JPH11307084A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH11307084A
JPH11307084A JP10250736A JP25073698A JPH11307084A JP H11307084 A JPH11307084 A JP H11307084A JP 10250736 A JP10250736 A JP 10250736A JP 25073698 A JP25073698 A JP 25073698A JP H11307084 A JPH11307084 A JP H11307084A
Authority
JP
Japan
Prior art keywords
organic electrolyte
polymer
positive electrode
negative electrode
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10250736A
Other languages
Japanese (ja)
Inventor
Kazunari Kinoshita
一成 木下
Makoto Tsutsue
誠 筒江
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10250736A priority Critical patent/JPH11307084A/en
Priority to US09/248,914 priority patent/US6579649B2/en
Publication of JPH11307084A publication Critical patent/JPH11307084A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte battery having current collectors with a weight ratio kept low relative to the entire battery weight while realizing satisfactory battery characteristics. SOLUTION: In an organic electrolyte battery, a layer-built and unified electrode structure is made up by causing a negative electrode having negative- electrode mix layers 2b each including a polymer for absorbing/holding an organic electrolyte formed on both sides of a negative-electrode current collector 2a and a positive-electrode mix layer 1b including a polymer for absorbing/ holding an organic electrolyte of a positive electrode to confront each other via a polymer electrolyte layer 3 made of a porous polymer absorbing/holding an organic electrolyte and disposed on both sides of the negative electrode 2, whereby the number of negative-electrode current collectors 2a is minimized with one negative-electrode current collector 2a equipped with two mix layers 2b, a weight ratio of the current collectors amounting to the entire battery weight can be kept at a minimum, and satisfactory efficiency and discharge characteristics are obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、正極と有機電解液
を吸収保持するポリマーからなる高分子電解質層と負極
を積層してなる有機電解質電池の構成に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an organic electrolyte battery comprising a positive electrode, a polymer electrolyte layer made of a polymer capable of absorbing and retaining an organic electrolyte, and a negative electrode.

【0002】[0002]

【従来の技術】近年の携帯機器の小型、軽量、薄型化に
対応して、リチウムイオン二次電池においても、小型、
軽量、薄型化が強く求められている。リチウムイオン二
次電池が実用化され、携帯電話やノート型パソコンの小
型、軽量化に大いに貢献しているが機器の小型、軽量、
薄型化の要望は強まる一方である。しかしながら、強固
な外装ケースによって電極とセパレータ間を緊縛し、極
板間距離の最小化および電極セパレータ間の良好な接触
を実現している従来のリチウムイオン二次電池では、外
装ケースの強度を保つための厚みが必要であり、薄型化
に限界がある。
2. Description of the Related Art In response to the recent trend toward smaller, lighter, and thinner portable devices, lithium-ion secondary batteries have become smaller and smaller.
Light weight and thinness are strongly demanded. Lithium-ion rechargeable batteries have been put to practical use, and have greatly contributed to the reduction in size and weight of mobile phones and notebook computers.
The demand for thinner is increasing. However, in a conventional lithium ion secondary battery that tightly binds the electrodes and the separator with a strong outer case and minimizes the distance between the electrode plates and achieves good contact between the electrode separators, the strength of the outer case is maintained. Thickness is necessary, and there is a limit to thinning.

【0003】薄型化を追求する方法のひとつとして、セ
パレータである電解質層に有機電解液を吸収保持する多
孔性のポリマーを用いたリチウムポリマー二次電池が注
目されている。中でも、電解質層と電極に同一のポリマ
ーを用い接合一体化されている電池系では上記のように
強固な外装ケースを用いなくても良好な電解質層と電極
間の接触が実現できるため、電池の薄型化に有効であ
る。電解質層と電極間が接合一体化されている例として
は米国特許4,830,939号公報および、5,47
8,668号公報がある。
As one method of pursuing a reduction in thickness, a lithium polymer secondary battery using a porous polymer that absorbs and retains an organic electrolyte in an electrolyte layer serving as a separator has been receiving attention. Above all, in a battery system in which the same polymer is joined and integrated into the electrolyte layer and the electrode, good contact between the electrolyte layer and the electrode can be realized without using a strong outer case as described above. It is effective for thinning. US Pat. No. 4,830,939 and US Pat. No. 5,47,939 disclose an example in which an electrolyte layer and an electrode are joined and integrated.
8,668.

【0004】米国特許4,830,939号公報の場
合、負極金属リチウム上または正極上にモノマーと電解
液の混合溶液を塗布した後、紫外線や電子線によりモノ
マーを重合させ固体高分子電解質を形成している。この
場合、極板表面の微小な凹凸に沿って電解質層が形成さ
れるため緊縛を加えなくても電極と電解質層の間に良好
な接触が実現される。
In the case of US Pat. No. 4,830,939, a mixed solution of a monomer and an electrolytic solution is applied on lithium metal or a positive electrode of a negative electrode, and then the monomer is polymerized by ultraviolet rays or an electron beam to form a solid polymer electrolyte. doing. In this case, since the electrolyte layer is formed along the minute irregularities on the surface of the electrode plate, a good contact between the electrode and the electrolyte layer can be realized without applying any binding.

【0005】米国特許5,478,668号公報の場
合、ポリマー材料としてフッ化ビニリデン(VDF)と
6フッ化プロピレン(HFP)の共重合体(P(VDF
−HFP))を用い、積層電極の正極、負極およびセパ
レータである電解質層を作製した後、セパレータと正極
あるいは負極を熱融着により一体化させることを特徴と
している。
In the case of US Pat. No. 5,478,668, a copolymer of vinylidene fluoride (VDF) and propylene hexafluoride (HFP) (P (VDF
-HFP)), a positive electrode, a negative electrode of a laminated electrode, and an electrolyte layer serving as a separator are manufactured, and then the separator and the positive electrode or the negative electrode are integrated by heat fusion.

【0006】上記2例のように電極と電解質層を接合一
体化することにより柔軟で薄いラミネートシート外装体
を使用しても放電可能な薄い電池を得ることができる。
[0006] By bonding and integrating the electrode and the electrolyte layer as in the above two examples, a thin battery that can be discharged even when a flexible and thin laminate sheet outer casing is used can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかし、実用的な電池
容量を得るために上記の正極、電解質層および負極を積
層一体化した積層電極を単純に積み重ねると、リチウム
イオン二次電池に比べ集電体が電池重量に占める割合が
大きくなってしまうという課題がある。一般的なリチウ
ムイオン二次電池では図5に示すように正極集電体であ
るアルミニウム箔6aの両面に正極合剤層6bを形成し
た正極6と、負極集電体である銅箔7aの両面に負極合
剤層7bを形成した負極7をセパレータ8を介して対向
させ、これを巻回している。このためリチウムイオン二
次電池では正極集電体6aおよび負極集電体7aの両面
に各々1組ずつの電池構成が成り立っており集電体を効
率的に利用している。これに対し、従来例に示した電解
質層と電極間が接合一体化されているリチウムポリマ二
次電池では、何層にもわたって、均一に電子線や紫外線
あるいは熱をかけることが非常に困難であるため、この
接合するという要件が障害となりリチウムイオン二次電
池のように正極-セパレータ-負極-正極……という構成
が採れない。このため従来のリチウムポリマ二次電池で
は、図4に示すように正極集電体1aの片面に正極合剤
層1bが形成された正極1と、負極集電体2aの片面に
負極合剤層2bが形成された負極2を電解質層を挟んで
対向させ、1組の正極集電体と負極集電体により1つの
電池構成となっている。このため、電極合剤が塗着され
ていない側の集電体は利用されていない。
However, in order to obtain a practical battery capacity, simply stacking the above-mentioned laminated electrode in which the positive electrode, the electrolyte layer, and the negative electrode are integrated and integrated, as compared with a lithium ion secondary battery, There is a problem that the ratio of the body to the battery weight increases. In a general lithium ion secondary battery, as shown in FIG. 5, a positive electrode 6 in which a positive electrode mixture layer 6b is formed on both surfaces of an aluminum foil 6a as a positive electrode current collector, and both surfaces of a copper foil 7a as a negative electrode current collector A negative electrode 7 having a negative electrode mixture layer 7b formed thereon is opposed to each other with a separator 8 interposed therebetween, and is wound. For this reason, in the lithium ion secondary battery, a pair of battery configurations is formed on both sides of the positive electrode current collector 6a and the negative electrode current collector 7a, and the current collector is used efficiently. On the other hand, in the lithium polymer secondary battery in which the electrolyte layer and the electrode are joined and integrated as shown in the conventional example, it is extremely difficult to apply electron beams, ultraviolet rays, or heat uniformly over many layers. Therefore, the requirement of this joining becomes an obstacle, and a configuration of positive electrode-separator-negative electrode-positive electrode like a lithium ion secondary battery cannot be adopted. Therefore, in the conventional lithium polymer secondary battery, as shown in FIG. 4, a positive electrode 1 in which a positive electrode mixture layer 1b is formed on one surface of a positive electrode current collector 1a, and a negative electrode mixture layer The negative electrode 2 on which the electrodes 2b are formed is opposed to each other with the electrolyte layer interposed therebetween, and one battery configuration is formed by a set of a positive electrode current collector and a negative electrode current collector. Therefore, the current collector on the side where the electrode mixture is not applied is not used.

【0008】また、正極集電体の材料としては軽量なア
ルミニウムなどを用いることができるが、負極集電体に
はアルミニウムを用いることができず、銅などを用いる
ことから集電体が重くなり、電池重量に対する負極集電
体の重量効率が悪いという欠点を有する。
[0008] Lightweight aluminum or the like can be used as the material of the positive electrode current collector. However, aluminum cannot be used as the negative electrode current collector, and the current collector becomes heavy because copper or the like is used. In addition, there is a disadvantage that the weight efficiency of the negative electrode current collector with respect to the battery weight is poor.

【0009】本発明は上記従来例の問題点を解消し、良
好な電池特性を維持しつつ、電池重量を軽量化した構成
の有機電解質電池を提供することを目的とする。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an organic electrolyte battery having a structure in which the battery weight is reduced while maintaining good battery characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するため、負極集電体の両面に負極合剤層を形成した負
極と、その両面を高分子電解質層を介して正極で挟んだ
電極構造としたことを特徴とする。
In order to achieve the above object, the present invention has a negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector, and both surfaces of which are sandwiched between positive electrodes via a polymer electrolyte layer. It is characterized by having an electrode structure.

【0011】特に、本発明は多孔性の集電体の両面に有
機電解液を吸収保持するポリマーを含み球状炭素粒子主
体のシートまたはフィルム状の負極合剤層を形成した負
極と、前記負極の両面に有機電解液を吸収保持するポリ
マーからなる多孔性のフィルム状の高分子電解質層を介
して有機電解液を吸収保持するポリマーを含みリチウム
コバルト複合酸化物主体のシートまたはフィルム状の正
極合剤層を形成した正極を対向させ、これら全体をシー
トまたはフィルム状に積層一体化するとともにこれらに
有機電解液を吸収保持させたことを特徴とする有機電解
質電池である。
In particular, the present invention relates to a negative electrode having a sheet or film-shaped negative electrode mixture layer mainly containing spherical carbon particles containing a polymer absorbing and retaining an organic electrolyte on both surfaces of a porous current collector; A lithium-cobalt composite oxide-based sheet or film-type positive electrode mixture containing a polymer that absorbs and retains the organic electrolyte through a porous film-like polymer electrolyte layer made of a polymer that absorbs and retains the organic electrolyte on both surfaces An organic electrolyte battery in which a positive electrode having a layer formed thereon is opposed to each other, and the whole is laminated and integrated in a sheet or film shape, and an organic electrolyte solution is absorbed and held therein.

【0012】本発明によれば、良好な電池特性を維持し
つつ、電池の薄型化、軽量化を実現することが可能とな
る。
According to the present invention, it is possible to reduce the thickness and weight of the battery while maintaining good battery characteristics.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、負極集電体の両面に負極合剤層を形成した負極と、
前記負極の両面に高分子電解質層を介して負極の両面に
正極を対向させ、積層したことを特徴とする有機電解質
電池である。アルミニウムなどの軽量の金属を用いるこ
とができず重量効率の悪い負極集電体の両面に負極合剤
層を形成し、一つの負極集電体を2面の負極合剤層で使
用することにより、軽量な有機電解質電池を得ることが
できる。また、正極は負極の両側に分散して対向するこ
とにより、充放電時におけるイオンの移動距離をみじか
くすることができ、電極反応をスムーズに進行させ、大
電流を取り出すことができる。また、負極集電体1枚に
対し、正極と負極の対向面を2面とすることで反応面積
を2倍とすることができるため、単位面積当たりの負荷
を下げることができ、高率の充放電を行うことができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The invention according to claim 1 of the present invention provides a negative electrode having negative electrode mixture layers formed on both surfaces of a negative electrode current collector,
An organic electrolyte battery, wherein a positive electrode is opposed to both surfaces of the negative electrode via a polymer electrolyte layer on both surfaces of the negative electrode, and stacked. By forming a negative electrode mixture layer on both sides of a negative electrode current collector, which cannot use lightweight metals such as aluminum, and having poor weight efficiency, and using one negative electrode current collector with two negative electrode mixture layers, Thus, a lightweight organic electrolyte battery can be obtained. Further, by dispersing and opposing the positive electrode on both sides of the negative electrode, the moving distance of ions during charging and discharging can be made minute, and the electrode reaction can proceed smoothly and a large current can be taken out. In addition, the reaction area can be doubled by setting the opposing surfaces of the positive electrode and the negative electrode to two surfaces with respect to one negative electrode current collector, so that the load per unit area can be reduced, and Charge and discharge can be performed.

【0014】さらに本発明は、多孔性の集電体の両面に
有機電解液を吸収保持するポリマーを含み球状炭素粒子
主体のシートまたはフィルム状の負極合剤層を形成した
負極と、前記負極の両面に有機電解液を吸収保持するポ
リマーからなる多孔性のフィルム状の高分子電解質層を
介して有機電解液を吸収保持するポリマーを含みリチウ
ムコバルト複合酸化物主体のシートまたはフィルム状の
正極合剤層を形成した正極を対向させ、これら全体をシ
ートまたはフィルム状に積層一体化するとともにこれら
に有機電解液を吸収保持させた有機電解質電池であり、
特に、電極と電解質層間を積層一体化することにより、
電池に緊縛を与えなくても十分な電導性が取れ、良好な
電池特性が得られる。
Further, the present invention provides a negative electrode comprising a porous current collector, on both surfaces of which a sheet or film-like negative electrode mixture layer containing a polymer capable of absorbing and retaining an organic electrolyte is formed. A lithium-cobalt composite oxide-based sheet or film-type positive electrode mixture containing a polymer that absorbs and retains the organic electrolyte through a porous film-like polymer electrolyte layer made of a polymer that absorbs and retains the organic electrolyte on both surfaces An organic electrolyte battery in which the positive electrodes having the layers formed are opposed to each other, and the whole is laminated and integrated in a sheet or film shape, and the organic electrolyte solution is absorbed and held therein.
In particular, by laminating and integrating electrodes and electrolyte layers,
Sufficient electrical conductivity can be obtained without binding the battery, and good battery characteristics can be obtained.

【0015】また本発明は、前記積層一体化した積層電
極を少なくとも2つ以上積層することにより、必要な電
池容量を得るものである。
Further, in the present invention, a required battery capacity is obtained by laminating at least two or more laminated electrodes which are laminated and integrated.

【0016】正極は、多孔性のアルミニウム集電体の片
面に正極合剤層を形成した有機電解質電池である。ある
いは多孔性のアルミニウム集電体の両面に正極合剤層を
形成した有機電解質電池であり、正極合剤を厚み的に偏
在させたものである。正極集電体の材料としてアルミニ
ウムは軽量であり、電池を軽量化する材料として好まし
い。特に、積層電極を多層に積層する構成を取るとき
は、穴あき板などの多孔板を用いるのが好ましい。
The positive electrode is an organic electrolyte battery in which a positive electrode mixture layer is formed on one side of a porous aluminum current collector. Alternatively, it is an organic electrolyte battery in which a positive electrode mixture layer is formed on both sides of a porous aluminum current collector, and the positive electrode mixture is unevenly distributed in thickness. Aluminum is lightweight as a material of the positive electrode current collector, and is preferable as a material for reducing the weight of the battery. In particular, when adopting a configuration in which the laminated electrodes are laminated in multiple layers, it is preferable to use a perforated plate such as a perforated plate.

【0017】また、前記正極と前記負極の反応部分の面
寸法を同一とすることで、余分な電極面積を必要としな
いものである。
[0017] Further, by making the surface dimensions of the reaction part of the positive electrode and the negative electrode the same, no extra electrode area is required.

【0018】また、前記負極の反応部分の面寸法を前記
正極の反応部分の面寸法よりも大きいものとすること
で、電極端部での短絡を防ぐことができる。
Further, by making the surface dimension of the reaction part of the negative electrode larger than that of the reaction part of the positive electrode, a short circuit at the electrode end can be prevented.

【0019】本発明の好ましい形態は、多孔性の銅箔か
らなる集電体の両面に有機電解液を吸収保持するポリマ
ーを含み球状炭素粒子主体のシートまたはフィルム状の
負極合剤層を形成した負極と、前記負極の両面に有機電
解液を吸収保持するポリマーからなる多孔性のフィルム
状の高分子電解質層を介して多孔性のアルミニウム箔か
らなる集電体に有機電解液を吸収保持するポリマーを含
みリチウムコバルト複合酸化物主体のシートまたはフィ
ルム状の正極合剤層を形成した正極を対向させ、これら
全体をシートまたはフィルム状に積層一体化するととも
にこれらに有機電解液を吸収保持させた電池であり、前
記有機電解液を吸収保持するポリマーが、ポリフッ化ビ
ニリデンまたはフッ化ビニリデンと6フッ化プロピレン
の共重合体の群より選ばれる1種以上を主成分とする有
機電解質電池である。正極、高分子電解質層および負極
に同一のポリマー材料として、ポリフッ化ビニリデンま
たはフッ化ビニリデンと6フッ化プロピレンの共重合体
を主成分とすることにより、有機電解液を吸収保持する
ポリマーにより正極、高分子電解質層および負極を熱融
着により接合一体化できる。
In a preferred embodiment of the present invention, a sheet or film-like negative electrode mixture layer mainly containing spherical carbon particles containing a polymer absorbing and retaining an organic electrolyte is formed on both surfaces of a current collector made of a porous copper foil. A polymer that absorbs and holds an organic electrolyte on a current collector made of a porous aluminum foil through a negative electrode and a porous film-shaped polymer electrolyte layer made of a polymer that absorbs and holds an organic electrolyte on both surfaces of the negative electrode A battery comprising a lithium-cobalt composite oxide-based sheet or film-like positive electrode mixture layer formed thereon and facing the positive electrode, and laminating and integrating the whole into a sheet or film-like form, and absorbing and holding an organic electrolyte therein. Wherein the polymer that absorbs and retains the organic electrolyte is a group of polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride. An organic electrolyte battery as a main component at least one member selected. As the same polymer material for the positive electrode, the polymer electrolyte layer and the negative electrode, by using polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride as a main component, a positive electrode formed of a polymer that absorbs and retains an organic electrolyte solution, The polymer electrolyte layer and the negative electrode can be joined and integrated by thermal fusion.

【0020】さらに、有機電解液を吸収保持するポリマ
ーに、ポリエチレンオキシド、ポリメタクリル酸エステ
ルの群より選ばれる1種以上を添加しているものであ
り、これらのポリマーを添加することにより、ポリマー
中への有機電解液の吸収保持力を高める。
Further, at least one selected from the group consisting of polyethylene oxide and polymethacrylate is added to the polymer that absorbs and retains the organic electrolyte solution. By adding these polymers, the polymer To increase the absorption and retention of organic electrolytes into the electrolyte.

【0021】(実施の形態1)本発明の有機電解質電池
の構成を図1を参照して説明する。
(Embodiment 1) The structure of the organic electrolyte battery of the present invention will be described with reference to FIG.

【0022】図1は正極板1と負極板2とを高分子電解
質層3を介して積層してなる積層電極4である。正極板
1は正極集電体であるアルミニウム芯板1aの片面に正
極活物質としてコバルト酸リチウムと導電材と有機電解
液を吸収保持するポリマーとからなる正極合剤層1bを
塗布乾燥して作製する。負極板2は負極集電体である銅
芯板2aの両面に球状炭素粒子と導電材と有機電解液を
吸収保持するポリマーとからなる負極合剤層2bを塗付
乾燥して作製する。高分子電解質層3は有機電解質を吸
収保持するポリマーであるフッ化ビニリデンと6フッ化
プロピレンの共重合体(P(VDF−HFP))からな
る多孔性のフィルムである。そして負極板2の両側の負
極合剤層2bにそれぞれ高分子電解質層3を介して正極
板1の正極合剤層1bに対向させ、積層した後、熱融着
により積層一体化して積層電極4を構成している。
FIG. 1 shows a laminated electrode 4 formed by laminating a positive electrode plate 1 and a negative electrode plate 2 with a polymer electrolyte layer 3 interposed therebetween. The positive electrode plate 1 is prepared by applying and drying a positive electrode mixture layer 1b composed of lithium cobalt oxide as a positive electrode active material, a conductive material and a polymer absorbing and retaining an organic electrolyte on one surface of an aluminum core plate 1a as a positive electrode current collector. I do. The negative electrode plate 2 is prepared by applying and drying a negative electrode mixture layer 2b composed of spherical carbon particles, a conductive material and a polymer that absorbs and retains an organic electrolyte solution on both surfaces of a copper core plate 2a as a negative electrode current collector. The polymer electrolyte layer 3 is a porous film made of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP)), which is a polymer that absorbs and retains an organic electrolyte. Then, the anode electrode layer 2b on both sides of the anode plate 2 is opposed to the cathode mixture layer 1b of the cathode plate 1 via the polymer electrolyte layer 3 and laminated, and then laminated and integrated by heat fusion. Is composed.

【0023】前記積層電極をラミネートシート外装体に
装入後、外装体の開口部より6フッ化リン酸リチウム1
mol/lをエチレンカーボネートとエチルメチルカー
ボネートを1:3の体積比で混合した混合溶媒に溶解し
た電解液を注液する。注液後、外装体内部を減圧して積
層電極4に電解液を十分に含浸させた後、大気圧に戻し
外装体の開口部を熱シールにより封口する。封口した電
池を45℃で20分間加熱し、有機電解液をポリマーに
含浸させ、本発明の有機電解質電池を得る。なお、ラミ
ネートシート外装体は、絶縁性樹脂フィルムの間に通気
遮断のためのアルミニウムフィルムを配置し、全体を積
層一体化したものである。
After loading the laminated electrode into a laminate sheet outer package, lithium hexafluorophosphate 1 is inserted through an opening of the outer package.
An electrolytic solution in which mol / l is dissolved in a mixed solvent obtained by mixing ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 3 is injected. After the injection, the interior of the exterior body is depressurized to sufficiently impregnate the laminated electrode 4 with the electrolyte, and then returned to the atmospheric pressure, and the opening of the exterior body is sealed with a heat seal. The sealed battery is heated at 45 ° C. for 20 minutes to impregnate the polymer with the organic electrolyte solution to obtain the organic electrolyte battery of the present invention. In addition, the laminated sheet exterior body is such that an aluminum film for blocking airflow is disposed between insulating resin films, and the whole is laminated and integrated.

【0024】(実施の形態2)本発明の他の構成の有機
電解質電池を図2を参照して説明する。正極1が正極集
電体1aの両面に正極合剤層1bが形成された以外は、
実施の形態1と同様の構成にて正極1と負極2とを高分
子電解質層3を介して積層して積層電極5を構成する。
(Embodiment 2) An organic electrolyte battery having another configuration of the present invention will be described with reference to FIG. Except that the positive electrode 1 has a positive electrode mixture layer 1b formed on both surfaces of a positive electrode current collector 1a,
A positive electrode 1 and a negative electrode 2 are laminated via a polymer electrolyte layer 3 in the same configuration as in the first embodiment to form a laminated electrode 5.

【0025】(実施の形態3)本発明の積層電極4を多
積層した有機電解質電池の構成を図3を参照して説明す
る。
(Embodiment 3) The structure of an organic electrolyte battery having a multi-layered laminated electrode 4 according to the present invention will be described with reference to FIG.

【0026】図3は実施の形態1の積層電極4を5つ積
層した多積層電池の積層電極部分である。
FIG. 3 shows a laminated electrode portion of a multi-layer battery in which five laminated electrodes 4 of the first embodiment are laminated.

【0027】なお、正、負極の集電体にそれぞれの合剤
層を形成する方法は、あらかじめ合剤シートを作製して
おき、熱融着により集電体と合剤シートを接合させる方
法、また集電体に直接合剤ペーストを塗着する方法など
がある。集電体の片面に合剤層を形成する場合には、あ
らかじめ合剤シートを作製しておき、熱融着により集電
体と合剤シートを接合させる方法が好ましい。
The method of forming the respective mixture layers on the current collectors of the positive electrode and the negative electrode includes preparing a mixture sheet in advance and joining the current collector and the mixture sheet by heat fusion; Further, there is a method of directly applying a mixture paste to the current collector. When the mixture layer is formed on one side of the current collector, a method of preparing a mixture sheet in advance and bonding the current collector and the mixture sheet by heat fusion is preferable.

【0028】なお、正極活物質としては、コバルト酸リ
チウム、ニッケル酸リチウムまたはマンガン酸リチウム
など充放電によりリチウムイオンを可逆的に出し入れで
きるリチウム含有複合金属酸化物を用いることができ
る。
As the positive electrode active material, a lithium-containing composite metal oxide such as lithium cobaltate, lithium nickelate or lithium manganate, which can reversibly insert and remove lithium ions by charge and discharge can be used.

【0029】負極活物質としては、充放電によりリチウ
ムイオンを可逆的に出し入れできる炭素材料、なかでも
炭素質メソフューズ粒体を炭素化および黒鉛化して得ら
れた粒状黒鉛粒子が好ましく、他に金属酸化物あるいは
金属窒化物など充放電によりリチウムイオンを可逆的に
出し入れできる材料を用いることができる。
The negative electrode active material is preferably a carbon material capable of reversibly taking in and out lithium ions by charging and discharging, and in particular, granular graphite particles obtained by carbonizing and graphitizing carbonaceous mesofuses, and other metal oxides. It is possible to use a material such as a material or a metal nitride which can reversibly insert and remove lithium ions by charge and discharge.

【0030】電解液は、溶媒としてエチレンカーボネー
トやプロピレンカーボネートなどの環状カーボネートと
鎖状炭酸エステルの混合物、エチレンカーボネートとプ
ロピレンカーボネートの環状カーボネートの混合物など
を用いることができ、溶質としてLiPF6,LiCF3
SO3,LiClO4,LiBF4,LiAsF6あるいは
LiN(CF3SO2)などを用いることができる。鎖状
炭酸エステルとしては、エチルメチルカーボネート、ジ
エチルカーボネートおよびジメチルカーボネートなどが
ある。
As the solvent, a mixture of a cyclic carbonate such as ethylene carbonate or propylene carbonate and a chain carbonate, a mixture of a cyclic carbonate of ethylene carbonate and propylene carbonate, or the like can be used as a solvent. As a solute, LiPF 6 or LiCF 3 is used.
SO 3 , LiClO 4 , LiBF 4 , LiAsF 6 or LiN (CF 3 SO 2 ) can be used. Examples of the chain carbonate include ethyl methyl carbonate, diethyl carbonate and dimethyl carbonate.

【0031】[0031]

【実施例】本発明の実施例について図面を用い詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail with reference to the drawings.

【0032】(実施例1)下記に示す方法により本発明
の有機電解質電池を作製した。
(Example 1) An organic electrolyte battery of the present invention was manufactured by the following method.

【0033】高分子電解質シートは以下の方法により作
製した。フッ化ビニリデンと6フッ化プロピレンの共重
合体(P(VDF−HFP)、6フッ化プロピレン比率
12重量%)30gをアセトン150gに溶解し、造孔
剤のフタル酸ジ-n-ブチル(DBP)30gを添加した
混合溶液を調整する。この溶液をガラス板上に塗着した
後、アセトンを乾燥除去して厚さ0.02mm、サイズ
が35mm×65mmの高分子電解質シートを作製す
る。
The polymer electrolyte sheet was produced by the following method. 30 g of a copolymer of vinylidene fluoride and propylene hexafluoride (P (VDF-HFP), propylene hexafluoride ratio 12% by weight) is dissolved in 150 g of acetone, and di-n-butyl phthalate (DBP) is used as a pore-forming agent. ) Prepare a mixed solution to which 30 g was added. After applying this solution on a glass plate, acetone is dried and removed to produce a polymer electrolyte sheet having a thickness of 0.02 mm and a size of 35 mm × 65 mm.

【0034】正極合剤層のシートはP(VDF−HF
P)70gをアセトン1000gに溶解した溶液とコバ
ルト酸リチウム1000g、アセチレンブラック50
g、DBP100gを混合して調整したペーストをガラ
ス板上に塗着、乾燥した後、圧延することで厚さ0.1
mm、サイズが30mm×60mmのシートを得る。
The sheet of the positive electrode mixture layer is made of P (VDF-HF
P) A solution obtained by dissolving 70 g in 1000 g of acetone, 1000 g of lithium cobaltate, and acetylene black 50
g, a paste prepared by mixing 100 g of DBP is applied on a glass plate, dried, and then rolled to a thickness of 0.1 g.
mm, a sheet having a size of 30 mm × 60 mm is obtained.

【0035】負極合剤層のシートはP(VDF−HF
P)40gをアセトン300gに溶解した溶液と炭素質
メソフェーズ球体を炭素化および黒鉛化した球状黒鉛粒
子(大阪ガス製)250g、気相成長炭素繊維を黒鉛化
したもの(VGCF)(大阪ガス製)20g、DBP6
0gを混合して調整したペーストをガラス板上に塗着、
乾燥した後、圧延することで厚さ0.15mm、サイズ
が30mm×60mmのシートを得る。
The sheet of the negative electrode mixture layer is made of P (VDF-HF
P) A solution in which 40 g is dissolved in 300 g of acetone, 250 g of spherical graphite particles (manufactured by Osaka Gas) obtained by carbonizing and graphitizing carbonaceous mesophase spheres, and graphitized vapor-grown carbon fibers (VGCF) (manufactured by Osaka Gas) 20g, DBP6
The paste prepared by mixing 0 g is applied on a glass plate,
After drying, the sheet is rolled to obtain a sheet having a thickness of 0.15 mm and a size of 30 mm × 60 mm.

【0036】正極、負極の各集電体は表面に導電性炭素
材と結着剤の混合物を塗着した。集電体に塗着する導電
性炭素材と結着剤の混合物は、アセチレンブラック30
gとポリフッ化ビニリデンのN−メチルピロリドン溶液
(12重量%)を分散・混合することで調整する。この
混合物を厚さ0.06mmのアルミニウムと銅の穴あき
板にそれぞれ塗付した後、80℃以上の温度でN−メチ
ルピロリドンを乾燥除去することで導電性炭素材とポリ
フッ化ビニリデンから成る混合物を結着した集電体を作
製する。
A mixture of a conductive carbon material and a binder was applied to the surface of each of the current collectors of the positive electrode and the negative electrode. The mixture of the conductive carbon material and the binder applied to the current collector is acetylene black 30.
g and N-methylpyrrolidone solution of polyvinylidene fluoride (12% by weight) are dispersed and mixed. This mixture is coated on a perforated plate of aluminum and copper having a thickness of 0.06 mm, and then N-methylpyrrolidone is dried and removed at a temperature of 80 ° C. or higher to obtain a mixture of a conductive carbon material and polyvinylidene fluoride. To produce a current collector.

【0037】前記正極合剤層のシートを前記アルミニウ
ムの集電体の片面に積層したものをポリテトラフルオロ
エチレンシート(PTFE、厚さ0.05mm)ではさ
み、150℃に加熱した2本ローラを通して加熱・加圧
することで熱融着させ正極板を作製する。PTFEは合
剤層がローラに付着するのを防ぐために用いるものであ
り、銅箔やアルミニウム箔などの他の材料を用いてもよ
い。
The sheet of the positive electrode mixture layer laminated on one side of the aluminum current collector is sandwiched between polytetrafluoroethylene sheets (PTFE, thickness 0.05 mm) and passed through two rollers heated to 150 ° C. A positive electrode plate is produced by heat fusion by applying heat and pressure. PTFE is used to prevent the mixture layer from adhering to the roller, and other materials such as copper foil and aluminum foil may be used.

【0038】同様の方法で前記銅集電体の両面に前記負
極合剤層のシートを積層し負極板を作製する。
In the same manner, the sheets of the negative electrode mixture layer are laminated on both surfaces of the copper current collector to produce a negative electrode plate.

【0039】最後に、負極板の両面に高分子電解質シー
トを介して正極板の合剤面を対向、積層し、120℃に
加熱した2本ローラで加熱・加圧することで熱融着一体
化した積層電極を作製する。
Finally, the mixture surface of the positive electrode plate is opposed to and laminated on both surfaces of the negative electrode plate via a polymer electrolyte sheet, and is heated and pressed by two rollers heated to 120 ° C. to be integrated by heat fusion. A laminated electrode is manufactured.

【0040】上記の積層一体化した積層電極をジエチル
エーテル中に浸漬してDBPを抽出除去しポリマー部分
に多孔性を設け、50℃、真空で乾燥する。乾燥終了
後、積層電極を絶縁性樹脂フィルムの間にアルミニウム
フィルムを配したラミネートシートで作られた袋状の外
装体に装入し、エチレンカーボネートとエチルメチルカ
ーボネートを体積比1:3で混合したものに1.5モル
/lの割合で6フッ化リン酸リチウムを溶解した電解液
3.5gを注液する。注液後0.5気圧の減圧下でポリ
マーの細孔部に電解液を吸収保持させた後、大気圧に戻
して熱シールにより封口し、更に、45℃20分間加熱
してポリマー中への電解液の吸収を行い、充放電可能な
状態の電池Aとした。
The above-mentioned laminated electrode is immersed in diethyl ether to extract and remove DBP, thereby providing a polymer portion with porosity, and dried at 50 ° C. under vacuum. After drying, the laminated electrode was placed in a bag-shaped outer package made of a laminated sheet having an aluminum film disposed between insulating resin films, and ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 3. Then, 3.5 g of an electrolytic solution in which lithium hexafluorophosphate is dissolved at a ratio of 1.5 mol / l is injected. After the injection, the electrolyte was absorbed and held in the pores of the polymer under a reduced pressure of 0.5 atm, then returned to the atmospheric pressure, sealed with a heat seal, and further heated at 45 ° C for 20 minutes to polymerize the polymer. Battery A was charged and discharged by absorbing the electrolyte.

【0041】得られた電池Aの重量は3.3gであり、
集電体が占める重量比率は14.6%であった。得られ
た電池を充電電流22mAで充電した後、放電電流22
0mAで放電したところ、放電容量は92mAhであっ
た。
The weight of the obtained battery A was 3.3 g,
The weight ratio of the current collector was 14.6%. After charging the obtained battery with a charging current of 22 mA, a discharging current of 22 mA was applied.
When the battery was discharged at 0 mA, the discharge capacity was 92 mAh.

【0042】(比較例1)正極合剤層および負極合剤層
のシート厚みを実施例1の2倍の厚みの0.2mmおよ
び0.3mmとし、正極、負極とも集電体の単面にのみ
電極合剤層のシートを熱融着した以外は実施例1と同様
の方法にて高分子電解質シート、正極板および負極板を
作製する。
(Comparative Example 1) The sheet thicknesses of the positive electrode mixture layer and the negative electrode mixture layer were set to 0.2 mm and 0.3 mm, which are twice the thickness of Example 1, and both the positive electrode and the negative electrode were formed on a single surface of the current collector. A polymer electrolyte sheet, a positive electrode plate and a negative electrode plate are produced in the same manner as in Example 1 except that only the sheet of the electrode mixture layer is heat-sealed.

【0043】最後に、負極板の合剤層を高分子電解質シ
ートを介して正極板の合剤層と対向、積層し、120℃
に加熱した2本ローラで加熱・加圧することで熱融着一
体化した積層電極を作製する。
Lastly, the mixture layer of the negative electrode plate was opposed to and laminated on the mixture layer of the positive electrode plate via a polymer electrolyte sheet.
By applying heat and pressure with two heated rollers, a laminated electrode integrated by heat fusion is produced.

【0044】上記の積層電極を実施例1と同様の方法に
て充放電可能な状態の電池Bとした。
The above-mentioned laminated electrode was used as a battery B capable of charging and discharging in the same manner as in Example 1.

【0045】得られた電池Bの重量は3.1gであり、
集電体が占める重量比率は12.6%であった。この電
池を充電電流22mAで充電した後、放電電流220m
Aで放電したところ、放電容量は35mAであった。
The weight of the obtained battery B was 3.1 g,
The weight ratio of the current collector was 12.6%. After charging this battery with a charging current of 22 mA, a discharging current of 220 m
When discharge was performed at A, the discharge capacity was 35 mA.

【0046】(比較例2)実施例1と同様の方法にて高
分子電解質シート、正極合剤層シート、負極合剤層シー
トおよび集電体を作製する。
Comparative Example 2 In the same manner as in Example 1, a polymer electrolyte sheet, a positive electrode mixture layer sheet, a negative electrode mixture layer sheet and a current collector were prepared.

【0047】ただし正極板は、正極合剤層シートをアル
ミニウム集電体の両面に積層し、実施例1と同様に15
0℃に加熱した2本ローラを通して加熱・加圧すること
で熱融着させる。
However, as for the positive electrode plate, a positive electrode mixture layer sheet was laminated on both sides of the aluminum current collector,
Heat fusion is performed by applying heat and pressure through two rollers heated to 0 ° C.

【0048】また負極板は、負極合剤層シートを銅集電
体の片面に積層し、実施例1と同様に150℃に加熱し
た2本ローラを通して加熱・加圧することで熱融着させ
る。
The negative electrode plate is heat-fused by laminating a negative electrode mixture layer sheet on one side of a copper current collector and applying heat and pressure through two rollers heated to 150 ° C. as in Example 1.

【0049】最後に、実施例1の構成とは逆に、正極板
の両面に高分子電解質シートを介して負極板の合剤層を
対向、積層し、120℃に加熱した2本ローラで加熱・
加圧することで熱融着一体化した積層電極を作製する。
Finally, contrary to the structure of Example 1, the mixture layers of the negative electrode plate were opposed to each other via polymer electrolyte sheets on both surfaces of the positive electrode plate, laminated, and heated by two rollers heated to 120 ° C.・
By applying pressure, a laminated electrode that is heat-sealed and integrated is produced.

【0050】上記の積層電極を実施例1と同様の方法に
て充放電可能な状態の電池Cとした。
The above-mentioned laminated electrode was used as a battery C capable of charging and discharging in the same manner as in Example 1.

【0051】得られた電池Cの重量は3.538gであ
り、集電体が占める重量比率は19.5%であった。ま
た、得られた電池を充電電流22mAで充電した後、放
電電流220mAで放電したところ、放電容量は90m
Ahであった。
The weight of the obtained battery C was 3.538 g, and the weight ratio occupied by the current collector was 19.5%. When the obtained battery was charged at a charging current of 22 mA and then discharged at a discharging current of 220 mA, the discharging capacity was 90 m
Ah.

【0052】実施例1と比較例1および比較例2は電池
容量の理論値が同じになるように作製している。それぞ
れの電池において電池重量に対する集電体の重量比率を
比較すると、実施例1は14.6%、比較例1は12.
6%、比較例2は19.7%である。実施例1は比較例
1よりも正極集電体が1枚多いため電池重量がわずかに
重いが、正極の厚みが比較例1の半分であるため高率放
電特性が比較例1に比べて非常に良好である。次に、実
施例1と比較例2を比較すると、どちらも集電体からの
活物質層の厚みが同じであるため、高率放電特性は非常
に良好である。しかし、比較例2では負極集電体が実施
例1より1枚多いため電池全体における集電体の重量比
率が高くなっている。以上のことから、実施例1の構成
によれば電池重量における集電体重量の比率をできるだ
け小さくすることができ、かつ良好な高率放電特性を得
るために適した構造であることが分かる。
Example 1 and Comparative Examples 1 and 2 are manufactured so that the theoretical values of the battery capacity are the same. Comparing the weight ratio of the current collector to the battery weight in each battery, Example 1 was 14.6%, Comparative Example 1 was 12.12.
6% and Comparative Example 2 are 19.7%. In Example 1, the battery weight was slightly heavier because there was one more positive electrode current collector than in Comparative Example 1, but the high-rate discharge characteristics were much higher than in Comparative Example 1 because the thickness of the positive electrode was half that of Comparative Example 1. Is good. Next, when comparing Example 1 and Comparative Example 2, since both have the same thickness of the active material layer from the current collector, the high-rate discharge characteristics are very good. However, in Comparative Example 2, since the number of the negative electrode current collector is one more than that in Example 1, the weight ratio of the current collector in the entire battery is high. From the above, it can be seen that according to the configuration of Example 1, the ratio of the current collector weight to the battery weight can be reduced as much as possible, and the structure is suitable for obtaining good high-rate discharge characteristics.

【0053】さらに、正極も集電体の両側に正極合剤層
を作製した場合、電池容量の理論値を同じように作製す
れば、正極合剤層の厚みは半分となり、高率放電特性は
より向上する。
Further, when the positive electrode also has a positive electrode mixture layer formed on both sides of the current collector, if the theoretical value of the battery capacity is made in the same manner, the thickness of the positive electrode mixture layer is reduced to half, and the high-rate discharge characteristics are improved. Better.

【0054】[0054]

【発明の効果】以上のように本発明によれば、良好な電
池特性を実現しつつ、負極集電体を1枚で合剤層2枚の
集電体を兼ねることができるので電池重量中の集電体重
量の比率を低く抑えられ、重量効率が良く、優れた高率
放電特性の有機電解質電池を得ることができる。
As described above, according to the present invention, a single negative electrode current collector can also serve as a current collector of two mixture layers while realizing good battery characteristics. , The weight ratio of the current collector can be kept low, and an organic electrolyte battery having good weight efficiency and excellent high-rate discharge characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す有機電解質電池の積層
電極部分の断面図
FIG. 1 is a cross-sectional view of a laminated electrode portion of an organic electrolyte battery according to an embodiment of the present invention.

【図2】本発明の他の実施例を示す有機電解質電池の積
層電極部分の断面図
FIG. 2 is a sectional view of a laminated electrode portion of an organic electrolyte battery according to another embodiment of the present invention.

【図3】本発明の一実施例を示す積層電極を5枚積層し
た有機電解質電池の積層電極部分の断面図
FIG. 3 is a sectional view of a laminated electrode portion of an organic electrolyte battery in which five laminated electrodes according to one embodiment of the present invention are laminated.

【図4】従来の構成の有機電解質電池の積層部分の断面
FIG. 4 is a cross-sectional view of a laminated portion of an organic electrolyte battery having a conventional configuration.

【図5】従来の構成の円筒形リチウムイオン電池の構成
電極の断面図
FIG. 5 is a cross-sectional view of constituent electrodes of a conventional cylindrical lithium ion battery.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極集電体 1b 正極合剤層 2 負極板 2a 負極集電体 2b 負極合剤層 3 高分子電解質層 4 積層電極 5 積層電極 6 正極板 6a 正極集電体 6b 正極合剤層 7 負極板 7a 負極集電体 7b 負極合剤層 8 セパレータ DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode collector 1b Positive electrode mixture layer 2 Negative electrode plate 2a Negative electrode collector 2b Negative electrode mixture layer 3 Polymer electrolyte layer 4 Stacked electrode 5 Stacked electrode 6 Positive plate 6a Positive electrode collector 6b Positive electrode mixture layer 7 Negative electrode plate 7a Negative electrode current collector 7b Negative electrode mixture layer 8 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江田 信夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuo Eda 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 負極集電体の両面に負極合剤層を形成し
た負極と、前記負極の両面に高分子電解質層を介して正
極を対向させ、積層したことを特徴とする有機電解質電
池。
An organic electrolyte battery comprising: a negative electrode in which a negative electrode mixture layer is formed on both surfaces of a negative electrode current collector; and a positive electrode, which is opposed to both surfaces of the negative electrode via a polymer electrolyte layer, and is stacked.
【請求項2】 前記積層した有機電解質電池を、少なく
とも2つ以上積層した請求項1記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein at least two or more of the stacked organic electrolyte batteries are stacked.
【請求項3】 多孔性の集電体の両面に有機電解液を吸
収保持するポリマーを含み球状炭素粒子主体のシートま
たはフィルム状の負極合剤層を形成した負極と、前記負
極の両面に有機電解液を吸収保持するポリマーからなる
多孔性のフィルム状の高分子電解質層を介して有機電解
液を吸収保持するポリマーを含みリチウムコバルト複合
酸化物主体のシートまたはフィルム状の正極合剤層を形
成した正極を対向させ、これら全体をシートまたはフィ
ルム状に積層一体化するとともにこれらに有機電解液を
吸収保持させた有機電解質電池。
3. A negative electrode in which a sheet or film of a negative electrode mixture layer mainly composed of spherical carbon particles containing a polymer absorbing and retaining an organic electrolyte is formed on both sides of a porous current collector; Forming a lithium-cobalt composite oxide-based sheet or film-type positive electrode mixture layer containing a polymer that absorbs and retains an organic electrolyte through a porous film-like polymer electrolyte layer made of a polymer that absorbs and retains an electrolyte An organic electrolyte battery in which the positive electrodes are opposed to each other, the whole of them is laminated and integrated into a sheet or film, and the organic electrolyte is absorbed and held by these.
【請求項4】 前記積層一体化した有機電解質電池を、
少なくとも2つ以上積層した請求項3記載の有機電解質
電池。
4. The laminated and integrated organic electrolyte battery,
4. The organic electrolyte battery according to claim 3, wherein at least two or more batteries are stacked.
【請求項5】 前記正極は多孔性のアルミニウム集電体
の片面に正極合剤層を形成した極板である請求項3ある
いは4記載の有機電解質電池。
5. The organic electrolyte battery according to claim 3, wherein the positive electrode is an electrode plate having a positive electrode mixture layer formed on one surface of a porous aluminum current collector.
【請求項6】 前記正極は多孔性のアルミニウム集電体
の両面に正極合剤を形成した極板である請求項3あるい
は4記載の有機電解質電池。
6. The organic electrolyte battery according to claim 3, wherein the positive electrode is an electrode plate having a positive electrode mixture formed on both sides of a porous aluminum current collector.
【請求項7】 前記正極は多孔性のアルミニウム集電体
の両面に正極合剤を厚み的に偏在させて形成した極板で
ある請求項3あるいは4記載の有機電解質電池。
7. The organic electrolyte battery according to claim 3, wherein the positive electrode is an electrode plate formed by unevenly distributing a positive electrode mixture on both surfaces of a porous aluminum current collector.
【請求項8】 前記正極と前記負極の反応部分の面寸法
が同一である請求項1から7のいずれかに記載の有機電
解質電池。
8. The organic electrolyte battery according to claim 1, wherein the positive electrode and the negative electrode have the same surface area at the reaction portion.
【請求項9】 前記負極の反応部分の面寸法が前記正極
の反応部分の面寸法よりも大きい請求項1から7のいず
れかに記載の有機電解質電池。
9. The organic electrolyte battery according to claim 1, wherein a surface dimension of a reaction part of the negative electrode is larger than a surface dimension of a reaction part of the positive electrode.
【請求項10】 多孔性の銅箔からなる集電体の両面に
有機電解液を吸収保持するポリマーを含み球状炭素粒子
主体のシートまたはフィルム状の負極合剤層を形成した
負極と、前記負極の両面に有機電解液を吸収保持するポ
リマーからなる多孔性のフィルム状の高分子電解質層を
介して多孔性のアルミニウム箔からなる集電体に有機電
解液を吸収保持するポリマーを含みリチウムコバルト複
合酸化物主体のシートまたはフィルム状の正極合剤層を
形成した正極を対向させ、これら全体をシートまたはフ
ィルム状に積層一体化するとともにこれらに有機電解液
を吸収保持させた電池であり、前記有機電解液を吸収保
持するポリマーが、ポリフッ化ビニリデンまたはフッ化
ビニリデンと6フッ化プロピレンの共重合体の群より選
ばれる1種以上を主成分とする有機電解質電池。
10. A negative electrode in which a sheet or film-shaped negative electrode mixture layer containing a polymer that absorbs and retains an organic electrolyte is formed on both surfaces of a current collector made of a porous copper foil, Lithium-cobalt composite containing polymer that absorbs and retains organic electrolyte on current collector made of porous aluminum foil through porous polymer electrolyte layer made of polymer that absorbs and retains organic electrolyte on both sides A battery in which a positive electrode having a positive electrode mixture layer in the form of a sheet or a film composed mainly of an oxide is opposed, and the whole is laminated and integrated into a sheet or a film and an organic electrolytic solution is absorbed and held therein, The polymer that absorbs and retains the electrolyte is mainly at least one selected from the group consisting of polyvinylidene fluoride or a copolymer of vinylidene fluoride and propylene hexafluoride. Organic electrolyte battery as a component.
【請求項11】 前記有機電解液を吸収保持するポリマ
ーに、ポリエチレンオキシド、ポリメタクリル酸エステ
ルの群より選ばれる1種以上を添加している請求項10
に記載の有機電解質電池。
11. The polymer that absorbs and retains the organic electrolytic solution is added with at least one selected from the group consisting of polyethylene oxide and polymethacrylate.
3. The organic electrolyte battery according to claim 1.
JP10250736A 1998-02-18 1998-09-04 Organic electrolyte battery Pending JPH11307084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10250736A JPH11307084A (en) 1998-02-19 1998-09-04 Organic electrolyte battery
US09/248,914 US6579649B2 (en) 1998-02-18 1999-02-09 Polymer electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-36992 1998-02-19
JP3699298 1998-02-19
JP10250736A JPH11307084A (en) 1998-02-19 1998-09-04 Organic electrolyte battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006354292A Division JP2007128904A (en) 1998-02-19 2006-12-28 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPH11307084A true JPH11307084A (en) 1999-11-05

Family

ID=26376095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10250736A Pending JPH11307084A (en) 1998-02-18 1998-09-04 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH11307084A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063684A1 (en) * 2000-02-22 2001-08-30 Electricite De France - Service National Electrochemical generator element and corresponding battery
JP2001266890A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2005093891A1 (en) * 2004-03-29 2005-10-06 Sharp Kabushiki Kaisha Lithium ion secondary cell
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2014041767A (en) * 2012-08-22 2014-03-06 Dainippon Printing Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2018511144A (en) * 2015-06-23 2018-04-19 エルジー・ケム・リミテッド Method for manufacturing curved electrode assembly
JP2019075278A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Laminated structure, lithium secondary battery and method of manufacturing laminated structure
WO2021065900A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Secondary battery
CN112909218A (en) * 2021-03-17 2021-06-04 昆山宝创新能源科技有限公司 Electrode plate, preparation method thereof and battery
US11682766B2 (en) 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148654A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery
JPH03219570A (en) * 1990-01-24 1991-09-26 Bridgestone Corp Cylindrical lithium secondary battery
JPH05314994A (en) * 1992-05-12 1993-11-26 Yuasa Corp Manufacture of battery
JPH07282818A (en) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd Layered battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09213301A (en) * 1996-02-06 1997-08-15 Ricoh Co Ltd Rectangular battery
JPH09237639A (en) * 1996-02-27 1997-09-09 Casio Comput Co Ltd Battery and manufacture thereof
JPH10125299A (en) * 1996-10-25 1998-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH10208752A (en) * 1997-01-22 1998-08-07 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH10223255A (en) * 1997-02-04 1998-08-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH117982A (en) * 1997-06-19 1999-01-12 Toshiba Battery Co Ltd Manufacture of polyelectrolyte secondary battery
JPH11111337A (en) * 1997-10-08 1999-04-23 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH11144758A (en) * 1997-11-06 1999-05-28 Toshiba Battery Co Ltd Polymer secondary battery
JPH11233145A (en) * 1998-02-19 1999-08-27 Matsushita Electric Ind Co Ltd Laminated type organic electrolyte battery
JPH11233076A (en) * 1998-02-13 1999-08-27 Toshiba Battery Co Ltd Battery pack

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148654A (en) * 1988-11-30 1990-06-07 Matsushita Electric Ind Co Ltd Nonaqueous electrolytic battery
JPH03219570A (en) * 1990-01-24 1991-09-26 Bridgestone Corp Cylindrical lithium secondary battery
JPH05314994A (en) * 1992-05-12 1993-11-26 Yuasa Corp Manufacture of battery
JPH07282818A (en) * 1994-02-16 1995-10-27 Hitachi Maxell Ltd Layered battery
JPH0997625A (en) * 1995-09-29 1997-04-08 Seiko Instr Inc Nonaqueous electrolytic secondary battery and manufacture thereof
JPH09213301A (en) * 1996-02-06 1997-08-15 Ricoh Co Ltd Rectangular battery
JPH09237639A (en) * 1996-02-27 1997-09-09 Casio Comput Co Ltd Battery and manufacture thereof
JPH10125299A (en) * 1996-10-25 1998-05-15 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPH10208752A (en) * 1997-01-22 1998-08-07 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH10223255A (en) * 1997-02-04 1998-08-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH117982A (en) * 1997-06-19 1999-01-12 Toshiba Battery Co Ltd Manufacture of polyelectrolyte secondary battery
JPH11111337A (en) * 1997-10-08 1999-04-23 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH11144758A (en) * 1997-11-06 1999-05-28 Toshiba Battery Co Ltd Polymer secondary battery
JPH11233076A (en) * 1998-02-13 1999-08-27 Toshiba Battery Co Ltd Battery pack
JPH11233145A (en) * 1998-02-19 1999-08-27 Matsushita Electric Ind Co Ltd Laminated type organic electrolyte battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
WO2001063684A1 (en) * 2000-02-22 2001-08-30 Electricite De France - Service National Electrochemical generator element and corresponding battery
US7235328B2 (en) 2000-02-22 2007-06-26 Electricite De France - Service National Electrochemical generator element and corresponding battery
JP2001266890A (en) * 2000-03-16 2001-09-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
WO2005093891A1 (en) * 2004-03-29 2005-10-06 Sharp Kabushiki Kaisha Lithium ion secondary cell
JP2014041767A (en) * 2012-08-22 2014-03-06 Dainippon Printing Co Ltd Negative electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
JP2018511144A (en) * 2015-06-23 2018-04-19 エルジー・ケム・リミテッド Method for manufacturing curved electrode assembly
US11682766B2 (en) 2017-01-27 2023-06-20 Nec Corporation Silicone ball containing electrode and lithium ion battery including the same
JP2019075278A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Laminated structure, lithium secondary battery and method of manufacturing laminated structure
WO2021065900A1 (en) 2019-09-30 2021-04-08 株式会社村田製作所 Secondary battery
CN112909218A (en) * 2021-03-17 2021-06-04 昆山宝创新能源科技有限公司 Electrode plate, preparation method thereof and battery

Similar Documents

Publication Publication Date Title
KR100279071B1 (en) Lithium ion secondary battery
US6232014B1 (en) Lithium ion secondary battery and manufacture thereof
JP3225867B2 (en) Lithium ion secondary battery and method of manufacturing the same
US6890684B2 (en) Method of binding an electrolyte assembly to form a non-aqueous electrolyte secondary battery
US7833656B2 (en) Electrochemical device and method for producing the same
JP3223824B2 (en) Lithium ion secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
US6291102B1 (en) Lithium ion secondary battery
JPH09213338A (en) Battery and lithium ion secondary battery
KR100587437B1 (en) Nonaqueous Secondary Battery
JPH10275633A (en) Lithium ion secondary battery
JP2004362859A (en) Lithium-ion secondary battery
JPH11307084A (en) Organic electrolyte battery
JP2002042775A (en) Nonaqueous electrolyte secondary battery
JP2002198016A (en) Thin secondary cell
JP2000195501A (en) Organic electrolyte battery and manufacture of the same
JPH11260414A (en) Nonaqueous system secondary battery
JP4207238B2 (en) Stacked organic electrolyte battery
JP2010232011A (en) Secondary battery
JP2000133274A (en) Polymer lithium secondary battery
JPH11121043A (en) Manufacture of polymer secondary battery
US6376125B2 (en) Lithium ion secondary battery and process for producing the same
JP2007128904A (en) Organic electrolyte battery
JP2005149893A (en) Bipolar battery
KR100300530B1 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061205