JPH02148654A - Nonaqueous electrolytic battery - Google Patents

Nonaqueous electrolytic battery

Info

Publication number
JPH02148654A
JPH02148654A JP30288688A JP30288688A JPH02148654A JP H02148654 A JPH02148654 A JP H02148654A JP 30288688 A JP30288688 A JP 30288688A JP 30288688 A JP30288688 A JP 30288688A JP H02148654 A JPH02148654 A JP H02148654A
Authority
JP
Japan
Prior art keywords
positive electrode
discharge
positive
carbonaceous porous
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30288688A
Other languages
Japanese (ja)
Inventor
Kenichi Morigaki
健一 森垣
Shigeo Kobayashi
茂雄 小林
Hiroshi Fukuda
浩 福田
Tomokazu Mitamura
知一 三田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30288688A priority Critical patent/JPH02148654A/en
Publication of JPH02148654A publication Critical patent/JPH02148654A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Abstract

PURPOSE:To increase the discharge capacity and stabilize the discharge voltage by setting the void ratio of a carbonaceous porous body positive electrode 4 to a specified value and forming a conductive layer mainly containing carbon, nickel fine powders and water glass on the surface of a positive collector. CONSTITUTION:When the void ratio of a carbonaceous porous body positive electrode 4 is low and the density of carbon particles is high, the contact with a positive collector pole 8 with carbon particles of the positive electrode 4 is improved, but as the impregnation of thionyl chloride which is a positive active material and electrolyte into the positive electrode is insufficient, the discharge reaction is collected on the positive electrode surface near a negative electrode 2, solid materials such as lithium chloride and ions which are discharge reaction products are accumulated on the positive electrode surface to make it possible to obtain a sufficient discharge capacity in the positive electrode inner part. To solve this problem, the void ratio of the carbonaceous porous body positive electrode 4 is made 80-90%, and a conductive layer having carbon and nickel fine powders as conductive materials and water glass as a binding material is formed on the surface of the positive collector 8 Hence, the discharge voltage is increased and stabilized, and a battery having a large discharge capacity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム金属などのアルカリ金属を負極活物
質とし、常温で液体であるオキシ−・ロゲン化物などを
正極活物質および電解質の溶媒とし、炭素質多孔体を正
極とする非水電解質電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses an alkali metal such as lithium metal as a negative electrode active material, an oxy-halogenide, which is liquid at room temperature, as a positive electrode active material and an electrolyte solvent, and carbon The present invention relates to a non-aqueous electrolyte battery using a porous material as a positive electrode.

従来の技術 リチウムなどのアルカリ金属を負極活物質とし、常温で
液体であるオキシノ〜ロゲン化物、例えば塩化チオニル
塩化スルフリルなどを正極活物質および電解液の溶媒と
する非水電解液電池では、正極にはアセチレンブラック
を主とする炭素質多孔体が用いられている(例えば特公
昭59−28947号公報、特開昭61−19067号
公報)。
Conventional technology In non-aqueous electrolyte batteries, in which an alkali metal such as lithium is used as the negative electrode active material, and an oxyno-halogenide that is liquid at room temperature, such as thionyl chloride sulfuryl chloride, is used as the positive electrode active material and the electrolyte solvent, the positive electrode A carbonaceous porous material mainly composed of acetylene black is used (for example, Japanese Patent Publication No. 59-28947 and Japanese Patent Application Laid-open No. 61-19067).

上記の炭素質多孔体はアセチレンブラック、黒鉛などの
炭素材料とポリテトラフルオロエチレンなどのフッ素系
樹脂バインダーから成り、リチウムイオンなどのアルカ
リ金属イオンとオキシ−・ロゲン化物などの液体活物質
との放電反応の場となるものである。従って、電解液で
もある液体活物質の含浸を良くシ、放電反応生成物の蓄
積による放電反応の阻害を防ぐために、微細な空隙を多
数形成したものが良いとされており、空隙率80%程度
が必要とされている。
The above-mentioned carbonaceous porous material is made of carbon materials such as acetylene black and graphite and fluororesin binders such as polytetrafluoroethylene, and discharges between alkali metal ions such as lithium ions and liquid active materials such as oxy- and halides. It serves as a place for reactions. Therefore, in order to ensure good impregnation with the liquid active material, which is also an electrolytic solution, and to prevent the discharge reaction from being inhibited by the accumulation of discharge reaction products, it is recommended that a material with many fine voids be formed, with a porosity of approximately 80%. is needed.

一方、空隙率が大きくなると導電材である炭素粒子間或
いは炭素粒子と正極集電体との間の接触が悪くなり、炭
素質正極内での集電が悪くなる。
On the other hand, when the porosity increases, the contact between carbon particles serving as a conductive material or between carbon particles and a positive electrode current collector deteriorates, and current collection within the carbonaceous positive electrode deteriorates.

電極の集電効率を向上させる一般的な方法の一つとして
炭素質導電性被膜を形成することが知られている(例え
ば特開昭58−48361号公報)。
Forming a carbonaceous conductive film is known as one of the general methods for improving the current collection efficiency of an electrode (for example, Japanese Patent Laid-Open No. 48361/1983).

また炭素質とチタン等の金属粉末との混合物の導電性被
膜を形成することにより、さらに導電性を改良できると
されている(特開昭56−166649号公報)。
Furthermore, it is said that the conductivity can be further improved by forming a conductive film of a mixture of carbonaceous material and metal powder such as titanium (Japanese Patent Application Laid-Open No. 166649/1984).

発明が解決しようとする課題 上記従来のオキシハロゲン化物などの液体正極活物質を
用いた電池の問題点を、第2図に示す構造のリチウム塩
化チオニル円筒形電池を一例として説明する。
Problems to be Solved by the Invention The problems of the above conventional batteries using liquid positive electrode active materials such as oxyhalides will be explained using a lithium thionyl chloride cylindrical battery having the structure shown in FIG. 2 as an example.

第2図において21は負極端子を兼ねるステンレス鋼製
の電池ケース、2は金属リチウム負極、3はガラス繊維
製筒状セパレータである。4は炭素質多孔体正極であり
、アセチレンブラック、人造黒鉛、ポリテトラフルオロ
エチレンバインターよりなる。6は電池蓋で、その外周
部は前記電池ケース1の開口部と溶接されており、電池
蓋5の中央部にはガラス繊維製6により絶縁された正極
端子7が設けられている。正極端子7はニッケル製の正
極集電棒8と上端部が溶接されている。9は電解液兼正
極活物質であり、塩化チオニルに電解質のリチウムテト
ラクロロアルミネート(LiムICg4)を1.5モル
/l溶解させたものである。1oはガラス繊維製の上紙
である。
In FIG. 2, 21 is a stainless steel battery case which also serves as a negative electrode terminal, 2 is a metal lithium negative electrode, and 3 is a glass fiber cylindrical separator. 4 is a carbonaceous porous positive electrode, which is made of acetylene black, artificial graphite, and polytetrafluoroethylene binder. Reference numeral 6 denotes a battery lid, the outer periphery of which is welded to the opening of the battery case 1, and a positive electrode terminal 7 insulated by a glass fiber 6 is provided in the center of the battery lid 5. The upper end of the positive electrode terminal 7 is welded to a positive electrode current collector rod 8 made of nickel. Reference numeral 9 denotes an electrolytic solution/positive electrode active material, which is obtained by dissolving lithium tetrachloroaluminate (Limu ICg4) as an electrolyte in thionyl chloride at a concentration of 1.5 mol/l. 1o is a top paper made of glass fiber.

炭素質多孔体正極4の空隙率が小さく、炭素粒子の密度
が高い場合には、正極集電棒8と正極4の炭素粒子との
接触が十分良く、内部抵抗の小さい電池が得られるが、
正極活物質兼電解液である塩化チオニルの正極内部への
含浸が不十分であるため、放電反応が負極2近傍の正極
表面に集中する。従って、放電反応生成物である塩化リ
チウム。
When the porosity of the carbonaceous porous positive electrode 4 is small and the density of carbon particles is high, the contact between the positive electrode current collector rod 8 and the carbon particles of the positive electrode 4 is sufficiently good, and a battery with low internal resistance can be obtained.
Since thionyl chloride, which is the positive electrode active material and electrolyte, is not sufficiently impregnated into the inside of the positive electrode, the discharge reaction concentrates on the surface of the positive electrode near the negative electrode 2. Therefore, lithium chloride, which is a discharge reaction product.

イオン等の固形物が正極表面に堆積し、正極内部へのリ
チウムイオンの拡散が阻害され、十分な放電容量が得ら
れないという課題を有していた。
Solid matter such as ions accumulates on the surface of the positive electrode, inhibiting the diffusion of lithium ions into the interior of the positive electrode, resulting in a problem in that sufficient discharge capacity cannot be obtained.

また、正極4の空隙率が十分に大きい場合には、正極内
部への塩化チオニル電解液が十分に含浸できるが、正極
内の炭素粒子と正極集電棒8との接触が不十分となるた
め、電池の内部抵抗が増大し。
In addition, when the porosity of the positive electrode 4 is sufficiently large, the thionyl chloride electrolyte can be sufficiently impregnated into the inside of the positive electrode, but contact between the carbon particles in the positive electrode and the positive electrode current collector rod 8 becomes insufficient. The internal resistance of the battery increases.

かつ不安定となった。従って放電時の電池電圧の低減或
いは電池電圧が不安定で変動するという課題を有してい
た。
And it became unstable. Therefore, there has been a problem that the battery voltage during discharging is reduced or the battery voltage is unstable and fluctuates.

本発明は上記従来の課題を解決するもので、放電容量が
大きくかつ安定した放電電圧を得ることができる非水電
解質電池を提供することを目的としている。
The present invention solves the above-mentioned conventional problems, and aims to provide a non-aqueous electrolyte battery that has a large discharge capacity and can obtain a stable discharge voltage.

課題を解決するための手段 この課題を解決するために本発明の非水電解質電池は、
炭素質多孔体正極の空隙率を80〜90%とし、かつ正
極集電体の表面に炭素とニッケル微粉末を導電材とし水
ガラスを結着材とする導電層を形成したことを特徴とす
る。
Means for Solving the Problem In order to solve this problem, the non-aqueous electrolyte battery of the present invention has the following features:
The carbonaceous porous positive electrode has a porosity of 80 to 90%, and a conductive layer comprising carbon and nickel fine powder as conductive materials and water glass as a binder is formed on the surface of the positive electrode current collector. .

作用 上記構成によると、炭素質多孔体正極の空隙率が80〜
90%と大きくなり、正極内の炭素粒子密度が小さくな
っても正極集電体表面の導電層により良好な電子伝導が
得られる。導電層中のニッケル粉末は導電作用だけでな
く放電反応の触媒的作用と、また水ガラスとともに導電
層の効果的な凹凸を形成している。導電層の結着材とし
ては水ガラスが最も効果的であり、かつ耐化学薬品性も
優れていて望ましいものである。他の樹脂等の結着材で
は1例えばフェノール樹脂、エポキシ樹脂は、オキシハ
ロゲン化物等と反応、溶解してしまうため、実使用上で
効果が得られないか、逆に悪影響が表われる。
Effect According to the above configuration, the porosity of the carbonaceous porous positive electrode is 80~
90%, and even if the carbon particle density in the positive electrode becomes small, good electron conduction can be obtained by the conductive layer on the surface of the positive electrode current collector. The nickel powder in the conductive layer not only has a conductive effect, but also has a catalytic effect in the discharge reaction, and together with water glass forms an effective unevenness of the conductive layer. Water glass is the most effective binder for the conductive layer, and is also desirable because it has excellent chemical resistance. Binding materials such as other resins, such as phenol resins and epoxy resins, react with and dissolve in oxyhalides and the like, so that they are not effective in practical use or, on the contrary, have adverse effects.

また、炭素質多孔体正極の空隙率が80〜90%と大き
いために、オキシ−・ロゲン化物等の正極液体活物質兼
電解液の正極内部への含浸が十分に行なわれ、放電反応
が炭素質多孔体表面に局在化することなく、正極内部ま
で均一に進行するため。
In addition, since the porosity of the carbonaceous porous positive electrode is as high as 80 to 90%, the inside of the positive electrode is sufficiently impregnated with the positive electrode liquid active material and electrolyte such as oxy-halogenide, and the discharge reaction is carried out with the carbonaceous material. Because it progresses uniformly to the inside of the positive electrode without being localized on the surface of the porous material.

高率放電の場合でも大きな放電容量を得ることができる
Even in the case of high rate discharge, a large discharge capacity can be obtained.

実施例 以下2本発明の一実施例について1図面を参照しながら
説明する。
Embodiment Two embodiments of the present invention will be described below with reference to one drawing.

第1図は本発明に係るリチウム−塩化チオニル円筒形電
池の断面図であり、その基本的構造は従来のものと同様
であるが、正極集電棒8の表面に導電層が形成され、炭
素質多孔体正極4内に圧入されている。
FIG. 1 is a cross-sectional view of a lithium-thionyl chloride cylindrical battery according to the present invention. Its basic structure is the same as that of the conventional battery, but a conductive layer is formed on the surface of the positive electrode current collector rod 8, and a carbonaceous It is press-fitted into the porous positive electrode 4.

上記導電層は炭素導電性塗料バニーー・イトIv−96
(日本黒鉛工業(株)製)100重量部に対して粒径6
〜10μのニッケル粉末10重量部と水60重を部を加
えて十分に混合攪拌を行なった後、正極集電棒8にディ
ッピングにより塗布し。
The above conductive layer is carbon conductive paint Bunnyite Iv-96.
(manufactured by Nippon Graphite Industries Co., Ltd.) Particle size 6 per 100 parts by weight
10 parts by weight of nickel powder of ~10 μm and 60 parts by weight of water were thoroughly mixed and stirred, and then applied to the positive electrode current collector rod 8 by dipping.

100℃予備乾燥の後350℃で3時間乾燥焼結させて
形成したものである。
It was formed by preliminary drying at 100°C and then drying and sintering at 350°C for 3 hours.

また、炭素質多孔体正極4はアセチンングラ1290重
景部と人造黒鉛10重量部との混合物にポリテトラフル
オロエチレンのディスバージョン(固形分60%)26
重量部、水250重量部訃よびメタノール160重量部
を加えて混練したものを、乾燥後粉砕し、直径1011
!f、高さ3oHの円柱状に加圧成型したものである。
In addition, the carbonaceous porous positive electrode 4 was prepared by dispersing polytetrafluoroethylene (solid content: 60%) into a mixture of acetingla 1290 and 10 parts by weight of artificial graphite.
Part by weight, 250 parts by weight of water and 160 parts by weight of methanol were added and kneaded, dried and pulverized to give a diameter of 1011 mm.
! f, pressure molded into a cylindrical shape with a height of 3oH.

負極2は厚み0.8flの金属リチウムを幅371ff
、高さ361Mに切断し電池ケース1内壁に圧着させた
ものである。
Negative electrode 2 is made of metallic lithium with a thickness of 0.8 fl and a width of 371 ff.
, and was cut to a height of 361M and crimped to the inner wall of the battery case 1.

第3図は20℃ 300Ω連続放電特性を示したもので
、1は本実施例の特性であり、炭素質多孔体正極4の空
隙率は85%のものである。2は従来例の構造で同様に
空隙率85%の正極を用いたものである。
FIG. 3 shows the 300Ω continuous discharge characteristics at 20° C., where 1 is the characteristic of this example, and the porosity of the carbonaceous porous positive electrode 4 is 85%. Reference numeral 2 has a conventional structure, similarly using a positive electrode with a porosity of 85%.

2の従来例の電池では、放電初期から電圧が低く、放電
中に異常な電圧降下現象が見られ、特に放電末期でに非
常に不安定となり、実用性に乏しい。一方、4の実施例
の電池では、放電電圧が高くまた安定しており、放電容
量も大きく、正極集電体表面の導電層の効果により正極
側での電子伝導が良好でかつ安定していることが分る。
In the battery of the conventional example No. 2, the voltage is low from the beginning of discharge, an abnormal voltage drop phenomenon is observed during discharge, and the battery becomes extremely unstable especially at the end of discharge, making it impractical. On the other hand, in the battery of Example 4, the discharge voltage is high and stable, the discharge capacity is large, and the electron conduction on the positive electrode side is good and stable due to the effect of the conductive layer on the surface of the positive electrode current collector. I understand.

本実施例では炭素質多孔体正極の空隙率が86%の場合
のみ示したが、空隙率が80%よりも小さいと、液体活
物質兼電解液の塩化チオニル電解液の正極4内への含浸
が不十分であり、放電反応の正極表面への局在化により
本発明の効果は余り見られない。また、空隙率が90%
より大きい場合には、放電反応の場となる炭素量が少な
いため。
In this example, only the case where the porosity of the carbonaceous porous positive electrode is 86% is shown, but if the porosity is smaller than 80%, the thionyl chloride electrolyte that serves as the liquid active material and electrolyte may be impregnated into the positive electrode 4. is insufficient, and the effect of the present invention is not seen much because the discharge reaction is localized on the surface of the positive electrode. In addition, the porosity is 90%
If it is larger, the amount of carbon that serves as a site for the discharge reaction is small.

放電電圧、放電容量とも小さくなり、本発明の効果は見
られなかった。
Both the discharge voltage and discharge capacity became small, and the effect of the present invention was not observed.

発明の効果 以上のように本発明は、空隙率80〜9o%の炭素質多
孔体正極と、正極集電体表面に炭素とニッケルと水ガラ
スから成る導電層を形成することによって、放電電圧が
高くかつ安定し、放電容量の大きな電池を提供すること
ができた。
Effects of the Invention As described above, the present invention has a carbonaceous porous positive electrode with a porosity of 80 to 90% and a conductive layer made of carbon, nickel, and water glass formed on the surface of the positive electrode current collector, thereby increasing the discharge voltage. We were able to provide a battery that is highly efficient, stable, and has a large discharge capacity.

【図面の簡単な説明】 第1図は本発明に係る非水電解質電池の一実施例を示す
断面図、第2図は従来の電池の一例を示す断面図、第3
図は本発明の実施例の電池と従来例の電池の300Ω連
続放電での放電特性図である。 2・・・・・・負極、3・・・・・・セパレータ、4・
・・・・・炭素質多孔体正極、8・・・・・・正極集電
棒、11・・・・・・導電層。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第3
図 将砕l今間 (H) 区 〇− 必 〇−
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a sectional view showing an embodiment of the non-aqueous electrolyte battery according to the present invention, FIG. 2 is a sectional view showing an example of a conventional battery, and FIG. 3 is a sectional view showing an example of a conventional battery.
The figure is a discharge characteristic diagram of a battery according to an embodiment of the present invention and a conventional battery at 300Ω continuous discharge. 2... Negative electrode, 3... Separator, 4...
... Carbonaceous porous positive electrode, 8 ... Positive electrode current collector rod, 11 ... Conductive layer. Name of agent: Patent attorney Shigetaka Awano and 1 other person No. 3
Zusho Break Ima (H) Ward〇- Must〇-

Claims (1)

【特許請求の範囲】[Claims] アルカリ金属からなる負極とガラス繊維製セパレータと
活物質兼電解液となる正極液体活物質と炭素質多孔体正
極と正極集電体とを有し、前記炭素質多孔体正極の空隙
率が80〜90%であり、かつ前記正極集電体の表面に
炭素とニッケル微粉末と水ガラスを主成分とする導電層
を形成したことを特徴とする非水電解質電池。
It has a negative electrode made of an alkali metal, a glass fiber separator, a positive liquid active material serving as an active material and electrolyte, a carbonaceous porous positive electrode, and a positive electrode current collector, and the carbonaceous porous positive electrode has a porosity of 80 to 80. 90%, and a conductive layer containing carbon, fine nickel powder, and water glass as main components is formed on the surface of the positive electrode current collector.
JP30288688A 1988-11-30 1988-11-30 Nonaqueous electrolytic battery Pending JPH02148654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30288688A JPH02148654A (en) 1988-11-30 1988-11-30 Nonaqueous electrolytic battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30288688A JPH02148654A (en) 1988-11-30 1988-11-30 Nonaqueous electrolytic battery

Publications (1)

Publication Number Publication Date
JPH02148654A true JPH02148654A (en) 1990-06-07

Family

ID=17914287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30288688A Pending JPH02148654A (en) 1988-11-30 1988-11-30 Nonaqueous electrolytic battery

Country Status (1)

Country Link
JP (1) JPH02148654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589297A (en) * 1993-12-29 1996-12-31 Tdk Corporation Lithium secondary cell
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US20090296315A1 (en) * 2006-11-02 2009-12-03 Sumitomo Chemical Company, Limited Electrode film, electrode and method for its production, and electric double layer capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589297A (en) * 1993-12-29 1996-12-31 Tdk Corporation Lithium secondary cell
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US20090296315A1 (en) * 2006-11-02 2009-12-03 Sumitomo Chemical Company, Limited Electrode film, electrode and method for its production, and electric double layer capacitor

Similar Documents

Publication Publication Date Title
US4161063A (en) Method of making a cathode for an electrochemical cell
JP3450894B2 (en) Alkaline manganese battery
US4154906A (en) Cathode or cathode collector arcuate bodies for use in various cell systems
US4032696A (en) Discrete anode bodies for use in various cylindrical cell systems
US4197366A (en) Non-aqueous electrolyte cells
US4957827A (en) Rechargeable alkaline manganese cells with zinc anodes
US4960655A (en) Lightweight batteries
US4020248A (en) Primary electrochemical cell capable of high discharge rates
US4060668A (en) Primary electrochemical cell
US4118334A (en) Primary electrochemical cell
JPH02148654A (en) Nonaqueous electrolytic battery
JP3216451B2 (en) Non-aqueous electrolyte battery
JP3022758B2 (en) Alkaline manganese battery
Ahn High Capacity, High Rate Lithium‐Ion Battery Electrodes Utilizing Fibrous Conductive Additives
JPH11204107A (en) Nonaqueous electrolyte secondary battery
US4790969A (en) Dry molded cathode collector for liquid cathode systems
JPS63138646A (en) Cylindrical nonaqueous electrolyte cell
JPH0644481B2 (en) Cylindrical alkaline battery
JP3434557B2 (en) Non-aqueous solvent secondary battery
JPH0512824B2 (en)
JPH0318308B2 (en)
JPH02239572A (en) Polyaniline battery
JPH07254405A (en) Inorganic nonaqueous electrolyte battery
JPH02262262A (en) Nonaqueous electrolyte liquid battery
JPS59121785A (en) Non-aqueous solvent cell