JPH10261386A - Battery case and battery - Google Patents

Battery case and battery

Info

Publication number
JPH10261386A
JPH10261386A JP9066474A JP6647497A JPH10261386A JP H10261386 A JPH10261386 A JP H10261386A JP 9066474 A JP9066474 A JP 9066474A JP 6647497 A JP6647497 A JP 6647497A JP H10261386 A JPH10261386 A JP H10261386A
Authority
JP
Japan
Prior art keywords
layer
battery
thermoplastic resin
sheet
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9066474A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Masaaki Sasayama
昌聡 笹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9066474A priority Critical patent/JPH10261386A/en
Publication of JPH10261386A publication Critical patent/JPH10261386A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce short-circuiting between electrode terminals in an electrode terminal sealing part to improve reliability and stability in manufacturing a battery, by adopting the thermoplastic resin layer of a polymer laminated body, composed of at least an aluminum layer/an insulator layer/thermoplastic resin layer, as the inner surface of a sheathing body. SOLUTION: The case is constituted of a polymer laminated body, having an insulator layer having a melting point higher than that of the thermoplastic resin, between an aluminum layer and a thermoplastic resin layer such as heat sealable polyethylene or an ionomer resin, etc. The insulator layer is composed of a thermoplastic resin, a thermosetting resin, an insulating ceramics, or a ceramic particle dispersing element, etc., having a give melting point and electric conductivity; and is considering adhesion too. A protective layer can be provided on the surface of an aluminum layer which is a water permeable barrier layer. The case of the polymer laminated body, having the thermoplastic resin layer as an inner surface, has an unit cell in the inside, and seals an electrode terminal connecting the sheathing body inside and outside. Therefore, short-circuiting between an electrode terminal and the aluminum layer can be eliminated when the sheathing body is sealed by a heat fusion.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電池用の外
装体、及びその外装体を用いた非水系電池に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a package for a non-aqueous battery and a non-aqueous battery using the package.

【0002】[0002]

【従来の技術】リチウム電池、リチウムイオン電池など
の非水系電池はパソコン、携帯電話、ビデオカメラなど
の携帯機器電源に用いられており、高容量化、軽量化が
図られている。これら電池は電解液を電極間のイオン移
動媒体としており、液漏れを防ぐためパッケージに金属
缶が用いられている。ところが、この金属缶の重量のた
め電池全体として重いものになり軽量化が難しい。この
パッケージ軽量化のためポリマー積層シートを外装材料
とするフィルム電池や製造法が提案されている(特許公
開昭和60−449568号公報、昭和60−6544
2号公報等)。
2. Description of the Related Art Non-aqueous batteries such as lithium batteries and lithium ion batteries are used as power sources for portable devices such as personal computers, mobile phones, and video cameras, and their capacity and weight have been reduced. These batteries use an electrolytic solution as an ion transfer medium between the electrodes, and a metal can is used for a package to prevent liquid leakage. However, the weight of the metal can makes the whole battery heavy, making it difficult to reduce the weight. In order to reduce the package weight, a film battery and a manufacturing method using a polymer laminated sheet as an exterior material have been proposed (Japanese Patent Application Laid-Open Nos. 60-449568 and 60-6544).
No. 2).

【0003】一方、高分子固体電解質をイオン移動媒体
に用いた電池は、シート状の電極と高分子固体電解質が
積層された積層体や電極表面に高分子固体電解質層を塗
布形成後積層させた積層対を所定の形状に加工して作製
することができる。このように、シート積層や塗工など
の方法が採用できることから製造プロセスが量産性に優
れることが予想されている。また、従来の電解液系電池
で起こりうる液漏れが実質的に起こらないため製造工程
管理が容易であり、電極/高分子固体電解質/電極積層
体の直列接続積層による高電圧化も期待されている。
On the other hand, in a battery using a polymer solid electrolyte as an ion transfer medium, a laminate in which a sheet-like electrode and a polymer solid electrolyte are laminated, or a polymer solid electrolyte layer is formed by applying a polymer solid electrolyte layer on the electrode surface. The laminated pair can be manufactured by processing into a predetermined shape. As described above, since a method such as sheet lamination or coating can be adopted, it is expected that the production process is excellent in mass productivity. Further, since the liquid leakage which can occur in the conventional electrolyte battery does not substantially occur, the production process can be easily controlled, and a higher voltage is expected by the series connection lamination of the electrode / polymer solid electrolyte / electrode laminate. I have.

【0004】この固体電解質電池のパッケージには従
来、熱融着可能なポリマーシート/アルミニウムシート
積層体が用いられており、また電池を構成するために
は、電極から外部に電流を取り出すための電極端子をパ
ッケージに封入することが必要である。該電極端子封入
においてポリマーシート/アルミニウムシート積層体の
アルミニウム層が融着時に電極端子との接触を起こすこ
とがあり、電池の性能低下、作動不可を引き起こすとい
う問題があった。
Conventionally, a polymer sheet / aluminum sheet laminate capable of being heat-sealed has been used for the package of this solid electrolyte battery. In order to constitute a battery, an electrode for extracting a current from the electrode to the outside is used. It is necessary to enclose the terminals in a package. In the sealing of the electrode terminals, the aluminum layer of the polymer sheet / aluminum sheet laminate sometimes comes into contact with the electrode terminals at the time of fusion, resulting in a problem that the performance of the battery is reduced and the battery cannot be operated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、リチウム電
池、リチウムイオン電池などの電池に用いる、軽量で透
水量が低く、且つ電極端子間の短絡が低減され、電池性
能に優れた電池を提供することを可能にする外装体を提
供すること、及び該外装体でパッケージされた電池性能
に優れた軽量電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a light-weight, low-water-permeability, low-short circuit between electrode terminals, and excellent battery performance for use in batteries such as lithium batteries and lithium-ion batteries. It is an object of the present invention to provide an exterior body capable of performing the above-mentioned operations, and to provide a lightweight battery excellent in battery performance and packaged with the exterior body.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記問題
点に鑑み検討した結果、電池用外装体材料に用いられる
アルミニウム層と熱可塑性樹脂層を有する積層体材料に
おいてアルミニウム層と融着可能である熱可塑性樹脂層
の層間に、該熱可塑性樹脂層の融点より高い融点を持つ
ポリマー層を導入することにより、この外装体材料を用
いた電池は電極端子短絡性が低減され、電池性能に優れ
ることを見出し本発明を完成した。
Means for Solving the Problems The present inventors have studied in view of the above problems, and as a result, have found that an aluminum layer and a thermoplastic resin layer used for a battery package material are fused to an aluminum layer. By introducing a polymer layer having a melting point higher than the melting point of the thermoplastic resin layer between the layers of the thermoplastic resin layer, the battery using this package material has reduced electrode terminal short-circuiting property and has a low battery performance. And found that the present invention was completed.

【0007】即ち、本発明は、(1) 少なくともアル
ミニウム層/絶縁体層/熱可塑性樹脂層の構成を有する
ポリマー積層体から形成され、且つ該ポリマー積層体の
熱可塑性樹脂層が外装体の内面となるように形成されて
なる電池用外装体、(2) 上記(1)の電池用外装体
で封止されてなる電池、である。
That is, the present invention provides (1) a polymer laminate having at least the structure of aluminum layer / insulator layer / thermoplastic resin layer, wherein the thermoplastic resin layer of the polymer laminate is formed on the inner surface of the exterior body. And (2) a battery sealed with the battery exterior of (1).

【0008】以下、本発明について詳細に説明する。本
発明の外装体材料は、熱可塑性樹脂シートとアルミニウ
ムシートが積層された構造を有し、該積層された構造の
熱可塑性ポリマー層が融着されることによって外装体を
封止することができるものである。また、該積層された
構造のアルミニウム層は透水バリア層として外装体外部
から内部への水の進入を阻止する働きをもつものであ
る。
Hereinafter, the present invention will be described in detail. The exterior body material of the present invention has a structure in which a thermoplastic resin sheet and an aluminum sheet are laminated, and the exterior body can be sealed by fusing the thermoplastic polymer layer having the laminated structure. Things. Further, the aluminum layer having the laminated structure functions as a water-permeable barrier layer to prevent water from entering the exterior from the exterior.

【0009】本発明の外装体はポリマー積層体から形成
され、このポリマー積層体は、アルミニウム層と融着可
能な熱可塑性樹脂層の層間に、該熱可塑性樹脂層を構成
するポリマーより高融点の絶縁体層を有する積層体構造
を少なくとも持つことが必要である。本発明の該外装体
で封止された電池は内部に素電池が配置され、外装体内
外をつなぐ電極端子が該外装体で封止された構造を有す
る。従来の外装体においては、電極端子封止部分におい
て、外装体を熱融着により封止する際に電極端子とアル
ミニウム層間で短絡が起こすことがあるという問題があ
った。
The outer package of the present invention is formed of a polymer laminate, and the polymer laminate has a higher melting point between the aluminum layer and the thermoplastic resin layer which can be fused than the polymer constituting the thermoplastic resin layer. It is necessary to have at least a laminate structure having an insulator layer. The battery of the present invention, which is sealed with the package, has a structure in which a unit cell is disposed inside, and electrode terminals for connecting the inside and outside of the package are sealed with the package. In the conventional exterior body, there is a problem that a short circuit may occur between the electrode terminal and the aluminum layer when the exterior body is sealed by heat sealing in the electrode terminal sealing portion.

【0010】本発明は、外装体を形成するポリマー積層
体のアルミニウム層と熱融着可能な熱可塑性樹脂層間に
絶縁体層を配置し、該熱可塑性樹脂層を内面となるよう
に外装体を作製することにより、従来問題であった電極
端子間の短絡を大幅に低減させ、電池性能の信頼性、安
定性の大幅な向上を可能にしたものである。本発明の外
装体における絶縁体層を構成する物質は、熱可塑性樹脂
層のポリマーの融点より高融点または熱フローしないも
のであることが必要であり、さらに電気伝導率が10-8
S/cm以下、好ましくは10-9S/cm以下であるこ
とが必要である。絶縁体層を構成する物質の融点は熱可
塑性樹脂層を構成する熱可塑性樹脂の融点より20℃以
上、好ましくは30℃以上高いことが好ましい。従っ
て、融着層ポリマーより高融点の熱可塑性樹脂、熱硬化
性樹脂、絶縁性セラミック、セラミック粒子分散体など
を層状に形成して外装体を形成することができ、熱融着
可能な熱可塑性樹脂層ポリマーの融点、該熱可塑性樹脂
層との密着性、アルミニウム層との密着性を考慮して材
料を選択することができる。
According to the present invention, an insulator layer is arranged between an aluminum layer of a polymer laminate forming an exterior body and a thermoplastic resin layer which can be heat-sealed, and the exterior body is formed so that the thermoplastic resin layer becomes an inner surface. By manufacturing, the short circuit between the electrode terminals, which has been a problem in the past, is greatly reduced, and the reliability and stability of the battery performance are greatly improved. The substance constituting the insulator layer in the outer package of the present invention needs to have a melting point higher than the melting point of the polymer of the thermoplastic resin layer or a substance that does not cause heat flow, and further, has an electric conductivity of 10 −8.
S / cm or less, preferably 10 -9 S / cm or less is required. It is preferable that the melting point of the substance forming the insulator layer is higher than the melting point of the thermoplastic resin forming the thermoplastic resin layer by 20 ° C. or more, preferably 30 ° C. or more. Therefore, the outer package can be formed by forming a thermoplastic resin, a thermosetting resin, an insulating ceramic, a ceramic particle dispersion, or the like having a higher melting point than the fusion layer polymer into a layer, and the thermoplastic resin that can be thermally fused is formed. The material can be selected in consideration of the melting point of the resin layer polymer, the adhesion to the thermoplastic resin layer, and the adhesion to the aluminum layer.

【0011】また、本発明の外装体の熱融着可能な熱可
塑性樹脂層の材料として、ポリエチレン、ポリプロピレ
ン、ナイロン、アイオノマー樹脂、ポリエステル、ナイ
ロンなどの脂肪族ポリアミド、芳香族ポリアミド、フッ
化ビニリデン系ポリマー、塩化ビニリデン系ポリマー、
ポリフェニレンオキシドなどのポリマーを用いることが
できる。これら熱可塑性樹脂のうち、ポリエチレン、ア
イオノマー樹脂は電極端子密着シール性が高く外装体と
して好まし。また、積層した層の密着性や電極端子との
密着性向上のため熱融着可能な熱可塑性樹脂層ポリマー
の表面を酸化処理、コーテイングなどを施すことができ
る。
As the material of the thermoplastic resin layer capable of being heat-fused of the outer package of the present invention, aliphatic polyamide such as polyethylene, polypropylene, nylon, ionomer resin, polyester, nylon, aromatic polyamide, vinylidene fluoride, etc. Polymer, vinylidene chloride polymer,
Polymers such as polyphenylene oxide can be used. Of these thermoplastic resins, polyethylene and ionomer resins have high electrode terminal adhesion and sealing properties and are preferred as the outer package. Further, in order to improve the adhesiveness of the laminated layers and the adhesiveness to the electrode terminals, the surface of the thermoplastic resin layer which can be thermally fused can be subjected to oxidation treatment, coating, or the like.

【0012】本発明の外装体の積層構造の具体例とし
て、アルミニウム/ポリエチレンテレフタレート/ポリ
エチレン、アルミニウム/ポリプロピレン/ポリエチレ
ン、アルミニウム/ナイロン/アイオノマー樹脂などを
挙げることができる。本発明の外装体を構成するポリマ
ー積層体のアルミニウム層表面にさらにポリエチレンテ
レフタレート、ナイロン等のポリマー層など保護層を設
けることもできる。また、アルミニウム層/絶縁体層/
熱可塑性樹脂層のユニット積層体をさらに積層した構造
体を用いることもできる。さらに、上記ポリマー積層体
のアルミニウム層の一部を除去したポリマー積層体も、
本発明の外装体用のポリマー積層体として利用可能であ
り、このアルミニウム層を含まない部分で電極端子部を
封止する。
Specific examples of the laminated structure of the outer package of the present invention include aluminum / polyethylene terephthalate / polyethylene, aluminum / polypropylene / polyethylene, and aluminum / nylon / ionomer resin. A protective layer such as a polymer layer of polyethylene terephthalate, nylon or the like may be further provided on the surface of the aluminum layer of the polymer laminate constituting the outer package of the present invention. Aluminum layer / insulator layer /
A structure in which a unit laminate of a thermoplastic resin layer is further laminated may be used. Further, a polymer laminate obtained by removing a part of the aluminum layer of the polymer laminate,
It can be used as a polymer laminate for an exterior body of the present invention, and the electrode terminal portion is sealed at a portion not including the aluminum layer.

【0013】また、本発明において用いられるアルミニ
ウムは、金属アルミニウム又はアルミニウム合金である
ことが軽量かつ加工生に優れることから好ましい。必要
があればこれに代用する金属を利用することもできる。
本発明において、積層方法としてシート同士を加熱ラミ
ネート融着させる方法、基材上にポリマー溶融体をキャ
ストまたは押し出し成膜する方法、ポリマー溶液や液体
状態のポリマー前駆体をキャストする方法が可能であ
る。この積層体構造はパッケージに必要な透水バリア
性、封止方法、電極端子の密着性を考慮して形成するこ
とができる。
The aluminum used in the present invention is preferably metallic aluminum or an aluminum alloy because of its light weight and excellent workability. If necessary, a substitute metal can be used.
In the present invention, as a lamination method, a method of laminating sheets by heat lamination and fusion, a method of casting or extruding a polymer melt on a substrate, a method of casting a polymer solution or a polymer precursor in a liquid state are possible. . This laminate structure can be formed in consideration of the water-permeable barrier properties required for the package, the sealing method, and the adhesion of the electrode terminals.

【0014】本発明のポリマー積層体のアルミニウム層
は、シート形状で熱可塑性ポリマーシートとラミネート
する方法、又は蒸着法などで形成される。本発明の電池
用外装体のシール方法として、ヒートシール、インパル
スシール、スピンウエルドなどの摩擦熱による方法、レ
ーザー、赤外線、ホットジェットなどの外部加熱、高周
波シール、超音波シールなどの内部加熱法を用いること
ができる。何れのシール方法を用いるかは、外装体を構
成するポリマー積層体材料の種類や構造を勘案して決定
すれば良い。また、接着剤、粘着剤などによりポリマー
積層体材料間を接合させてパッケージすることもでき
る。
The aluminum layer of the polymer laminate of the present invention is formed by a method of laminating a thermoplastic polymer sheet in the form of a sheet, a vapor deposition method or the like. Examples of the method for sealing the battery outer package of the present invention include heat sealing, impulse sealing, a method using frictional heat such as spin welding, laser, infrared radiation, external heating such as hot jet, high frequency sealing, and internal heating such as ultrasonic sealing. Can be used. Which sealing method to use may be determined in consideration of the type and structure of the polymer laminate material constituting the outer package. Further, the package can be formed by bonding the polymer laminate materials with an adhesive, a pressure-sensitive adhesive or the like.

【0015】本発明の電池用外装体における透水量は1
g/m2・24hr以下である。この透水量は非水電池
として低いことが好ましく、好ましくは0.2g/m2
・24hr以下、さらに好ましくは0.1g/m2・2
4hr以下である。透水量1g/m2・24hrを越え
るパッケージ材料を用いた電池はパッケージ内部の電池
構造要素が吸水により劣化し、電池容量低下を伴うため
好ましくない。また、この吸水によって内部の電解質材
料が分解しガス発生を伴うことがあり好ましくない。こ
の透水量は、パッケージ内部に無水塩化カルシウムなど
の吸水材料を封入し、所定の雰囲気で保持した後重量増
加を計測して求めることができる。
The water permeability of the battery casing of the present invention is 1
g / m 2 · 24 hr or less. This water permeability is preferably low for a non-aqueous battery, preferably 0.2 g / m 2.
・ 24 hr or less, more preferably 0.1 g / m 2・ 2
It is 4 hours or less. A battery using a package material having a water permeability of more than 1 g / m 2 · 24 hr is not preferable because the battery structural elements inside the package are deteriorated by water absorption and the battery capacity is reduced. In addition, the internal electrolyte material is decomposed due to the water absorption, which may cause gas generation, which is not preferable. The amount of water permeation can be determined by enclosing a water-absorbing material such as anhydrous calcium chloride inside the package, keeping the package in a predetermined atmosphere, and measuring the weight increase.

【0016】本発明において、外装体内部に配置する素
電池は非水系電池であり非水有機溶媒または無溶媒の電
池である。この電池例として、リチウム電池、リチウム
イオン電池、ナトリウム電池、空気電池などの電池、電
気二重層キャパシター、エレクトロクロミック素子など
の電気化学素子が挙げられ、本発明ではこれらを電池と
総称する。
In the present invention, the unit cell disposed inside the outer package is a non-aqueous battery and is a non-aqueous organic solvent or non-solvent battery. Examples of this battery include batteries such as lithium batteries, lithium ion batteries, sodium batteries, and air batteries, and electrochemical devices such as electric double layer capacitors and electrochromic devices. In the present invention, these are collectively referred to as batteries.

【0017】たとえば素電池として、一次電池および二
次電池として種々の電極材料により電池を構成すること
ができる。例えばリチウム、リチウムイオン電池に用い
る電極材料として、正極材料としてはコバルト酸リチウ
ム、ニッケル酸リチウム、マンガン酸リチウムなどを、
負極材料としてはグラファイト、コークスなどの炭素材
料、リチウム金属、リチウムと合金や金属間化合物形成
可能な材料を用いることができる。通常はこれら電極材
料を粉末状でバインダーとともに塗布した形態や、焼
結、圧延、蒸着、スパッタリングなどの方法で作製した
連続体形態が利用できる。この電極に集電体を設けるこ
ともできる。
For example, as a unit cell, a battery can be constituted by various electrode materials as a primary battery and a secondary battery. For example, lithium, as an electrode material used for a lithium ion battery, as a positive electrode material lithium cobaltate, lithium nickelate, lithium manganate, and the like,
As the negative electrode material, a carbon material such as graphite or coke, a lithium metal, or a material capable of forming an alloy with lithium or an intermetallic compound can be used. Usually, a form in which these electrode materials are applied together with a binder in a powder form, or a continuous form produced by a method such as sintering, rolling, vapor deposition, or sputtering can be used. A current collector may be provided on this electrode.

【0018】また、電極間のイオン移動媒体として、非
水溶媒系電解液を多孔性シートに含浸した材料、非水溶
媒系電解液をポリマー材料に均一または不均一に含浸、
膨潤させた材料、イオン配位性のポリマーまたはセラミ
ック材料に移動可能なイオンを含有させた材料等を用い
ることができる。素電池の構成として正極/イオン移動
媒体/負極からなる要素構造や、この要素構造を直列ま
たは並列積層した構造が利用できる。さらに、電極から
電流の取り出しを行うための電極端子を電極に接続して
電池構造を形成する。素電池の形状として、シート状や
直方体状、ロール状などが利用できる。このように本発
明の電池構成要素、構造、形態は種々のものから利用す
る用途により選択することができる。これら素電池の構
造に応じて外装材の構造を設計することができ、外装体
の内部に素電池を配置して、外装体の内外で電極端子そ
れぞれが封止された構造を形成して電池とすることがで
きる。
As a medium for transferring ions between electrodes, a material obtained by impregnating a non-aqueous solvent-based electrolyte solution into a porous sheet;
A swollen material, an ion-coordinating polymer, a material containing a movable ion in a ceramic material, or the like can be used. As a configuration of the unit cell, an element structure including a positive electrode / an ion transfer medium / anode and a structure in which the element structures are stacked in series or in parallel can be used. Further, an electrode terminal for extracting a current from the electrode is connected to the electrode to form a battery structure. As the shape of the unit cell, a sheet shape, a rectangular parallelepiped shape, a roll shape, or the like can be used. As described above, the battery component, structure, and form of the present invention can be selected from various types according to the application to be used. The structure of the exterior material can be designed in accordance with the structure of these unit cells, and the unit cells are arranged inside the outer case, and the electrode terminals are sealed inside and outside the outer case to form a battery. It can be.

【0019】以上のように本発明の電池は軽量性、電池
性能安定性、安全性に優れ、生産上の故障率を低くでき
ることなど工業上好ましい。以下本発明の電池について
実施例に基づいて説明する。
As described above, the battery of the present invention is industrially preferable because it is lightweight, has excellent battery performance stability and safety, and can reduce the failure rate in production. Hereinafter, the battery of the present invention will be described based on examples.

【0020】[0020]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<リチウムイオン二次電池の作製>ニードルコークスを
負極活物質としてポリフッ化ビニリデンをバインダー
(バインダー量は活物質の7重量%)としてN−メチル
ピロリドン溶媒に分散したスラリーを金属銅シート上に
塗布、乾燥して塗膜を作製した後110℃の温度で加熱
プレスして、電極厚133μmを得た。またコバルト酸
リチウムを正極活物質、ポリフッ化ビニリデンをバイン
ダー(バインダー量は正極活物質の10重量%)、カー
ボンブラック(正極活物質の3重量%)を導電助剤とし
て負極と同様にアルミニウムシート上に塗布・加熱プレ
スして正極電極シート(膜厚110μm)を作製した。
電極シートを所定形状に切断した後、集電体露出面(電
極塗布面の反対面)に金属アルミニウムシート短冊およ
び金属銅シート短冊をそれぞれ正極および負極の電極端
子として超音波溶接した。ポリ(フッ化ビニリデン−ヘ
キサフルオロプロピレン)共重合体(ヘキサフルオロプ
ロピレン3重量%)を190℃の温度で加熱押し出し成
型した膜厚50μmのポリマーシートを作製した。該ポ
リマーシートに電子線(照射量15Mrad)を施しポ
リマーの架橋を行った。該シートをフロンHFC134
aで加熱含浸した後、加熱炉に導入して発泡・延伸を行
い発泡体シート(発泡倍率4倍、膜厚70μm)を作製
した。ついで該発泡シートを電解液(エチレンカーボネ
ート(EC)/プロピレンカーボネート(PC)/γ−
ブチルラクトン(BL)=1/1/2の混合溶媒にLi
BF4を1.5モル/リットルで溶解した溶液)に浸
漬、90℃の温度で3時間加熱して電解液を含浸したハ
イブリッド電解質を作製した。次に、所定形状の正極電
極シート、ハイブリッド電解質、負極電極シートを積
層、加熱圧着して積層体を作製した(積層体の厚さは3
40μm)。電池の充放電特性評価は、25℃の温度に
おいて定電流(電流密度1mA/cm2)後、4.2V
定電位充電、放電は2.7Vカット定電流(電流密度1
mA/cm2)で行った。
<Preparation of lithium-ion secondary battery> A slurry in which needle coke was used as a negative electrode active material, polyvinylidene fluoride was used as a binder (the amount of binder was 7% by weight of the active material) and dispersed in an N-methylpyrrolidone solvent was applied on a metal copper sheet, After drying to form a coating film, the film was heated and pressed at a temperature of 110 ° C. to obtain an electrode thickness of 133 μm. In addition, lithium cobalt oxide is used as a positive electrode active material, polyvinylidene fluoride is used as a binder (the amount of the binder is 10% by weight of the positive electrode active material), and carbon black (3% by weight of the positive electrode active material) is used as a conductive aid on an aluminum sheet in the same manner as the negative electrode. And heated and pressed to prepare a positive electrode sheet (film thickness 110 μm).
After cutting the electrode sheet into a predetermined shape, a metal aluminum sheet strip and a metal copper sheet strip were ultrasonically welded to the current collector exposed surface (opposite to the electrode application surface) as positive and negative electrode terminals, respectively. A poly (vinylidene fluoride-hexafluoropropylene) copolymer (hexafluoropropylene 3% by weight) was heated and extruded at a temperature of 190 ° C. to produce a 50 μm-thick polymer sheet. An electron beam (irradiation amount: 15 Mrad) was applied to the polymer sheet to crosslink the polymer. The sheet is made of Freon HFC134
After heat impregnation with a, the mixture was introduced into a heating furnace and foamed and stretched to prepare a foam sheet (foaming ratio 4 times, film thickness 70 μm). Then, the foamed sheet was subjected to an electrolytic solution (ethylene carbonate (EC) / propylene carbonate (PC) / γ-
Lithium in a mixed solvent of butyl lactone (BL) = 1/2
(A solution in which BF 4 was dissolved at 1.5 mol / liter) and heated at 90 ° C. for 3 hours to prepare a hybrid electrolyte impregnated with the electrolyte. Next, a positive electrode sheet, a hybrid electrolyte, and a negative electrode sheet having a predetermined shape were laminated and heated and pressed to prepare a laminate (thickness of the laminate was 3).
40 μm). The charge / discharge characteristics of the battery were evaluated at 4.2 V after a constant current (current density of 1 mA / cm 2 ) at a temperature of 25 ° C.
2.7V cut constant current (current density 1)
mA / cm 2 ).

【0021】[0021]

【実施例1】配向ナイロンシート(膜厚12μm)、ア
ルミニウムフォイル(7μm)、ポリプロピレンシート
(膜厚15μm)、ポリエチレンシート(膜厚50μ
m)を順次積層したポリマー積層体シートを作製した。
該ポリマー積層体シートを切断してポリエチレン層が内
面となるように熱融着して10cm角の封筒(外装体)
を作製した。該封筒に9cm角の電極シートと95mm
角のハイブリッド電解質シートを積層した電池積層体を
入れ、幅10mmの正負極それぞれの短冊電極端子が封
筒の外部にはみ出す構造で、封止してパッケージを行い
電池を作製した。封止部の熱融着は130℃で加熱した
シーラーで約1kg/cm2の圧力を印加しながらヒー
トシールを行った。このようにして5個の電池を作製し
た。該電池を充放電した結果、5個いずれの電池も電極
端子間の短絡は見られず、充放電が可能であった。初回
放電量は平均251mAhであり、繰り返し充放電が可
能であった。この電池を充電状態で1ヶ月放置した(4
0℃、湿度90%)後の放電量は平均236mAhであ
った。また、別に作製した封筒に無水塩化カルシウムを
封入し、40C、湿度90%の雰囲気中で1ヶ月放置し
て重量増加を評価した結果、0.02g/m2・24h
r以下であった。
Example 1 Oriented nylon sheet (film thickness 12 μm), aluminum foil (7 μm), polypropylene sheet (film thickness 15 μm), polyethylene sheet (film thickness 50 μm)
m) were sequentially laminated to prepare a polymer laminate sheet.
The polymer laminate sheet is cut and heat-sealed so that the polyethylene layer becomes the inner surface, and a 10 cm square envelope (exterior body)
Was prepared. 9cm square electrode sheet and 95mm
A battery laminate in which corner hybrid electrolyte sheets were laminated was put in, and the strip electrode terminals of each of the positive and negative electrodes having a width of 10 mm protruded outside the envelope. In the heat sealing of the sealing portion, heat sealing was performed while applying a pressure of about 1 kg / cm 2 using a sealer heated at 130 ° C. Thus, five batteries were produced. As a result of charging and discharging the batteries, no short circuit between the electrode terminals was observed in any of the five batteries, and charging and discharging were possible. The initial discharge amount was 251 mAh on average, and charging and discharging were possible repeatedly. This battery was left in a charged state for one month (4
(0 ° C., humidity 90%), the discharge amount was 236 mAh on average. In addition, anhydrous calcium chloride was sealed in an envelope separately prepared, and left for one month in an atmosphere of 40 C and a humidity of 90% to evaluate weight increase. As a result, 0.02 g / m 2 · 24 h
r or less.

【0022】[0022]

【比較例1】配向ナイロンシート(膜厚12μm)、ア
ルミニウムフォイル(7μm)、ポリエチレンシート
(膜厚50μm)を順次積層したポリマー積層体シート
を作製した。該ポリマー積層体シートを実施例1と同様
に加工した封筒を用い電池を作製した。同様の操作で5
個の電池を作製した。実施例1と同様の評価を行った結
果、5個の電池のうち2個の電池で電極間短絡が認めら
れた。初回充電量は5個平均146mAh、充電状態1
ヶ月放置後の放電量(5個平均)は120mAhであっ
た。
Comparative Example 1 A polymer laminate sheet was prepared by sequentially laminating an oriented nylon sheet (12 μm in thickness), an aluminum foil (7 μm), and a polyethylene sheet (50 μm in thickness). A battery was produced using an envelope obtained by processing the polymer laminate sheet in the same manner as in Example 1. 5 in the same operation
Batteries were produced. As a result of the same evaluation as in Example 1, short-circuiting between the electrodes was observed in two of the five batteries. The initial charge amount is 146 mAh on average for 5 batteries, and the charge state is
The amount of discharge (average of five batteries) after standing for a month was 120 mAh.

【0023】[0023]

【実施例2】ポリエチレンテレフタレートシート(膜厚
12μm)、アルミニウムフォイル(膜厚7μm)、ポ
リエチレンテレフタレートシート(膜厚12μm)、ポ
リエチレンシート(膜厚50μm)を順次積層したポリ
マー積層体シートを作製した。該ポリマー積層体シート
をポリエチレン層が内面になるように加熱シールして封
筒(外装体)を作製し、50mm角の正極および負極電
極と55mm角のハイブリッド電解質が積層された電池
積層体を10層積層した積層体を封筒に入れた後加熱封
止して電池を作製した。加熱封止条件は実施例1と同
様、ヒートシーラーの加熱温度130℃、印加圧力約1
kg/cm2 で行った。同様の操作を繰り返し、5個の
電池を作製した。この電池の初回放電量(5個平均)は
758mAhであり、充電状態で40℃、90%の雰囲
気で1ヶ月放置した後、評価した放電量(5個平均)は
716mAhであった。この放置による電池構造の変形
は見られなかった。また、別に作製した封筒に無水塩化
カルシウムを封入し、40℃、湿度90%の雰囲気中で
1ヶ月放置して重量増加を評価した結果、0.02g/
2 ・24hr以下であった。
Example 2 A polymer laminate sheet was prepared by sequentially laminating a polyethylene terephthalate sheet (thickness: 12 μm), an aluminum foil (thickness: 7 μm), a polyethylene terephthalate sheet (thickness: 12 μm), and a polyethylene sheet (thickness: 50 μm). The polymer laminate sheet was heat-sealed so that the polyethylene layer was on the inner surface to prepare an envelope (exterior body), and 10 battery laminates in which a 50 mm square positive electrode and a negative electrode were laminated with a 55 mm square hybrid electrolyte were laminated. The stacked body was placed in an envelope and then heat-sealed to produce a battery. The heat sealing conditions were the same as in Example 1, and the heating temperature of the heat sealer was 130 ° C.
The test was performed at kg / cm 2 . The same operation was repeated to produce five batteries. The initial discharge amount (average of 5 cells) of this battery was 758 mAh, and after leaving the battery in a charged state for one month in an atmosphere of 40 ° C. and 90%, the evaluated discharge amount (average of 5 cells) was 716 mAh. No deformation of the battery structure due to this standing was observed. Also, anhydrous calcium chloride was sealed in a separately prepared envelope, and left for one month in an atmosphere of 40 ° C. and 90% humidity to evaluate the weight increase.
m 2 · 24 hr or less.

【0024】[0024]

【比較例2】ポリエチレンテレフタレートシート(膜厚
12μm)、アルミニウムフォイル(膜厚7μm)、ポ
リエチレンシート(膜厚50μm)を順次積層したポリ
マー積層体シートを作製した。該ポリマー積層体シート
を実施例2と同様に加工した封筒(外装体)を用い電池
を作製した(5個の電池作製)。実施例2と同様の評価
を行った結果、5個のうち1個の電池に電極間短絡が認
められ、初回充電量(5個平均)は604mAh、充電
状態1ヶ月放置後の放電量(5個平均)は92mAhで
あった。
Comparative Example 2 A polymer laminate sheet was prepared by sequentially laminating a polyethylene terephthalate sheet (film thickness 12 μm), an aluminum foil (film thickness 7 μm), and a polyethylene sheet (film thickness 50 μm). A battery was produced using an envelope (outer body) obtained by processing the polymer laminate sheet in the same manner as in Example 2 (five batteries). As a result of performing the same evaluation as in Example 2, short-circuit between the electrodes was observed in one of the five batteries, the initial charge amount (average of five cells) was 604 mAh, and the discharge amount (5 Average) was 92 mAh.

【0025】[0025]

【発明の効果】本発明の電池用外装体は、これを用いた
電池の電極端子封止部の電極端子間短絡を大幅に低減さ
せ、電池作製上の信頼性、安定性の大幅な向上を可能に
することから、産業上大いに有用である。
According to the battery outer package of the present invention, the short circuit between the electrode terminals of the electrode terminal sealing portion of the battery using the same is greatly reduced, and the reliability and stability of the battery production are greatly improved. It is very useful industrially because it enables it.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくともアルミニウム層/絶縁体層/
熱可塑性樹脂層の構成を有するポリマー積層体材料から
形成され、且つ該ポリマー積層体材料の熱可塑性樹脂層
が外装体の内面となるように形成されてなる電池用外装
体。
At least an aluminum layer / insulator layer /
An outer package for a battery, formed from a polymer laminate material having a configuration of a thermoplastic resin layer, wherein the thermoplastic resin layer of the polymer laminate material is formed to be an inner surface of the outer package.
【請求項2】 請求項1記載の電池用外装体で封止され
てなる電池。
2. A battery sealed with the battery casing according to claim 1.
JP9066474A 1997-03-19 1997-03-19 Battery case and battery Withdrawn JPH10261386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9066474A JPH10261386A (en) 1997-03-19 1997-03-19 Battery case and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9066474A JPH10261386A (en) 1997-03-19 1997-03-19 Battery case and battery

Publications (1)

Publication Number Publication Date
JPH10261386A true JPH10261386A (en) 1998-09-29

Family

ID=13316827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9066474A Withdrawn JPH10261386A (en) 1997-03-19 1997-03-19 Battery case and battery

Country Status (1)

Country Link
JP (1) JPH10261386A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176397A (en) * 1997-12-10 1999-07-02 Sumitomo Bakelite Co Ltd Battery and its manufacture
JP2000268787A (en) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd Case material for thin-profile battery
JP2000268873A (en) * 1999-03-12 2000-09-29 Sumitomo Electric Ind Ltd Lithium secondary battery and battery device using it
JP2000340186A (en) * 1999-05-25 2000-12-08 Dainippon Printing Co Ltd Packaging material
JP2001222982A (en) * 2000-02-10 2001-08-17 Tokai Rubber Ind Ltd Housing for thin battery
US6682847B2 (en) * 1998-09-30 2004-01-27 Japan Storage Battery Co., Ltd. Aluminum battery casing with corrosion preventing film
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2007273398A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Packaging material for battery
WO2015152216A1 (en) * 2014-03-31 2015-10-08 大日本印刷株式会社 Packaging material for batteries
JP2015195089A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Battery-packaging material
JP2015195090A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Battery-packaging material
CN105914306A (en) * 2015-02-23 2016-08-31 凸版印刷株式会社 Exterior material for secondary cell and secondary cell
JPWO2020032021A1 (en) * 2018-08-10 2020-08-20 Semitec株式会社 Temperature sensor and device equipped with temperature sensor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176397A (en) * 1997-12-10 1999-07-02 Sumitomo Bakelite Co Ltd Battery and its manufacture
US6682847B2 (en) * 1998-09-30 2004-01-27 Japan Storage Battery Co., Ltd. Aluminum battery casing with corrosion preventing film
JP2000268873A (en) * 1999-03-12 2000-09-29 Sumitomo Electric Ind Ltd Lithium secondary battery and battery device using it
JP2000268787A (en) * 1999-03-19 2000-09-29 Hitachi Maxell Ltd Case material for thin-profile battery
JP2000340186A (en) * 1999-05-25 2000-12-08 Dainippon Printing Co Ltd Packaging material
JP2001222982A (en) * 2000-02-10 2001-08-17 Tokai Rubber Ind Ltd Housing for thin battery
JP2004171827A (en) * 2002-11-18 2004-06-17 Aisin Seiki Co Ltd Wet type solar cell
JP2007273398A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Packaging material for battery
WO2015152216A1 (en) * 2014-03-31 2015-10-08 大日本印刷株式会社 Packaging material for batteries
JP2015195089A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Battery-packaging material
JP2015195090A (en) * 2014-03-31 2015-11-05 大日本印刷株式会社 Battery-packaging material
KR20160138505A (en) * 2014-03-31 2016-12-05 다이니폰 인사츠 가부시키가이샤 Packaging material for batteries
US10199613B2 (en) 2014-03-31 2019-02-05 Dai Nippon Printing Co., Ltd. Packaging material for batteries
CN105914306A (en) * 2015-02-23 2016-08-31 凸版印刷株式会社 Exterior material for secondary cell and secondary cell
WO2016136640A1 (en) * 2015-02-23 2016-09-01 凸版印刷株式会社 Exterior material for secondary cell and secondary cell
JPWO2016136640A1 (en) * 2015-02-23 2017-11-30 凸版印刷株式会社 Secondary battery exterior material and secondary battery
JPWO2020032021A1 (en) * 2018-08-10 2020-08-20 Semitec株式会社 Temperature sensor and device equipped with temperature sensor

Similar Documents

Publication Publication Date Title
KR100430123B1 (en) Nonaqueous electrolyte battery and production method therefor
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
JP2002260739A (en) Nonaqueous electrolyte secondary battery and manufacturing method
JPH10189050A (en) Lithium ion battery
EP1445806B1 (en) Electric cell
JP2010118175A (en) Secondary battery
EP1132987A2 (en) Solid electrolyte cell
JP2000030742A (en) Lithium-ion secondary battery element
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JPH10261386A (en) Battery case and battery
JP2002270239A (en) Electrochemical device
JP2003272595A (en) Manufacturing method for electrochemical device, manufacturing equipment, and electrochemical device
JP4292490B2 (en) Laminated pack battery
JP2001084984A (en) Battery
WO2022000307A1 (en) Electrochemical apparatus and electronic apparatus including electrochemical apparatus
JPH11154534A (en) Lithium ion secondary battery element
JPH11250873A (en) Nonaqueous electrolyte secondary battery
JPH11260414A (en) Nonaqueous system secondary battery
JPH11265699A (en) Thin battery
JPH11307084A (en) Organic electrolyte battery
JPH11213965A (en) Outer package body for battery and battery
JP2004349156A (en) Secondary battery and stacked secondary battery
JP2000285902A5 (en)
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP3618219B2 (en) Non-aqueous battery and electrode terminal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601