992-02-05 Yuasa Corp Manufacture of battery
JP2005063958A (en) * 2003-07-29 2005-03-10 Mamoru Baba Thin-film solid lithium secondary battery and its manufacturing method
JP2010055764A (en) * 2008-08-26 2010-03-11 Seiko Epson Corp Battery and its manufacturing method

Also Published As

Publication number Publication date
JPH0750617B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
EP0512417B1 (en) Zinc secondary battery having bipolar plate construction with horizontally disposed battery components
US7157184B2 (en) Method for producing electrode sheets for electrochemical elements
KR101664244B1 (en) Method forming electrode surface pattern and the electrode manufactured by the method and secondary battery including the same
JPWO2018181545A1 (en) All-solid-state lithium-ion secondary battery
JPH07161346A (en) Pole plate for secondary battery and high polymer solid electrolyte lithium secondary battery and its manufacture
JPH0315167A (en) Solid state secondary battery
CN114188503B (en) Battery pack
JPH04188568A (en) Thin-form lead-acid battery and manufacture thereof
CN213150813U (en) Pole piece coating structure and battery cell
JPH11162476A (en) Laminated battery
JPH0513099A (en) Manufacture of solid secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH0793149B2 (en) Solid state secondary battery and its manufacturing method
JPH0513098A (en) Solid secondary battery and manufacture thereof
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH0317965A (en) Manufacture of solid-electrolyte sheet and solid-electrolyte secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2000058107A (en) Manufacture of electrode for polymer battery
CN114156529A (en) Battery pack
JPH02114458A (en) Manufacture of solid secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPS60236463A (en) Flat type battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees