JPH02114460A - Manufacture of solid secondary battery - Google Patents

Manufacture of solid secondary battery

Info

Publication number
JPH02114460A
JPH02114460A JP63268442A JP26844288A JPH02114460A JP H02114460 A JPH02114460 A JP H02114460A JP 63268442 A JP63268442 A JP 63268442A JP 26844288 A JP26844288 A JP 26844288A JP H02114460 A JPH02114460 A JP H02114460A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
binder
solid
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63268442A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Kanji Takada
寛治 高田
Koji Yamamura
康治 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63268442A priority Critical patent/JPH02114460A/en
Publication of JPH02114460A publication Critical patent/JPH02114460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide excellent discharging performance and self-discharging characteristics and prolong the lifetime by heating a layer chiefly containing an electrode material and binder and a layer majorly including an electrolyte and binder, which are thus consolidated, and forming a battery using thin sheets of metal and resin as a battery jar. CONSTITUTION:Layers consisting of an electrode material with or without binder are arranged on both sides while a layer consisting of electrolyte with or without binder put in the middle, and they are consolidated by means, for ex., of heating, and then metal and resin films used in a thin type lithium battery are used as a battery jar, whose periphery is hot welded to form a battery. Thus a battery is obtained in the condition that layers of electrode and electrolyte are in pressure contact firmly, which suppresses phenomenon of expanding to any minor degree during charging/discharging, precludes increase in the internal resistance, and prevents deterioration of electrolyte due to moisture from atmosphere. Thus excellent discharging performance and self-discharging property are obtained, and the capacity will not drop at a comparatively small cyclic number.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は構成材料がすべて固体のいわゆる固体二次電池
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a so-called solid state secondary battery whose constituent materials are all solid.

従来の技術 各種の電源として使われる電池のうち構成材料がすべて
固体であるいわゆる固体電池は、液漏れがなく、したが
って高信頼性が期待でき、小形軽量化も可能などの理由
で一次、二次電池ともに注目されてきた。現在のところ
各種機器のメモリーバックアップ用を中心に考えられて
いる。
Conventional technology Among the batteries used as various power supplies, so-called solid-state batteries, whose constituent materials are all solid, are used as primary and secondary batteries because they do not leak, are expected to be highly reliable, and can be made smaller and lighter. Both batteries have received attention. Currently, it is mainly being considered for memory backup of various devices.

この固体電池では、電池内でイオンを動かすための固体
電解質がとくに重要であり、Lll、Li3NなどのL
l+イオン導電性固体電解質、RbAg415、Ag 
l−Ag2O,−Mo03などのAg+イオン導電性固
体電解質、H1イオン導電性固体電解質それにRbCu
411,5CI3.5、Cu1−Cu20−MoO3な
どのCu+イオン導電性固体電解質などが取り上げられ
ている。
In this solid-state battery, a solid electrolyte for moving ions within the battery is particularly important, and Lll, Li3N, etc.
l+ ion conductive solid electrolyte, RbAg415, Ag
Ag+ ion conductive solid electrolyte such as l-Ag2O, -Mo03, H1 ion conductive solid electrolyte and RbCu
Cu+ ion conductive solid electrolytes such as 411,5CI3.5 and Cu1-Cu20-MoO3 have been taken up.

また、正極用材料としてはCLlo、1’r l S2
、Ago、IT I S2、CuO,lNbS2、Ag
o、1NbS2、WO3それにCu、Mo6s8−、、
F e 、M 065B−zなどのシェブレル相化合物
があげられている。
In addition, as positive electrode materials, CLlo, 1'r l S2
, Ago, IT I S2, CuO, INbS2, Ag
o, 1NbS2, WO3 and Cu, Mo6s8-,,
Chevrel phase compounds such as F e and M 065B-z are mentioned.

方、負極にはCu、Ag %L i 1,5WO3それ
に正極用と同様のシェブレル相化合物が試みられている
On the other hand, for the negative electrode, attempts have been made to use Cu, Ag%L i 1,5WO3, and the same Chevrel phase compound as for the positive electrode.

これら電池の構造としては、他の電池と同様に正、負極
として電極活物質と結着剤を主とする層を両面に、中央
に電解質と結着剤を主とする層を配するのが一般的であ
る。集電の方法にはいろいろあるがその外側に結着剤を
含む導電性の層を設けることも一つの有効な手段である
The structure of these batteries is similar to that of other batteries, with layers containing mainly electrode active materials and binders as positive and negative electrodes on both sides, and a layer containing mainly electrolyte and binder in the center. Common. There are various methods for current collection, but one effective method is to provide a conductive layer containing a binder on the outside.

発明が解決しようとする課題 このような構成の固体二次電池を製造し充放電を行なっ
たところ、その条件にもよるが比較的少ないサイクル数
で容量の低下が認められた。すなわち、充放電を繰返す
と内部抵抗が増加して性能の劣化が認められた。その原
因について調べた結果、この電池の場合も他の電解質に
溶液を用いる電池の場合の電池と同様にとくに電極が充
放電の過程で若干でも膨張することが認められた。この
ような溶液を用いる電池の場合には溶液が膨張の大きな
原因であり外観からも明らかに観察できる。
Problems to be Solved by the Invention When a solid secondary battery having such a configuration was manufactured and charged and discharged, a decrease in capacity was observed after a relatively small number of cycles, although it depended on the conditions. That is, when charging and discharging were repeated, internal resistance increased and performance deteriorated. As a result of investigating the cause, it was found that in this battery, the electrodes in particular expand even slightly during the charging and discharging process, similar to other batteries that use a solution as the electrolyte. In the case of a battery using such a solution, the solution is a major cause of expansion, which can be clearly observed from the external appearance.

これに対して固体二次電池では、当然溶液は存在しない
ので、観察できるような膨張はない、しかし、ごくわず
かな膨張でもあると、今度は逆に溶液がないので内部抵
抗が増加して諸性能が劣化する。 さらに、放電特性や
寿命などの点で有望である電解質としてRbCu411
.5CI3.5、などのCu+イオン導電性固体電解質
、正極および負極用材料としてCu yM Oa S 
[1−zなどのシェブレル相化合物を用いた際に、大気
中の水分による電極や電解質材料の変質などの悪影響も
発生しやすい問題があった。
On the other hand, in a solid-state secondary battery, there is no solution, so there is no observable expansion.However, if there is even a slight expansion, the internal resistance increases because there is no solution, causing various problems. Performance deteriorates. Furthermore, RbCu411 is a promising electrolyte in terms of discharge characteristics and lifespan.
.. Cu+ ion conductive solid electrolyte such as 5CI3.5, Cu yM Oa S as material for positive electrode and negative electrode.
When a Chevrel phase compound such as [1-z is used, there is a problem that adverse effects such as deterioration of electrodes and electrolyte materials due to moisture in the atmosphere are likely to occur.

課題を解決するための手段 電極材料あるいはこれに結着剤を加えた層を両面に、中
央に電解質あるいはこれに結着剤を加えた層をそれぞれ
配し、たとえば加熱により一体化した後に、薄型のリチ
ウム電池などに利用されている金属および樹脂からなる
薄膜を電槽として用い、その周囲を加熱融着することに
より電池を構成する。ここでの金属としては、アルミニ
ウム。
Means for Solving the Problem: Electrode material or a layer of this with a binder added to it is placed on both sides, and an electrolyte or a layer of this with a binder added to the center, and after being integrated by heating, for example, a thin The battery is constructed by using a thin film made of metal and resin, which is used in lithium batteries, etc., as a battery case, and heating and fusing the surrounding area. The metal here is aluminum.

銅、ニッケル、ステンレススチール、チタンなど、樹脂
としてはポリエチレン、ポリプロピレンなとのポリオレ
フィン系のそれぞれ薄板がよい。
Thin sheets of copper, nickel, stainless steel, titanium, etc. and polyolefins such as polyethylene and polypropylene are preferable as the resin.

さらに電極を構成する前、すなわち加熱により一体化時
あるいはその後に電極の両外側面に2枚の板を配し、こ
の2枚の板を電池周辺部で接着する工程を加える。この
場合、板は集電体であっても、別に配しても良い。この
接着には、熱可塑性樹脂が好ましくポリエチレン、ポリ
塩化ビニル、ポリアクリル系、ポリスチレン系樹脂など
が用いられる。
Furthermore, before the electrode is constructed, that is, when or after the electrode is integrated by heating, a step is added in which two plates are placed on both outer surfaces of the electrode and the two plates are bonded at the battery periphery. In this case, the plate may be a current collector or may be arranged separately. For this adhesion, thermoplastic resins are preferably used, such as polyethylene, polyvinyl chloride, polyacrylic resins, polystyrene resins, and the like.

作  用 電極材料あるいはこれに結着剤を加えた層を両面に、中
央に電解質あるいはこれに結着剤を加えた層を配し、一
体止する際に好ましくは、電極の両外側面に板を配し、
この2枚の板を電池周辺部で接着する工程を加えて後に
、金属および樹脂からなる薄板を電槽として用い、電池
周辺部で接着とくに加熱融着することにより電池を構成
する。このことにより、本願では電極と電解質の層が強
固に圧着した状態で電池が得られるので、充放電の過程
で若干でも膨張する現象を抑制し、したがって内部抵抗
が増大することなく、シかも、大気中からの水分による
電解質の変質も防止できるので、優れた放電性能や自己
故電性が得られ、さらに比較的少ないサイクル数で容量
が低下することがなくなる。
A layer of the working electrode material or a binder added thereto is placed on both sides, and a layer of electrolyte or a binder added to the same is placed in the center, and when the electrode is fixed together, it is preferable to have plates on both outer surfaces of the electrode. Arranged,
After adding a step of adhering these two plates at the battery periphery, a thin plate made of metal and resin is used as a battery case, and the battery is constructed by adhering, particularly heat-sealing, at the battery periphery. As a result, in the present application, a battery can be obtained in which the electrode and electrolyte layers are firmly bonded, so that the phenomenon of expansion even slightly during the charging and discharging process is suppressed, and therefore the internal resistance does not increase and the battery can be easily compressed. Since deterioration of the electrolyte due to moisture from the atmosphere can also be prevented, excellent discharge performance and self-destruction properties can be obtained, and furthermore, the capacity does not decrease with a relatively small number of cycles.

実施例 正極用材料として銅シェブレル(Cu2Moese)を
用い、これに電解質としてRb Cu411,5C!3
.5を20wt%、結着剤として市販のポリ塩化ビニル
が6wt%になるように、そのテトラヒドロフラン溶液
を加え充分攪拌して後、半乾燥状態にしておく。
Example: Copper Chevrell (Cu2Moese) was used as the material for the positive electrode, and Rb Cu411,5C! was used as the electrolyte. 3
.. A tetrahydrofuran solution was added so that 20 wt % of 5 and 6 wt % of commercially available polyvinyl chloride as a binder were added, stirred thoroughly, and left in a semi-dry state.

一方、負極にも銅シェブレル(Cu2MOaSa)を用
い正極と同様に電解質RbCu41..5C13゜5を
20wt%、結着剤としてポリ塩化ビニルが8wt%に
なるように、そのテトラヒドロフラン溶液を加え充分攪
拌して後、半乾燥状態にしておく、それに電解質として
RbCu41+、5C13,5を用い、結着剤としてポ
リエチレンが8wt%になるようにその温ベンゼン溶液
を加え、半乾燥状態にしておく。
On the other hand, copper Chevrell (Cu2MOaSa) was used for the negative electrode, and electrolyte RbCu41. .. A tetrahydrofuran solution of 20 wt% of 5C13゜5 and 8 wt% of polyvinyl chloride as a binder was added, stirred thoroughly, and left in a semi-dry state, and RbCu41+, 5C13,5 was used as an electrolyte. A warm benzene solution of polyethylene as a binder was added so that the concentration was 8 wt %, and the mixture was left in a semi-dry state.

つぎに、径20 m mの型内に正極用、電解質、負極
用の順にそれぞれ1g、0.6g、1g充填し、まずこ
れを1608Cに加熱したプレス機で500Kg/cm
2の条件で加圧し、その後にその両面にツム中にカーボ
ンブラック微粉末を分散させた市販のカーボンフィルム
を集電体として当てた後、さらにその外側に厚さ0.3
mm、径26mmのCu板を当てて120°C,500
Kg/cm2の条件で加圧一体止した。これを電池周辺
部に該当する部分に厚さ0.10mmのポリエチレンフ
ィルムを用いこれと一体化した厚さ0.05mmのアル
ミニウム板2枚の間に挟み、アルミニウム板の上から内
側のポリエチレンフィルムを加熱融着して電池を構成し
た。なお、Cu板とアルミニウム板は、導電性接着剤で
接着固定した。
Next, 1 g, 0.6 g, and 1 g of the positive electrode, electrolyte, and negative electrode were filled in a mold with a diameter of 20 mm in that order, and this was first pressed to 500 kg/cm using a press heated to 1608 C.
Pressure was applied under the conditions of 2, and then a commercially available carbon film in which fine carbon black powder was dispersed in a tum was applied as a current collector to both sides of the film, and then a film with a thickness of 0.3
120°C, 500 with a Cu plate of 26mm in diameter.
It was fixed under pressure under the conditions of Kg/cm2. This is sandwiched between two 0.05 mm thick aluminum plates that are integrated with a 0.10 mm thick polyethylene film in the area corresponding to the battery periphery, and the inner polyethylene film is removed from above the aluminum plate. A battery was constructed by heat-sealing. Note that the Cu plate and the aluminum plate were adhesively fixed with a conductive adhesive.

この電池をAとする。This battery is called A.

つぎに、比較のために型内に正極用、電解質、負極用の
順にそれぞれ1g、0.6g、1g充填し、加熱せずに
プレス機で500Kg/Cm2の条件で加圧し、Aと同
様に、その両面にカーボンフィルムな集電体として当て
た後、さらにその外側にCu板を当てて、500Kg/
cm2の条件で加圧一体止した。さらにその外側にあて
たアルミニウム板の上から内側のポリエチレンフィルム
を加熱融着して電池を構成した。これをBとして加えた
Next, for comparison, 1 g, 0.6 g, and 1 g of positive electrode, electrolyte, and negative electrode were filled in the mold in that order, and the mold was pressurized at 500 kg/cm2 with a press machine without heating. After applying a carbon film as a current collector to both sides, a Cu plate was applied to the outside of the current collector, and 500 kg/
The pressure was fixed under the condition of cm2. A battery was then constructed by heat-sealing an inner polyethylene film onto the outer aluminum plate. This was added as B.

以上の2つの電池についてまず通常の充放電での放電電
圧と容量を比較した。0.10mAで0゜52Vまでの
充電−0,3mAで0.3■までの放電を行なったとこ
ろ、Aでは平均電圧は0.48■、放電容量は18.5
mAhを示したのに対して、Bではそれぞれ0.45V
、16.4mAhであり、いずれもAが優れていた。
First, the discharge voltage and capacity during normal charging and discharging of the above two batteries were compared. When charging to 0°52V at 0.10mA and discharging to 0.3μ at 0.3mA, the average voltage at A was 0.48μ and the discharge capacity was 18.5
mAh, whereas in B each 0.45V
, 16.4mAh, and A was excellent in both cases.

そこでつぎにこの充放電の条件で各電池の自己放電特性
を調べた。0.55Vまで充電後308Cで一月間放置
した後容量を調べたところ容量維持率がAでは97.3
%であったのにBでは90゜1%であった。
Therefore, we next investigated the self-discharge characteristics of each battery under these charging and discharging conditions. After charging to 0.55V and leaving it at 308C for one month, I checked the capacity and found that the capacity retention rate was 97.3 for A.
%, but in B it was 90°1%.

最後に2つの電池の寿命特性を調べた。電池は、いずれ
も10セル用いた。周囲温度を25°Cとした。その結
果、放電容量が初期の60%にまで劣化するサイクル数
が、Aでは1050〜1100サイクルであったのに対
して、Bでは650〜750サイクルであった。この結
果から明らかなようにAが長寿命であった。
Finally, the life characteristics of the two batteries were investigated. In each case, 10 cells were used. The ambient temperature was 25°C. As a result, the number of cycles at which the discharge capacity deteriorated to 60% of the initial value was 1050 to 1100 cycles for A, while it was 650 to 750 cycles for B. As is clear from this result, A had a long life.

なお、実施例では単電池を例にして示したが、容量や電
圧を高めるために採用する積層構造の電池の場合にも同
じ手法を用いることができる。
Note that although the embodiments have been shown using a single cell as an example, the same method can be used for a battery having a laminated structure that is used to increase capacity or voltage.

発明の効果 電極材料あるいはこれに結着剤を加えた層を両面に、中
央に電解質あるいはこれに結着剤を加えたする層を配し
、たとえば加熱により一体化する際に、好ましくは、電
極の創外側面に板を配し、この2枚の板を電池周辺部で
接着する工程を加えてから金属および樹脂からなる薄板
を電槽として用い、その周囲を加熱融着することにより
電池を構成する。これらにより、充放電の過程でとくに
電極が膨張する現象を抑制し、したがって電池の充放電
中での内部抵抗の増加を抑え、さらに、大気中の水分に
よる悪影響を除くことが可能になり、優れた放電性能や
一自己放電特性が得られ、また、長寿命化が可能になる
Effects of the Invention Preferably, when an electrode material or a layer of the electrode material with a binder added thereto is placed on both sides, and an electrolyte or a layer of the electrolyte with a binder added is placed in the center, and the electrode material is integrated by heating, for example, A plate is placed on the external side of the wound, and the two plates are glued together around the battery. Then, a thin plate made of metal and resin is used as a battery case, and the area around it is heated and fused. Configure. These features particularly suppress the expansion of the electrodes during the charging and discharging process, thereby suppressing the increase in internal resistance of the battery during charging and discharging, and furthermore, making it possible to eliminate the negative effects of moisture in the atmosphere. It is possible to obtain better discharge performance and self-discharge characteristics, and also to extend the service life.

Claims (5)

【特許請求の範囲】[Claims] (1)電極材料と結着剤を主とする層を両面に、中央に
電解質と結着剤を主とする層をそれぞれ配し、加熱によ
り一体化した後に、金属および樹脂からなる薄板を電槽
として用い、その周囲を加熱融着することにより電池を
構成することを特徴とする固体二次電池の製造法。
(1) Layers mainly composed of electrode materials and binders are arranged on both sides, and layers mainly composed of electrolyte and binders are arranged in the center. After being integrated by heating, a thin plate made of metal and resin is 1. A method for manufacturing a solid-state secondary battery, characterized in that the battery is constructed by using the tank as a tank and heat-sealing the periphery of the tank.
(2)電極材料を主とする層を両面に、中央に電解質を
主とする層をそれぞれ配した構成の電池において、この
電池の両外側面に2枚の板を配し、この2枚の板を電池
周辺部で接着する工程を加えた後に、金属および樹脂か
らなる薄板を電槽として用い、その周囲を加熱融着する
ことにより電池を構成することを特徴とする固体二次電
池の製造法。
(2) In a battery that has layers mainly composed of electrode materials on both sides and a layer mainly composed of electrolyte in the center, two plates are arranged on both outer sides of the battery, and these two plates are arranged on both sides of the battery. Manufacture of a solid-state secondary battery characterized in that a battery is constructed by using a thin plate made of metal and resin as a battery case and heat-sealing the periphery of the battery after adding a process of gluing the plate at the battery periphery. Law.
(3)電池が積層構造である特許請求の範囲第1項又は
第2項記載の固体二次電池の製造法。
(3) The method for manufacturing a solid secondary battery according to claim 1 or 2, wherein the battery has a laminated structure.
(4)電極材料が銅シェブレル構造体で、電解質が銅イ
オン導電体、特にRuCu_4I_xCl_y系固体電
解質、それらに含まれる結着剤が熱可塑性樹脂である特
許請求の範囲第1項又は第2項記載の固体二次電池の製
造法。
(4) Claim 1 or 2, wherein the electrode material is a copper Chevrel structure, the electrolyte is a copper ion conductor, particularly a RuCu_4I_xCl_y solid electrolyte, and the binder contained therein is a thermoplastic resin. A method for manufacturing solid-state secondary batteries.
(5)金属がアルミニウム、銅、ニッケル、ステンレス
スチール、チタンなど、樹脂がポリオレフィン系のそれ
ぞれ薄膜である特許請求の範囲第1項又は第2項記載の
固体二次電池の製造法。
(5) The method for producing a solid secondary battery according to claim 1 or 2, wherein the metal is a thin film of aluminum, copper, nickel, stainless steel, titanium, etc., and the resin is a polyolefin-based thin film.
JP63268442A 1988-10-25 1988-10-25 Manufacture of solid secondary battery Pending JPH02114460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63268442A JPH02114460A (en) 1988-10-25 1988-10-25 Manufacture of solid secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63268442A JPH02114460A (en) 1988-10-25 1988-10-25 Manufacture of solid secondary battery

Publications (1)

Publication Number Publication Date
JPH02114460A true JPH02114460A (en) 1990-04-26

Family

ID=17458559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63268442A Pending JPH02114460A (en) 1988-10-25 1988-10-25 Manufacture of solid secondary battery

Country Status (1)

Country Link
JP (1) JPH02114460A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042884A (en) * 2000-07-19 2002-02-08 Mitsubishi Chemicals Corp Plate laminated battery and method of manufacturing plate laminated battery
KR20140145146A (en) * 2012-04-05 2014-12-22 엘지전자 주식회사 Method for reselecting mbms-based cells in wireless communication systems, and apparatus for supporting same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042884A (en) * 2000-07-19 2002-02-08 Mitsubishi Chemicals Corp Plate laminated battery and method of manufacturing plate laminated battery
KR20140145146A (en) * 2012-04-05 2014-12-22 엘지전자 주식회사 Method for reselecting mbms-based cells in wireless communication systems, and apparatus for supporting same

Similar Documents

Publication Publication Date Title
TW496007B (en) Method of making bonded-electrode rechargeable electrochemical cells
JP2002520803A (en) Lithium secondary battery
JP2000311710A (en) Solid electrolyte battery and its manufacture
JP3533117B2 (en) Method of manufacturing film-covered battery
JPH0521086A (en) Electrode and battery using this
JPH10261386A (en) Battery case and battery
JPH11149916A (en) Organic electrolytic battery
JPH11154534A (en) Lithium ion secondary battery element
JP3240650B2 (en) Manufacturing method of solid state secondary battery
JPH02114460A (en) Manufacture of solid secondary battery
JPH10106627A (en) Lithium battery
JPH0513099A (en) Manufacture of solid secondary battery
JPH0355767A (en) Manufacture of solid secondary battery
JP2759992B2 (en) Manufacturing method of solid state secondary battery
JP2021077476A (en) Lithium ion battery
JP2770492B2 (en) Manufacturing method of solid state secondary battery
JPH02253569A (en) Manufacture of solid state secondary battery
JP2732442B2 (en) Manufacturing method of solid state secondary battery
JPH02174077A (en) Solid secondary battery and manufacture thereof
JP3211308B2 (en) Manufacturing method of solid state secondary battery
JPH056775A (en) Manufacture of solid secondary battery
JPH0384869A (en) Manufacture of solid secondary cell
JP2780391B2 (en) Manufacturing method of solid state secondary battery
JPH02114462A (en) Solid secondary battery
EP0136099B1 (en) Plastics electrode secondary battery