JP2780391B2 - Manufacturing method of solid state secondary battery - Google Patents

Manufacturing method of solid state secondary battery

Info

Publication number
JP2780391B2
JP2780391B2 JP1287042A JP28704289A JP2780391B2 JP 2780391 B2 JP2780391 B2 JP 2780391B2 JP 1287042 A JP1287042 A JP 1287042A JP 28704289 A JP28704289 A JP 28704289A JP 2780391 B2 JP2780391 B2 JP 2780391B2
Authority
JP
Japan
Prior art keywords
binder
secondary battery
pressure
electrolyte
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1287042A
Other languages
Japanese (ja)
Other versions
JPH03149764A (en
Inventor
勉 岩城
正 外邨
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1287042A priority Critical patent/JP2780391B2/en
Publication of JPH03149764A publication Critical patent/JPH03149764A/en
Application granted granted Critical
Publication of JP2780391B2 publication Critical patent/JP2780391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体二次電池の製造法に関する。Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a solid state secondary battery.

従来の技術 各種の電源として使われる電池のうち構成材料がすべ
て固体であるいわゆる固体電池は、液漏れがなく、した
がって高信頼性が期待でき、小形軽量化も可能などの理
由で一次、二次電池ともに注目されてきた。その用途と
して、現在のところ各種機器のメモリーバックアップ用
が中心である。
2. Description of the Related Art Among batteries used as various power sources, so-called solid batteries, in which all constituent materials are solid, have no liquid leakage, and therefore can be expected to have high reliability and can be reduced in size and weight for any reason. Both batteries have attracted attention. At present, it is mainly used for memory backup of various devices.

この固体電池では、電池内でイオンを動かすための固
体電解質がとくに重要であり、LiI、Li3NなどのLi+イオ
ン導電性固体電解質、RbAg4I5、Ag−Ag2O、Ag−MoO3
どのAg+イオン導電性固体電解質、H+イオン導電性固体
電解質それにRbCu4I1.5Cl3.5、CuI−Cu2O−MoO3などのC
u+イオン導電性固体電解質などがある。
This solid state battery is especially important solid electrolyte for moving ions in the battery, LiI, Li + ion conductive solid electrolyte such as Li 3 N, RbAg 4 I 5 , Ag-Ag 2 O, Ag-MoO Ag + ion conductive solid electrolyte such as 3, RbCu 4 I 1.5 Cl 3.5 therewith H + ion conductive solid electrolyte, C, such as CuI-Cu 2 O-MoO 3
u + ion conductive solid electrolyte and the like.

また、正極用材料としてはCu0.1TiS2、Ag0.1TiS2、Cu
0.1NbS2、Ag0.1NbS2、WO3それにCuyMo6S8-z、FeyMo6S
8-zなどのシェブレル相化合物があげられている。
In addition, as materials for the positive electrode, Cu 0.1 TiS 2 , Ag 0.1 TiS 2 , Cu
0.1 NbS 2 , Ag 0.1 NbS 2 , WO 3 and Cu y Mo 6 S 8-z , Fe y Mo 6 S
Chevrel phase compounds such as 8-z are mentioned.

一方、負極にはCu、Ag、Li1.5WO3それに正極用と同様
のシェブレル相化合物が試みられている。
On the other hand, for the negative electrode, Cu, Ag, Li 1.5 WO 3 and the same chevrel phase compound as for the positive electrode have been tried.

これら電池の製法としては他の電池同様多くの方法が
あるが、工業的に有効な一つの方法として電極材料と結
着剤を主とする層を、電解質と結着剤を主とする層の両
面に配し、その外側に結着剤を含む導電性の層を配した
後、上記各層を一度に加熱化で加圧一体化する工程があ
げられる。
There are many methods for manufacturing these batteries, as with other batteries. One industrially effective method is to form a layer mainly composed of an electrode material and a binder and a layer mainly composed of an electrolyte and a binder. After arranging the conductive layers containing a binder on the both sides and arranging the layers on the outside thereof, the above-mentioned layers may be heated and integrated at a time by heating.

発明が解決しようとする課題 しかし、この従来の製造では全体を一度に加熱下で加
圧一体化するので、電極層と電解質層を一体化してから
導電性層をその上に一体化するよりも工程は簡易化でき
が、層が多すぎると単に加熱下で加圧しただけでは密着
が不十分な部分が生じ肝心の寿命にばらつきが生じた。
Problems to be Solved by the Invention However, in this conventional production, since the whole is integrated under pressure at a time under heating, it is more difficult to integrate the conductive layer on the electrode layer and the electrolyte layer after integrating the electrode layer and the electrolyte layer thereon. Although the process can be simplified, if the number of layers is too large, simply applying pressure under heating may result in an insufficiently adhered portion, resulting in variations in the essential life.

本発明はこのような問題を解決出来る固体二次電池の
製造法を提供せんとするものである。
An object of the present invention is to provide a method for manufacturing a solid state secondary battery capable of solving such a problem.

課題を解決するための手段 本発明の固体二次電池の製造法は、電極材料と結着剤
を主とする層を両面に、中央に電解質と結着剤を主とす
る層を配し、その外側に結着剤を含む導電性の層を設
け、加熱により一体化する際に、全体を一度に加熱下で
加圧一体化し、結着剤の軟化点以下の温度で常圧に戻す
ものである。
Means for Solving the Problems The method for producing a solid-state secondary battery of the present invention comprises, on both sides, a layer mainly composed of an electrode material and a binder, and disposing a layer mainly composed of an electrolyte and a binder in the center, A conductive layer containing a binder is provided on the outside, and when integrated by heating, the whole is pressurized and integrated under heating all at once, and returned to normal pressure at a temperature below the softening point of the binder. It is.

作用 以上の様に、電解質と結着剤を主とする層を配し、そ
の外側に結着剤を含む導電性の層を設け、加熱により一
体化する際に、全体を一度に加熱下で加圧一体化するの
で密着が不十分な部分が生じることがない。
Action As described above, a layer mainly composed of an electrolyte and a binder is provided, and a conductive layer containing a binder is provided outside the layer. Since the pressure is integrated, there is no portion where the adhesion is insufficient.

実施例 以下、本発明の実施例説明する。Examples Hereinafter, examples of the present invention will be described.

電極材料として銅シェブレル(CuxMo6S8)を用い、こ
れを加える電解質としてRbCu4I1.5Cl3.5を20Wt%、結着
剤としてポリエチレンが7Wt%になるように、その熱ベ
ンゼン溶液を加え充分撹拌してペーストとする。
Copper Chevrel a (CuxMo6S8) used as an electrode material, 20 Wt% of RbCu 4 I 1.5 Cl 3.5 as the electrolyte added this, so polyethylene is 7 wt% as a binder, thoroughly stirred and a paste was added and the hot benzene solution And

一方、負極にも銅シェブレル(Cu2Mo6S8)を用い正極
と同様に電解質RbCu4I1.5Cl3.5を20Wt%、同じ条件で結
着剤を用い充分撹拌して後、ペーストにする。
On the other hand, a copper chevrel (Cu 2 Mo 6 S 8 ) is also used for the negative electrode, and the electrolyte is RbCu 4 I 1.5 Cl 3.5 at 20 Wt% in the same manner as the positive electrode.

また、電解質としてRbCu4I1.5Cl3.5を用い、やはり同
じ結着剤でペーストとする。これらペーストを用いて公
知のドクターブレード法によりそれぞれ正極、負極、電
解質シートを製作する。電極の厚さは0.25mm、電解質の
厚さは0.16mmとした。
Also, RbCu 4 I 1.5 Cl 3.5 is used as an electrolyte, and a paste is also formed with the same binder. Using these pastes, a positive electrode, a negative electrode, and an electrolyte sheet are manufactured by a known doctor blade method. The thickness of the electrode was 0.25 mm, and the thickness of the electrolyte was 0.16 mm.

中心に電解質層その両側に正極層と負極層を配し、さ
らにその外側にポリエチレン中に長さ30〜100μm、径
7〜8μmの黒鉛繊維を分散させた市販のカーボンフィ
ルムを集電体として当てて、まず170℃に加熱したロー
ラプレス機を500Kg/cm2の条件で通して加圧し、ただち
に130℃に加熱したローラプレス機を500Kg/cm2の条件で
通し、ついで110℃、最後に70℃、同圧で通して加圧一
体化を終了する。これを径25mmのコイン状に打ち抜く。
A positive electrode layer and a negative electrode layer are disposed on both sides of the electrolyte layer at the center, and a commercially available carbon film in which graphite fibers having a length of 30 to 100 μm and a diameter of 7 to 8 μm are dispersed in polyethylene is applied as a current collector to the outside thereof. First, a roller press machine heated to 170 ° C. was passed under a condition of 500 kg / cm 2 to apply pressure, and immediately passed through a roller press machine heated to 130 ° C. under a condition of 500 kg / cm 2 , then 110 ° C., and finally 70 ° C. C. and the same pressure are applied to complete the pressure integration. This is punched out into a coin with a diameter of 25 mm.

その後0.3mm、径30mmのCu板を当てて接着する。最後
に電池周辺を、まずポリアクリル系樹脂で被覆し、さら
に常温硬化型のエポキシ樹脂をその上に塗着して電池を
構成した。この電池をAとする。
Thereafter, a Cu plate having a diameter of 0.3 mm and a diameter of 30 mm is applied and bonded. Finally, the periphery of the battery was first covered with a polyacrylic resin, and a room temperature-curable epoxy resin was applied thereon to form a battery. This battery is designated as A.

つぎに比較のために170℃に加熱したプレス機で500Kg
/cm2の条件で加圧し、そのまま常圧に戻し、他はAと同
じ条件で製作した電池をBとして加えた。
Next, for comparison, 500 kg with a press machine heated to 170 ° C
The battery was pressurized under the condition of / cm 2 , returned to normal pressure as it was, and a battery manufactured under the same conditions as A except for B was added.

以上の2つの電池について、まず60℃での充放電での
放電電圧と容量を比較した。0.58V定電圧充電−0.5mAで
0.3Vまでの定電流放電を行なったところ、Aでは平均電
圧は0.48V、放電容量は5.9mAhを示したのに対して、B
ではそれぞれ0.47V、5.6mAhであり、いずれもAがやや
優れていた。
With respect to the above two batteries, the discharge voltage and the capacity at 60 ° C. charge / discharge were first compared. 0.58V constant voltage charge -0.5mA
When constant current discharge was performed up to 0.3 V, the average voltage of A was 0.48 V and the discharge capacity was 5.9 mAh,
Were 0.47V and 5.6mAh, respectively, and A was slightly superior in each case.

そこで周囲温度を70℃で同じ充放電の条件で寿命特性
を調べた。その結果、放電容量が初期の60%にまで劣化
するサイクル数が、Aでは880〜930サイクルであったの
に対して、Bでは700〜780サイクルであった。この結果
から明らかなようにAが長寿命で寿命のばらつき少なか
った。
Therefore, the life characteristics were examined under the same charge and discharge conditions at an ambient temperature of 70 ° C. As a result, the number of cycles in which the discharge capacity deteriorated to 60% of the initial value was 880 to 930 in A, whereas 700 to 780 in B. As is evident from the results, A had a long life and there was little variation in life.

本実施例Aでは電極と電解質の層が強固に圧着した状
態て電池が得られているので、充放電の過程で膨張する
現象を抑制し、比較的少ないサイクル数で容量が低下す
ることがない。
In Example A, since the battery was obtained in a state where the electrode and the electrolyte layer were firmly pressed, the phenomenon of expansion during the charge / discharge process was suppressed, and the capacity did not decrease with a relatively small number of cycles. .

なお、実施例では単電池を例にして示したが、容量や
電圧を高めるために通常採用する積層構造の電池の場合
にも同じ手法を用いることができる。
In the embodiment, the unit cell is shown as an example. However, the same method can be used for a battery having a laminated structure which is usually adopted to increase the capacity and the voltage.

発明の効果 以上、本発明によれば、電極材料と結着剤を主とする
シートを両面に、中央に電解質と結着剤を主とするシー
トを配し、その外側に結着剤を含む導電性のシートを配
し、全体を一度に加熱下で加圧一体化し、結着剤の軟化
点以下の温度で常圧に戻すことにより、電池の充放電中
での内部抵抗の増加を抑え、長寿命化が可能になる。
As described above, according to the present invention, a sheet mainly composed of an electrode material and a binder is disposed on both sides, a sheet mainly composed of an electrolyte and a binder is disposed in the center, and a binder is included outside the sheet. A conductive sheet is placed, the whole is pressurized and integrated under heating at a time, and the pressure is returned to normal pressure at a temperature below the softening point of the binder, thereby suppressing an increase in internal resistance during charging and discharging of the battery , The service life can be extended.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 10/36 - 10/40──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 10/36-10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電極材料と結着剤を主とする層を、電解質
と結着剤を主とする層の両面に配し、その外側に結着剤
を含む導電性の層を配した後、上記各層を一度に加熱下
で加圧一体化し、上記結着剤の軟化点以下の温度で常圧
に戻すことを特徴とする固体二次電池の製造法。
An electrode material and a layer mainly composed of a binder are disposed on both sides of a layer mainly composed of an electrolyte and a binder, and a conductive layer containing a binder is disposed outside the layer. A method for producing a solid secondary battery, wherein the above-mentioned layers are pressure-integrated under heating at a time, and the pressure is returned to normal pressure at a temperature lower than the softening point of the binder.
【請求項2】ローラプレス法で加圧一体化する請求項1
記載の固体二次電池の製造法。
2. The method according to claim 1, wherein the pressure is integrated by a roller press method.
The method for producing a solid secondary battery according to the above.
【請求項3】ローラプレス法が高温から順次低温に加熱
した複数のローラプレス機で構成される請求項2記載の
固体二次電池の製造法。
3. The method for producing a solid secondary battery according to claim 2, wherein the roller pressing method comprises a plurality of roller pressing machines which are sequentially heated from a high temperature to a low temperature.
JP1287042A 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery Expired - Fee Related JP2780391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287042A JP2780391B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287042A JP2780391B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Publications (2)

Publication Number Publication Date
JPH03149764A JPH03149764A (en) 1991-06-26
JP2780391B2 true JP2780391B2 (en) 1998-07-30

Family

ID=17712299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287042A Expired - Fee Related JP2780391B2 (en) 1989-11-02 1989-11-02 Manufacturing method of solid state secondary battery

Country Status (1)

Country Link
JP (1) JP2780391B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203379A1 (en) * 2018-04-20 2019-10-24 (주)티디엘 Manufacturing method for all-solid-state lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5387051B2 (en) * 2009-02-27 2014-01-15 日本ゼオン株式会社 Laminated body for all solid state secondary battery and all solid state secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203379A1 (en) * 2018-04-20 2019-10-24 (주)티디엘 Manufacturing method for all-solid-state lithium secondary battery

Also Published As

Publication number Publication date
JPH03149764A (en) 1991-06-26

Similar Documents

Publication Publication Date Title
EP1400996B1 (en) Organic electrolyte capacitor
US6689176B2 (en) Method for manufacturing a battery
JP3997573B2 (en) Lithium ion secondary battery and manufacturing method thereof
CN106128791A (en) A kind of negative plate, preparation method and use the lithium-ion capacitor of this negative plate
JP3508514B2 (en) Organic electrolyte battery
WO1999048162A1 (en) Lithium ion battery and method of manufacture thereof
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JP4911294B2 (en) Slurry for electrode of electric double layer capacitor enclosing non-aqueous electrolyte and electric double layer capacitor using the slurry
JP3167767B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH0513099A (en) Manufacture of solid secondary battery
JPH05159803A (en) Manufacture of solid secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JP2002025540A (en) Manufacturing method of nonaqueous electrolyte secondary battery and electrode plate for nonaqueous electrolyte secondary battery
JP2658396B2 (en) Method for manufacturing solid secondary battery
JPH0750617B2 (en) Solid secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JPH0513098A (en) Solid secondary battery and manufacture thereof
JPH0793149B2 (en) Solid state secondary battery and its manufacturing method
JP2770388B2 (en) Manufacturing method of all solid state secondary battery
JPH02114459A (en) Manufacture of solid secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees